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It appears that all fundamental interactions in nature
are of the gauge type. The modern theory of hadrons—
quantum chromodynamics (QCD)—is no exception. It is
based on local gauge invariance with respect to the
color group SU(3), which is realized by an octuplet of
massless gluons. The idea of gauge invariance, how-
ever, is much older and derives from quantum elec-
trodynamics, which was historically the first field
model in which successful predictions were obtained.
By the end of the forties, theoreticians had already
learned how to calculate all observable quantities in
electrodynamics in the form of series in a = 1/137.
The first steps in QCD at the end of the seventies were
also made in the framework of perturbation theory.
However, it gradually became clear that, in contrast
to electrodynamics, quark-gluon physics is not ex-
hausted by perturbation theory. The most interesting
phenomena—the confinement of colored objects and the
formation of the hadron spectrum—are associated with
nonperturbative (i.e., not describable in the framework
of perturbation theory) effects, or rather, with the
complicated structure of the QCD vacuum, which is
filled with fluctuations of the gluon field.

It is now clear that the construction of the complete

"wave function" of the vacuum is a very difficult prob-
lem. It still remains unsolved, despite numerous at-
tacks by theoreticians. Nevertheless, quite a lot is al-
ready known. Study of the "old," traditional hadrons
gives information about the fundamental properties of
the vacuum. In turn, having obtained this information,
we can make a number of nontrivial predictions about
gluonium and other such poorly investigated aspects of
hadron phenomenology.

The corresponding approach has been developed by
the authors over a number of years, but it will not be
discussed here. We note only that the main element
is the introduction of several vacuum expectation val-
ues. For example, the intensity of gluon fields in vacu-
um is obviously measured by the quantity

<0 | GJvGJv I 0),

where G*,, is the tensor of the intensity of the gluon
field (a = 1,..., 8 is the color index). Similarly, the
quark condensate expectation value (01 qq \ 0) serves as
a measure of the quark fields.

In a "final theory," if such is constructed, it will be
possible to calculate all phenomenological matrix ele-
ments on the basis of the Lagrangian of QCD. It can
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already be said that this will require knowledge of non-
perturbative fluctuations in the physical vacuum. Here,
phenomenology makes contact with the purely theoreti-
cal development, which as yet has not had great appli-
cations, though it has made it possible to reexamine
a number of problems.

In 1975, there was discovered one of the most beauti-
ful phenomena in quantum chromodynamics. We are
referring to instantons—classical solutions of the field
equations with nontrivial topology. The beauty of the
theoretical constructions has attracted the interest of
many physicists and mathematicians, and it is difficult
to overestimate the popularity of instantons. The im-
portance of instantons as the first example of fluctua-
tions of the gluon field not encompassed by perturba-
tion theory is in no doubt. Therefore, although one can
hardly speak of any practical fruits, it appears appro-
priate to explain the physical essence of the phenome-
non and derive the basic formulas to enable the reader
to find his (or her) way about the literature.

One of the main conclusions which we shall attempt
to establish is that the original Belavin-Polyakov-
Shvarts-Tyupkin solution1 (BPST instanton) is not the
fluctuation which is dominant in the vacuum wave func-
tion. However, there is no danger of its beauty being
wasted. In one form or another, it will certainly play a
part in the future theory of strong interactions.

We begin with a simple quantum-mechanical problem
that illustrates the role of nonperturbative fluctuations.
This example was analyzed in detail by Polyakov ,2 who
made a major contribution to the development of the
entire subject. Having studied the main technical ele-
ments, we then turn to a more complicated case—quan-
tum chromodynamics. At the very end, we discuss the
question of the importance of the BPST instanton in the
real world.

1. QUANTUM MECHANICS, IMAGINARY TIME,
PATH INTEGRALS

In this section, we consider the problem of the one-
dimensional motion of a spinless particle in a potential
V(x). This problem is usually treated in all textbooks
on quantum mechanics, but we shall use a somewhat un-
usual method to solve it. The reader may find it in-
convenient, just as sum rules are "inconvenient" for
finding the eigenvalues of a Schrodinger equation.
But—and this is the most important property—the meth-
od can be directly generalized to field theory.

If we take the mass of the particle equal to unity, m
= 1, then the Lagrangian of the system has the simple
form

Suppose that the particle at the initial time (-*0/2) is at
the point xt and at the final time (+t9/2) at the point xf.
An elegant method of expressing the amplitude of such
a process was invented by Feynman (see the book of
Ref. 3). The prescription is that the amplitude is equal
to the sum over all paths joining the world points (-£<>/
2,x() and (t$/2,xf) taken with weight

,((lotion)

The action, which we shall in what follows denote by
the letter S, is related to the Lagrangian by

AtX(x,x).
-1.12

Thus, the transition amplitude is

e-IHI' | z,) =

(2)

(3)

where H is the Hamiltonian and exp(-iHt^) is the ordi-
nary evolution operator of the system. The factor N on
the right-hand side is a normalization factor, to the
discussion of which we shall return below. [Dx] de-
notes integration over all functions x(t) with boundary
conditions x(~t0/Z)=x, nndx(tl)/2)=Xf.

Before we consider dynamical questions, we examine
the left-hand side. If we go over from states with a
definite coordinate to states with a definite energy,

# ( « > = £„ |-B>,

then, obviously,

(x, I e-i (4)

and we obtain a sum of oscillating exponentials. If we
are interested in the ground state (and in field theory
we are always interested in the lowest state— the vacu-
um), it is much more convenient to transform the
oscillating exponentials into decreasing exponentials.
To this end, we make the substitution < — -ir. Then in
the limit TO — » only a single term survives in the sum
(4), and this directly tells us what are the energy £0

and the wave function $0(x) of the lowest level e"*"T(tyn

In the literature, the transition to an imaginary time
is frequently called the Wick rotation, and the corre-
sponding variant of the theory of Euclidean variant.
Below, we shall see that the substitution t-~-ir is in a
certain sense not only a matter of convenience, since
it gives a new language for describing a very important
aspect of the theory.

We now turn to the right-hand side of Eq. (3). In the
Euclidean formulation, the action takes the form

T./2

-T./2

(5)

where we assume the boundary condition x(-tn/2)=xi,
*(To/2) =*/> and the origin of the energy is chosen such
that minV(*) = 0.

We call

(6)
-T./2

the Euclidean action. Since SB > 0, we have acquired
an exponentially decreasing weight on the right-hand
side of Eq. (3). In the present review, we shall remain
in the Euclidean space and shall not return to the Min-
kowski space (i.e., to a real time); therefore, in all
that follows we shall omit the subscript E.

The Euclidean variant of (3) is
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<*, 1 «-«'• * = [/>*]«- s (7)

It is now time to make the next important step and
explain what integration over all paths actually means.
LetX(r) be some function satisfying the boundary con-
ditions. Then an arbitrary function with the same
boundary conditions can be represented in the form

where xn(r) is a complete set of orthonormal functions
that vanish at the boundary:

-T./2

The measure [Dx] can be chosen in the form

[Dz]= TT-4^. (9)1 •* 1J_ -i/ o«- x '

The coefficient of proportionality in this relation does
not in general have in itself a particular meaning until
the normalization factor N has been fixed.

Now suppose that in the problem under consideration
the characteristic value of the action is large for cer-
tain reasons. Well known is the situation when the
quasiclassical approximation, or, which is the same
thing, the method of steepest descent (the latter,
"mathematical" term may be more readily understood
by some of the readers), "works." In other words, the
entire integral in (7) is accumulated from regions near
the extremum (minimum) of S. The path corresponding
to the least action, which we denote byX(r), is known
in the literature as an extremal path, an extremal, or a
stationary point. If there is one extremal andSfX(T)]
=S0, then

N [Dx] e~ (10)

Thus, to find the principal, exponential factor in the
result, it is sufficient to put in information about a
single, extremal path. (If there are several stationary
points, we have in general the sum of the contributions
of all the stationary points.)

There exists a standard procedure which enables us
to take the next step and fix the pre-exponential factor.
This operation is already somewhat more laborious.
Suppose for simplicity that there is a single stationary
point, X(T). The following formula expressed in mathe-
matical language the fact that X(T) realizes a minimum
of the action:

To/2

(X) = 0,-

where V'=dV/dx. The equation
J 2 V—— — v txi* -" , (11)

is of course well known to the reader from school days
(we recall that "the mass multiplied by the acceleration
is equal to the force"). It is the classical equation of
motion of a particle in the potential minu*.

11The minus sign is due to the fact that the Euclidean formu-
lation is considered [see (6)].

We shall shortly return to this circumstance, but
first recall how the pre-exponential factor in (10) is
calculated. It is determined by an entire " pencil" Of
paths near the extremal path, i.e., by paths with action
that differs little from S0. In other words, we take into
account only the quadratic deviation:

-T,/2

(12)

(as the reader will recall, there is no term linear in
the deviation).

Suppose we know a complete set of eigenfunctions and
eigenvalues of the equation

d» (13)- ̂ 5- Xn (T) + V" (X) Xn (T) = BnZn (T).

Then we can choose these functions as the orthonor-
malized system which occurs in (8), and the action (12)
is transformed to the simple diagonal form

Recalling the definition (9) and the rule of Gaussian
integration

(it is important that after the diagonalization each such
integration can be performed independently of the
others), we obtain

'/*. (14)

Sometimes, instead of the product of eigenvalues one
uses the notation

1-1/2 (15)

which, of course, derives from the theory of ordinary
finite-dimensional matrices. In fact, the relation (15)
can be regarded as the definition of the determinant
of a differential operator. It is here appropriate to
make three comments. First, the result (14) does not
depend on the explicit form of the eigenfunctions but
only on the eigenvalues. Second, we have assumed that
all the en are positive. In the majority of cases, this is
so, but in the instanton example, which is the final aim
of the present review, several eigenvalues vanish. The
resulting infinity has a simple physical meaning. The
problem of how it should be handled is the subject of
the next section. The third and final comment is the
following. The normalization factor N has still not yet
been fixed. We shall not even attempt to give a general
prescription but consider a simple example, which will
serve us in the future too. Suppose the original particle
with mass m — 1 is placed in the potential V(x) shown in
Fig. 1. We do not need the actual form of this poten-
tial, but to achieve "normalization" to the harmonic
oscillator (in which the potential is usually taken to be
moiV/2), we set V"(# = 0) = o>2. As the initial and final
points of the motion we choose xl=xt = 0.

The rich physical intuition that we each have for po-
tential mechanical motion enables us to find the extre-
mal from Eq. (11) without knowing the explicit form of
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FIG. 1. FIG. 2.

V(x). Indeed, this equation describes the motion of a
ball on the profile shown in Fig. 2. At the time -T0/2,
the ball is displaced from the upper point, to which it
returns at the time +T0/2. It is entirely clear that
there exists only one path with such properties: X(T)
sQ. Any other path corresponds to an infinite motion
with the ball going away to plus or minus °°. It is also
clear that the action on the pathX(r) = 0 vanishes.

Thus, in the given particular problem the general
formula (14) becomes

t = Q , ,,-,«. , Ii = following terms),

and all the eigenvalues £„ are immediately fixed by the
boundary conditions xn(±T0/2) = 0:

We have now arrived at the point at which it is possi-
ble to advance further without saying what is the value
of N. We split the determinant into two brackets:

1-1/2

(16)
Obviously, the first square brackets corresponds to
free motion of the particle, and therefore, it must, of
course, reproduce the free result:

N( 5 -Tr)

(17)
Of course, Eq. (17) is somewhat symbolic, but it can
be regarded as the definition of the normalization fac-
tor N. We now consider the second, less trivial brack-
ets. For the infinite product which occurs in it we
have the well-known formula [see, for example, for-
mula (1.431.2) in Ref. 4J2'

ny

where in our case y =wT0/ir.

We now collect together all the factors, take into
account (16) and (17), and write down the final result:

Going to the limit TO~«>} we find

from which it follows that for the lowest state £0 = c .
tMO)]2 = (w/T)1/2- The next term in the expansion cor-
responds to the level of an oscillator with n = 2 [the odd
n do not contribute, since for them $B(0) = 0]. The re-
sults are exact for the harmonic oscillator and serve as
a zeroth approximation for a potential with small an-
harmonicity, say (wV2)*2+X#4.

2. TWO-HUMPED POTENTIAL. TUNNELING

In the previous section, we reformulated in the lan-
guage of Euclidean space and path integrals one of the
most fundamental problems—an oscillator system near
the equilibrium position. This problem provides the
basis of all field theory. In fact, we have taken into
account small vibrations—small deviations from the
equilibrium position—and have made the first step to
ordinary perturbation theory. For more than 20 years,
right up to the middle of the seventies, all field-theo-
retical models (apart from the small exception of ex-
actly solvable two-dimensional models) were developed
in this and only this direction. The field variables were
regarded as a system of an infinitely large number of
oscillators coupled to each other and each possessing
zero-point vibrations; one then considered small devi-
ations, with respect to which perturbation theory was
constructed successively. In this sense, the "infant"
period of quantum chromodynamics, when quark-gluon
perturbation theory was created, did not introduce
anything fundamentally new. It was only the discovery
of instantons which showed that it contains effects
which cannot be described if one does not go beyond
the framework of small deviations from the equilibrium
position. It is in principle impossible to describe these
effects by expansions in the coupling constant. Here,
we again turn to a simple quantum-mechanical analogy,
in which, however, all the main features are already
present.

Thus, we again consider the one-dimensional poten-
tial motion of a spinless particle with unit mass. The
potential

- il2)2 (19)

^Translator's Note. The Russian notation for the trigono-
metric, Inverse trigonometric, hyperbolic trigonometric
functions, etc., is retained here and throughout the article
in the displayed equations.

V(x)

FIG. 3.
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is shown in Fig. 3. We fix the parameters \ and 77 in
such a way that 8X7?2 = w2, where w is the frequency in-
troduced in the previous section. Then near each of
the minima, which are indicated by the symbols ±77, the
curve is identical to the potential of the previous sec-
tion. If x « a)3, then the wall separating the two minima
is high. Its height is o>4/64x. Suppose for a moment
that it is actually equal to infinity. Then the lower
state of the system has a twofold degeneracy—the par-
ticle may be in the right-hand well or in the identical
left-hand well, i.e., it executes small vibrations near
the point +77 or -17. At first glance, the solution to our
problem should be constructed in exactly the same way.
The expectation value of the coordinate in the ground
state should be

(£)„ = +j) (1 4- corrections) or te)0 = —T) (1 -f corrections),

the original symmetry of the system with respect to
the substitution x~-x is broken, £0 = (w/2)(l + correc-
tions) in both cases, and at small x the corrections
are small. In fact, it is known from courses of quan-
tum mechanics that this picture is qualitatively incor-
rect. The symmetry is not broken, the expectation
value of x for the ground level is exactly zero, and
there is no degeneracy:

(20)

We note the fact thatE, -E0~exp(-w3/12x) and this
quantity cannot be expanded in a series in x. [it is
assumed that «3/X » 1. In reality, Eqs. (20) begin to
"work" when w3/12x 2 6.]

Thus, we nave gone wrong and failed to take into ac-
count an important element that leads to qualitative
changes. What is this element? Everyone knows the
standard answer given in courses of quantum mechan-
ics. If at the initial time the particle is concentrated
in, say, the left-hand minimum, it nevertheless feels
the existence of the right-hand well despite the fact
that the latter is inaccessible according to the classi-
cal laws of motion. Quantum-mechanical tunneling
transfers the wave function from one well to the other
and, in Polyakov's terminology, "mixes" the ground
states. The correct wave function of the ground state
is an even superposition of the wave functions in each
of the wells.

We now consider how this phenomenon appears in the
imaginary time and how the technique presented in the
previous section is changed. It turns out—and this is a
great good fortune—that all the fundamental technical
elements remain unchanged. It is only necessary to
take into account the fact that the classical equations
of motion in the imaginary time have not only the trivial
solutions X(T) = const considered earlier but also addi-
tional nontrivial topological solutions which extend far
from both the minima. These solutions connect the
points ±17, and they are entirely responsible for the
phenomenon under discussion. We emphasize that in
real time there are no additional classical solutions,
since the transition from the one minimum to the other
occurs below the barrier and is classically forbidden.

FIG. 4.

The solutions arise only after the Euclidean rotation.

We consider the calculation of the amplitudes

<TI | e~"*> | -TI> and <rj [ «-»'<• 11)>.

The first step, as the reader may still recall, consists
of solving Eq. (11). The "mechanical profile" for this
equation is shown in Fig. 4. We are interested in solu-
tions of Eq. (11) that have finite action in the limit TO

— °°, since it is such solutions that are important in
the quasiclassical approximation we are discussing.
Most of the paths correspond to either vibrational mo-
tion or to *—» as T — » , and they have infinite action.

A finite action in the limit TO — °° is obviously obtained
when the particle stays at the top of a hump, i.e., X(T)
=TJ andX(T)=-77. The contribution of these trajectories
was considered above. Another interesting motion
leading to a finite action as T9 — » corresponds to the
particle sliding from one hump and stopping on the
other. Thus, we are interested in a path which begins
at -T0/2 at the point -77 and ends at the point T] at the
time T0/2.3) Physical intuition suggests that such tra-
jectories exist, though their explicit form for finite TO

is complicated. We are always interested in only the
lowest state, and therefore we can directly assume that
TO — o°. In this limit, the solution is very simple:

(21)

[it corresponds to mechanical motion with zero energy,
E = (l/2)*2 - V(x)~0, so that the equations can be
readily integrated].

Such a solution is called an instanton (Polyakov pro-
posed the name "pseudoparticle," which can also be
found in the literature); the arbitrary parameter TO

indicates its center. Of course, there also exist anti-
instantons, which begin at +77 and end at -TJ . They are
obtained from (21) by the substitution r —T.

Since all the integrals can be calculated, it is easy to
obtain a closed expression for the action of the instan-
ton [we recall that for the instanton %x*=V(x)]:

! Cl>
3

(22)

We recall that the principal exponential factor in the
amplitude is g-""011 [see Eq. (10)]. The exponential
which occurs in (20) has emerged. Of course, we still
have a long way to go before we can reproduce the
complete answer.

3^Here we have allowed a slight inaccuracy. If TO is large but
not infinite, the path begins just to the right of — T; and ends
just to the left of +• 77. It Is only in the limit TO -~ °° that the
end points coincide with ±77.
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We draw attention to one further property of an in-
stanton, which has far reaching consequences. The
center of the solution may be at any point, and the ac-
tion of the instanton does not depend on the position of
the center. This circumstance obviously reflects the
symmetry of the original problem. Namely, the La-
grangian of the system is invariant with respect to
shifts in time, and the time origin can be chosen arbi-
trarily. Each concrete solution (21) has a definite
position with respect to the origin, and thus there
exists an infinite family of solutions distributed arbi-
trarily with respect to the origin. Intuitively, it is
clear that the instanton must occur in any physical
quantity in the form of an integral over the position
of its center. How does this integral arise formally
and what weight is then obtained ? Answers to these
questions are given in the following section.

3. DETERMINANT AND ZERO-FREQUENCY MODES

In this section, we find the one-instanton contribution
to (-tj|e^To|T)). We shall not, of course, be concern-
ed with the exponential factor, which has actually al-
ready been found, but rather the pre-exponential fac-
tor, whose calculation presents a more laborious
problem. It is true that in the case under considera-
tion one can employ various devices that significantly
simplify the problem and are sometimes discussed in
the literature.5 However, we shall proceed in a "head
on" manner, which is closest to the method used by
't Hooft6 to calculate the instanton determinant in QCD.
We hope that this will subsequently enable the reader
to reproduce for himself all details of "t Hooft's work,
which is central for the entire instanton problem.

The original formula (14) is conveniently rewritten as

We have multiplied and divided by a known number—the
determinant for the harmonic oscillator [see (18)]. The
harmonic oscillator will serve as a "point of reference"
for manipulations with the more complicated deter-
minant in the numerator. Substituting the explicit ex-
pression X(T)=?jtanh(GDT/2) in V'PO, we arrive at the
eigenvalue equation

) = 6nln (T). (23)

It can be regarded as a certain SchrSdinger equation,
which, fortunately, is very well studied. Indeed, Eq.
(23) is described in detail in, for example, the textbook
of Landau and Lifshitz (Ref. 7, pp. 97 and 105), and we
shall use this source. We recall that the boundary con-
ditions are xn(±T0/2) = 0 and TO - «. These conditions
are automatically satisfied with exponential accuracy
for bound levels, i.e., for the truly discrete spectrum.4'

4)Without boundary conditions, the complete spectrum is in
fact discrete. The genuine discrete levels can however be
readily distinguished from me quasldiscrete levels formed
from the continuum after the system has been enclosed in
the "box" x(±T0/2) =0. The former are separated by inter-
vals of order w2, while the latter are at a distance of order
1/Tj2 from their neighbors.

There are two such levels in Eq. (23). One of them
corresponds to the eigenvalue e, = (3/4)w2, and the
other to

e, = 0.

The wave function of the latter, normalized to unity, is

(an/2)' (24)

The vanishing of the eigenvalue may discourage the
reader, since the answer contains ej[1/2l However, this
result, e0=0, cannot be regarded as a surprise. In-
deed, Eq. (23) actually describes the response of the
dynamical system under consideration to small pertur-
bations imposed onX(r). Since X(r) is a solution which
realizes a "local" minimum of the action, a perturba-
tion of X(T) increases the action. Accordingly, the £„
are positive. However, we already know that there is
one direction in the function space along which the solu-
tion can be perturbed without changing the action. We
have in mind a shift of the center. By virtue of the
translational invariance,

S [X (T, tc)l - S [X (T, TC + fir,)] = 0.

The so-called zero-frequency mode (i.e., the mode
with e=0) is obviously proportional toX(T,Tc)=X(T,Tc
+ 6T0). The correctly normalized zero-frequency mode
has the form

or, which is the same thing,

(25)

The correctness of the normalization follows from the
expression (22). It is readily seen that (25) is identical
to (24), and we now see that this agreement is not for-
tuitous but a consequence of the translational invari-
ance.

Thus, integration with respect to the coefficient c0

corresponding to the zero-frequency mode [see (8) and
(9)] is non-Gaussian, and the integral between infinite
limits does not exist at all. The way out of the dilemma
is simple. We shall not calculate this integral expli-
citly. It is clear that the integration over dc0 is the
same as integration over dT0 apart from a coefficient
of proportionality. We have here the same integral
over the position of the center of the instanton whose
appearance our intuition required. In the literature,
this trick is sometimes called the introduction of a
collective coordinate.

We determine the coefficient of proportionality. If
ca changes by Ae0, then x(r) changes by

A* (T) = x, (T) Ac0

[see (8)]. On the other hand, the change A#(T) on a
shift ATC of the center is

dz (T) = A.X (T) = ~ ATC = - y Sj x, (T) Arc.

Equating the two increments, we obtain

dc0=ys;dTC. (26)
[In Eq. (26), we have not inserted the minus sign to en-
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sure that as c0 varies from -« to +« the parameter
TO changes in the same interval.] This is not yet every-
thing, since we agreed to normalize the result to the
ordinary oscillator (we recall that we are interested in
the ratio of determinants). In the oscillator problem,
the minimal eigenvalue is a)2 + 7T2/T2— o>2 in the limit
TO-«. Finally,

det[ » - to dTc | m_2 det (_ (d2/dT2) + M!) I

(27)
where det' denotes the reduced determinant with the
zero-frequency mode removed.

We emphasize that although we have analyzed only a
single specific example with the simplest instant on
T; tanh(«T/2), the method of dealing with zero-frequency
modes is in fact general. Thus, in the BPST instanton
any invariance will generate a zero-frequency mode,
and the integration with respect to the corresponding
coefficient must be replaced by integration with respect
to some collective variable. We have already learned
how to find the Jacobian of the transformation.

We now consider positive-frequency modes. It is
easiest to deal with the second discrete level, whose
eigenvalue is (3/4)u>2. If we denote by * the ratio

uj-2det[ — ( (28)

then the contribution of this level to * as TO — °° is ob-
viously

|. (29)

We now turn to other modes with e > w2. If we did not
have the boundary condition x(±T0/2) = 0, Eq. (23) in
this region would have a continuous spectrum. Let us
forget the boundary conditions for a moment. The gen-
eral solution of (23) is given in the book of Landau and
Lifshitz; however, we do not require its explicit form.
It is sufficient to know the following. First, the solu-
tions with e > a;2 are labeled by a continuous index p.
This index is related to the eigenvalue e by p — Ve^
-w2 and ranges over the entire inverval (0,°°). Second,
for the values of the parameters that occur in (23) there
is no reflection. In other words, choosing one of the
linearly independent solutions in such a way that

IP (T) = e'"T as t-»-+oo,

we have in the other asymptotic region the same ex-
ponential:

xp{1) = eipT+'6» as t-*-—oo.

The second exponential, e"lft, which should in principle
arise, is absent, and the entire dynamical effect has
been reduced to the phase

cnr.._ *+ ('/>/") l + (2tp/m) /30)
~~ 1 —(ip/co) 1 —(2ip/a) V°"'

(we have used here the formula from the textbook of
Ref. 7 on p. 106). The second linearly independent solu-
tion can be chosen in the form xp(-r). The general
solution is Axp(r) +Bxp(-r), where A and B are arbi-
trary constants.

This information is already sufficient to find the
spectrum if we recall the boundary condition x(±T/2)

= 0. The equations for A and B,

Mir)+M~T-H, M—rHMxH-
have nontrivial solutions if and only if

MV2) _

M-V2)

This gives an equation for p :

<,ipt.-i«p = -j- ^

or, which is the same thing,

/>TO — 6P = JIB, n = 0, 1, . . . . (31)

We denote the nth solution by fn. In the case of
det[-(d2/dT2) + co2], by which we normalize, the equa-
tion is />T0 = im and the nth solution />n=irn/T0. We need
to calculate the product6'

For any preassigned n, the ratio (co2 +]52)/(a>2 +/>2) is
arbitrarily close to unity as TO — °°. Only the multipli-
cation of a very large number of factors with n~u>T0,
each of them differing from 1 by an amount of order
l/wTo> gives an effect. (For n» U>TO, the difference
between a)2+#! and u2 +p\ again becomes unimportant,
in complete agreement with our physical intuition.)
Under these conditions, we can write

) ]
J'

where we have made an expansion with respect to the
small difference pn -pn. Going over from summation
over n to integration over pn and using (31) for pn -pn,
we obtain on the right-hand side

Differentiating the phase by means of (30) and intro-
ducing the dimensionless variable y =p/w, we trans-
form this expression identically to

ex? —s- (32)

Finally, combining (32) and (29), we find that

<D = -1.. (33)

We have now made all the necessary preparations,
namely, we have derived formulas (33), (28), (27),
(22), and (18), and we write down the result for the
one-instanton contribution:

. | r, Tc. (34)

5)The reader may recall that we have already "taken up" in
the denominator two eigenvalues, w2 +7r2/T§ and w2 -^irVr2,,
in calculating the contribution of the discrete modes with
£ = 0 and E=3o)2/4. Therefore, it would be more correct In
the denominator to write <j? +p%+2. However, as we shall
see very shortly, It Is the region of very large n, of order
U>TO, that is important, so that the difference betweenpn+2
and/>n Is Immaterial.
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This result can be trusted as long as

At large T O > when this condition is violated, it is neces-
sary to take into account paths constructed from many
instantons and anti-ins tantons, and this will be done in
the following section.

It is here appropriate to make some comments. The
factor in the first square brackets corresponds to a
simple harmonic oscillator. By separating it, we have
been able to normalize, or regularize, the instanton
calculations. A similar device for regularization is
used in quantum chromodynamics. The factor in the
second square brackets can naturally be called the in-
stanton density. Besides the exponential factor e"50,
the density contains the pre-exponential V3JJ, which is
associated with the existence of the zero-frequency
mode. This circumstance is also of a general nature.
In quantum chromodynamics too, each zero-frequency
mode is associated with V5JJ. Finally, the existence
of the zero-frequency mode leads to the appearance of
a regularization frequency and of integration over the
collective coordinate wdTc.

We wish to emphasize that it is worth remembering
the lessons we have learned, since they can be directly
transferred to the BPST instanton. The only thing spe-
cific in the present case is the number -V 6/17 . If this
number is not particularly important (and in QCD, as
we shall see below, this is indeed the case), all the
remaining result can be reconstructed almost at once,
without calculations. We have taken so much bother
with the relatively simple determinant for a pedagogical
reason— to avoid greater boredom in the case of the
BPST instanton.

4. INSTANTON GAS

It remains for us to make the final, small step to
reproduce formula (20). The energy of the lower state
is determined by the transition to the limit TO — «>. We
cannot go to this limit directly in Eq. (34). At very
large TO, paths constructed of many instantons and
anti-instantons are important. If the distance between
their centers is large, such a path is also a classical
solution.

Suppose we have n instantons or anti-instantons with
centers T,,T2 ). . . ,rn (Fig. 5). The points r{ satisfy
the condition

and otherwise can be distributed arbitrarily. If the
characteristic intervals satisfy |T,-TJ| »o>'1 (we shall
verify the condition a posteriori), then the action cor-

FIG. 5.

responding to such a configuration is nS0, where S0 is
the action of one instanton. With regard to the deter-
minant, it is obvious that if we did not have the n nar-
row transition regions (near T,,T2, . . . ,TB) we should
obtain the same result as in the case of the harmonic
oscillator, vfw/ire"taT0''2. The transition regions lead to
a correction, and we now know in what way:

s e-s. )» (MdT().

Finally, the contribution of the w-instanton configur-
ation can be written in the form

-I./S -T,/2

where we have denoted by d the instanton density,

s-. (35)

The amplitudes {-7?|e~m'°|7?} and ftk~*T°h> are obtain-
ed by summation over n. In the first case, we start
from -7) and arrive at +17 and therefore the number of
pseudoparticles is odd. In the second case, conversely,
only an even number of pseudoparticles works:

V r «

), (36)

Going to the limit TO —°°, we immediately reproduce
formula (20) for the energy of the lowest state. Denot-
ing the ground state of the system by |0), we see that
(Tj|0} = (-77|0) = (a>/4Tr)1/4, i.e., the symmetry between
the right- and left-hand well is indeed not broken.

We now return to the assumption that the character-
istic distances between the centers of the instantons
are large,

| Tj — 1j | > OT1,

and consider how well it works. It is clear that the
sums in (36) converge well, and all terms with number
n»do>T0 are unimportant. Thus, nctar~do>T0 and ( T J
-TJ lemp-d^w"'. Having at our disposal the free pa-
rameter x, we can achieve an arbitrary smallness of
d, since d-0 ase"u3/lu in the limit x-0.

Thus, for x « 1 we are fully justified in "stringing"
instantons and anti-instantons on one another, forming
thereby a chain of noninteracting pseudoparticles.
Noninteracting in the sense that they are all far from
one another, know nothing about the remaining part-
ners , and the total weight function is obtained by multi-
plying the individual weight functions [d" in formulas
(36)].

Such an approximation is called a dilute instanton
gas. In quantum chromodynamics, it has been exploit-
ed particularly by Callan, Dashen, and Gross.8 Un-
fortunately, in QCD we do not dispose of free param-
eters like x that can be kept small. Therefore, a dilute
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instanton gas is not suitable from the quantitative point
of view in QCD, and the most we can extract from it are
are heuristic indications.

To conclude the section, we note that a somewhat
more extensive exposition of the instanton approach to
the two-humped potential is contained in Coleman's
lecture.5 The reader interested in special questions,
for example, situations not covered by the gas approxi-
mation, must consult Ref. 9.

5. EUCLIDEAN FORMULATION OF QCD

Thus, in the simple example of the two-humped po-
tential we have seen that if there exist nontrivial solu-
tions of the classical equations qualitatively new effects
occur in the theory. Tunneling from one well to another
makes the vacuum wave function quite different from
the one obtained in perturbation theory. Our aim in
this review is, of course, chromodynamics and not
quantum mechanics. However, in chromodynamics too
there is a similar phenomenon, which we shall discuss
in this and all the following sections of the review.

As we said above, we are concerned with the solution
of classical equations in Euclidean space. Therefore,
we first formulate the Euclidean version of QCD. We
give the formulas for the transition from Minkowski
to Euclidean space. The spatial coordinates #,,x2,#3

are not changed. For the time coordinate x0, we make
the substitution

!„ = —IX... (37)

Clearly, whenx0 is continued to imaginary values the
zeroth component of the vector potential A,, also be-
comes imaginary.

We define the Euclidean vector potential Atf as follows:

Am=-Am (m = l, 2, 3), Aa^iAk (38)

(in this section, we shall use the caret to denote all
quantities defined in the Euclidean space). With this
definition, the quantities Au (ji = 1,... ,4) form a Eucli-
dean vector. The difference between formulas (38) and
the corresponding relations for the vector x^ [the dif-
ference is in the common sign of AB (fi = 1,... 4)] is
introduced for convenience in the expression of the
following formulas.6'

Thus, for the operator of covariant differentiation

0,1 = 3,,— igA^T", (39)

where T" are the matrices of the generators in the rep-
resentation being considered, we obtain

(40)

We recall that the operator du in Minkowski space has
the form 5U = (a/3*0 , - 3/3* J.

6)If we use the definition Am = Am (m -1,2,3), then in all the
following connection formulas it is necessary to make the
substitution g-~ —g.

For the intensities Guv we obtain the formulas

Ga
mn = Ga

nn (m, n = i, 2, 3), GSn=-iGjn,

where the Euclidean intensities <?*„,

(,1.

.(41)

(42)

can be expressed in terms of A,, and 3/5xu in the same
way as the Minkowskian G*uv.

To complete the transition to the Euclidean space, it
remains to give the formulas for the Fermi fields. We
begin with the definition of four Hermitian y matrices
yV-

(43)Yi = Yo, Y m = — ' Y m (m=l , 2, 3),

where y0 andy m are the ordinary Dirac matrices.

The fields ip and $ are regarded as independent anti-
commuting variables, with respect to which integra-
tion is performed in the functional integral. On the
transition to the Euclidean_space, it is convenient to
define the variables $ and jp by

" T" -T i A A\fy = i|?l ijj =—njj. \44J

Note that under rotations of the pseudo-Euclidean
space, $ transforms as ^Vo- I*1 tne Euclidean space,
I' transforms as $*. Indeed, under infinitesimal rota-
tions of the pseudo-Euclidean space characterized by
the parameters o)w» (ji, f = 0,1,... ,3) the spinor ^ac-
quires the addition

i

For the change in if = ̂ Vo we deduce from this

6 ('KYo) = 4- "f *Yofo (YvYi — YlYv) Yo^nv = -j- (if+Yo) (Y^Yv — YvYn) mnv

so that iiityn^s is a scalar and iKytfyuifo a vector.

On the transition to the Euclidean space, the param-
eters Un, (m,n = l,2,3) do not change, and a!on = *W4n

(because of the substitution xl>—-ixi). For the varia-
tions of $ and if* under rotations, we obtain

so that $J<|>2
 and $ty,,$2 are a scalar and vector, respec-

tively.

Finally, we can write down an expression for the
Euclidean action:

S= j d»i[— j-

ts = -£

(45)

where it is assumed that $ is a column in the space of
flavors (with color index), andAf is a matrix in this
space.

Below, we shall use the Euclidean space and omit the
caret. The formulas given below make it possible to
relate the quantities in the pseudo-Euclidean and Eucli-
dean spaces.

To conclude the section, we note that if we are con-
sidering quantities such as the vacuum expectation val-
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ties of the time-ordered products of currents for space-
like external momenta, i.e., when the sources do not
produce real hadrons from the vacuum, the Euclidean
formulation is not only merely possible but in fact is
more adequate than the pseudo-Euclidean. The region
of timelike momenta, where there are singularities,
can be reached by means of analytic continuation. Such
an approach is particularly necessary for quantum
chromodynamics, for which the fundamental objects of
the theory—the quarks and gluons—have meaning only
in the Euclidean domain, and the real singularities
corresponding to hadrons have to be obtained.

6. BPST INSTANTONS. GENERAL PROPERTIES

a) Finiteness of the action and the topological charge

It was already clear in the quantum-mechanical ex-
ample discussed above what an important part is played
by solutions that give a minimum of the Euclidean ac-
tion in the limit TO-<». in general, the action increas-
es unboundedly in the limit T8-«f and the condition
that it be finite imposes strong restrictions on the paths.

Thus, in the one-dimensional example we have ana-
lyzed, the finite-action condition means that the func-
tion X(T) as T — ±« must have the limits ±TJ. In this way
there arises naturally a topological classification of
functions giving a finite action on the basis of their
limiting values. Formally, a topological charge can
be introduced as follows:

v~ 2i) J ""-w- 2ti
— oo

It is obvious that Q can take on the values 0, +1, -1.
Functions with different Q cannot be carried into one
another by a continuous deformation that leaves the ac-
tion finite. Therefore, in each of the classes Q=0,
+ 1, -1 there exists a corresponding minimum of the
action and corresponding functions that realize it. The
instanton and anti-instanton realize minima for Q=±l.

We now turn to "gluodynamics" —the theory of a non-
Abelian vector field—and consider first the case of the
group SU(2). We pose the same question: What must
be the behavior of the vector fields A J as x — °° if the
action is to be finite ? (We have in mind the Euclidean
action S; see (45).] It is clear that the intensities G*,,
must decrease more rapidly than I/*2. But this by no
means implies that the fields A" must decrease faster
than l/x. Indeed, suppose A° in the limit # — «> has the
form

Ay, 9 ^ • iS dnS*, (46)

where we have introduced matrix notation: S is a uni-
tary unimodular matrix that depends on the angles in
the Euclidean space. Although the angular components
of Au are proportional to l/x, it is clear that in the re-
gion in which the expression (46) holds the intensities
G*uv vanish, since A'u has a purely gauge form.

Thus, the behavior of A* at large x is determined by
the matrix S, which depends on the angles. Under a
gauge transformation of AB defined by the matrix U(x):

the matrix S is replaced by U+(x -°°)S. It would appear
that one can always choose U(x) such that U(x - «>) =S
and thus remove the terms l/x from A w . However, this
argument is correct only if the matrix U(x) does not
have singularities at any value of x. Otherwise, the
problem of the behavior of Au(x) is transferred from
the point at infinity to the position of the singularity of
U(x).

As a result, the problem of classifying the fields
A*u which give finite action reduces to the topological
classification of the matrices S. We shall not present
this classification, which was obtained in the pioneering
paper of Ref. 1, but rather give examples of nontrivial
(not reducible to the unit matrix) matrices S. For ex-
ample, we have the matrix

(47)

It corresponds to unit topological charge (there is a
one-to-one correspondence between the space of uni-
tary unimodular matrices and the points of the hyper-
sphere in Euclidean space). To topological charge n
there corresponds a matrix of the form

(5,)", « = 0, ±1, ±2, (48)

Of course, one could choose a different form of the
matrix S corresponding to the charge n, but the differ-
ence between it and Sn reduces to a gauge transforma-
tion.

For n, there exists the gauge-invariant integral rep-
resentation

where

S^v —-Tj-envvfiGvft, £1234— 1.

(49)

(50)

The validity of Eq. (49) can be verified by using the fact
that G°G° ,, can be represented in the form of a total
derivative ,

so that the volume integral (9) can be transformed into
an integral over a distant surface, where A° has the
form (46).

b) The distinguished role of the group SU(2)

Hitherto, we have discussed the group SU(2). For
groups different from SU(2), the construction of instan-
ton solutions with n — 1 reduces to the case of SU(2)
by means of separation of SU(2) subgroups. Why is the
group SU(2) distinguished? We shall attempt to explain
this without using topological terminology.

The possibility of deformation of the matrices S is
determined by the gauge invariance discussed above.
We attempt to fix the gauge, for which we represent an
arbitrary field A „ in the form

An (x) = S (x) Av (x) S* (x) + iS (x) d»S+ (x) , (51)

where the field A^ satisfies definite gauge conditions
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[for example, A"0-0 or 8mAM = 0 (m = l,2,3)]. This fix-
ing does not completely determine the transition to the
new fields Au(x) andS(#), since Aw is invariant under
global transformations of the form

S(X)-+s(X)irt, (52)
with matrix £/2 that does not depend on x.

In addition, even after the fixing of the gauge the the-
ory is still invariant with respect to global isotogic ro-
tations for Au, which in terms of the new fields A,i(#)
and S(x) is equivalent to the transformations

S (z) -* £7,5, Au(z)-+ A,(z). (53)

Thus, the isotopic SU(2) invariance of the theory
together with the gauge invariance reduce to the set of
global transformations (52) and (53), which obviously
form the group SU(2)xsu(2). The field S(x) transforms
in accordance with the representation (1/2,1/2), and
Au(x) in accordance with the representation (1,0).

On the other hand, the group of rotations of four-
dimensional Euclidean space is again, as is well known,
SU(2)xsu(2), and the generators of the SU(2) subgroups
have the form

= l, 2, 3 \
, v = l 4 J ' (54)

where Muv--ixu3/Sxv + ixvS/Sxu + spin part are the
operators of infinitesimal rotations in the (\i,v) plane,
and i)aliv are the numerical symbols

= l, 2, 3,

(55)

(The symbols r}alJ.v differ from T) by a change in the sign
of 6.) The coordinate vector xv transforms in accor-
dance with the representation (1/2,1/2). This is con-
veniently seen by considering transformations of the
matrix

!T^U. (56)

(57)

(57')

where we have introduced the notation

For T* , we have

It is not difficult to find the law of transformation of the
matrix (56),

where <p\ and <p\ are parameters of the rotations, i.e.,
there is multiplication by unitary unimodular matrices
from the left and the right.

The choice of S in the form St =Z'XWT* /•/•^distinguish-
es certain directions in the isotopic and coordinate
spaces. However, under rotation through the same
angles in the spatial SU(2)xsu(2) group and in the SU(2)
XSU(2) group given by the transformations (52) and
(53), the matrix S( obviously does not change. In other
words , if instead of 1\ and 1\ we call J\ + T\ and 7f + 1\ ,

where 1*1,2 are the operators of the infinitesimal trans-
formations (52) and (53), the angular momentum opera-
tors, the introduced object has spin zero.

Thus, we see that the group SU(2) is distinguished
on account of the dimension of the coordinate space.

c) Value of the action for instanton solutions

Although we do not yet have the explicit form of the
instanton solution, we can nevertheless calculate the
value of the action for it. Indeed, for positive values
of the topological charge n, the Euclidean action can be
rewritten in the form

T J v-GJv)*. (58)

It is clear from this formula that in the class of func-
tions with given positive n the minimum of S is attain-
ed for G° „ = (?*„ and is equal to (Sir2/g2). We recall
that specification of n does not signify that we seek a
conditional extremum , since functions with different
n cannot be related by a continuous deformation if the
action is to remain finite.

The case of negative n is obtained from (58) by the
reflection xi i2 (3 ~—xl >2 >3, under which G^G^ ~-GuvGuv

and accordingly n — -n. Thus, the minimum of the ac-
tion for negative n is (BirV.g2)!'*! , and it is attained
when G*v =-(?•„.

As can be seen from this discussion, fulfillment of
the self-duality and antiself -duality conditions G"uv

=±6"^ automatically leads to satisfaction of the equa-
tions of motion DUG^V = 0. This can also be seen di-
rectly; indeed, for a self-dual field, say, we have

~ i i
D^Gpv — DUG^ = -£• E^itD^Gyt, = -g- e^ws (D^vi + D^G^ + O6G,,V) = 0,

where we have used the Bianchi identity:

D&t+DtGn + DJ}tv. = 0.

7. EXPLICIT FORM OF THE BPST INSTANTON

a) Solution with n = 1

As discussed in the previous section, the asymptotic
behavior of A* for this solution is

(59)

where the matrices T* are defined in (57). We shall
also use the symbols t]tuv andi^ defined by Eqs. (55).
These numerical coefficients are frequently called the
't Hooft symbols, and some useful relations for r]fiu,
are given in subsection c) of this section.

The expression for the asymptotic behavior of A^ can
be rewritten in terms of the 't Hooft symbols as fol-
lows:

For an instanton with center at the point x = 0, it is
natural to assume the same angular dependence of the
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field for all x, i.e., to seek the solution in the form

^w=fiwv*v-q£i, (eo)
where /(x2) J^Tl ,/(x2) j^ const • xz. The last condition
corresponds to the absence of a singularity at the ori-
gin. A justification for the assumption (60) will be the
construction of a self-dual expression for G* „. From
(60), we obtain for GJ,,

^v=—f{riauv l(l^n + I»:^v^-'-x^'^'' [/(l-/)-s«/'l}.(61)

In deriving (61), we have used the relation for c**0

*rlinijla>t from the list of formulas in subsection c) at
the end of this section. Using the formula for EUKr477fl6p
from the same list, we obtain for <?•„ the expression

The condition of self-duality, GJ,, =(?£„, requires ful-
fillment of the equation/(I -/) -x2/' =0, which deter-
mines the function /:

(62)

where p is a constant of integration; p is called the
scale of the instanton. The translational invariance
guarantees the obtaining of a solution with center at an
arbitrary point *„, for which it is necessary to replace
x by *-*„.

Thus, the final expression for the instanton with cen-
ter at the point x0 and scale p has the form

GUV=—r
(63)

It can now be verified that the action for the in stanton
is %iii/g*, as was shown in general form. The anti-in-
stanton is obtained by the substitution T)a)11,-i7SB».

b) Singular gauge. The't Hooft ansatz

It is frequently convenient to use the expression for
AJ in the so-called singular gauge, when the "bad" be-
havior of A° is transferred from the point at infinity
to the center of the instanton. As was discussed in the
previous section, such a transfer can be realized by a
gauge transformation with a matrix U(x) which becomes
identical with S(x) as x-».7) We write down the for-
mulas of the gauge transformation,

(64)

and for an instanton with center at x0 take a matrix of

the form

Then for the potential A"J and the intensities G',
singular gauge we obtain

(64')

— — ^0(iv (x

/- 0* ~
(65)

It is obvious that the quantities GJWG^ are invariants
of the gauge transformation (see, however, the last
footnote). Note also the circumstance that (65) contains
the symbols rjauv but not i70(U1. This difference is due to
the fact that in the singular gauge the topological charge
(49) is accumulated in the neighborhood of x—x$ and not
at infinity.

The expression (65) for A J can be rewritten in the
form

(66)

As was noted by 't Hooft, this expression can be gen-
eralized to a topological charge n greater than unity.
Indeed, if

(67)

then for G^,, -<?£„ we obtain [see the properties of the
7) symbols in subsection c)]

The self-duality of G° „ requires fulfillment of the equa-
tion drdJV/W = Q. The solution with topological charge
n has the form

(68)

i.e., it describes instantons with centers at the points
x{. The effective scale of an instanton with center at
the point xi is obviously

It should be noted that the choice of A" in the form
(67) did not give the most general solution with charge
n, since all n instantons have the same orientation in
the isotopic space (for the construction of the general
solution, see Ref. 10).

c) Relations for the r? symbols

We give a list of relations for the symbols f\wv

j?sw defined by Eqs. (55):
and

"More precisely, this transformation should be called a
quaslgauge transformation, since at the point where U<p)
has a singularity (and there must be such a singularity) this
transformation changes the gauge-Invariant quantities, for
example, G^VG"VV. To use such transformations, it Is
necessary to consider a space with the neighborhoods of
the singular points deleted. This we shall do, remembering
that the physical quantities are nonslngular at the singular
points.

= '
r)alivTlavJ» =

v = 0,
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To go over from the relations for qtuv to those for
7jO M Uit is necessary to make the substitution

8. CALCULATION OF THE PRE-EXPONENTIAL
FACTOR FOR THE BPST INSTANTON

a) Expansion near a saddle point. Choice of the gauge
and regularization

As in the quantum-mechanical example, to calculate
the pre-exponential factor in the instanton contribution
to the vacuum-vacuum transition, it is necessary to
represent the field A1 in the form

(69)

and expand the action S(A) with respect to the devia-
tion al from the instanton field A*(

(70)

where the instanton field is substituted andG
As in the one-dimensional case, the integration with
respect to the deviations «„ reduces to calculation of
the determinant of the operator £,„*„• There are how-
ever two important differences from the one-dimen-
sional case:

The operator L is degenerate due to the gauge invari-
ance. Indeed, fields a"u of the form aa

li=(Du\T with
arbitrary function \*(x) make the quadratic form (70)
vanish. In order to have the possibility of working
with a degenerate form of this kind, it is necessary to
fix the gauge. This can be done conveniently by adding
to the action the term

\ f a 1 f a ai> b t1\\

which lifts the degeneracy. To avoid changing the con-
tent of the theory, we must, as is well known, simul-
taneously add Faddeev-Popov ghosts:

ASgh = j A'lWDW = j d«.ril>»L|h*'>, (72)

where $a is a complex anticommuting field. As a re-
sult, the instanton contribution can be written in the
form

<0 I Or>lns==l<le<' (L+AL)rl/2(del £-gh)«"S°, (73)

where |0r> is the vacuum after time T, |or) =e"*rO),
H is the Hamiltonian, S0 = 8ir2/#2, (L + AL)it is the
operator in the quadratic form of the fields a"u, and L&
acts on the ghost fields. The determinant of !•„, occurs
in a positive power, since *",*" are anticommuting
fields.

A second difference from the one-dimensional case
is the presence in the theory of ultraviolet divergences.
By virtue of the renormalizability, all the divergences
must be eliminated by a renormalization of the coupling
constant, but it is first necessary to regularize the
expressions under consideration. The regularization
can be done as follows. Instead of the determinant'of
the operator L + AZ, we consider the ratio det(i + AZ,)/
det (L + AZ, +Ml), where the introduction of the cutoff

parameter M can be interpreted as the addition to the
theory of a Pauli-Villars vector field with mass M.
The determinant of L,h is regularized similarly. Thus,
it is necessary to calculate

-]-l/2_

TJ <1
<0|0r)fn

e
8s=[-

or, more precisely, the ratio of (0|or)f,,7 to the cor-
responding perturbation-theoretical quantity (0|0r)p-tll,
which differs in having A.%. =0 substituted instead of the
instanton field. For A° = 0, it is obvious that S0 = 0,
while for the instanton S0 = 8n2/j^, where the subscript
in the coupling constant ga emphasizes that this is the
unrenormalized coupling constant normalized by the
cutoff parameter M, g$=£

We shall not go into a detailed exposition of 't Hooft's
calculations for (0|0r)/(0|or),.tb but obtain the result
up to a numerical factor. Study of the zero-frequency
modes plays the main part in obtaining the result.

b) Zero-frequency modes

As was shown in the one -dimensional example, each
zero-frequency modes leads in [det(L + AL)]~1/2 to a
factor proportional to V5JJ and an integral with respect
to a corresponding collective coordinate. What are the
collective coordinates in the case of the BPST instanton
in the group SU(2) ?

First, there are the four coordinates of the center x0,
then the scale p, and, finally, the three Eulerian angles
6,<p ,ty, which specify the orientation of the instanton in
the isospace. The spatial rotations need not be counted,
since they are equivalent to isorotations (see Sec. 6b).

As a result of the regularization, [det(L + AL)]" is
multiplied by [det(L + AL+M2)] I / 2 , i.e.

]"I/2

each zero-
frequency mode gives rise to a factor M. Thus, from
all (since we have listed all collective coordinates)
zero-frequency modes there arises in (0|0T}?,J the
factor

f d4i0 dp sin 6 d0 dq> di|) M° (y"S^)8 p3. (75)

The factor p3 arises from the Jacobian of the transition
to integration over 6,</>,$ and is recovered on the basis
of dimensional considerations.

Using (75) we rewrite {0|0r)f.?/(0 | Or)p>th in the form

where exp *, denotes the contribution of the positive-
frequency modes.

c) Positive-frequency modes. Effective charge

The quantity *t depends on the dimensionless param-
eter Mp and in the limit Mp » 1 can be readily found by
means of ordinary perturbation theory. Indeed, cal-
culation of the pre-exponential factory by retaining the
terms quadratic in the deviation from the external field
corresponds to calculation of the single-loop correc-
tions in perturbation theory. We are here referring to
diagrams of the form

O + *O + C J + -, (77)
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where the cross denotes vertices of the interaction with
the external field, and the broken lines correspond to
the propagators of the fields <z* (plus similar loops with
the ghosts *",¥'); the external field has the form
4><lu>/tB

It is clear that complete calculation of the contribu-
tion of the zero-frequency modes requires summation
of a complete chain of diagrams—the zero-frequency
modes do not appear in any finite order. A manifesta-
tion of this nonanalyticity is the presence of the term
In(8ir2^o) in ln(o|or}lM. It is also clear that there is
no nonanalyticity of this kind for the positive-frequency
modes.

In the limit in which we are interested, Mp » 1, only
the first of the diagrams (77) is important in the cal-
culation, since all the following diagrams are conver-
gent and do not give a dependence on the cutoff param-
eterM [they change the constant in (76)]. Moreover,
in the second order in the external field it can be seen
that the contribution of the positive-frequency modes
is given by an unsubtracted dispersion relation for the
polarization operator ni*.

The imaginary part of n't is obtained by cutting the
first diagram (77) and is well defined. In its calcula-
tion, it is necessary to take into account only quanta
with three -dimensionally transverse polarization
states; the unphysical polarizations and ghosts are not
necessary. Omitting the details of this simple calcula-
tion, we give the result for

Writing down the unsubtracted dispersion representa-
tion for niV (the part of the polarization operator asso-
ciated with the positive-frequency modes), we obtain

vfc2 - ue,) 4 X- ln -=^ ' (78)

where we have terminated the integration over s at M2,
since the regularization involves a subtraction of an
analogous contribution with Pauli-ViUars particles of
mass M .

The result (78) for the contribution of the positive -
frequency modes means that the action for the external
field acquires from these quantum corrections the ef-
fective addition

ASMlnk = (79)

where we use the notation of pseudo-Euclidean space
and have replaced l/(-fe2) by the square pz of the
characteristic scale of the field (strictly speaking, we
ought to write a differential operator, but for the cal-
culation of the coefficient of laMp this is not important).
Going over to the Euclidean action and substituting the
instanton G\v, we obtain the result for *,:

<DI=-=- in Mp. (80)
Thus, allowance for the zero-frequency and positive-

frequency modes has the consequence that Bir
argument of the exponential (76) is replaced by the
effective charge Bir2/gz(p):

m

22 8n* 22, (81)

Of course, this result is a direct consequence of the
renormalizability, and we have wasted time on its
derivation only to emphasize the very beautiful explana-
tion of the antiscreening of the charge in a non-Abelian
theory which arises when the zero-frequency modes
are considered.

Indeed, both the sign and the magnitude of the coeffi-
cient of the "antiscreening" logarithm (76) are obvious
consequences of the above— the coefficient is simply the
number of zero -frequency modes.

In the framework of the perturbation-theoretical cal-
culations, the "antiscreening" result can be most clear-
ly explained in the framework of the ghostless Coulomb
gauge, which was used in calculations by Khriplovich11

as early as 1969. Besides the "dispersion" part, the
calculation of which we have discussed above, the
polarization operator in this gauge contains a contribu-
tion that does not have an imaginary part and arises
when one of the virtual quanta has a three -dimension-
ally transverse polarization and the second is a Cou-
lomb quantum. The opposite signs of the "nondisper-
sion" and " dispersion" parts of nUM correspond to the
opposite signs of interactions due to the exchange of a
Coulomb quantum and a transverse quantum (electric
forces repel charges of the same sign, while magnetic
forces attract currents of the same type).

The calculation of the "nondispersion" part in the
Coulomb gauge requires care, since it is necessary to
use the noncovariant Hamiltonian formalism, and the
coefficient of the logarithm is not, of course, known
a priori. As we have seen, none of these problems
arise in the determination of the contribution of the
zero-frequency modes. With this we conclude our
panegyric to the zero -frequency modes.

d) Two-loop approximation

The above calculations led to replacement of the un-
renormalized coupling constant^ in the classical ac-
tion by the effective constant g(p). However, the unre-
normalized constant still remains in the factor (Str2/
g\f [see (76)], though it is clear that, because of the
renormalizability, it should not occur in the result.
The reason for this is that the accuracy obtained by
using the single -loop approximation is inadequate to
distinguish the factor (Sir2/^)4 from [STr2/^)]4, and
we require a two-loop calculation.

We show that from the two-loop calculation we actual-
ly require only the expression for the effective charge;
such an expression is known from perturbation theory,12

where we have given the result for the group SU(N)
(without the contribution of fermions). The unrenor-
malized constant is ^o =^(PO = l/M ) . The instanton

208 Sov. Phys. Usp. 25(4), April 1982 Vainshteinet al. 208



contribution to the vacuum -vacuum transition for the
group SU(2) has the form

(83)

where g*(p) is given by the expression (82) with N = 2.
For the factor [Str^/g^ip)^, we can restrict ourselves
to the single-loop expression for g2(p), the difference
being of the order of the ignored terms which give rela-
tive corrections of order g2(p). Note that the complete
two -loop calculation of the instanton contribution would
determine these corrections.

The proof of the correctness of (83) is based on the
renormalizability of the theory and the method of effec-
tive Lagrangians. In the functional integral, we inte-
grate in the spirit of Wilson over fields of small scale
(less thanpj, i.e., over configurations corresponding
to instantons with small p< pc. As a result, we obtain
an effective Lagrangian of the fields with scales great-
er than pc. In this Lagrangian, the small-scale fluc-
tuations are taken into account in the coefficients of the
expansion with respect to the operators.

The calculation of the contribution of the instantons
to the vacuum-vacuum transition is equivalent to deter-
mination of their contribution to the coefficient of the
identity operator. The calculation of the coefficients of
the other operators will be considered in Sec. 10. A
specific feature of the identity operator is the fact that
its matrix elements are independent of the normaliza-
tion point; pc is the zero -frequency anomalous dimen-
sion. Therefore, the coefficient of it, expressed in
terms of g(p), cannot contain pe (for operators with
positive-frequency anomalous dimension the factor
[g*/(pj/g'(p)f arises).

It now only remains to express gz(p) in terms of
<?2(Po) by means of the renormalization -group equations,
and the retention of the two-loop correction in (82) is
fully valid.

e) Density of instantons in the group SU(/V)

How does the number of zero -frequency modes change
on the transition to the group SU(AT) ? We have already
said that the instanton field uses only a SU(2) subgroup
of the complete group. Suppose this subgroup occupies
the top left-hand corner in the N*N matrix of genera-
tors. It is clear that the five zero-frequency modes as-
sociated with shifts and dilatations remain the same as
in the group SU(2), and only the modes associated with
group rotations are changed. InSU(2) there were three,
and in SU(N) they correspond to three generators in a
2X2 matrix at the top left (Fig. 6). Those of the re-
maining generators that occur in the (N -2)*(N -2)

— — 1

'
FIG. 6.

matrix in the bottom right obviously do not rotate the
instanton field. Thus, to the three SU(2) rotations there
are added a further 4(N -2) unitary rotations. The
total number of zero-frequency modes is 8 + 3 + 4(N - 2)
— 4N. Of course, this number 4AT exactly corresponds
to the coefficient of the "antiscreening" logarithm in the
formula for 8?r2/^2(p). Finally, we write down an ex-
pression for the reduced instanton density d(p), which
is defined as follows:

(84)

The function d(p) is equal to

j (0\
 ci [ 8"' 12JV <,-[B!<v<r'(p>]-c,w (85)

"(PI-(If-1)1 (N-2)1 LsMp) J ' V '

where£2(p) is expressed in terms otg%=g*(pt = l/M) by
formula (82), and the constants C{ andC2 can be found
by a certain modification of 't Hooft's calculations.13

Concretely, it is necessary to take into account a fur-
ther 4(AT-2) vector fields with the above quantum num-
bers in both the zero-frequency and the positive-fre-
quency modes. In addition, we require the embedding
volume of SU(2) in SU(N); the factor [(N - 1)1 (N -2)I]"1

is associated with it. This part of the modification
proved to be the most complicated (see Ref. 13). The
result for C, andC2 has the form

- = 0.466,

(86)

Note that the constant C2 depends on the method of
regularization, which actually provides the definition
of the unrenormalized constant. Instead of Pauli-Vil-
lars regularization (PV scheme), so-called dimension-
al regularization is frequently used. Instead of loga-
rithms of the cutoff parameter, poles with respect to
the dimension of space arise in this method, InM — I/
(4 -D). Use of the minimal scheme14 (MS) for deter-
mining the coupling constant leads to an expression of
the form (85) with the substitution

g (P) -*#ns (p) C,

= Ct- - r - —?) = C2—3.721. (87)

The numerical coefficient in d(p) for the MS scheme is
e3-n" times greater than in the PV scheme, which for
SU(3) gives the factor ~7-104.

Of course, the relations between the observable amp-
litudes do not depend on the definition of g2— the same
conversion constants associated with the change of
regularization occur, for example, in the corrections
ing2 to the cross section of e*e" annihilation into had-
rons (though there, it is true, the dependence on them
is not exponential). We note in this connection that in
perturbation theory the MS" scheme has proved helpful,
since in it too large coefficients of the expansion ing2

do not arise.15 The difference between the MS" scheme
and the MS scheme reduces to the substitution

(88)
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We give finally the explicit form of the dependence on
p for the function d(p):

W'~<N—1)1 <tf—2

Lg"(Po)J

(89)

9. INSTANTON GAS AND GENERAL THEOREMS

The calculated instanton contribution is proportional
to / d4*0 = Kt> the volume of the considered region of
the Euclidean space. As long as K4p*4rf(p), the proba-
bility of finding an instanton of scale p in the consider-
ed volume, is a small quantity, one can ignore fluctua-
tions for which there are two or more instantons of
scale p in this volume. But with increasing V4, we
naturally arrive at the need to consider an instanton
gas.

As in the one-dimensional case, the vacuum-vacuum
transition has the form

<0 | I exp - e~'v' (90)

where 2f\& the Hamiltonian density, and c can be called
the vacuum energy density. Clearly, for the summation
it is convenient to consider the logarithm of (90), i.e.,
the quantity e:

e = - ^- In <0 1 0T> = - -JT- In [<0 | Or>p. ,„ + (0 | Or>lns]

(91)
Thus, the correction to the vacuum energy density in

the gas approximation is negative and given by the inte-
gral /dp p^dfa).

Due to the power-law growth d(p)~pn"n, this inte-
gral is determined by large p, and the formal expres-
sion diverges as a power.

Unfortunately, d(p) is known only in the region of
fairly small p, which must be such as to guarantee that
the ignored quantum corrections -^(p) are small. In
addition, c contains a contribution of fluctuations with
topological charge \n\ >1, which, roughly speaking, is
proportional to [d(p)]n. Both these effects have the con-
sequence that formula (91) does not hold at large p. Of
particular interest is the possibility that fluctuations
with large topological charge become important in the
region of scales for which the corrections -^(p) are
still small. Such a situation appears all the more
plausible because d(p) increases with p much more
rapidly than^(p). The two-dimensional models ana-
lyzed in the interesting papers of Ref. 16 provide an
example in which dense fluctuations with large topolo-
gical charge are dominant in the vacuum wave function.
In Ref. 16, this antigas situation was called melting of
instantons.

The approximation of a dilute instanton gas was de-
veloped in Ref. 8. The approximation is based on the
hypothesis that the phenomena associated with large p
reduce effectively to the appearance of an upper limit
pm in the integral over p, and for all p < pm one can use
the one -instanton formula (91) for d(p).

In this subsection we shall demonstrate that the dilute
gas hypothesis is not self-consistent by giving an ex-
ample which violates a general relation. In the follow-
ing section, we shall explicitly find the region of p in
which the one-ins tanton expressions are valid on the
basis of phenomenological information about the fields
in the QCD vacuum. We shall see that the admissible
p are too small to make a claim to a description of the
vacuum structure in the region of the main scales even
in order of magnitude.

The exact relation whose verification we have in mind
is the connection between the vacuum energy density
and the mean square intensity of the gluon field in the
vacuum. For the derivation, we consider the vacuum
expectation value of the energy-momentum tensor
8,tv(x). By virtue of relativistic invariance,

<0 | 9 U V |0> = g^e, (92)

from which, after summation, we deduce an expres-
sion for e in terms of the vacuum expectation value of
the trace of the energy-momentum tensor:

e=-j-<0|6 | l u |0>. (93)

For 6ult thegluodynamics with groupSU(Af) the follow-
ing operator expression holds":

,
4a, - GJvGJ (a = l #*-!), (94)

where a, =g*/4ii, and p(a,) is the Gell-Mann-Low func-
tion,

a t i dcts (ji) _ H jy as , Q , 3, / gc \

The expression (94) for e^u is called the trace anomaly
of the energy-momentum tensor. The point is that for
a classical mass less vector field 6^ =0. The differ-
ence from zero appears at the single-loop level and is
associated with the need to introduce a guage-invari-
ant cutoff.

The appearance in 6UU of the function P ( a s ) , which
controls the charge renormalization, can be explained
as follows. The stretching x~\x of all scales is deter-
mined in the infinitesimal form of the transformation
by the dilatation operator D:

D = (x) , ^ (x) =

It is readily seen that there is invariance with respect
to dilatations only when the divergence of the dilata-
tion current Du vanishes. This divergence is

i.e., the operator 6WI1 determines the noninvariance
under dilatations. The noninvariance indicates the
existence of a certain distance scale. In a massless
theory, the only possibility for a scale to appear is
associated with the need to introduce the cutoff param-
eter M when considering the quantum effects. Under
the simultaneous transformations x~\x,M~M/\ the
theory is invariant, i.e., dilatations are equivalent to a
change in M. It is for this reason that 0ttll is propor-
tional to0(«s)=A/das/dM.

Considering the action of dilatation transformations
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on transition amplitudes expressed in the form of path
integrals, we can readily deduce the relation (94). We
shall not give this derivation but restrict ourselves to
two comments about it:

a) energy-momentum conservation, 3M0ai i=0, has
the consequence that the right-hand side of the relation
is independent of the normalization point ji of the oper-
ator G1VG"W, and the effective charge <xs must be taken
at the same point, as =as(fi);

b) the quantum corrections also lead to a cutoff-de-
pendent c-number part in 8UI^. Therefore, the more
accurate expression is

ization point
combination

can occur only in the (fi -independent)

= (o i Qm i o)p. th -f (96)

where the c-number part is separated by averaging
over the perturbation theory vacuum |0) (which differs
from the exact physical vacuum |0)).

Substituting the expression (96) for 6UU in (93), we
arrive at the desired connection between E and the mean
square of the field intensity in the vacuum:

|0>. (97)

It is clear from the derivation that in <o|G;,GJ,,|o> it is
necessary to take into account only those fluctuations
not given by perturbation theory.

Instantons are an example of such fluctuations. The
one-instanton contribution to {0|G^G*,, |fl) can be read-
ily found, for which it is necessary to go over to the
Euclidean space (above, we have used the notation of
Minkowski space), replace the field (?£„ by the instanton
field, and add the factor d4#0dpp~5d(p), the probability
of finding an instanton with scale p with center at *0.
The result for the one-instanton contribution to e -ep. tb>
integrated over x9 [the integral is / d4«0G°,,(x -*0)G*j[x

l = 4-8j72/gr2l, is

(98)

[for (3(ors) we have used the single-loop approximation].
On the other hand, the one-instanton contribution to
E - ep.tb is given by the expression (91) obtained earlier
and differs from (98) by the absence of the factor 11N/
12.

What does this mean? Since the integral over p is
determined by large p, the paradox is resolved by not-
ing that the one-instanton approximation does not give
the possibility of finding e - e,.tll and (0 |G*/?• „ 10).
Moreover, the attempt to take into account the effects
other than the one-instanton effects by introducing a
cutoff in p is inconsistent in that this cannot be done in
a unified manner even for quantities associated with
general relations—the cutoff in them is effectively dif-
ferent.

To conclude the section, we note that the inadequacy
of the one-instanton approximation for quantities such
as e or (Q\\p(ai)/a,plllG'1ul,\Q') can also be proved by a
somewhat different argument. Physical quantities, of
course, are independent of the normalization point.
For such quantities having dimension w4, the normal-

(99)

where b and 6, are the first and second coefficients in
the expansion of the Gell-Mann-Low function:

(100)

(lOOa)

In SU(N) gluodynamics [see (82)],

On the other hand, the one-instanton approximation
with a cutoff of the integral over p at the upper limit at
pm gives for the same parameters a result proportional
to

pm
i r 2* ,-]a» -2.-./«.(pm)
>m L «B (Pm) J '
-

Pm (101)

where we have used the fact that the main contribution
is made by the region of p near pm. Comparing (101)
and (99) for pt = 1/p, we see that the dependence on pm

does not agree with that required by renormalization
invariance. The power of pm is greater by the same
6/4 = llN/12 times, and the power of lnpM also does
not agree .

10. INSTANTONS IN THE QCD VACUUM

As we have already said, the main fluctuations in the
QCD vacuum are those of large scales of the order of
the confinement radius or, which is the same thing, the
radius of hadrons. Unfortunately, we are not yet able
to treat such fluctuations quantitatively.

The quasiclassical methods that have been developed
apply to the study of nonperturbation-theoretical fluc-
tuations of small scale, among which the instantons are
dominant.

In this subsection we take into account the influence
on the small-scale instantons of the fields due to the
characteristic long -wavelength fluctuations in the vacu-
urn.18

Since we distinguish fields of two types, namely, the
fields of small-scale instantons and the fields of the
characteristic vacuum fluctuations, it is convenient to
introduce an effective Lagrangian. In it, as usual, the
contribution of the rapidly varying fields is included in
the coefficients of the various operators that act on the
space of the slowly varying fields.

Thus, the effect of a distinguished instanton with
scale p and center at #0 reduces to the following cor-
rection to the effective Lagrangian of the long -wave-
length fluctuations:

where Cn(p) are numerical coefficients and On(#o) are

local operators constructed from the gluon fields (we
consider pure gluodynamics; the changes introduced
by fermions are discussed in the following section).

The probability of finding the instanton under con-
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sideration in the physical vacuum is given by averaging
AL over this state. On the other hand, to find the co-
efficients Cn, it is necessary to consider the matrix
elements of AL between perturbation-theory states
(with different number of free gluons with momenta
q « 1/p). These matrix elements can be calculated
by quasiclassical methods.

Concretely, we consider the instanton contribution to
the vacuum -n gluons transition and apply to it the re-
duction formula

J ) 1 0). (102)

where qk and e'̂  are the 4 -momentum and the polariza-
tion of the feth gluon, andAJ(x) is the operator of the
gluon field. Forn = 0, i.e., for the vacuum -vacuum
transition, the right-hand side of (102) was already
calculated in Sec. 8 and is equal to dpp"5d(p); the left-
hand side is obviously equal to the coefficient of the
unit operator: Cjdp/p5.

For n*0, the prescription of the quasiclassical cal-
culation of the expression (102) reduces to

a) the transition to the Euclidean space (see the equa-
tions of Sec. 5);

b) replacement of the Euclidean>fi(*) by the instanton
fieldJJ(* ~xa) given by formula (65). The singular
gauge is used because the reduction formula (102) is
valid only for rapidly decreasing fields Aa

u(x). For a
nonsingular gauge, the reciprocal propagator q2 is re-
placed by a more complicated expression;

c) multiplication by the <O|OT)IM transition amplitude,
which is equal to dpp~5d(p). Thus, for the matrix ele-
ment (102) we obtain
<n gluons | A L ( z ) ] 0 >

where all the quantities on the right-hand side are
Euclidean.

The Fourier transform of the instanton solution,
which we want in the limit qp — 0, is readily found:

(104)

After this, it is easy to recover the complete operator
form of AL:

)=-d (p) exp —

= n; ro, n = l, 2, 3,
= n; n=l 2, 3,

(105)

where G',,(*) is the operator of the large-scale gluon
field. The factorials which occur in the expansion of
the exponential cancel against the combinatorial coeffi-
cients when the matrix element (103) is taken.

The expression (105) for the interaction of an instan-
ton with an external field was obtained for the first
time by Callen, Dashen, and Gross8 by a different and
more complicated method. An important point is that
we, in contrast to them, have not fixed the external
G\v(x) "by hand" but have related it to the field of the

large-scale fluctuations.

This is achieved by averaging the Lagrangian (105)
over the physical vacuum. The term linear in G*uv ob-
viously vanishes as a result of such averaging, and the
first nonvanishing correction to the effective density of
the instantons is proportional to G2:

<0 | AL i 0) =£ d,lf (p) = i£-d(P)[i + (-2^^<0 | C°VG°V I 0>+0 (p°)],

(106)
where in the averaging we have used the relation

, A°°' ^< o i G£VGJ.V. i o>=•Jifr=-{ • -& (#„„•*«»• - ?Mv?vM-) <o i ch&h \ o>. (107)

Note that the constant a, and the operator (G',,)2 which
occur here are normalized at the point p. A quantity
that does not depend on the renormalization point [to
accuracy as(p)] is the product asGJwGJr (see the previ-
ous section).

To obtain a quantitative estimate of the correction,
it is necessary to know the mean square of the inten-
sity of the gluon field in the physical vacuum. This
was found in Refs. 19 by analyzing the influence of the
vacuum fields on the charmonium states, and it was
found to be

10) « 0.012 GeV4. (107')

For the group SU(3), the relative correction to d(p)
can be written in the form

It reaches unity at a value of p equal to

Pent;

(108)

(109)

if for as we take as(p) = 27r/9ln(l/Ap) with A = 100 MeV.
For p=perit, the interaction of the instanton with the
vacuum fields of the other fluctuations becomes 100%
important. This pait is very small compared with the
characteristic hadron dimensions 1/(200-300) MeV.
The word "very" can indeed be used if one bears in
mind the fact that d(p) is proportional to a high power
of p; the p ̂  Pent contribution to, say, the vacuum en-
ergy density is extremely small.

The smallness of p^n given by the estimate (109) can
also be seen in a different way by calculating the con-
tribution of the instantons to the correlation function

i (110)

where A and B are certain local operators. At large
Euclidean q, the instantons make contributions of two
types to (110). First, there is the contribution of the
fluctuations of a fixed (q -independent) scale to the co-
efficients of the regular expansion in powers of 1/tf2.
Second, there is the contribution from instantons with
scales p~ptlt=C/q, which is proportional to d(prtf),
i.e., to a high (and not necessarily integral) power of
l/<72. The constant of proportionality C can be deter-
mined by the method of steepest descent and because of
the high power of p in d(p) is approximately equal to 5.

Thus, we can calculate the one-instanton contribution
to (110) in terms of q using the ordinary expressions
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only when q2 > (5.5 GeV)2. It is clear that such q2 are
considerably greater than the characteristic hadron
masses .

We conclude this subsection by giving a formula that
takes into account the higher powers of G"ul, in the effec-
tive instanton density. This formula is based on the
hypothesis of dominance of the vacuum intermediate
state, which makes it possible to reduce (OJ(G2)n|0)
to «o|G2|o»". This approximation is analogous to one
used in many-body theory and for some 4-quark opera-
tors for which it can be verified has an accuracy of the
order of a few percent.

The factorization leads to the relation

<0 I - > = <2*-1)H - Jv)2 I 0>]*.

by means of which we obtain for the effective instanton
density the result

(111)

which can be represented as the replacement in the ex-
pression for d(p) of 2ir/a,(p) by

<*« (P) • IP) (112)

Using for d(p) the expression (111), we can advance
in p to p > pcrif However, when the interaction with the
vacuum fields changes the classical action strongly,
i.e., when (112) vanishes, the quasiclassical methods
cannot be used. This limit under the same assump-
tions about a5 and <0 |G2 1 0) is p < 1/500 MeV .

Despite the numerical uncertainties in the value of
(0|G2 |o> (which are of the order of a factor 2) and in
a, (the uncertainty in A is also of the order of a factor
2), it can be said that the vacuum fields deform the
instantons at scales much smaller than the character-
istic scales of the fluctuations that are dominant in the
vacuum.

11. FERMIONSIN AN INSTANTON FIELD

In this section, we shall relatively briefly discuss
how the instanton contribution to the vacuum -vacuum
transition amplitude changes when fermions are inclu-
ded in the theory.

It is immediately clear that for a fluctuation with a
given scale p the influence of "heavy" quarks with mass
m » p"1 is small; for in this case the quarks appear at
times and distances ~l/m « p, at which perturbation
theory can be used to calculate the quark loops of the
form shown in Fig. 7. We give the first few terms of
the effective Lagrangian that takes into account the
fermion loops:

The first term in this expression contains the cutoff
parameter M and, obviously, describes the contribu-
tion of the quark under consideration to the change in

-O- * 0-
FIG. 7.

the charge g. Therefore, it is automatically taken into
account when the result is expressed in terms of the
charge at distances greater than \/m.

The following terms in (113) give a series in powers
of l/m2p2 on the transition to the Euclidean space and
substitution of the instanton field.

We now turn to the limiting case of "light" quarks,
mp « 1. We note that for sufficiently small instantons
all quarks are light. We calculate the integral over the
Fermi fields in the path integral that determines the
vacuum-vacuum transition: $|0T). In the Euclidean
action, a fermion with mass m adds a term of the form
[see (45)]

P = j d'zif (- ivA -

and integration of this with respect to the anticommut-
ing fields leads to

Del ( — i f ^ D ^ — im).

The determinant can be understood as a product of the
eigenvalues of the corresponding operator,

Del ( — iYiiDn — im) = [] (X,,— iro),
n

where the real numbers xn are the eigenvalues of the
Hermitian operator -iyuDu:

(x) = (x). (114)

Of fundamental importance in the study of the limit
m =0 is the question of whether certain \n vanish, i.e.,
the question of zero-frequency modes of the fermion
field. We shall show that the interaction with the in-
stanton field leads to the appearance of one such
mode MO,

-nv "̂,, = 0. (H5)

We go over to two-component spinors XLJ» (we use the
standard representation for they matrices):

, = 0, (116)

where a^ =(CT, *i). To the equations for XL.XB we

apply the operators o^D^, a ££>„ , respectively. Using
the relations (57), the commutator [DltDv]=-(ig/2)r"Gl,
and the explicit form of GJ,, [see (63)], we obtain

p'

The operator -D\ is a sum of the squares of Hermitian
operators: -D2 =(-»£>u)2, i.e., it is positive definite.
Therefore, it does not have vanishing eigenvalues (the
boundary conditions are imposed at a large but finite
distance R) and, therefore Xt = 0-

In the equation for XR, we use a basis in the space of
spinor and color indices that diagonalizes the matrix
crT. We recall that a acts on the spinor indices, and T
on the color indices. This basis corresponds to addi-
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tion of the ordinary spin and the color spin to a total
angular momentum equal to zero (when <TT =-3) or
unity (ffT=+l). it again follows from the positive defi-
niteness of -D\ that the only suitable case for us is
when the total spin is equal to zero, which completely
determines the dependence of XR on the indices:

where a = 1,2 and m = 1,2 are the spin and color indi-
ces, respectively.

The dependence on the coordinates can be readily
found from the explicit form of D\, and the final re-
sult for the zero-frequency mode ua(x -#0) (normalized
by the condition /M*udx = l) has the form

(118)

We also write down the expression for the zero-fre-
quency mode in the singular gauge, MjUg(x -x0) (which
we shall require),

vtw
<*«+p«)»/« (119)

it being obtained by multiplication of (118) by the gauge
transformation matrix (64a).

We now turn to the instanton part of the vacuum -
vacuum transition amplitude. In it, we have the factor

- __ m Det'( — Det<— fvu^u — iM)
M Det'( — iYuDu — Det( —

where Det' denotes the determinant without the zero-
frequency mode and we have taken into account the
regularization and also the normalization by perturba-
tion theory. In all the positive-frequency modes, m is
taken equal to zero, so that after the separation in F of
the factor m/M the remaining part depends only on the
dimensionless parameter Mp. As in pure gluodynamics
(see Sec. 8), this dependence must be such that the
cutoff parameter M is removed by a renormalization
of the coupling constant, i.e., the dependence of F on
Mp must give the renormalization of the coupling con-
stant due to the fermions in the factor e"8 /fo,

8n> —— = In Mp — 4- In Mp.'-const A (120)

The first logarithm derives from the zero -frequency
mode, the second from the positive -frequency modes.
Comparing the result with formula (81) for gluons, we
see that the situation has been changed because of the
anticommutativity: The zero-frequency modes of the
light quarks lead to screening of the charge, and the
positive-frequency modes to antiscreening.

In ordinary perturbation theory, the splitting in (120)
can be associated with the spin-dependent part of the
interaction (the first logarithm) and the "charge" part,
which is not associated with the spin (the second loga-
rithm). Indeed, the imaginary part of the gluon polari-
zation operator, which derives from the intermediate
qq state, can be represented in the form

= 6"' (Pi -P.).!

i—r)- (121)

ticle momenta, q=Pi +/>2> a^d the integration is over
the directions of p, =-p2 in the center-of-mass system.
The second term in (121) differs by only the factor -2
from the contribution of a spin Less color doublet. The
factor 2 corresponds to the two polarization states,
and the minus to the anticommutativity.

We note that for the vacuum polarization there is also
an analogous relation between the spin part of the pola-
rization and the zero-frequency modes. This is readily
seen in the "background" gauge obtained by adding the
term (71) to the action. In perturbation theory, one
can take as the "external" field, for example, a poten-
tial that has only a third color component, and in the
loop only " charged" components will propagate. The
three-gluon vertex in this gauge has the form of a sum
of a color part and a magnetic part, which do not in-
terfere in the polarization operator. The spin part
gives the "antiscreening" logarithm, and the charge
part (together with the Higgs particles) the "screening"
part.

What has been obtained from the inclusion in the
theory of a light quark ? In the limit m — 0, the vacu-
um-vacuum transition amplitude tends to zero. Does
this mean that for m =0 there are no tunnel transi-
tions ? By no means. The point is that now the instan-
ton fluctuation couples the vacuum to states of a quark -
antiquark pair.

To see this, we consider the crossing process— the
transition from a single-quark state to a single-quark
state; we shall assume that the quark momenta p and
p' are small compared with 1/p. Proceeding as in Sec.
10, we use the reduction formula

<p'|pT> = - dz dx' eV*'-i «f <0|T {<# *') q\ (

(122)
where v" and v% are the spinors that describe the final
and the initial quark (the superscript is the color index,
the subscript the spinor index).

We find the instanton contribution to the fermion
Green's function by using the relation

(123)

In the limit m — 0, the zero-frequency mode makes the
main contribution, and (123) is finite at m =0.

Using the explicit form (119) of the zero -frequency
mode in the singular gauge, we can now readily obtain
the result. We formulate it in the form of the expres-
sion for the effective Lagrangian that describes all
transitions which arise from an instanton fluctuation
with scale p:

AZ, (i) = JJ [m,p - 2

)le-d<r. (124)

In this formula, pl and/»2 are the particle and antipar-

This contains a product over all species of light (m,p
« 1) quarks, and awl( = (ywy» -y,,y u)/2. In Minkowski
space, the symbols TJ^,, differ from the Euclidean sym-
bols only when ^ or f = 0, and then by a factor i. By dff
we denote the differential corresponding to the color
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orientation of the instanton, and it is normalized to
unity, ldG = \. A dependence on the orientation enters
through the substitution fJaUv—htaifjt'ul, (h is the matrix
of rotations in the color space), which must be made in
(124). The quantity d0(p) differs from d(p) (85) in pure
gluodynamics by multiplication by the factor

where F is the number of light fermions. This is for
Pauli-Villars regularization; for the MS scheme, the
0.292 is replaced by -0.495 and by 0.153 for the SC
scheme. In addition, in the expression (82) for Sir2/
g2(p) it is necessary to include the fermion contribu-
tion.

For the anti-instanton, AL is obtained from (124) by
the substitution T]auv~Tjauv, ^L^-^K.L- Note also tnat

all the operators, the constant^, and the masses raa

in AL are normalized at the point p, so that besides the
dependence given explicitly there is a logarithmic de-
pendence on p, which is determined by the anomalous
dimension of the operator term in AL under consider-
ation.

Of particular interest are the instanton-generated
fermion vertices; this interaction is frequently called
the 't Hooft determinant interaction. The point is that
it explicitly demonstrates the breaking of the U(\) sym-
metry associated with transformations of the form q'
—e*"Y$q. Naively, such a symmetry holds in a theory
with massless quarks. The nontrivial nature of the
breaking of this symmetry can be seen from the fact
that, for example, in a theory with one quark AL de-
scribes the transition of a " left-handed" quark into a
"right-handed" one, which is impossible in any finite
order of perturbation theory for m = 0.
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