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A. M. Polyakov. Phase transitions and the Universe.
The cosmological term in Einstein's equations would
necessarily arise from the fact that the vacuum has
a nonzero energy density because of the zero-point os-
cillations. If this energy density is estimated using the
characteristic hadronic masses, a colossal value is
obtained for the cosmological constant A. Moreover,
for consistency with the experimental data on the red
shift, the admissible value of A must be smaller than
10"130 of the natural hadronic estimate. To all appear-
ances, there must exist a compensation mechanism
which reduces the energy density of the vacuum to zero.
The objective of this work is to find such a mechanism.

To solve this problem, we must first determine its
correct formulation. The point is that energy is in
general defined to within a constant, and therefore the
choice of this constant seems unclear. However, every-
thing falls into place if we study not the energy density,
but the effective equations for the propagation of a
gravitational field. By the word "effective" we mean
the equations which arise from the original theory of
Einstein as a result of infrared quantum renormaliza-
tions. It is very important to realize that in general
the observed classical dynamics in any theory is deter-
mined by the effective equations rather than by the
original ones. In certain cases (for example, in the
Yang-Mills theory), the infrared renormalizations do
not completely destroy the original classical theory.
In the problem of interest to us—Einstein's theory with
the bare cosmological constant—the role of the infrared
normalizations is more modest. It will be shown that
they lead to vanishing of the physical cosmological con-
stant without affecting Einstein's equations themselves.

Infrared divergences occur in the theory because of
the long-wave conformal fluctuations of the metric. If
we write
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[where g^v has zero scalar curvature: RQ) =0] and
average over all fluctuations of the field guv, the low-

energy Lagrangian of the field <p takes the form
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where -K is related to the gravitational constant, and A
is the cosmological constant without allowance for the
infrared oscillations. The problem of the cosmological
term can now be formulated as the problem of whether
the field <p has a nonzero vacuum expectation value. As
can be seen from (1), if (<p(x)) = const, the vacuum has
zero scalar curvature, which means that the cosmolo-
gical term vanishes. A phase with (<p)=Q would corres-
pond to Aphy^O. Since the Lagrangian (2) is scale-in-
variant, we can have (<p) * 0 only for fixed boundary
conditions. If we consider a region of dimension R
(which must tend to infinity at the end of the calculations)
and fix <p =<px on the boundary of the region, two vari-
ants are possible:

«r(0) {(foo-
1

-H

const,

A calculation of the path integral of the Lagrangian (2)
in the single-loop approximation shows that the first
possibility is realized, and this means that the physical
cosmological constant vanishes. The mechanism of
vanishing is analogous to the phenomenon of zero charge
in quantum electrodynamics discovered by Landau,
Abrikosov, and Khalatnikov. It is related to the tendency
of the long-wave fluctuations to screen the proper in-
teraction.

In addition to the perturbative fluctuations considered
above, screening can also arise from gravitational in-
stantons. In our case, they are de Sitter worlds, which
can be observed at any point x with finite probability;
as a result,
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G. E. Volovik and V. P. Mineev. Textures, vortices
and superfluidity of 3He. In 1972 the discovery was
made of the new A and B phases of liquid 3He, which in
subsequent years astonished physicists by their unique
properties. Both new phases of 3He, like the well-
studied 4He, are superfluids. The superfluidity of 4He
is a consequence of the phenomenon of Bose condensa-
tion of the macroscopic part of the atoms of the liquid
in the ground state. Superfluidity of the normal Fermi
liquid 3He, like superconductivity of the electron Fermi

liquid in metals, sets in as a consequence of Cooper
pairing of the 3He atoms. However, there is an impor-
tant difference between the Cooper pairs in 3He and in
a superconductor. The total spin of a pair and the rela-
tive angular momentum in a superconductor are equal
to zero, S = L=0, i.e., the pair has no magnetic struc-
ture and is a spherically symmetric formation. In both
phases of 3He, S = l and L = l. All pairs are in the same
state; as a result, the liquid phases of 3He have non-
trivial magnetic properties reminiscent of the proper-

187 Sov. Phys. Usp. 25(3), March 1982 Meetings and Conferences 187



ties of antiferromagnetics, and they also have spontan-
eously broken rotational symmetry, which means that
they are liquid crystals. The liquid-crystalline proper-
ties manifest themselves particularly clearly in the A
phase, whose order parameter corresponds to the state
with projection L, = 1 of the relative orbital angular mo-
mentum of the Cooper pairs onto some distinguished
axis 1—the anisotropy axis of the A phase (analogous to
the direction of the director in a nematic liquid crystal).
The wave function of the relative motion of the atoms of
a Cooper pair in the A phase is proportional to the
spherical harmonic Yllt i.e., it has the form >II(T) =
/(r) sin 6ei<f=f(r)(n,l + ins), where 9 is the polar angle,
measured from the direction of the axis of quantization
1, <p is the azimuthal angle of rotation around the direc-
tion 1, measured from an arbitrary direction A in the
plane perpendicular to 1, and »t and «y are the Cartesian
components of the vector n = r/r in a coordinate system
whose z axis is directed along 1 and x and y axes along
A' and A" =1 x A'. In a weakly nonhomogeneous state,
the triplet of orthogonal unit vectors A', A*, 1 specify-
ing the orbital part of the order parameter of the A
phase varies slowly in space. The phase * of the order
parameter #=A' + t'A* is equal to the angle of rotation ip
of the vectors A' and A" around the direction I, and it is
this that determines the unique superfluid properties of
the A phase. Since three-dimensional rotations do not
commute, the ordinary definition of the superfluid vel-
ocity vs =(K/m)V& must be replaced in 3He-A by vs

= (lf/2>M)A,VA", from which it follows at once that the
superfluid motion in the A phase cannot be derived from
a potential: curl vs#0. Before the discovery of the A
phase, the potential character of the superfluid velocity
in 4He and in superconductors was considered to be an
essential attribute of superfluidity. The abandonment of
the potential character and the complexity of the order
parameter of the A phase made it necessary to recon-
sider all superfluid phenomena. Investigation showed
that the superfluidity properties of agiven superfluidare
determined by the topological structure of the region in
which the order parameter of this fluid varies. Below,
we list some of the results of the topological analysis
of the properties of 3He-A in comparison with 4He.

1. Textures (nonhomogeneous structures). In 4He,
linear structure defects—quantized vortices—are char-
acterized by a topological invariant N—the number of
quanta of circulation of the superfluid velocity around a
vortex, taking arbitrary integral values. Linear de-
fects in the A phase are characterized by a topological
invariant N which takes only the two values N = 0 and
N = 1. All vortices with an even number of quanta of
circulation belong to the class N = Q and can be relaxed
continuously into a homogeneous state. All vortices with
an odd number of quanta of circulation are topologically
essential and belong to the class N= 1. This same class
contains a radial dislocation—a vortex-free state with a
linear singularity in the vector field 1. Within a class,
defects can be transformed continuously into one
another. The arithmetic of fusion of defects has the
following form: 1+0 = 1, 1+1=0.

The topological analysis was also applied to defects
of other types and in other ordered media. As a result,
a classification was also given for point defects and sin-
gular surfaces, defects without singularities—solitons,
defects on the surface of ordered media, and so forth.

2. Persistent fluxes. In 4He, there are infinitely
many classes of flows in a ring-shaped channel, char-
acterized by an integer invariant.^—the number of quan-
ta of circulation along the channel. A flow with given N
is extremely stable, since N cannot change continuously,
but only through production of defects—vortices. In
3He-A, there exist only the two classes of flows with
N =0 and N=l. All flows with even N belong to the
class N = Q and can be relaxed continuosly into the rest
state. Flows with odd N belong to the class AT = 1 and
can be relaxed into the state with lowest energy within
this class, i.e., a flow with very small flux. Thus, un-
like 4He, in 3He-A topology does not stabilize the super-
fluid flux. The topology in the A phase can be changed
by applying an external magnetic field; as a result,
there exists a unique possibility of controlling the sta-
bility of the superfluid flux.

3. Nonstationary Josephson effect. The process of
continuous relaxation of the superfluid flux in the A
phase is accompanied by oscillations in the vector field
1. The space-time structure of the field 1 in this pro-
cess is reminiscent of the instanton which is known from
field theory—a particle-like topological formation in
the space-time continuum. The instanton in the A phase
brings about a continuous process of transition from
the "vacuum" with topological "charge" N into the
"vacuum" with topological "charge" N - 2. If the
chemical potentials are different in a channel with the
A phase, there is a dissipative flow with a distribution
of the field 1 which is periodic in space and time. This
flow is an analog of the resistive state in superconduc-
tors (the nonstationary Josephson effect) and represents
a lattice of instantons in four-dimensional space-time.
Periodic oscillations of the field 1 are observed experi-
mentally.

4. Rotation of superfluids. Under rotation, there
occurs in 4He a lattice of quantized vortices. An analog-
ous lattice of Abrikosov vortices occurs in supercon-
ductors of type n subjected to a magnetic field, which
plays the same role as the rotation. Under rotation, the
A phase exhibits a periodic structure in the field of the
vectors 1 and vs without any singularities. Insufficient-
ly strong magnetic fields, this state is replaced by a
lattice of singular vortices. An experimental investiga-
tion of vortex structures in the A phase is being con-
ducted at the present time in Finland using a unique
experimental arrangement involving a rotating cryostat
(a rotating minilaboratory).

'G. E. Volovik and V. P. Mineev, Fizika i topologiya (Physics
and Topology), Znanie, Moscow (1980).

188 Sov. Phys. Usp. 25(3), March 1982 Meetings and Conferences 188


