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A. M. Polyakov. Phase transitions and the Universe.
The cosmological term in Einstein's equations would
necessarily arise from the fact that the vacuum has
a nonzero energy density because of the zero-point os-
cillations. If this energy density is estimated using the
characteristic hadronic masses, a colossal value is
obtained for the cosmological constant A. Moreover,
for consistency with the experimental data on the red
shift, the admissible value of A must be smaller than
10"130 of the natural hadronic estimate. To all appear-
ances, there must exist a compensation mechanism
which reduces the energy density of the vacuum to zero.
The objective of this work is to find such a mechanism.

To solve this problem, we must first determine its
correct formulation. The point is that energy is in
general defined to within a constant, and therefore the
choice of this constant seems unclear. However, every-
thing falls into place if we study not the energy density,
but the effective equations for the propagation of a
gravitational field. By the word "effective" we mean
the equations which arise from the original theory of
Einstein as a result of infrared quantum renormaliza-
tions. It is very important to realize that in general
the observed classical dynamics in any theory is deter-
mined by the effective equations rather than by the
original ones. In certain cases (for example, in the
Yang-Mills theory), the infrared renormalizations do
not completely destroy the original classical theory.
In the problem of interest to us—Einstein's theory with
the bare cosmological constant—the role of the infrared
normalizations is more modest. It will be shown that
they lead to vanishing of the physical cosmological con-
stant without affecting Einstein's equations themselves.

Infrared divergences occur in the theory because of
the long-wave conformal fluctuations of the metric. If
we write
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[where g^v has zero scalar curvature: RQ) =0] and
average over all fluctuations of the field guv, the low-

energy Lagrangian of the field <p takes the form
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where -K is related to the gravitational constant, and A
is the cosmological constant without allowance for the
infrared oscillations. The problem of the cosmological
term can now be formulated as the problem of whether
the field <p has a nonzero vacuum expectation value. As
can be seen from (1), if (<p(x)) = const, the vacuum has
zero scalar curvature, which means that the cosmolo-
gical term vanishes. A phase with (<p)=Q would corres-
pond to Aphy^O. Since the Lagrangian (2) is scale-in-
variant, we can have (<p) * 0 only for fixed boundary
conditions. If we consider a region of dimension R
(which must tend to infinity at the end of the calculations)
and fix <p =<px on the boundary of the region, two vari-
ants are possible:
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A calculation of the path integral of the Lagrangian (2)
in the single-loop approximation shows that the first
possibility is realized, and this means that the physical
cosmological constant vanishes. The mechanism of
vanishing is analogous to the phenomenon of zero charge
in quantum electrodynamics discovered by Landau,
Abrikosov, and Khalatnikov. It is related to the tendency
of the long-wave fluctuations to screen the proper in-
teraction.

In addition to the perturbative fluctuations considered
above, screening can also arise from gravitational in-
stantons. In our case, they are de Sitter worlds, which
can be observed at any point x with finite probability;
as a result,
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G. E. Volovik and V. P. Mineev. Textures, vortices
and superfluidity of 3He. In 1972 the discovery was
made of the new A and B phases of liquid 3He, which in
subsequent years astonished physicists by their unique
properties. Both new phases of 3He, like the well-
studied 4He, are superfluids. The superfluidity of 4He
is a consequence of the phenomenon of Bose condensa-
tion of the macroscopic part of the atoms of the liquid
in the ground state. Superfluidity of the normal Fermi
liquid 3He, like superconductivity of the electron Fermi

liquid in metals, sets in as a consequence of Cooper
pairing of the 3He atoms. However, there is an impor-
tant difference between the Cooper pairs in 3He and in
a superconductor. The total spin of a pair and the rela-
tive angular momentum in a superconductor are equal
to zero, S = L=0, i.e., the pair has no magnetic struc-
ture and is a spherically symmetric formation. In both
phases of 3He, S = l and L = l. All pairs are in the same
state; as a result, the liquid phases of 3He have non-
trivial magnetic properties reminiscent of the proper-
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