
ton potential. We obtain spinless charge carriers for
v=0, 2; e* = -e, +e; s = 0 and uncharged spin carriers
f o r i / = l , e*=0, s = i. The topological character of the
soliton explains the exceptional anisotropy (~106) of the
spin diffusion. The soliton energy is £s = (2/ir)A< A,
The autolocalization of electron-hole (e -h)a.nde - eand
h-h pairs is barrier-free for a time ~o>ph ~ 10~13 sec
and is accomplished by the formation of diverging pairs
of solitons.

For other polymers [cis-tCH),, polyphenylene, poly-
diacetylene, etc.], the structure of the polymer skeleton
is such that there is no degeneracy of the ground state.
Then the effect of autolocalization is preserved, but dis-
persion of the domain walls becomes impossible, since
between them there appears a state with greater energy
density.4 The nondispersion of the e - h pairs explains
the difference between the optical properties of cis- and
trans-(CH)t. At the same time, the theory predicts the
existence of bound e - e and h - h pairs (bipolarons). This

may explain the absence of paramagnetism in conduct-
ing alloyed polypyrrole.5

In incommensurable systems such as charge-transfer
complexes, there can exist only uncharged spin soli-
tons s = |, e*=Q, while the excitation of charge density
becomes nonactivated (Frohlich conductivity).

*L. N. Bulaevskii, Usp. Fiz. Nauk 115, 263 (1975) [Sov. Phys.
Usp. 18, 131 (1975)].

2A. J. Heeger and A. G. MacDiarmid, in: Physics in One
Dimension, Springer-Verlag, Berlin-Heidelberg-New York
(1981).

3J. R. Schrieffer and S. Kivelson, in: Physics in One Dimen-
sion, Springer-Verlag, Berlin-Heidelberg-New York (1981).

4S. A. Brazovskii and N. N. Kirova, in: Trudy mezhdunarod-
noi konferentsii po nizkorazmernym sinteticheskim materia-
lam (Proc. Intern. Conf. on Small-Dimension Synthetic Ma-
terials), Vol . 17 (1981), p. 171.

5M. Peo, S. Roth, and J. Hocker, Ibid., p. 133.

A. I. Larkin and D. E. Khmel'nitskii. Anderson
localization and anomalous magnetoresistance at low
temperatures. Consider a conductor in which the path
length / is much greater than the wavelength. Let us
calculate the probability of diffusion in a time t from a
point A to a point B (see Fig. 1). We can imagine that
at the point A there is a source which coherently emits
wave packets that propagate along rays of thickness X
(they begin at A and end at B). According to the general
rules of quantum mechanics, to find the probability w
we must add the probability amplitudes of diffusion along
each trajectory and calculate the square of the modulus
of this sum: w~ | =£, | A, * ,A, Af.

The first term on the right-hand side describes the
sum of the probabilities referring to each individual
ray, and the second term is the interference term. The
interference of most of the amplitudes is not important,
since the lengths of the trajectories and hence their
phases are very different, and the mean value of the
interference term is equal to zero. The exceptions are
the trajectories which intersect themselves. Each such
trajectory can be associated with two amplitudes .4,
and A?, corresponding to passage around the closed loop
in opposite directions. These two amplitudes are mutual-
ly coherent, so that their interference cannot be neglec-
ted: AiAf +A2A?=2\Ai\

2. Neglect of the interference
corresponds to the classical description (the Boltzmann
equation), and inclusion of the interference corresponds
to the quantum corrections to the classical kinetics.

Let us estimate the relative value of the quantum cor-
rection 5cr/<70. This quantity (it is negative) is propor-

tional to the probability of self-intersection of a ray with
cross section X1""1 for classical diffusion. Therefore

6<J :• all?.*

°0 J (Dlf
(1)

The integration in Eq. (1) is taken over the range r<t
<T v, where rv is the time of destruction of the phase
owing to inelastic scattering or scattering with spin
flip. As a result, we have1'2

(2)

It can be seen from (2) that the resulting corrections,
albeit small in the parameter \/l, determine singular
dependences on the temperature (TV~T~/ >) or frequency
a; [for U>TV» 1 in Eq. (2) we must replace T^ by l/u>,
and for d =3, for example, we obtain 6a~/w]. If a
film or a wire has transverse dimension a and a« L^,
then the diffusion has a two-dimensional (one-dimen-
sional) character, and the corrections to the resistivity
of a wire of unit length (d = 1) or of a film (d =2) can be
estimated according to the formula1"3

where

i = 2.

If an external magnetic field is switched on, the
amplitudes A^ and A^ acquire additional factors:

./(^•xp ,— (

A2 exp
2MHS

where S is the projection of the area of the loop onto a
plane perpendicular to the direction of the magnetic
field. As a result, Eq. (1) can be rewritten in the form4
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60 f i.*-'vdt
:s, rtcos(^H.)d.v, (3)

where to(S, t) is the probability that a loop with length vt
has area S. In the two-dimensional case, the whole of
the last integral can be replaced by cos(HDt/$0). This
gives

Ao(//) = o(//) —0(0) ~- ,11 p
(4)

In the three-dimensional case, we can (for an estimate)
assume that all the trajectories lie in a plane. The angle
9 between this plane and the direction of the magnetic
field is determined by the fact that cos0 =S/Dt; there-
fore

Dt
(IS

As a result, we obtain

a.,, f d(
0° _•! , • . .

nut

\ 3 /2 cAfOT™

(3')

(4')

The basic properties of the phenomenon are as follows:

1. For weak fields, Aa-ffV^tfV,,'2) (a large coef-
ficient).

2. There is "saturation" for nffr ~ (X//)(T/T^)« 1, i.e.,
in the region of classically weak fields.

3. There is no dependence on the angle between the
field and the current (d =3).

4. For films, the effect exists only for a field normal
to the plane of the film.

5. The sign of the correction is positive (the field
"favors" the conductivity).

If the resistance of a hollow body (cylinder or ring)
is measured, this resistance oscillates as a function of
the magnetic flux passing through the cavity, with
period *0/2 =irfi/ec.5 This Aharonov-Bohm effect has
been observed in experiments by Sharvin and Sharvin.6

Another oscillation effect can be observed in a normal
metal in contact with two superconductors St and &j.7

It turns out that, owing to Andreev reflection of the elec-
trons at a boundary with a superconductor, the resis-
tance of a normal metal is sensitive to the phase differ-
ence ( p = X i ~ X 2 °f the order parameters in the supercon-
ductors and oscillates with period ir.

The additional terms AtA$ which occur when allowance
is made for the electron spin carry information about not
only the phase of the electron, but also its spin polar-
ization. If the intial and final states have wave func-
tions (f>a and cpB, respectively, the additional term can
be written in the form C =((p1

a<f>z
etp

1
B*(/}2

a*)/2. Going over
to the representation involving the total angular momen-
tum of the two particles, *1|±1 =<p\<f'±, *i.0

 = (l/^~2)
.-cpVJ, we have C

The wave function *lm carries information about the
spin and disappears in the presence of a spin-orbit in-
teraction after the relaxation time of the spin, T^. The
wave function 4r0 is responsible for only the phase and
persists for a time t~rf. Therefore8'9

1 \
2 ; •

As a result, for d =2, for example, we have

(5)

(6)

from which we see that a strong spin-orbit interaction
and a fast relaxation of the spin lead to a change of sign
in the quantum correction and therefore to a change of
sign in the magnetoresistance. A dependence of the sign
of the anomalous magnetoresistance on the magnitude
of the field has been observed in films of copper.10 A
direct qualitative experiment can be performed in cubic
semiconductors of p type (p-Ge, p-Si, etc.).11 The com-
plicated structure of the valence band leads to fast re-
laxation of the hole angular momentum in elastic scat-
tering. Therefore a positive magnetoresistance should
be observed in these substances. In deformed crystals,
the degeneracy is removed for k =0, and fast relaxation
of the spin can be eliminated. Therefore the theory
predicts a negative magnetoresistance in sufficiently
strongly deformed crystals. Experiments carried out
before the advent of the theory confirm this qualitative
prediction.12

The theory also predicts a suppression of the quantum
corrections in a high-frequency external field, which
leads to an additional destruction of the phase.13

The calculation of the quantum corrections and their
dependences on the frequency, temperature, magnetic
field, and spin-orbit interaction plays an important
role in the construction of a theory of localization of
electrons in disordered substances.9'14
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A. M. Polyakov. Phase transitions and the Universe.
The cosmological term in Einstein's equations would
necessarily arise from the fact that the vacuum has
a nonzero energy density because of the zero-point os-
cillations. If this energy density is estimated using the
characteristic hadronic masses, a colossal value is
obtained for the cosmological constant A. Moreover,
for consistency with the experimental data on the red
shift, the admissible value of A must be smaller than
10"130 of the natural hadronic estimate. To all appear-
ances, there must exist a compensation mechanism
which reduces the energy density of the vacuum to zero.
The objective of this work is to find such a mechanism.

To solve this problem, we must first determine its
correct formulation. The point is that energy is in
general defined to within a constant, and therefore the
choice of this constant seems unclear. However, every-
thing falls into place if we study not the energy density,
but the effective equations for the propagation of a
gravitational field. By the word "effective" we mean
the equations which arise from the original theory of
Einstein as a result of infrared quantum renormaliza-
tions. It is very important to realize that in general
the observed classical dynamics in any theory is deter-
mined by the effective equations rather than by the
original ones. In certain cases (for example, in the
Yang-Mills theory), the infrared renormalizations do
not completely destroy the original classical theory.
In the problem of interest to us—Einstein's theory with
the bare cosmological constant—the role of the infrared
normalizations is more modest. It will be shown that
they lead to vanishing of the physical cosmological con-
stant without affecting Einstein's equations themselves.

Infrared divergences occur in the theory because of
the long-wave conformal fluctuations of the metric. If
we write

#UV W "=<! 2 M? uvM ( 1 )f f \*-/

[where g^v has zero scalar curvature: RQ) =0] and
average over all fluctuations of the field guv, the low-

energy Lagrangian of the field <p takes the form

» i / , , , , . . /9^x— 2jj-((*nf) +A<P4), \">

where -K is related to the gravitational constant, and A
is the cosmological constant without allowance for the
infrared oscillations. The problem of the cosmological
term can now be formulated as the problem of whether
the field <p has a nonzero vacuum expectation value. As
can be seen from (1), if (<p(x)) = const, the vacuum has
zero scalar curvature, which means that the cosmolo-
gical term vanishes. A phase with (<p)=Q would corres-
pond to Aphy^O. Since the Lagrangian (2) is scale-in-
variant, we can have (<p) * 0 only for fixed boundary
conditions. If we consider a region of dimension R
(which must tend to infinity at the end of the calculations)
and fix <p =<px on the boundary of the region, two vari-
ants are possible:

«r(0) {(foo-
1

-H

const,

A calculation of the path integral of the Lagrangian (2)
in the single-loop approximation shows that the first
possibility is realized, and this means that the physical
cosmological constant vanishes. The mechanism of
vanishing is analogous to the phenomenon of zero charge
in quantum electrodynamics discovered by Landau,
Abrikosov, and Khalatnikov. It is related to the tendency
of the long-wave fluctuations to screen the proper in-
teraction.

In addition to the perturbative fluctuations considered
above, screening can also arise from gravitational in-
stantons. In our case, they are de Sitter worlds, which
can be observed at any point x with finite probability;
as a result,

<v (*)> ,t o.

I. D. Novikov and Ya. B. Zel' dovich, Relyativistskaya astro-
fizika (Relativistic Astrophysics), Moscow (1967), p. 561.

G. E. Volovik and V. P. Mineev. Textures, vortices
and superfluidity o/3He. In 1972 the discovery was
made of the new A and B phases of liquid 3He, which in
subsequent years astonished physicists by their unique
properties. Both new phases of 3He, like the well-
studied 4He, are superfluids. The superfluidity of 4He
is a consequence of the phenomenon of Bose condensa-
tion of the macroscopic part of the atoms of the liquid
in the ground state. Superfluidity of the normal Fermi
liquid 3He, like superconductivity of the electron Fermi

liquid in metals, sets in as a consequence of Cooper
pairing of the 3He atoms. However, there is an impor-
tant difference between the Cooper pairs in 3He and in
a superconductor. The total spin of a pair and the rela-
tive angular momentum in a superconductor are equal
to zero, S = L=0, i.e., the pair has no magnetic struc-
ture and is a spherically symmetric formation. In both
phases of 3He, S = l and L = l. All pairs are in the same
state; as a result, the liquid phases of 3He have non-
trivial magnetic properties reminiscent of the proper-
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