
involves the existence of an infinite series of conserva-
tion laws and leads to a factorized scattering theory.9

A knowledge of the wave function makes it possible to
find the entire spectrum of the Hamiltonian (1) and to
determine the equilibrium properties at finite tempera-
ture. They are given by the solutions of the system of
nonlinear integral equations7-8

lim- H
'' T

the impurity part of the free energy has the form
+?° Ind + .W)

F(T, H),
-'I 2ch (nz/2) '-Ax.

(3)

(4)

These equations were studied in Ref. 8, where the asym-
ptotic behavior of the solutions for T»TK and T« TK

were given. At T =0, the equations (3) become linear and
can be solved explicitly.5-6 Here we give the result for
the impurity part of the magnetic moment at J = 0 as a
function of the magnetic field H:

_
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(5)

When H»TK, this quantity has an asymptotic expansion
in inverse powers of ln(H/TK), which is known from
perturbation theory. When U« TK, the properties of
M(ff) and all other physical quantities for S# \ differ
from those of the case S = \. In the first case, M(H) is
the same as for ff» TK, and we have an expansion in
inverse powers of \n(H/TK), whose coefficients agree

under the substitution S—S- \. In particular, M(H-Q)
= S-|, i.e., the electrons do not completely compen-
sate the impurity magnetism, and the ground state is
25-fold degenerate. B u t i f S = i, then M (H) can be ex-
panded in a series in integral powers of H/TK. For
ff- 0, we have M(H) ~ H/TK and this quantity vanishes
as the field tends to zero. The ground state of the
impurity is a singlet.

In addition to the exchange Hamiltonian (1), the
Anderson model describing the formation of a localized
moment is also integrable10; the s-d exchange model
ignores the orbital degeneracy of the unfilled impurity
shell and is therefore applicable only to those alloys in
which the crystal field is greater than TK, and only for
S = | [for example, (LaCe)B6 and (LaCe)AlJ. More
realistic orbitally degenerate exchange Hamiltonians
are also integrable.11
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S. A. Brazovskii. Theory of conducting polymers.
Most quasi-one-dimensional conductors are narrow-
band dielectrics, at least at low temperatures. In
charge-transfer complexes and in the polymer trans-
poly acetylene, trans-(CH)x, the formation of a dielec-
tric gap at the Fermi surface is due to the deformation
of the lattice with wave vector 2kF (the Peierls effect).1

This deformation (dimerization in the case of trans-
(CH)X is a spontaneous symmetry breaking, so that the
ground state of the system is degenerate) is continuous
for charge-transfer complexes having incommensurable
superstructures, and twofold for trans-(CH),,. This de-
generacy, and also the specifically strong interaction of
the electron excitations near the boundaries of the spec-
trum ± A with the phonons, leads to fundamental differ-
ences between the properties of the Peierls dielectric
and those of ordinary dielectrics and semiconductors.
The most complete experimental picture was obtained
as a result of recent investigations of polyacetylene.2

For trans-(CH),, it has been established that as a
result of optical pumping and alloying there are highly
autolocalized states with electron levels in the region
of the center of the forbidden band. In a pure material

(according to the data of electron paramagnetic reson-
ance and nuclear magnetic resonance), there are spin
carriers which retain high mobility up to 4.2°K but give
no contribution to the conductivity. On the contrary,
the current carriers in the alloyed material [(CH)/^],
have no spin moment—there is no Curie paramagnetism
in the region of jump conductivity y < 0.005 or Pauli
paramagnetism in the metallic region 0.005< y< 0.05.

These data can be explained in terms of the picture
of soliton carriers of spin and charge. Analytic and
computer calculations of the stationary states3-4 and
computer simulation of the dynamics of autolocalization3

in the Peierls model for polyacetylene have led to the
following results:

The main elementary excitations are solitons connect-
ing domains with opposite dimerization. In the soliton
region, there is a change in the local density of wave
functions of the occupied electron states with energy
E< -A, as a result of which a soliton acquires a charge
e* = -e for zero spin s = |. The quantum numbers of the
soliton vary according to the occupation number v=Q,
1, 2 of the electrons of the local level £ =0 in the soli-
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ton potential. We obtain spinless charge carriers for
v=0, 2; e* = -e, +e; s = 0 and uncharged spin carriers
f o r i / = l , e*=0, s = i. The topological character of the
soliton explains the exceptional anisotropy (~106) of the
spin diffusion. The soliton energy is £s = (2/ir)A< A,
The autolocalization of electron-hole (e -h)a.nde - eand
h-h pairs is barrier-free for a time ~o>ph ~ 10~13 sec
and is accomplished by the formation of diverging pairs
of solitons.

For other polymers [cis-tCH),, polyphenylene, poly-
diacetylene, etc.], the structure of the polymer skeleton
is such that there is no degeneracy of the ground state.
Then the effect of autolocalization is preserved, but dis-
persion of the domain walls becomes impossible, since
between them there appears a state with greater energy
density.4 The nondispersion of the e - h pairs explains
the difference between the optical properties of cis- and
trans-(CH)t. At the same time, the theory predicts the
existence of bound e - e and h - h pairs (bipolarons). This

may explain the absence of paramagnetism in conduct-
ing alloyed polypyrrole.5

In incommensurable systems such as charge-transfer
complexes, there can exist only uncharged spin soli-
tons s = |, e*=Q, while the excitation of charge density
becomes nonactivated (Frohlich conductivity).
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A. I. Larkin and D. E. Khmel'nitskii. Anderson
localization and anomalous magnetoresistance at low
temperatures. Consider a conductor in which the path
length / is much greater than the wavelength. Let us
calculate the probability of diffusion in a time t from a
point A to a point B (see Fig. 1). We can imagine that
at the point A there is a source which coherently emits
wave packets that propagate along rays of thickness X
(they begin at A and end at B). According to the general
rules of quantum mechanics, to find the probability w
we must add the probability amplitudes of diffusion along
each trajectory and calculate the square of the modulus
of this sum: w~ | =£, | A, * ,A, Af.

The first term on the right-hand side describes the
sum of the probabilities referring to each individual
ray, and the second term is the interference term. The
interference of most of the amplitudes is not important,
since the lengths of the trajectories and hence their
phases are very different, and the mean value of the
interference term is equal to zero. The exceptions are
the trajectories which intersect themselves. Each such
trajectory can be associated with two amplitudes .4,
and A?, corresponding to passage around the closed loop
in opposite directions. These two amplitudes are mutual-
ly coherent, so that their interference cannot be neglec-
ted: AiAf +A2A?=2\Ai\

2. Neglect of the interference
corresponds to the classical description (the Boltzmann
equation), and inclusion of the interference corresponds
to the quantum corrections to the classical kinetics.

Let us estimate the relative value of the quantum cor-
rection 5cr/<70. This quantity (it is negative) is propor-

tional to the probability of self-intersection of a ray with
cross section X1""1 for classical diffusion. Therefore

6<J :• all?.*

°0 J (Dlf
(1)

The integration in Eq. (1) is taken over the range r<t
<T v, where rv is the time of destruction of the phase
owing to inelastic scattering or scattering with spin
flip. As a result, we have1'2

(2)

It can be seen from (2) that the resulting corrections,
albeit small in the parameter \/l, determine singular
dependences on the temperature (TV~T~/ >) or frequency
a; [for U>TV» 1 in Eq. (2) we must replace T^ by l/u>,
and for d =3, for example, we obtain 6a~/w]. If a
film or a wire has transverse dimension a and a« L^,
then the diffusion has a two-dimensional (one-dimen-
sional) character, and the corrections to the resistivity
of a wire of unit length (d = 1) or of a film (d =2) can be
estimated according to the formula1"3

where

i = 2.

If an external magnetic field is switched on, the
amplitudes A^ and A^ acquire additional factors:

./(^•xp ,— (

A2 exp
2MHS

where S is the projection of the area of the loop onto a
plane perpendicular to the direction of the magnetic
field. As a result, Eq. (1) can be rewritten in the form4
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