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1. INTRODUCTION

The investigation of solitons and their interactions is
one of the main problems of the nonlinear theory of
waves.1 Considerable progress has been achieved in the
last ten years in this area due to the comprehensive
application of exact, approximate, and numerical
methods. At the present time, soliton solutions have
been found for several tens of equations of interest in
different areas of physics, from optics to bio physics.1)>2

Unfortunately, the starting equations for which solutions
have been obtained in the form of stationary nonlinear
waves are often model equations and describe only ap-
proximately wave processes in real media. Neverthe-
less, demonstration experiments were performed in
electromagnetic lines, consisting of discrete linear and
nonlinear elements,3 in plasma, superconductors, and
on the surface of water.2' The experimental realization
of soliton regimes in optics gives rise to serious diffi-
culties, since the medium and the initial conditions must
satisfy quite stringent requirements.

It has been known for a long time that in the region of
anomalous dispersion wave packet spreading can be
balanced by self-compression, caused by nonlinearity,
and this leads to the formation of envelope solitons.4

The spatial analog of this phenomenon is the wave guide
regime for propagation of light beams in self-focusing
media.5 An important difference between these two pro-
cesses is that the stationary (two-dimensional) wave-
guide in a medium with a cubic nonlinearity is unstable,
while the stationary (one-dimensional) pulse is a stable
formation. Experimental observation of stationary light

11 The selection of articles in this issue of the journal is en-
tirely devoted to various aspects of the theory of solitons.

2'These problems are discussed in Solitons in Action edited
by K. Lonngren and A. Scott, Acad. Pr., N. Y., 1978 (Mir,
Moscow, 1981).

pulses in unbounded media is complicated, in particular,
by the presence of spatial divergence or convergence,
absorption, and accompanying nonlinear effects. It was
proposed as far back as 1973 that optical fibers be used
in experiments with time envelope solitons.6 In an
optical wave guide, the spatial profile of the intensity is
determined by competition between two linear processes:
diffraction and refraction and is practically unaffected
by the nonlinearity. However, such experiments be-
came a reality only recently7 due to the realization of
two prerequisites: 1) creation of single-model fibers
with minimum losses in the region of anomalous dis-
persion; 2) perfection of sources of picosecond pulses,
tunable in the near IR range. The next two sections
will be concerned with a short discussion of these pre-
requisites.

In speaking of the significance of experiments with
optical solitons, we note that they undoubtedly stimulate
the interest of researchers in optical fibers as being
unique, according to their possibilities, nonlinear
media. Of interest are possible applications in the area
of optical information systems and in problems of form-
ing ultrashort light pulses with a given shape of the
envelope for different physical experiments.

2. MODERN OPTICAL FIBERS AND THEIR
NONLINEAR PROPERTIES

The current trend in fiber optics is a transition away
from the visible to the near IR range.8 This is due, in
part, to the following: it is in this region (X=» 1.55 fxm)
that fibers have minimum losses -0.2 dB/km; in the
near IR range, the dispersion passes through zero
(\0»1.3 jim; for X > X 0 , u>£'s>0, anomalous dispersion;
for X < X 0 , Wjjj < 0, normal dispersion). Figure 1 shows
the dependence of the losses in dB/km for the ultimate
fiber.9 The increase in losses with decreasing X is
caused by Rayleigh scattering. Miya et al. associate
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FIG. 1. The wavelength dependence of losses in a fiber.1

the absorption peaks visible in the figure with vibration-
al overtones of the hydroxyl group OH.

The dispersion properties of fibers have been studied,
in particular, in Ref. 10. They are characterized by
the parameter D = 1/L 9T/3X, which is the rate of
change of the group delay time T with wavelength. A
typical value of D is 20 ps/(nm • km) for X = 1.55 jim.
We emphasize that the dispersion characteristics of a
wave guide are determined by its structure and by the
profile of the index of refraction; they are not identical
with the dispersion properties of the starting material.
The relationship between these properties is discussed
in Ref. 11. It is shown that anomalous dispersion can be
obtained in a fiber within the region of normal disper-
sion of the substance. Three-layer optical wave guides,12

which have a number of advantages over two-layer wave
guides, are very promising here. Japanese investiga-
tors report production of a fiber, for which the region
of zero dispersion coincides with minimum losses.13

Based on these achievements, communication lines with
a rate of transmission of information up to 8 • 108 bits/s
over a distance of up to 20 km have already been pro-
duced.14

Intensive experimental and theoretical investigation
of the nonlinear properties of fibers began in the 1970 's
in connection with the fact that they limit the power and
rate of transmission of signals along optical communi-
cation lines. Thus, in a fiber made of fused quartz,
nonlinear effects are already observed in powers ~1 W,
although in SiO2, the nonlinear increment to the index
of refraction is two orders of magnitude smaller than
in carbon disulfide CS2. The reason for this lies in the
enormous interaction lengths -1 km that can be realized
in fibers with low losses.

At the present time, the following phenomena, stem-
ming from the cubic susceptibility, are being studied
experimentally: phase self-modulation and self-action
of temporal envelopes, stimulated Raman scattering,
four-photon mixing processes, stimulated Mandel'shtam-
Brillouin scattering.15 The first of the effects indicated
is related to the dependence of the index of refraction n
on the amplitude of the electric field of the light wave

In typical materials for optical wave guides, n2 arises
due to the nonlinearity of electronic polarizability and
reaches a steady state within a time ~10~15 s; its char-
acteristic order of magnitude is n2 ~ 10"13 CGS units.

The presence of 5« can lead to self -focus ing of a beam,
if its power exceeds a critical level, but in single-
mode fibers the changes in the spatial intensity profile

are negligibly small (the characteristic power for self-
focusing in a fiber with a diameter of several microns
is of the order of 106-107 W). However, the increase
in phase that appears 5<p = 5nu>.a/c and the corresponding
frequency shift 601 cckzd \E\2/3t, which time-dependent,
has an appreciable effect on the shape of the pulse enve-
lope and its spectrum for powers ~1 W. We note that for
nj > 0, the frequency shift is negative on the front of the
pulse and positive on the trailing edge. After the pulse
(r0=200 ps, X =0.514 jim) traverses a distance of 255
meters along a fiber with a core diameter of 3.3 (im,
the width of its spectrum doubles when the input power
is 180 mW.16 Propagation of a pulse with a broadened
spectrum in a dispersive fiber greatly affects the pulse
envelope. A detailed discussion of these effects in the
region of normal dispersion is contained in Ref. 17,
wherein the appearance of envelope shocks is demon-
strated by numerical simulation for media with a finite
relaxation time of the nonlinearity. Phase self-modula-
tion greatly limits the transmission band of optical in-
formation systems. At the same time, the good corres-
pondence between the theoretically predicted and experi-
mentally measured shape of the spectrum permits using
this phenomenon to determine «2.

16 Picosecond pulses,
undergoing phase self-modulation, are used as a wide
band source in spectroscopy.

The characteristics of the occurrence of other non-
linear processes in optical fibers, stemming from the
cubic susceptibility, are discussed in detail in Ref. 19.
In this connection, we mention only Ref. 20, wherein
stimulated Raman scattering and four-photon frequency
mixing in a single-mode fiber, pumped in the region of
zero dispersion, were studied experimentally.

Summarizing, we can say that from the point of view
of nonlinear optics of media, optical fibers are very
interesting due to their small losses, stable geometry,
and low threshold power for typical nonlinear effects.
We note that it is possible to isolate the self-action of
temporal envelopes in "pure" form by varying the
parameters of the initial pulse and by choosing appro-
priate fibers.

3. SOURCES OF PICOSECOND PULSES, TUNABLE IN
THE NEAR IR RANGE

Sources of picosecond pulses for experiments with
optical solitons must provide smooth tuning over the
range 1.2-1.6 jim and must generate stable pulses with
a wide spectrum, limited by the inverse pulse duration.
In this connection, two classes of sources are of funda-
mental interest: parametric generators of picosecond
pulses81 and lasers utilizing color centers in alkali-
halide crystals.22 A typical example of the latter group
is a laser utilizing F2 centers in KF, described in Ref.
23, which is capable of generating pulses with duration
3-5 ps in a tuning range from 1.24 to 1.45 jj.m. The
source operated at a temperature of 70 K and, in addi-
tion, an electron beam was used to color the crystal.
Synchronous pumping was carried out with a Nd:YAG
laser (X = 1.064 fj.m). An analogous arrangement using
F2 centers in NaCl (tuning range 1.35-1.75 jj.m), is
mentioned in Ref. 7. In order to improve the spectral
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characteristics, the cavity dimensions were changed
in order to obtain one output pulse for each pumping
pulse. In addition, a birefringent element (a sapphire
plate with a thickness of 4 mm) was placed in the cavity,
which permitted obtaining pulses satisfying the relation
T0A/=0.18.

Lasers capable of operating at room temperature are
of great practical significance. Picosecond generation
with forced mode-locking using a LiF crystal is re-
ported in Refs. 24 and 25. Under the action of the pump-
ing pulses (X=0.53 fxm), two-step ionization occurs,
while inversion occurs after absorption of energy by the
Fj centers formed. Lasing is achieved in the range
X-0.84-1.1 j«n.

Parametric generators of picosecond pulses,26 which
can be tuned over a wide range from 0.5 to 10 jim, form
another class of promising sources. They operate on
perfected solid state lasers, capable of generating
powerful well-reproducible pulses with duration from
30 to 3 ps.27 In order to improve the spectral quality
of the pulses, cavity schemes with synchronous pumping
are used. Recently, the possibility of using phase con-
jugation to obtain pulses with a spectral width limited by
the inverse duration was demonstrated experimentally.28

Semiconducting lasers with mode-locking, capable of
generating pulses with duration -20 ps, could become
very convenient and compact sources, if satisfactory
spectral characteristics can be achieved.29

4. WAVE PICTURE OF PULSE PROPAGATION IN
OPTICAL FIBERS

The theoretical analysis of the propagation of light
pulses in optical fibers is usually carried out under the
following assumptions6: 1) the electric field in the light
wave is sought in the form

— i ~

where x(*, y) describes the spatial distribution of the
field in the linear approximation, while the slowly
varying amplitude of the temporal envelope Ji(z, t) is
affected by the nonlinearity; 2) second-order infinitesi-
mals are taken into account in the expansion of fe(u)) in
powers of (w - u0).

In this case, t/i(z, t) satisfies the nonlinear Schroedin-
ger equation

dih 1 I d*k I d*\l) , n0 ^ /1 \i —— = i — r- —— -\- fy,K —— I *f | U-' — io0\p ; ^1^

where T =(t- (z/vf)) is the instantaneous time, v, = du/
afe, the pulse sign corresponds to anomalous dispersion,
the minus sign corresponds to normal dispersion, and
60 is the absorption coefficient. The appearance of the
factor a is related to the spatial distribution of the
field. In particular, for a fiber with a step-like profile
of the index of refraction a =(x4>/(x2) f°r tne HEn mode
X = J r

0 ( f J > P ) j averaging is carried out over the radial
distribution and ji, is the first root of the zeroth-order
Bessel function. The effect of the distribution of the
index of refraction over the cross section of the fiber on
the dispersion properties of the fiber is analyzed in de-
tail in Ref. 11.

We note that Eq. (1) was obtained assuming that the
optical fiber does not change the linear polarization of
the input radiation (such fibers have already been de-
veloped30). If the polarization is not conserved, then n2

in Eq. (1) is replaced by the polarization-averaged quan-
tity (5/6) n2.

In order to expose the characteristic scales of the
problem, it is convenient to transform to dimensionless
variables, normalizing the instantaneous time to the
initial duration of the pulse T' =r/ra, the distance z to
the dispersion length zd =r2

0/\k'^\, and the field ampli-
tude to the characteristic initial value \il>0\. Then, (1)
assumes the form3>

The nonlinearity parameter R has the following struc-
ture: R=za/znl, where the nonlinear length is inverse-
ly proportional to the intensity at the input to the medium
zn, =cn2,/(8jrfew2/o); 8 is the absorption over the dispersion
length. Under real conditions, R can vary over a wide
range due to a change in the input intensity /0 as well as
tuning of the laser near the wavelength corresponding to
zero dispersion (k"ww and zt vary). We note that for k"uu

= 0 Eq. (1) must contain higher order dispersion terms,
corresponding to fe"ww and so on.

Equation (2) (with 5 = 0 ) belongs to a class of equations
that are exactly solvable by methods of the inverse
problem in scattering theory.31-32 We recall that the
soliton solutions of (2) have the form (3)

T|- = R-tPxj sech [-A, (T - T,- + zQ,)} exp (i (Q, -c—K, z + <j>j ) J . (3)

where Tj,<p}, &,-, k j t and x.5=Ji2 + 2.Kj are dimensionless
parameters, which determine the soliton position,
phase, and velocity in a co-moving coordinate system.

For arbitrary initial conditions, the soliton component
contained in them will determine the asymptotic behavior
of the solution. In Ref. 32, the nonsoliton part of the
solution was estimated to decrease at a rate z~1/z. In
addition, the problem of the interaction of solitons was
investigated. Within the scope of Eq. (2) (6 =0), it re-
duces to a shift in the trajectories of their centers and
phases. The additivity of the shifts as a result of the
collision of a large number of solitons is also demon-
strated. These results have fundamental significance,
since they can be used to check approximate methods
and numerical algorithms. However, application of the
methods of the inverse problem in scattering theory to
solving problems with arbitrary initial conditions give
rise to serious difficulties. Other "exact" methods for
solving nonlinear problems are presented in an access-
ible form in Ref. 33.

One of the approximate approaches is explained in
Ref. 34. A Lagrangian, analogous to the Lagrangian
for particles with a pair interaction potential, is intro-
duced for a system of solitons with nearly equal veloc-
ities. Conditions necessary for the existence of bound
states of solitons are formulated. Perturbation theory
for such problems is developed in Ref. 35.

3'The primes on the dimensionless variables here and In what
follows are dropped.
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Investigation of Eq, (2) using the method of moments
yields useful and graphic results.36 For a mean-square
pulse duration (r2) = jr$$*dr/P0, it is not difficult to ob-
tain the equation

(4)

H0 = J^ [<I>'TV* - are
integrals of the problem (2), which represent the total
pulse energy and the Hamiltonian. It is evident that for
a given initial field distribution ^0(-r,0), there exists a
R0 such that for R<R0, dispersive spreading dominates:

} ( (5)

In particular, for ip0 = AoSechr, jR0 = 0.5 with Ag = 1. In
the interval R0<R<2R0, with z increasing from zero,
the pulse begins to broaden and after several damped
oscillations, its width stabilizes. In the interval 2R0

<R< 4ft0, as z increases, the pulse narrows, then broa-
dens, and after a number of oscillations, its amplitude
reaches a steady state value.

It is convenient to study the dynamics of this process
numerically.35 Figure 2 shows the peak amplitude of
the pulse as a function of ^ for ^=0.8, 1.1, 1.25, and
1.4. For AQ =N (N = 2 , 3 , . . . ) and purely real initial con-
ditions i/ ) =A>s e c n T> a N-soliton bound state is formed.

The method of finite differences is used to investigate
Eq. (2) numerically.35 Separation according to physical
factors,14 when the propagation of a wave packet in a
dispersive medium is described as successive trans-
mission through layers with purely dispersive and
purely nonlinear properties, is widely used. The fast
Fourier transform is used at the dispersive step. The
mathematical justification and estimate of the accuracy
are presented in the appendix to Ref. 37. Application
of the method of finite elements to problems in nonlinear
optics has turned out to be very effective.38'39

Recently, interest has appeared in studying the self-
action of pulses in multimode fibers.40 This problem
leads to a system of nonlinear Schroedinger type equa-
tions for the envelopes of pulses corresponding to
different modes. The nonlinear increment to the index
of refraction is proportional to the total intensity due to
the orthogonality of the modes. In Ref. 40, A. Hasegawa
et al. obtained estimates of the power for which the
intermode dispersion is suppressed by the reactive
(only via the index of refraction) interaction of pulses.
The orders of magnitude of the quantities here are as
follows: for an input power -20 W (intensity ~107

70 20 z

FIG. 2. The instantaneous value of the peak amplitude as a
function of distance for different Initial amplitudes.35

W/cm2), modes with group delay -100 ps/km are
trapped.

In the particular case of two modes, the starting
system of equations can be reduced to the form"

i-+«2. (6)

where a^ =RtRn}J&)i*} /tfj, averaging is carried out
over the radial distribution, Rnlm is the nonlinear length
for the m-th mode, analogous to that introduced pre-
viously. The group delay relative to the average veloc-
ity must be taken into account in the initial conditions,
which are written as follows:

fi (T, 0) =
if2 (T, 0) =

,0 (T) exp (<£T),

la (.T) exp (-I£T).

The parameter f is the group delay over the dispersion
length, scaled to the initial duration of the pulse.

Some data from numerical calculations41 are presented
in Fig. 3. Case a) corresponds to partial suppression
of intermode dispersion (ami = l,£ = 1.63) with total sup-
pression of spreading of an individual pulse. Case b)
illustrates total compensation of intermode dispersion
for the minimum value of the detuning parameter £ = 1.
The initial field distribution in both cases was purely
real and had the form ^10(r) =^O(T) = Xsech(Xr), X =2.

In concluding this section, we mention a group of
papers, concerning self-action of pulses of partially co-

FIG. 3. a) Partial suppression of intermode dispersion with
complete suppression of pulse spreading; b) complete sup-
pression of intermode dispersion with minimum detuning.
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herent radiation in fibers. Reference 42 is concerned
with linear pulse propagation in a single-mode fiber.
The input pulse with a Gaussian envelope represents a
superposition of laser modes, taken with random
phases. It is shown that fluctuations in the pulse power
damp out with distance, if the intermode dispersion ex-
ceeds the dispersive spreading of the envelope. In the
opposite case, fluctuations exist independently of the
fiber length. The effect of intensity fluctuations on non-
linear propagation was investigated in Ref. 43. The
critical power for formation of a soliton was estimated.

5. EXPERIMENTAL RESULTS. POSSIBLE
APPLICATIONS

Envelope solitons in optical fibers were successfully
observed experimentally in Ref. 7. Pulses from a laser
based on Fj centers in a NaCl crystal (tuning range
1.35-1.75 jim, working wavelength X = 1.55jim), enter-
ed the optical fiber. The spectrum of the signal and the
autocorreation function of the intensity B(T), which was
determined by using a technique based on generating the
second harmonic in ammonium dihydrophosphate, were
measured at the output of the optical system. Data on
the spectrum and autocorrelation function are not enough
to reconstruct completely the envelope of the input
pulse. The value of the product r0A/=0.18 (r0 = 6 ps)
suggests that the pulses are free of phase modulation
and, with respect to shape, occupy at intermediate posi-
tion between pulses with an envelope of the form
sechT(T0A/=0.315) and a decaying exponential T0A/=0.11.

A fiber made of doped fused quartz, which had a step-
like profile of the index of refraction (core diameter
9.3 |im, length 700 m, losses at X = 1.55 Jim were ~1
dB/km), was used. The power of the input signal varied
in the range 0.3-22.5 W.

Typical experimental profiles of the autocorrelation
functions are presented in Fig. 4 for different values of
the input signal power. For P0 = 0.3 W, the pulse broad-
ening corresponds to a linear regime and agrees well
with the computed boradening. As P0 increases, the
pulse at the fiber output is compressed and for Pa

= 1.2 W, its duration equals the initial value. This indi-
cates that dispersive spreading is completely compen-
sated by the action of the nonlinearity and this case can
be interpreted as a single soliton. Next, compression
of the pulse begins (up to 2 ps with P0 = 5 W). Then, the
plateau in the correlation function begins to increase
and two secondary maxima appear on it (P0 = 11.5 W).
This behavior of B(T) can be understood by considering
the temporal intensity profiles that we computed on a
computer. The series of curves in Fig. 5(a) corresponds

2Z.5

FIG. 4. The experimental profiles of the autocorrelation
function of the intensity at the fiber output for different initial
input signal power.7

-2 -t e t 2 i
Time

bl

FIG. 5. a) Temporal intensity profiles for a two-soliton bound
state; b) three-soliton bound state.

to a four-fold increase in power above the critical level
and in Fig. 5(b) to nine-fold increase. This indicates
that in the first case we are dealing with a bound state
of two and in the second case of three solitons. For
2=ir/4 (in dimensional variables, this is 700 m), the
pulse has a two-peak structure, and this is what leads
to the presence of three maxima in the correlation func-
tion. Finally, P0=22.5 W corresponds to a bound state
of four solitons. The characteristic values of the power
indicated above differ from the theoretical predictions
on the average by 20%, We feel that this is caused by
the asymmetry of the input pulse. We note that the des-
truction of the initial polarization in the fiber must also
be taken into account.

In order to illustrate the propagation of an asymmet-
ric pulse, we shall present data from a numerical ex-
periment.41 The starting distribution had the form
^0=T2exp(-r2/2). The intensity profiles are shown in
Fig. 6 for different z. It is evident how, according to
the compression resulting from the nonlinearity, the
pulse is symmetrized and a nonsoliton increment is
separated from it. Thus, the basic characteristics of
soliton formation are insensitive to distortions of shape
as compared to the classical shape.

We shall proceed to a discussion of the possible ap-
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FIG. 7. Compression of a phase self-modulated pulse (linear
propagation regime in a fiber).

plications of the phenomena examined above. Obtaining
subpicosecond pulses is of great interest for many
areas of physics. One of the possible ways to solve this
problem is to compress pulses with long duration.
Active control of the amplitude and phase of picosecond
pulses is as yet technically not feasible. However, if
the starting pulses are frequency modulated so that the
frequency increases toward the end of the pulse (posi-
tive sweeping), then transmission of a pulse through a
medium with anomalous dispersion causes the pulse to
compress. In practice, an arrangement that provides ano-
malous dispersion may consist simply of a pair of diffrac-
tion gratings ,15 In order to obtain positive sweeping, a non-
linear effect, namely, phase self-modulation, is used.
Thus, Laubereau etal.4* experimentally compressed
pulses from 20 to 2 ps.

The use of optical fibers opens up new prospects in
this field. It is already evident from Fig. 5 that by in-
creasing the parameter R (due to an increase in the
input power or to tuning to adjust to the wavelength
corresponding to zero dispersion), it is possible to
compress the input pulse by a factor of 6-10 at a fixed
distance.

Phase modulation of the input pulse gives additional
possibilities. If the pulse was phase-modulated in an
inertia-free strongly nonlinear medium, then it is
possible to write the initial conditions at the fiber input
in the form

where the parameter S determines the rate of change
of the frequency. We note that sweeping in this case is

7

S

£ 5

z-ffJO

0.05
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10

a -

'.-0.10
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- 2 - / 0 1 2
Time

FIG. 9. Pulse compression with linear frequency sweep.

FIG. 8. Compression of a phase self-modulated pulse in the
nonlinear regime.

nonlinear. Figure 7 illustrates the pulse envelope along
the path in a linear regime (R =0); the values of z are
indicated in the figure in fractions of the dispersion
length, S = 0.1, and ^0 =exp(-T2/2). Figure 8 corresponds
to the nonlinear regime (.ft = 14.3). Aside from disper-
sion compression, the pulse is additionally compressed
in the fiber due to self-action. Analogous profiles,
obtained with linear frequency sweeping ^(r,0)
= #0exp[-n-V(2S)] (S = 0.1, R=0) are presented in Fig. 9.
It is evident that here compression is more effective
since the tails of the wave packet are pulled in toward
the center more strongly.

The possiblities of optical fibers, from the point of
view of the action on the shape of envelopes, are not
limited to compression. The initial pulses can be sym-
metrized (see Fig. 6), a noisy envelope can be smoothed,
and a sequence of two or more pulses following one
another at short intervals can be obtained.

6. CONCLUSIONS

In conclusion, we shall list the possible lines along
which the problems indicated above can be developed as
well as the urgent problems. From an analysis of the
published literature, it follows that experiments with
optical solitons are important not only for confirming
theoretical results of the nonlinear theory of waves,
but they also open up new perspectives in problems of
controlling the envelope and the spectrum of picosecond
pulses. In this connection, the application of the
methods of optimal control theory to such problems,
developed for light beams in spatial problems,45'46 is
of interest. One interesting problem is the detailed
examination of the nonlinear regime directly in the
region of zero (in second order) dispersion. From the
point of view of applications in fiber communications,
experimental investigation of the possibilities of non-
linear suppression of intermode dispersion would
appear to be useful. And, finally, all the directions
listed above require extension to the case of partially
coherent pulses.47

'B. B. Kadomtsev and V. I. Karpman, Usp. Fiz. Nauk 103, 193
(1971) [Sov. Phys. Usp. 14, 40 (1971)].
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