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Characteristic properties of electromagnetic radiation are investigated for radiating systems in which
variation of parameters is described by model smooth functions permitting derivation of exact solutions.
Picked as examples of radiating systems are a moving charge with continuously variable velocity (with respect
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for the electromagnetic field and spectral energy density of radiation in all problems under consideration. It is
shown that the common property of electromagnetic radiation in such systems is exponential decline of the
spectrum in the high frequency region.
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INTRODUCTION

We shall consider a system of charges and currents
which produce an electromagnetic field. The param-
eters of this system will be assumed invariant up to a
certain instant. Therefore, a field produced by such a
system will be fixed. We shall assume that at a certain
instant the system parameters become variable and the
variation of parameters occurs in a finite time interval
T. During this period the system parameters vary from
certain initial to final values and remain unchanged
thereafter.

The variation of parameters of a system is accompan-
ied by emission of electromagnetic waves. The emit-
ted wave spectrum is defined by the law of variation of
parameters and, consequently, each transition from an
initial to a final value of parameters corresponds to a
specific emission spectrum. However, despite overall
differences the emission spectra have certain proper-
ties in common. For example, emission spectra in the
low-frequency region are independent of the law of var-
iation of parameters and depend only on the initial and
final values of these parameters.1

The duration of transition time T does not appear in
the expression for the emitted fields and, therefore,
the low-frequency spectral region may be obtained under
the assumption that the parameters are altered instan-
taneously.

In this methodological note we wish to comment on
another common feature of the emission spectra, this
time in the high-frequency region. Specifically, if the
dependence of parameters on time is expressed by
smooth functions, the emission spectra in the high-
frequency region decrease exponentially. In this con-
text we understand smooth functions to be continuous
functions as are also all their derivatives.

Inasmuch as it is conceivable that all real changes can
be described by smooth functions, it may be assumed
that the emission spectra in real physical instances fall
off exponentially at high frequencies.

Below we shall present a number of examples which
illustrate the common property of radiation in the case
of smooth variation of parameters—an exponential drop
off in the high-frequency region.

1. CRITERION FOR "INSTANTANEOUS" AND
"CONTINUOUS" TRANSITIONS

Bolotovskii and coworkers have examined radiation of
electromagnetic waves in the case of an instantaneous
change of parameters of a radiating system.1 Radiation
produced as the result of instantaneous variation of the
system's dipole moment was considered as an example,
with both the magnitude and direction of the dipole mo-
ment vector experiencing a sudden discontinuous change.
Also considered was radiation occurring as the result
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of instantaneous variation of charged particle velocity.
It was assumed in all problems under consideration that
the behavior of a parameter causing radiation as the re-
sult of variation is as follows: The magnitude of the
parameter remains unchanged until a certain time, say
t = Q; at t = 0, a sudden change occurs in the parameter
and the resultant magnitude after a jump remains sub-
sequently unchanged. For example, at t<0 a dipole
moment p is assumed to be P = PI and, at t> 0, p=p2,
where PJ and p2 are time-independent vectors. In the
case that the particle velocity Vis assumed to be altered,
then at /<0, V=Vj; and at />0 , V=V2, whereVt and
V2 are two time-independent vectors.

The concept of an instantaneous change in the param-
eters of a physical system is an idealization. In real
terms, any transition between two states in which the
system parameters have steady-state values occurs dur-
ing a certain finite time interval T. Nevertheless, in
many cases of practical interest the transition time T
may be considered negligibly short and, therefore, the
transition itself instantaneous. Let, for example, a
radiating system be traveling as a whole with a velocity
V and the time of variation of a parameter, responsible
for radiation, be T. Let a plane wave with a frequency
a) be emitted at an angle 6 with respect to the direction
of the velocity. Then, if the following inequality

is satisfied, the transition may be taken to be instan-
taneous. Calculations show that in the case of Eq. (1.1)
the transition time T does not appear in the formulas
which define the radiative field and its spectrum and in-
tensity.

Bolotovskii and coworkers have examined several
practical cases in which Eq. (1.1) may be assumed as
being satisfied.1 Equation (1.1) has a simple physical
meaning. If a radiating system is at rest (such as is the
case, for example, for a dipole whose moment is vary-
ing with time), Eq. (1.1) yields the following simple
condition

o > r < i , (1.2)
which, when satisfied, enables the transition to be re-
garded as instantaneous. In the physical sense this
means that if the period of a radiated wave 2ir/c«j is
much greater than the time T, in the course of which
the dipole moment undergoes change, details of the
transition are unimportant and the transition may be
considered instantaneous. The only important quan-
tities are initial and final values of the dipole moment.

If a source is moving, the condition for an instantan-
eous transition also includes, as can be seen from Eq. .
(1.1), source velocity and direction of emission. Let a
point source traveling with a velocity V generate a plane
wave with frequency us. Let the wave and source prop-
agate in the same direction (6 = 0). During the transi-
tion time T the source travels a distance VT and the
emitted wave, cT. Thus, during the transition time T
the phase of the wave at the point where the source is
situated changes by an amount

where we have taken into account the relationship k
= co/c between the wave factor k and frequency of the
electromagnetic wave w.

If the emitted wave propagates at an angle S with the
source velocity, the wave phase change &<p during the
transition time T is

(1.4)

The condition under which the transition may be con-
sidered instantaneous is expressed now as a simple in-
equality

(1.5)

The above expression agrees with Eq. (1.1).

Thus far we were considering conditions under which
the transition in a radiating system may be taken to be
instantaneous. These conditions are satisfied if either
Eq. (1.1) or an equivalent Eq. (1.5) holds. It may be
concluded from the very form of these inequalities that
they cannot be satisfied for sufficiently high frequencies
or in a certain range of variations in 8. For example,
if radiation in the forward direction (6=0) is under con-
sideration, the condition cannot be satisfied for the fol-
lowing frequencies

"^ TH-IVMl ' (1.6)

and, therefore, the emitted wave amplitude at these
frequencies is a function of the system's behavior dur-
ing the transition period T. In this case the transition
clearly can no longer be considered instantaneous. If
the radiating system is traveling with a speed close to
the speed of light, Eq. (1.6) defines very high frequen-
cies. The radiative field for all the lower frequencies
may be determined proceeding from the concept of in-
stantaneous transition.

We shall now consider radiation in the backward di-
rection (6= n). In this case, the factor 1 - (V/c)cos6
is of the order of 1 at all velocities of the radiating
system. The condition under which the transition time
T must be taken into consideration is

(1.7)

for all velocities of motion.

The inequalities (1.6) and (1.7) define conditions for
which the transition time T must be taken into consid-
eration. Moreover, Eq. (1.6) and Eq. (1.7) refer to
forward and backward radiation respectively. It should
be noted that both these inequalities may be expressed
as follows

A < p > l , (1.8)

where A<p is the phase change of the wave emitted during
the transition time T at the point where the source is
situated.

Evidently, in the case of a relativistic system (V=c)
Eqs. (1.6) and (1.7) differ considerably. There exists
a broad frequency range in which the forward radiation
may be calculated proceeding from the concept of in-
stantaneous transition, and the backward radiation near-
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ly always depends on the details of transition.
range is defined as follows

This

(1.9)

In the ultrarelativistic case Eq. (1.6) holds for radia-
tion emitted in the range of angles

(1.10)

close to the direction of motion of the radiating system.

When Eqs. (1.6)-(1.8) are satisfied radiation is de-
termined by the behavior of the radiating system during
transition. Therefore, to determine the radiative field
the nature of the transition must be specified. Below
we shall examine several examples selected using the
following criteria:

(1) Variation with time of a parameter determining
the radiation occurs from an initial steady-state value
to a final steady-state value.

(2) The transition occurs during an interval of time
which is of the order of T.

(3) The dependence of the parameter on time is ex-
pressed by means of a smooth function having contin-
uous derivatives of all orders.

(4) The transition law is selected such that the fields
in the case under consideration could be determined
exactly.

Requirement (3) is natural if one agrees with the fact
that the parameters, themselves, their rates of change,
variation in the rate of 'acceleration', etc., are all
quantities which should not undergo discontinuous changes.

Requirement (4) is convenient considering the fact that
an exact solution written in an analytical form permits
by means of asymptotic expansions the evaluation of
likely regions in which various approximations ("instan-
taneous" or "smooth" transition) are valid.

2. RADIATION OF A POINT CHARGED PARTICLE
IN THE CASE OF CONTINUOUS VARIATION OF
VELOCITY FROM INITIAL tf, TO TERMINAL \?2

VALUES

Let a point charged particle be moving according to
the following law. At first (at t--°°), its velocity is
Y!. Subsequently, the particle velocity changes smooth-
ly from Vj to V2, in such manner that the transition be-
tween the two values occurs during a certain finite time
which is of the order of T.

Proceeding from the considerations made above, we
shall specify the law of variation as follows

(2.1)

The law of motion [Eq. (2.1)] is characterized by the
property that the particle velocity changes from Vl to
V2 during a time interval of the order of T with the
change in velocity being described by a smooth function.
These two facts, regardless of the very special form of
Eq. (2.1), can be used to make certain general conclu-

sions concerning the emission spectrum of a charged
particles subject to the chosen law of motion.

If the velocity is given by Eq. (2.1), dependence of the
charge coordinate on time is

(2.2)

Equation (2 .2) was obtained by integrating Eq. (2.1)
with respect to time, the integration constant being such
that at t = Q the moving charge is at the coordinate ori-
gin. Moreover, it can be seen from Eq. (2.1) that the
charge velocity is equal to the arithmetic mean of the
initial V, and terminal V2 velocities.

We shall calculate radiation resulting from the motion
of a charged particle according to Eqs. (2.1) and (2.2).
This can be done using the known expression for the ra-
diation field of a charged particle at large distances
from the region where the radiation is generated (this
region lies near the coordinate origin since the par-
ticle is accelerated near the coordinate origin).

We shall consider a field with a frequency u>. Then
the vector potential of this field at sufficiently large
distances from the region, where the emission occurs,
has the form of a spherical wave:

A0(r) =-f"^-l; (2"3)

where Ajr) is the Fourier component of the vector po-
tential A(r,t') which corresponds to frequency o>.

A(a(r) = -±- \ A(r,t)eiMdt. (2.4)
— 30

The above expression may be inverted as follows

A(r, l)= \ Aa(r) <;-"•" dco. (2 .5)

In Eq. (2.3) q is the charge of a moving particle, c is
the speed of light and k = w/c. The quantity I is the vec-
tor amplitude of the spherical wave of the radiative
field. The vector I is determined by the law of motion
of the charged particle. If this law follows the relation
r =r(t) and the ensuing relation V=V(f) , the amplitude
of the spherical wave I is expressed as follows:

1= \\(t)e^'-k'(t"dt-, (2.6)
~oo

where k is a vector with the amplitude us/c and direc-
tion from the coordinate origin to the observation point.
The direction of the vector k represents the direction
of radiation.

We shall evaluate Eq. (2. 6) for I in the case where the
law of motion is expressed by Eqs. (2.1) and (2.2). To
accomplish this, we shall substitute in Eq. (2.6) the
corresponding expressions for V(t) and r ( t ) , and carry
out integration with respect to t. Thus, we obtain

_0i[HV.-v.)/2|r-l I A—B V. — V,
~~ ~

l_0i[
1 ^

_v y^+VjX F(/ ,
2 h 2 I T77

T(IA)T(IB)

where A and B are expressed as follows

(o 7)
* * '

(2.8)

and F is Euler's gamma function.
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The quantities A and B, which determine the ampli-
tude of the resultant spherical wave, have a simple phy-
sical meaning. Let a point charged particle be moving
with velocity V in the field of a plane electromagnetic
wave e'(kr - tat). We shall examine how the wave phase
changes at the point where the particle is situated at a
given time. If the particle trajectory is described by
the equation r=Vt, r in the index of the exponential
function, which defines the wave phase, must be re-
placed by Vt. We then find that the wave phase at the
point containing the moving particle increases linearly
with time and at a time t it equals (kV- u)t. Thus, A
and B given by Eq. (2.8) provide the phase advance
during the time interval T; moreover, A represents a
phase advance (with an accuracy to within the sign and
multiplier i) for a particle moving with velocity V1; and
B a phase advance (with the same provisos with respect
to multiplier i) for a particle moving with velocity V2.

The meaning of A and B is the same as that of A<p, a
quantity given in Eq. (1.4). Thus, A and £ given in Eq.
(2.8) are values of phase advance A<p for the velocities
Y! and V2.

The quantity I [Eq. (2.7)] defines the vector amplitude
of spherical radiation wave [Eq. (2.3)] for the case
where the velocity of a charged particle changes smooth-
ly from Y! to V2 according to the laws in Eq. (2.1) and
(2.2). It can be seen from Eq. (2.7) that the amplitude
I depends on the initial and terminal velocities V\ and
V2; moreover, the latter are a part of the A and B com-
binations in Eqs. (2.7) and (2.8).

We shall introduce two quantities having the dimen-
sion of time

'• = Tnv7- <*=^kvr- (2-9)

The t is in order of magnitude the time during which
the wave exp[i(kr - (at)] gets ahead in phase with respect
to the charged particle moving with the velocity V1(

provided the phase advance is of the order of unity. In
other words, fx is the period of time during which the
particle moves in phase with the wave. If the particle
velocity is V2, in-phase motion of the particle and wave
occurs during the time t2. Ter-Mikaelyan calls tj, and tz

"effective times."3 We shall call the same quantities
"forming times," bearing in mind the fact that during
time, say, ft a particle moves in phase with the wave,
and the period during which the particle and wave exert
effect on each other f1>2 has the same sign and, after
this period, the particle-wave coherence is distributed
(more precisely, the field of the particle moving at a
constant velocity Vx 2 and the radiative field cease to
interfere with each other).

Using the notation in Eq. (2.9) let us rewrite A and £
as follows:

(2.10)

where T is time of transition from velocity Vt to V2,
is the forming time for the initial state, and t2, the
forming time for the final state.

Since A and B determine the amplitude (2. 7) of the

emitted wave it can be seen that the emission depends
on the values of the ratios of the time of transition to the
initial and final forming times.

The angular and spectral distribution of radiation is
expressed in terms of I as follows:

iii?0> = -^L | |k, I] | 2dQ = Wu(9, cp)dQ, (2.11)

where d& is the element of solid angle and 9 and <p are,
respectively, the polar and azimuthal angles of a spher-
ical coordinate system which determine the direction
of the vector k.

Substitution of Eq. (2.7) into Eq. (2.11) permits us to
determine Wj,9,(p) explicitly. In this note, for the
sake of simplicity, we shall consider the case VJfVa.
Then the expression for Wu(6,<p) is simplified and has
the following form:4

TI/ /m_ g'orsin'e
" "V Site" cos 8 [1— (VVc)cosB][l — (Jy<0 cos 6]

(V, - y,) sh ([(V, - Vi)/2cl near cos 0)
A sh ((Jio7Y2) [1 -(V,/c) cos 6]) sh ((nur/2) [1 -(V,/c) cos 8)}'

(2.12)
where 9 is the angle between the wave vector k of emit-
ted wave and the 2-axis of a spherical coordinate sys-
tem which is directed along the charge trajectory. In
this case, dependence of Wu on the azimuthal angle <p
vanishes by virtue of the axial symmetry of the prob-
lem.

The derivation of Eq. (2.12) involved the use of the
following relation:5

(2.13)

We shall now review the asymptotic behavior of the
resultant spectrum for the case of large and small val-
ues of A and B determined by Eq. (2.8). Let at first
\A I « 1 and IB I« 1. This situation occurs if the tran-
sition time T is considerably smaller than the forming
times ti and t2. Moreover, we obtain

u (9) ,_«L JL, \
12 i,f, T • • • ) •

(2.14)
The quantity in front of the large parentheses in Eq.
(2.14) is the radiation intensity in the case of instantan-
eous variation of the particle velocity from Vt to V2.

In the case where the transition time T is much great-
er than the forming times tt and t2 (IA\»1, IB I » 1),
we obtain

W"»
_ 8'<°r|V.-V. ls in '6 _ e-Br/n,«(t,.i,>. (o 15)
4!tc! cos 8 [1 — (F,/c)cos8][l — (V2/c) cos 8] ' \^--lJ '

where max(f1,f2) designates the greater of the
two values of ti and tz. The spectrum [Eq. (2. 15)] falls
off exponentially in the high-frequency region; more-
over, the exponential index contains a relation between
the transition time and the greater of the two forming
times. This is characteristic for relatively smooth par-
ticle trajectories (for example, synchrotron radiation
spectrum,2 emission spectrum of a harmonic oscillator
with a finite amplitude,6 etc. ). The reason for the ex-
ponential decay of the spectrum in the high frequency re-
gion is the result of the law of motion in all these cases
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r=r(<) being a smooth function with continuous deriva-
tives of all orders.

The quantity I [Eq. (2.6)], which defines the radiative
field amplitude, is proportional to the Fourier compon-
ent of current density associated with a moving charge.
Moreover, as is known from properties of the Fourier
transform, if r(t) is a function that is continuous, as
are all of its derivatives, I falls off at large values of
to faster than any finite power of to. Thus, the rapid
spectral decay with increasing frequency is a common
property of radiation for the case of sufficiently smooth
trajectories.

In the case where the charge velocity varies not only
with respect to magnitude but also direction, the angular
and spectral distributions of radiation are also functions
of the azimuthal angle <f>, since in this case the vectors
Vj and V2 define a particular plane in space.

An expression for Wu(8, ip) may be obtained from the
general Eq. (2.11). The corresponding formula tends
to be relatively cumbersome and we do not reproduce
it here. We shall simply note that the basic character-
istics of the emission spectrum are the same as those
for the aforementioned case where the charge velocity
was preserved with respect to direction and varied only
in magnitude. Namely, the first correction to the spec-
tral and angular energy distributions of radiation in the
case of instantaneous change in the charge velocity is
proportional to T2, and the spectrum falls off exponen-
tially at high frequencies as was the situation in the
special case considered above.

3. RADIATION IN THE CASE OF CONTINUOUS
VARIATION OF THE DIPOLE MOMENT

The variation of the dipole moment of a physical sys-
tem results in the emission of electromagnetic waves
whose characteristics depend on the law which defines
the process of variation of the dipole moment in time.

We shall consider a point dipole with the moment

p (r, 0 = p ( ( ) 6 (r). (3. 1)

For the model function p(t) we shall assume

p(0 = - (3.2)

(the coordinate origin is coincident with the point in
space containing the dipole). According to Eq. (3.2)
the dipole moment of a system changes continuously
from PJ (at t — -°°) to p2 (at t — +<*>). The characteristic
time of a substantial variation in the dipole moment is of
the order of T. It can be readily seen that as T~ 0,
p(i) changes to

I P2, 00.

The latter case was considered earlier1 and may be used
for a comparison with the results of this work.

The rearrangement of the dipole moment according to
Eq. (3.2) is associated with the current density j ( r ,^) :

(3.3)

The Fourier component of ju(r) is determined from the
following formula

(3.4)4sh(nmr/2)

[at T-O.^d^-CAp/^nWr) which corresponds to Eq.
(2.7) in Ref. l] , where Ap = p2 -pt is the total variation
of the dipole moment.

As is known, the Fourier component AMof the vector
potential A is related to the Fourier component of the
current density as follows:

A . = J . ( r ' ) " ' < " . T - T ' » d , ' . (3.5)

If Jw from Eq. (3.4) is substituted into Eq. (3.5), we
find

. _ Apipr exp (ikr)
™ ~ 4cr sh (jlcor/2) '

(3.6)

If we apply the inverse Fourier transform to Eq. (3.6)
we shall obtain an expression for the vector potential:

(3.7)

It can be seen from Eq. (3.7) that the field A is basic-
ally concentrated in a layer \r — ct\ <cT which is ZcT
thick. When T — 0, the layer's thickness tends to zero
and the layer degenerates into a sphere with radius r
= ct.

In order to study the behavior of the function in Eq.
(3.7) at T — 0, we shall consider the course of the func-
tion fT(x) = |T ch2 (x/T) as T-0.

Evidently, fT(t)~Q when x/T-±<*> (at T-0, this re-
quires that x*Q), while

SO +00

"27 ) ch2 (ilT) = T th T = i'
— oc —OO

is independent of T.

Thus, it may be assumed that the sequence fr(x) has
the generalized function 6(x) for its limit. In this case,
for a field A(r,f) we get

Ao p / r \ /o Q \A(r, <) = -i-6l t — — J, (^•o)

which coincides with the expression (2.10) in Ref. 1
which was calculated for the case of instantaneous
change of the dipole moment.

The scalar potential <p of the field under consideration
is defined by the charge density

p = -div p (r, 0 (3 .9)

in accordance with the wave equation for <p which is ob-
tained in the Lorentz gauge (divA = — (1/c) dcp/dt) and has
the form

(3.10)

(3.11)

The solution of Eq. (3.10) is
_ f ( p [> - ( | r - r - |/c)l, V ' ) 6 ( r ) '

J I r — r' |

For pU) from Eq. (3.2) we obtain
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(3.12) was obtained in Ref. 1 for the spectral density:

It follows from Eq. (3. 12) that in the limit when T -0

(3.13)
where sgnx = # / l# l .

Equation (3. 13) coincides with Eq. (2. 13) in Ref . 1.

Expressions for the electric E and magnetic H fields
may be obtained from expressions for the potentials
A and <p by means of known relations

D , 1 <?AE=-gradcp—-— H ^ r o t A . (3.14)

Substitution of Eqs. (3. 7) and (3.12) into Eq. (3.14)
yields the following

+3{p|t -(r/c)], r}r-pli-(r/e)lr '

sh([I-(r/c)],T)

(3.15)

(3.16)* cr* L2r7'ch«{|t —(r/c)) /r j cr*ch»{[! —.(r /cj l / r j j '

As can be seen from Eqs. (3.15) and (3.16) the energy
flow through a sphere with a sufficiently large radius
which surrounds a dipole is associated with the spon-
taneous emission field whose electrical component is
represented by the first term in Eq. (3.15) (the second
term decreases with increasing value of r as r~3 and,
therefore, its integral over the spherical surface of a
sufficiently large radius tends to zero as r"1).

The spectral density of radiation in the frequency
range (w,o> +du>) in the direction of unit vector n is

(3.17)

where 6 is the angle between the vectors £p and n, <p is
the azimuthal angle in the spherical coordinate system
with the origin at the point where the dipole is situated
and with the 2-axis directed along Ap; dfl = sm9d6d<p is
the solid angle in the direction of n.

It can be seen from Eq. (3.17) that the spectral den-
sity of radiation is concentrated primarily in the fre-
quency region w *il/T and it decreases exponentially
beyond the range limits.

In order to determine the total energy emitted in the
direction n, we shall integrate Eq. (3.17) over the en-
tire frequency range. As a result of this we obtain

-J(4)sin36ded<p. (3.18)1

When T-O.dH^ diverges as T"3. This is natural since
in considering the instantaneous jump in p Eq. (2.21)

''Using the formula

2P->

where £(x) Is the Riemann zeta function.
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The integral of the above expression diverges as w3,
where o>0 is the frequency characterizing the upper
boundary of the radiation spectrum which in the case of
a smooth modification of p(£) is of order ~1/T.

4. TRANSITION RADIATION OF A UNIFORMLY
MOVING CHARGE AT A DIFFUSE BOUNDARY
BETWEEN TWO MEDIA OR IN A CONTINUOUSLY
VARIABLE MEDIUM

We shall now consider the radiation which occurs when
a moving charge crosses the spatially or temporally
diffuse boundary between two media. The properties
of radiation of a uniformly moving charge in an inhomo-
geneous or a variable medium are in many respect sim-
ilar to the radiation properties of a charge moving ir-
regularly in a homogeneous medium. Actually, when
a charge is moving in a medium with the dielectric per-
mittivity E, radiation results if the parameter 7j = (V/
c)St varies along the charge trajectory. Thus, an iden-
tical change in the parameter T) may be obtained both in
a homogeneous steady-state medium (e = const) by
changing the velocity V and in the case of uniform mo-
tion of the charge by varying the dielectric permittivity
e. We shall first obtain equations which determine the
radiation in the case of a spatial boundary between two
media. In this case we shall follow earlier work in
which emission at the diffuse boundary was investigated.7

Let the permittivity of a medium E vary in the direc-
tion of the z axis. We shall assume that the medium is
nonmagnetic (M = 1). We shall consider a charge q
moving at a constant velocity V along the z axis. In this
case the Maxwell equations are as follows:

-Vt), d i v H ^ n , (4.1)

rotE= — 7-fr1 d > v D = 4n?6(x)6( i / )8(z — Vt).

We expand the electric field intensity E into the Fourier
integral of the following form:

E (r, t) = JE (x, <o, z) e^o-"') dx dm, (4.2)

where p is a vector perpendicular to the z axis with
components x and y. We also carry out a transforma-
tion similar to Eq. (4.2) with respect to other field vec-
tors (D,H), as well as charge and current densities.
As a result of this, we shall obtain from Eq. (4.1) an
equation for the Fourier component of the magnetic
field H:

(4.3)

where n=V/c.

If a new function M(X, to, z) is introduced to replace H
defined as

H = [n, x] yTu

we obtain the following equation for w

Bolotovskii etal.
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(4-5)

Let the permittivity vary according to the law of the
Epstein transition layer

e(oi, z) = l+ " i ' , a>0. (4.6)

When z — +», E = EO = 1 + ot; when z — -°°, c = 1. Thus,
Eq. (4. 6) describes a diffuse boundary between vacuum
and a medium with dielectric permittivity e0; more-
over, the characteristic width of the diffusion zone is
of the order of I/a. To simplify Eq. (4. 5) we shall as-
sume that the particle is moving at a relativistic veloc-
ity. In this radiation is concentrated in a narrow cone
around the direction of motion (come aperture angle is
9~mc2/E, where E is the particle energy); moreover,
primarily frequencies greater than optical are generat-
ed. We may therefore assume that

where 0),,= ^4irNe2/m is the plasma frequency.

When the conditions in Eq. (4. 7) are satisfied we can
neglect the term •»£ (l/VfT)11 in Eq. (4.5) and, also, set
V'E in the right-hand side of the same equation equal to
unity. Finally, Eq. (4. 5) becomes in the approxima-
tion under consideration

u'^-l^l E _ x z j u^-^e^'iv, (4.8)

where E is defined by Eq. (4.6).

We now introduce a new variable x = —e'°'z and a new
function u = -x"iv(x). Thus, Eq. (4.8), without the right-
hand side for the function w is as follows:

x (1 — x) w" + |2v +1 — (2v + 1) x] w' — (v2 — ^

iK, iX,v = -^' ^=^r>
/~T,

A j = ;

(4.9)

We now proceed to derive the equation which defines
radiation of a charge in a continuously-variable med-
ium.8 We write down the equation for the electric in-
duction D:

A D - - = 4 * g r . d p + - - 2 L . (4.10)

(D'k
r)" + i (() o)2 D't

r = Be-'<«>

where

fv-^p.).

(4.13)

Let the permittivity c(t) vary according to the law
governing Epstein's variable layer:

(4.14)

The permittivity of a medium described by Eq. (4.14)
varies smoothly from a value EI as t — -» to E2

 as t
— (-«> ; the parameter T characterizes the time during
which the permittivity varies from EJ to £2. We note
that the transformation of a plane electromagnetic wave
by the Epstein variable layer was considered by Stolyarov.9

If we introduce the variable 4 = —e*/T and make the
replacement Dt

k'=(-|)Kf(^), we obtain for f(|) from Eq.
(4.13),

(4.15)

(I - 1) |f" -j- [_v + (« + p + 1) \] !' + apf
= TB (_!)-[«*v>T+a+i]

where a = zs^si , 6 = zs^, a=a + b, P = a — b, y
and s = (a0T.

Thus, both the transition radiation at the diffuse boun-
dary and the radiation in a continuously-variable med-
ium are described by the hypergeometric Eqs. (4.9)
and (4. 15). The methods for solving these are generally
similar. Therefore, we shall consider in detail the sol-
ution of one of these, Eq. (4.15), noting, as we proceed,
differences in the solution of Eq. (4.9). Two linearly
independent solutions of Eq. (4. 15) without the right-
hand side, regular in the neighborhood of the singular
point £ = 0 (note that as £ — 0 ,£ — -°°) are described by
the following expression:10

/, = F (a, p, 7, I),
/,= l1- '̂ (a -v + 1, p -•

(4.16)
1, 2 -7 , 1),

where F(a,0,y, |) is the hypergeometric function of the
argument £. It is now convenient to return to Eq.
(4.13), since the Wronskian of this equation is a con-
stant quantity that is independent of the time t. Actually,
the Wronskian of a linear differential equation is10

We expand D in a Fourier series

D (r, t) - f Dk (I) e*' dk.

W = const •<?"•«>',

(4. 11)

Then, if we apply to the charge and current densities a
transformation which is similar to Eq. (4. 11), we ob-
tain from Eq. (4. 10) the following equation for Dk

Di + e (t)

where co0 =

(4 .12)

, e W = ieWJ .

Since all radiation in a variable medium is deter-
mined by the transverse component of the displacement

Dtr = p k (kDk)
k k £.2 *

we shall solve the equation for Dk only. It is as follows:

(4.17)

where a^t) is the coefficient of the first derivative in
the equation. Inasmuch as a^O in Eq. (4.13), it fol-
lows from Eq. (4. 17) that its Wronskian is constant.
Equation (4. 16) yields that Eq. (4. 13) without the right-
hand side has the following two solutions which are lin-
early independent:

di^e^'V^t F(a, P, 7, -e'/r), (4.18)

d2=e-i">YT,t p (o_v + i) p-v-t-l, 2-7, — JIT).

Since -F(o,(3,y,0) = 1, the solutions rfj and d2 in the limit
t~ -oo represent two plane waves propagating toward
each other.

Similarly, two linearly independent solutions of Eq.
(4. 8) without the right-hand side in the limit z — — °°
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represent two plane waves propagating toward each
other parallel and antiparallel to the z axis.

We shall solve the inhomogeneous Eq. (4. 13) [and
Eq. (4. 18)] by the method of variation of parameters.
This requires calculating the Wronskian of the equation

W=dtdi-d1d-t. (4.19)

Since, as was shown above, the Wronskian Wl is a con-
stant quantity, in order to calculate it one can utilize
the asymptotic behavior of solutions of Eq. (4. 18) when
t -- «(lim,..Jr(a,/3,y,-e«/r) = l). In this case

(4.20)

We shall now write a general solution of Eq. (4. 13):
D'k

r = —

(4.21)
The integration in Eq. (4.21) is possible if Barnes* in-
tegral representations for the hyper geometric func-
tion are used

2nir(a)r<p)
f r(»+i)r(p+.)r(-.), ...
J ;!•(?+•) *• z> as'(4

-ioo V*. 22)

where the integration path is distorted (if necessary) to
place the poles of the functions T(a + s), T(/3 + s) and
T(-s) to the right of the integration path. In Eq. (4. 22),
r(#) is Euler's gamma function. Since /< 0, in order
that Jordan's lemma may be used the integration contour
must be closed by a circle with an infinitely large ra-
dius to the right of the imaginary s axis. Substituting
Eq. (4.22) under the integral signs in Eq. (4.21) we
shall first carry out elementary integration with respect
to t and, subsequently, with respect to s, obtaining

- - - - - (4. 23)

where the first term containing the factor e-<k>v>t is the
field of a moving charge which is unrelated to radiation

M = Tr (i-2a) r (ir (kv+<a. y -a. VT,» r ( -I VTt))
,

M ro rr (i+2a) r (ir (kv+<j>0 VT)) r (tr (kv-a, V"^» r (IT (m. VT-kv))
2F (a) r (f)) r (1 + 2a + ikVf — i<D0 Vl^ J1)

The constants Cx and C2 in Eq. (4. 23) can be found from
the condition of absence of radiation when t — -°°; we
have

C, = — (4.25)

Above, the first difference appears between the solu-
tions of Eq. (4.8) for a diffuse boundary and Eq. (4.13).
Specifically, the condition for determining the arbitrary
constants in the general solution of Eq. (4.8) is the ab-
sence of waves propagating in the direction of the z axis
when 2 — -w, and opposite to the direction of the z axis
when z — +».

We shall now consider the region t > 0. This region
corresponds to the neighborhood of the singular point
£ =« in Eq. (4.15). In the region t > 0 the regular lin-
early independent solutions of Eq. (4.15) without the
right-hand side are the following functions:

6,=e-to.VT, tp(a, -P, 1 + 26, -e-'/rj.
(4.26)

The two sets of solutions, dt and d2 and fij and 62) are
connected by linear relations, since Eq. (4.13), being
of the second order, cannot have more than two linearly
independent solutions. These relations are as follows:10

where
r(l+2a)r(2i.) r(l+2a)r(-2t)

* ' "~ r r ! « - »
— 26)l — 2n)r(2!>)

(4.27)

(4.28)

We shall now write the solution of Eq. (4. 15) for t > 0:

(4.29)
where the Wronskian W2 = 6j62' - 526j' is found in the same
way as W^ above by calculating its asymptotic behavior
as f — +». We obtain

. (4.30)

In Eq. (4.29) Aj and A2 are constants, however no long-
er arbitrary, but related to the constants Ct and C2

[see Eq. (4.25)] by definite linear relations. Specifical-
ly, from Eq. (4.27), it follows that

Having performed the integrations in Eq. (4.29) in the
same way as above, we shall calculate the radiative
field D"d as < — «, i.e. , approaching the time when the
charge will have passed "through" the Epstein layer.
Using Eqs. (4.28)-(4. 31) we obtain

+ a. (k) e+i (4.32)

where
a+(k) =

Br,r (-26) r (-tr (kv+(o0 VTj) r (a (m,, V"^-kv» r (IT (kv-anVT,))
r < p ) r (-«) r(i-i(kv) r-ie!'2o>0r) '

(4.33)

Similar expressions are obtained for radiation at the
diffuse boundary:

where «! is the amplitude of the radiation field "for-
ward" as 2 — +•», M2 is the amplitude of the radiation
field "backward" as z--«>,b = iq/2it*c, W is the Wron-
skian of Eq. (4.8), and <r=i<a/aV,

A(tr „ v)r^ r(i + 2v)r(o-|1)r(t l+o)r(-a+v) (4 35)v ^ ' r (v-n)r ( ( i+v)r ( i+v+ 0 )

We shall now calculate the intensity of the radiation
emitted at a frequency w=fec/^P into an element of a
solid angle dfl=2irsin6dB, where cos6 = (k • V)*Fby a
charge moving in a continuously variable medium. To ob-
tain the correct expression for the radiation intensity
it must be taken into account, as was done in Ref. 11,
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that in the direction k (at angle 9 with the z axis) there
propagates not only a wave with amplitude a+(k), but
also one with amplitude a.(-k). Using Eq. (4.33) and
the known properties of the gamma functions

I r (i!,)!*=- sb ny ' (4.36)

we obtain
.,, ;p—

e-™
2 — e,) cos2 6sin' 6

1 — (l-2'c2) e, cos2 6]

sh (n(tt|, _

sh(2itu0r V 7,) sh(jr?-(o)0|/ e~+kV)) sh (.if (e),,]/ T^-kV)) sh (rtr (G>0l
/~eT-kV))

(4.37)
A similar expression, which we shall not derive because
of its cumbersomeness is obtained for the radiation in-
tensity at a diffuse boundary.7

We shall now consider some specific cases of Eq.
(4. 37). Let the time T of permittivity variation be suf-
ficiently small, so that the arguments of all hyperbolic
sines in Eq. (4. 37) are much less than unity. We shall
find under these conditions the first two terms of ex-
pansion of radiation intensity. The calculations yield

, (4. 38)\\ _ 4 W2 ( 1 _Z
I o \ C

.. cos 6

where is the intensity of radiation in the case of an
instantaneous change in the permittivity of the medium:

As can be seen from Eq. (4.38), the radiation intensity
is expanded in terms of the small parameter which cor-
responds to the ratio of times required respectively for
permittivity variation and radiation formation in a med-
ium with permittivity e2. The following is the expres-
sion for transition radiation forward at a diffuse bound-
ary in the case that the width of the diffuse region is
small za = l/a:

We „= W g a T l — 4--?S-( ' V 1 — e 0 s i n 2 ( ) ) f ' 1—— l/Zcos8) ].
' L o V V C / \ C / J

(4.40)
where WgtU, is transition radiation intensity at a sharp
boundary between vacuum and a medium.12 Upon satis-
fying the conditions Eq. (4. 7) 1 - (V/cWl -E0sin2e
a 1 - (V/c) cose, such that the fundamental correction of
radiation intensity at the sharp boundary is proportional
to the ratio of z2

0 to the product of lengths of radiation
formation in vacuum and in a medium with permittivity
e0. We shall now examine high frequency radiation. In
this case, the radiation intensities of a charge at a dif-
fuse boundary and in a variable Epstein layer are ex-
ponentially small; moreover, the exponential index in
the case of a diffuse boundary is

2nz0ti) - cos e l 1 V en cos (4.41)

i.e., it is proportional to the ratio of the characteristic
width of the diffuse zone z0 to the greater of the forming
lengths (in vacuum or a medium with permittivity e0).
In the case of radiation in the variable layer, the index
is

(4.42)

Thus, the exponential index [Eq. (4.42)] is proportional
to the ratio of the characteristic time of variation of
permittivity to the greater of the radiation forming times
in media with EJ and e2.

Equations (4. 38) and (4. 40) can be used to formulate
validity criteria for the approximation of a sharp bound-
ary or a sudden jump. The approximation of a sudden
jump in permittivity is admissible for emitted waves
whose forming times in a medium with e2 are much
greater than the characteristic time of variation of per-
mittivity from E! to £2. The approximation of a sharp
boundary is admissible for emitted waves whose form-
ing lengths in vacuum and in a medium with EO are much
greater than the characteristic width of the diffuse zone
z0. Thus, in the case of a relativistic charged particle
the spectrum of high frequencies, emitted at small
angles for the calculation of which the boundary may be
considered sharp (or the change regarded as a sudden
jump), broadens substantially in the shortwave direc-
tion.
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