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The review is devoted to a discussion of the definition and properties of energy in Einstein's theory of
gravitation. Asymptotically flat space-time is defined in terms of admissible asymptotically Cartesian
coordinates and a corresponding group of coordinate transformations. A Lagrange function is introduced on
such a space-time, and a generalized Hamiltonian formulation of the theory of gravitation is constructed in
accordance with Dirac's method. The energy is defined as the generator of displacement with respect to the
asymptotic time. It is shown that the total energy of the gravitational field and the matter fields with normal
energy-momentum tensor is positive and vanishes only in the absence of matter fields and gravitational waves.
The proof follows Witten's proof but contains a number of corrections and improvements. Various standard
criticisms of the energy concept in general relativity are discussed and shown to be without substance.
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INTRODUCTION

The energy concept plays a central role in modern
theoretical physics. The law of conservation of energy
(and also momentum and angular momentum) is a con-
sequence of the homogeneity of time (respectively, the
homogeneity and isotropy of space). In this sense, the
energy concept is associated with the fundamental
structure of space-time. A characteristic property of
energy is its positivity, reflecting stability of a physical
system.

The traditional method for determining the energy
and momentum in relativistic field theory is based on
the introduction of the energy-momentum tensor. This
tensor is defined as the variation of the action with re-
spect to an external gravitational field. Such a method
is not valid in the case when the gravitational field it-
self is regarded as a dynamical variable, since the re-
sulting tensor vanishes identically by virtue of the equa-
tions of motion. As a result, the energy concept in the
theory of gravitation requires further discussion.

The problem of determining the fundamental integrals
of the motion—the energy, momentum, and angular mo-
mentum—arose immediately after the final formulation
of the theory of gravitation by Einstein and Hilbert at
the end of 1915, and it was essentially solved by Ein-
stein by 1918 (see Ref. 1). His proposal originally
evoked many questions and objections from his contem-
poraries, who included Lorentz, Levi-Civita, Schro-
dinger, and others. This discussion is well reflected in
Pauli's review article of Ref. 34. However, the situa-

tion was gradually clarified and a conception formulated
that has found its way into the textbooks and mono-
graphs (see, for example, Refs. 2-5); this can be for-
mulated as follows.

1. The energy (and also the other fundamental inte-
grals of the motion) of the gravitational field interacting
with a system of masses and matter fields can be in-
troduced if space-time is asymptotically flat, i.e., be-
comes identical with Minkowski space asymptotically at
spatial infinity.

2. The energy of the gravitational field is not local-
ized, i.e., a uniquely defined energy density does not
exist.

The asymptotic condition 1) replaces the homogeneity
of time in ordinary relativistic field theory. It makes it
possible to define a dynamic displacement in time as a
displacement with respect to an observer far from the
gravitating matter, and to associate energy with the
displacement. In contrast, in cosmological models
there is no natural time displacement and accordingly
no energy concept.

The nonlocalizability of the energy of the gravitational
field is due to a specific property of the relativity prin-
ciple in the theory of gravitation. It is not the metric
of space-time that is a physical quantity but the class
of equivalent metrics differing by an arbitrary coordin-
ate transformation consistent with the asymptotic con-
ditions. The value of the metric at a given point of
space-time does not have absolute significance, and the

130 Sov. Phys. Usp. 25(3), March 1982 0038-5670/82/030130-13S01.80 © 1982 American Institute of Physics 130



theory of gravitation itself is in this sense fundamental-
ly nonlocal.

These matters are discussed in detail and critically
in the quoted monographs.

The above two propositions must be augmented by a
third:

3. The total energy of the gravitational field and
gravitating matter is positive and vanishes only in the
absence of matter and gravitational waves, when the
metric becomes identical with the flat Minkowski me-
tric.

However, this result has not yet found its place in the
monographs. The proof is a difficult problem of mathe-
matical physics, and it has been solved only very re-
cently. A particularly elegant solution had just been
found by Witten,6 and it is given in the main text.

During the 60 years that Einstein's theory of gravita-
tion has existed, Einstein's solution to the energy prob-
lem has continued to be doubted. The criticism has
crystallized in a number of fixed ideas, which have ap-
peared periodically in the publications of various
authors. In a recent series of papers by Logunov et al.
(see Refs. 7 and 8), this criticism was the stimulus for
the construction of a new theory of gravitation. In the
main text, we mention some of the main arguments of
this criticism, and we show where they are defective.

In the present paper, we review the energy question
in Einstein's theory from the point of view of Hamil-
tonian dynamics. In such an approach, the energy plays
the part of a dynamical observable—it is the generator
of displacement in time. Together with the energy P0,
the momentum Pk, the angular momentum Mik, and the
Lorentz moments M0k form the 10 generators of the
Poincare" group, which act on the phase space of the
system consisting of the matter fields and the gravita-
tional field. From this point of view, the dynamical
group of the theory of gravitation in the case of asymp-
totically flat space-time does not differ from the dynam-
ical group of any other relativistic dynamical system.
Fock2 particularly insistently emphasized the distin-
guished role of the Poincare' group in the theory of
gravitation.

The history of our approach began with Dirac's stud-
ies9 in 1958-1959, in which he applied to the gravita-
tional field the general theory of dynamical systems de-
scribed by singular Lagrangians that he had created
earlier in Ref. 10. In the sixties, this approach was
adopted by many theoreticians, among whom we men-
tion the Arnowitt-Deser—Misner team,11 Schwinger,12

DeWitt,13 and Regge and Teitelboim.14 Although this
method is fundamental, it has not yet found its place in
the textbooks and is regarded by many as something
exotic rather than a basic method of exposition of grav-
itational theory. Its importance has been widely recog-
nized only in the field of the quantum theory of gravita-
tion (see, for example, the review of Ref. 15).

I hope that this review will serve to popularize the
Hamiltonian approach to the theory of gravitation. The

satisfactory solution to the energy problem by means
of this approach convincingly illustrates the-power of
the method and demonstrates once more that the theory
of gravitation itself is in need of neither revision nor
modification.

We give a brief summary of the review. In Sec. 1,
we give the fundamentals of the generalized Hamiltonian
dynamics of Dirac for systems defined by means of a
singular Lagrangian. In Sec. 2, we introduce the con-
cept of asymptotically flat space-time and discuss its
group of transformations. In Sec. 3, the generalized
Hamiltonian formulation will be given for the theory of
gravitation, and the generators of the Poincare' group,
with the energy among them, arise naturally. Finally,
in Sec. 4 we discuss briefly the history of the problem
of the positivity of the energy and give Witten's proof.
Some lengthy calculations are given in Appendices I and
II.

We use the usual relativistic notation: ^ = (0,i) is
a coordinate index, a= (0, a) a local Lorentz index, and
77"" is the metric tensor of Minkowski space with signa-
ture (-+ + + ).

1. GENERALIZED HAMILTONIAN FORMULATION

The concept of a generalized Hamiltonian formulation
of the dynamics of a mechanical system appeared in
Dirac's paper Ref. 10 and lectures Ref. 16 devoted to
singular Lagrangians. Dirac himself extended this
formulation to field theory and applied it to the theory
of gravitation in Refs. 9 and 17.

We clarify the idea first using the example of a me-
chanical system with a finite number of degrees of
freedom. Suppose the system is described by n pairs
of variablespt, q\ i = 1,... ,n, and by a further m
variables A.", a= 1,... ,m, the Lagrangian having the
form

) — ' i ( p , g) , (1.1)

where (pa) a= 1,... ,m, and h are certain functions of
p and q. We use the so-called "first-order formalism,"
in which the derivatives of the independent dynamical
variables appear linearly in the Lagrangian. The La-
grangian (1.1) is singular, since the equations of motion
do not contain the derivatives of the variables X".

It is natural to call />, and q' canonical variables, A°
Lagrangian multipliers, <pa constraints, and h the Ham-
iltonian. By \f,g\ we denote the ordinary Poisson
brackets:

/ ' f~ I 2-i \ dpf dqt aql dpi } ' (1.2)

The equations of motion that follow from the variation-
al principle are

We shall say that the Lagrangian (1.1) defines a gen-
eralized Hamiltonian formulation if the constraints and
the Hamiltonian satisfy the conditions
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{fa, <P6> = (1.4) » + P(T-*) )

where c*s and c* are arbitrary functions of p and q. The
condition (1.4) means that the Poisson brackets of the
constraints with one another and with the Hamiltonian
vanish on the constraint surface cf>a= 0. It guarantees
that this surface remains invariant during the motion
for any choice of the time dependence of the Lagrangian
multipliers *."(t). The condition m<n is necessary for
(1.4) to hold.

The generalized Hamiltonian formulation reduces to
the ordinary one if the constraint equations are solved
and the solution substituted in the Lagrangian (1.1). We
then obtain the new Lagrangian

J'^Sp*.?"1—ft*(p*, ?*), (1.5)
k

where k = 1 , . . . ,n - m and the Hamiltonian h* is equal
to h restricted to the constraint surface:

h* = (1-6)

Indeed, on the constraint surface, the Hamiltonian h
does not, by virtue of (1.4), depend on the m variables
canonically conjugate to the constraints <f>a; for <pa= 0,
the same variables disappear from the kinetic form
p f l 1 . In other words, constraints <pa satisfying the con-
ditions (1.4) decrease the number of variables in the
Lagrangian (1.1) by 3m and lead to an ordinary Hamil-
tonian system with n - m degrees of freedom. The func-
tion h*(p*,q*) plays the part of the Hamiltonian—the
energy—of this system.

In practice, it is difficult to solve a constraint equa-
tion, and one must learn to work with the generalized
Hamiltonian formulation. A certain experience has by
now been gained in this field. For example, in Ref. 18
the present author showed how a mechanical system de-
fined in terms of a generalized Hamiltonian formulation
can be quantized. For the energy problem discussed in
the present paper, it is important that the numerical
values of the physical Hamiltonian h*(p*,q*) are equal
to the values of the generalized Hamiltonian h(p,q) on
the constraint surface <pt= 0. Therefore, to discuss
general properties of the energy such as positivity, it
is sufficient to know h(p,q) and the constraints and not
necessarily to calculate h*(p*,q*).

The transition to field theory is made in the standard
manner. The spatial variables #* are the "numbers" or
"labels" of the degrees of freedom, and 24 is replaced
by ftPx. We illustrate the generalized Hamiltonian for-
mulation of a field-theory system for the example of
electrodynamics, i.e., for a system consisting of the
electromagnetic field interacting with a charged field,
which we shall not particularize.

To describe the electromagnetic field, we use the
potentials Au(x) and the field intensities Fuv(x). The
part of the variables q and p is played by A»(x) and
E^x) = F0k(x) and the canonical variables <pa and ita of
the charged field; AQ is a Lagrangian multiplier, and
Flk can be regarded as explicit functions of Ak, Fifc

= SfAk- 8*A(- The Lagrangian has the form

(1-7)
where hc is the energy density of the charged field in the
external electromagnetic field, which enters h through
the spatial covariant derivatives V»= 8S + iA,,; p(<p,it) is
the charge density and G{= £iikFjlt/2 is the magnetic
field. We have set the coupling constant e equal to 1.
The function h^tpjTt, A») is positive.

It is obvious that (1.7) has the form (1.1) and we must
make the identifications

cp (x) i + p = 0,

(1.8)

(1.9)

so that x also plays the role of a constraint label. The
Lagrangian (1.7) is associated with the Poisson brackets

{E, (x), Ah (;/)} '3> (x-y), {n« (x), <F6 (y)} x-y). (1.10)

The constraint <p(x) has a perspicuous geometrical
meaning. For arbitrary function A(#), we introduce the
functional

Q (A) = I <p (X) A (x) d" x (1.11)

and consider the canonical transformation which it gen-
erates. We have

J = {Q, = - 9,A, (1.12)

and 6 A <p= [<p,Q\ is the infinitesimal phase transforma-
tion of the charged field generated by the charge densi-
ty. Thus, Q(A) is the generator of a gauge transforma-
tion for the electromagnetic field and the charged field.
In electrodynamics, the group of such transformations
is commutative, and the Hamiltonian is invariant with
respect to it. This is expressed in the relations

{<P (x), <P (») } = 0, {h, cp (x)} = 0, (1.13)

which can be readily verified directly. These relations
realize the determining property (1.4) of the generalized
Hamiltonian formulation.

The equations of motion

[U, A*}- A, ft}d3!/ =
dhc

(1-14)

together with (1.9) give all the nontrivial Maxwell equa-
tions, so that the Lagrangian (1.7) does indeed corre-
spond to electrodynamics. In fact, it is simply identical
to the manifestly relativistically invariant Lagrangian
in the first-order formalism

L = (cVtv - 2 -f i« (1-15)

after the magnetic field Fik has been expressed in terms
of the vector potential Ak.

In the considered simple example, the constraints
can be solved explicitly. The role of the variables q*
and p* is played by <pa, TT" and the three-dimensionally
transverse components A% and E% of the fields A^ and
Ek. The longitudinal component A% of the field Ak is
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canonically conjugate to the constraint and does not oc-
cur in the Hamiltonian h. The longitudinal component
Ef; of the field Ek can be expressed in terms of p* and
q* by means of the constraint equation. If we set

K* = dM + El, dkEl = 3, (1.16)

then Eq. (1.9) takes the form of the Poisson equation

A X = - P . (1.17)

which can be solved explicitly. The contribution
2 !(Ek)2d3x of the longitudinal field to the Hamiltonian
gives the instantaneous Coulomb interaction of the
charges:

(1.18)

However, it is not necessary to solve the constraint.
For example, the positivity of the total energy, which
is made up of the energy of the electromagnetic waves,
the energy of the waves of the charged field, and the
Coulomb energy,

hr = \(~ [ (1.19)

follows from the explicit positivity of the generalized
energy (1.8).

We have intentionally gone into such detail for the
standard and noncontentious example of electrodynam-
ics to have the possibility, when analyzing the theory of
gravitation, to draw a parallel with this more simple
case. In the following sections, we shall see that the
Hamiltonian formulation of the theory of gravitation dif-
fers little from the formulation of electrodynamics that
we have just given. The only important difference will
be the circumstance that in the case of gravitation the
energy in which we are interested is itself the source
of the graviational field, whereas in electrodynamics
the charge is the source.

2. ASYMPTOTICALLY FLAT SPACE-TIME

There exist several definitions of asymptotically flat
space-time, differing in the level of covariance and
mathematical rigor. We shall use here the most naive
but at the same time perspicuous definition based on
the introduction of admissible coordinates. As is cus-
tomary in geometry, the invariance of this definition is
ensured by the introduction of an admissible group of
transformations.

Physically, asymptotically flat space-time corre-
sponds to situations when the gravitating masses and
matter fields at finite times are effectively concentrated
in a finite region of space. Then far from such a re-
gion, in the spatial directions, there exists only the
Newtonian tail of the graviational field due to all the
masses and the energy of all the wave fields, including
the energy of gravitational waves. Clearly, to describe
such a situation it is sensible to use coordinates that
match this picture.

We shall consider the case of a topologically simple
space-time whose points can be uniquely parametrized
by four coordinates #", -°° < x" < °°. One sometimes

considers the more general case when such coordinates
can be introduced only in the asymptotic region. How-
ever, as follows from the results of Ref . 32, our re-
striction is not fundamental.

Let AT" = (x° ,#') be one such system, gM be the
pseudo-Euclidean metric with signature (-+ + + ), and
r*,, be the components of the connection. These quanti-
ties define an asymptotically flat space-time if in the
limit r~°° and for finite t

where

t =

(2.1)

(2.2)

and ?jw is the metric tensor of flat Minkowski space:

1»o = — 1, loft '= lio = 0, r\n = i. (2.3)

The conditions (2.1) indicate, in particular, that in
the limit r~<*> the coordinates AT' are space-like and
Cartesian, and the coordinate x° is timelike. The con-
dition on the masses and matter fields which ensures
their effective localization in a compact region of space
can be formulated as

(2.4)

where
tensor.

is the corresponding energy- momentum

The condition (2.1) does not restrict the coordinate
transformations

(2.5)

in a finite region; however, at large r the functions
ri"(x) must have the asymptotic behavior

(2'6)

where A£ is the matrix of Lorentz transformations, and
a* is an arbitrary constant vector. We shall assume
that these transformations act on the set of metrics and
connections referred to a fixed coordinate system. The
corresponding infinitesimally small transformations
are given by

+ d
(2.7)

where e*1 is a vector field having in the limit r-~ °° the
asymptotic behavior (2.6) with infinitesimal w" = A*
- 5; and a".

We denote by G the infinite-dimensional group gen-
erated by these transformations. The group G has a
normal subgroup G0 generated by the transformations
(2.7) for which A£ = 5* and a" = 0, i.e., they are identi-
fy transformations as r~°°. The factor group

p = G/G0 (2.8)

is identical with the Poincare" group—the 10-parameter
group of displacements and rotations in Minkowski
space.

The group G0 is the gauge group of the theory of
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gravitation in asymptotically flat space-time. Two
metrics that differ by transformations of this group de-
scribe the same physical situation, provided, of course,
a corresponding transformation of the matter fields is
made as well. At the same time, the symmetry group
of the Lagrangian, the equations of motion, and the
boundary conditions is the group G. This means that the
Poincare' group acts nontrivially on the space of inter-
acting matter and gravitational fields. In particular,
the time displacement defined by

«•-**». *«-**» + «• (2.9)

makes it possible to define the energy up to transforma-
tions in G0.

Thus, from the point of view of dynamics the theory
of gravitation in asymptotically flat space-time does not
differ from other relativistic field theories, since the
Poincare' group plays the part of the dynamical group in
it. In this sense, the expression "general relativity"
does not apply to the dynamics but to the definition of
the gauge group. This point of view was formulated in
Ref. 19 in the terms just introduced. It is close to
many parallel formulations of other authors, in particu-
lar Fock's.2

The two last paragraphs might appear rather peremp-
tory. However, they summarize in a few words the re-
sults that will be given in the following two sections.

We now discuss the Lagrange function of the gravita-
tional field. As is already clear from Sec. 1, we shall
find it convenient to use the first-order formalism, in
which guv and r^ are regarded as independent dynami-
cal variables. The density of the Lagrange function is
usually taken to be the scalar density

which is invariant with respect to the group G. Indeed,
it follows from (2.7) that

or the function

L = V~^g , - y g>

(2.10)

(2.11)

which differs from •i^gR by a total divergence and
therefore gives the same equations of motion. Adher-
ents of the second variant usually adopt a defensive
position, recognizing the fundamental role of -i^gR and
invoking only the formal convenience of L (for example,
the absence in L of the second derivatives of gw which
occur in the second-order formalism). However, in
asymptotically flat space-time L is the only admissible
density in the definition of the action

S = J L A3 xdt. (2.12)

where the integration is over the whole of space and a
finite time interval. Because of the conditions (2.1),
we have in the limit r — °°

V-^fl = o(JL) , L=.0(±], (2.13)

where the first estimate is correct only if it is assumed
in addition to (2.1) that 8xr°w>,= (Xl/r3). Therefore, it is
S and not

6 (V~ = - da (2.15)

6L = - da (t°L + \f -g — Y —g»°dKdve
a).

r~^eR A3 x At (2.14)

On integration by parts, the integrated terms for 6S
disappear at spatial infinity on account of (2.13) and
(2.6). But in the analogous integral for 5S they do not
in general vanish. All this shows that the correct vari-
ational principle for the gravitational field in asymp-
totically flat space-time must be based on the action S.
The use of the Lagrange function density L is sharply
criticized in Ref. 20 on account of its noncovariance.
However, as we have just shown, the Lagrange function
/Ld3x is invariant with respect to the allowed transfor-
mations of the group G. Thus, the objections are with-
out substance, since they do not take into account
boundary effects in the noncompact asymptotically flat
space.

In the definition of asymptotically flat space-time,
one cannot essentially relax the condition of decrease
of the remainder terms in (2.1) and (2.6). For example,
if instead of (2.1) we use

then for a^^ the action (2.12) becomes meaningless,
since the spatial integral diverges. The interesting
case of gravitational fields with Newtonian asymptotic
behavior belongs to the class (2.1), so that there are
no physical reasons for relaxing the conditions (2.1).

In their recent preprint of Ref. 35, Denisov and Lo-
gunov use a coordinate transformation with asymptotic
behavior

, . f ) t 1 \ ^ f i v /" i / l \ / * J 1 f 7 \7]^ (x) —X^ = U I —nj- I , £>*] = Ojx -f- U I I , \&.l I )

which carries the metric from the class (2.1) into the
class (2.16) with a= |. With respect to such transfor-
mations, the definition of the energy given below is not
invariant. From our point of view, such coordinate
transformations are inadmissible. For example, the
action (2.12) is not invariant with respect to them.
More rigorous arguments must be based on a detailed
discussion of the compactification of the manifold cor-
responding to the asymptotically flat space-time. The
coordinate transformations (2.17) are singular on this
manifold. However, a detailed discussion goes beyond
the framework of the naive but perspicuous definition of
admissible coordinates adopted in this review.

Let us conclude with a few words on general covari-
ance. Of course, as in any theory formulated in space-
time, arbitrary coordinates can be used in the theory
of gravitation. However, the concept of asymptotically
flat space-time, which has an objective physical mean-
ing, can be formulated simply and clearly in the coor-
dinates that we have used that satisfy the asymptotic
condition (2.1). In particular, the important concept of
displacement in time is given by the simple formula
(2.9). In some papers,21 >22 criticism has been advanced
of the definition of energy in Einstein's theory of gravi-
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tation based on the use of homogeneous coordinate
transformations which are not Lorentz transformations.
It is clear that the paradoxes which then arise are as-
sociated with such a violation of the asymptotic condi-
tions.

3. GENERALIZED HAMILTONIAN FORMULATION
FOR THE GRAVITATIONAL FIELD

Just as we treated electrodynamics in Sec. 1, we shall
now describe the Hamiltonian dynamics for a gravita-
tional field interacting with a matter field, using initial
data on the surface x°= 0, which we shall assume is
spacelike. As the variables of the gravitational field,
we take g^v and r*y. These data induce on the initial
surface a metric gik (the first quadratic form), which
is positive, and the second quadratic form r°A.

It is convenient to use tensor densities instead of
these tensors. Let

wx,.^y-=3P', (3.1)

be the contravariant tensor density of the four-dimen-
sional metric tensor. We denote

qth = h"{K"> — h'Mhi\ II,4=-ji-IV (3.2)

The matrix qik is the contravariant density of weight 2
of the metric gfk,q

ilgtli= 6|y, y= Ael\\glk\\. The matrix
n,t is a covariant density of weight -1. For details,
see Appendix I, in which it is shown in detail that after
elimination of the unimportant variables in the action
(2.12) the Lagrange function of the gravitational field
and the matter fields, which we denote by <pa, ira, takes
the form

where

- Toa,

(3.3)

(3.4)

(3.5)

(3.6)

and

V-T-r+1 , ** = -£. (3-7)

Vj is the covariant derivative with respect to the metric
g.k, and R3 is its scalar curvature. Further, T00 and
T0k are the energy and momentum densities of the mat-
ter field, which depend on the canonical variables of
the matter field and the three-dimensional metric gik.

For example, for the massive scalar field

T^T^ + ̂ ^^ + YmV), (3'8)

Toh=-ndk<f, (3.9)

and it can be assumed that <p is a scalar and JT a scalar
density of weight 1. We shall assume that the energy-
momentum tensor of the matter field satisfies the posi-
tivity condition

I -* Ok I T{th \ * = qihT,ttToh, (3.10)

which holds for the example (3.8)-(3.9) and all normal
Lagrangians of a matter field.

We note that the scalar curvature contains the second
derivatives of the metric tensor linearly, so that
Q = -rR3- 8(8*9'* is a quadratic form of the first deriva-
tives of the metric with respect to the spatial variables:

(3.12)

In particular, H(x) has the asymptotic behavior

#(*) = 0(~),

and the integral in (3.3) converges.

The Poisson brackets

{IT,,, (z), qlm (y)} = -i-(6^6? + Sffii) 6(3) (x — y),
(3.13)

induced by the Lagrangian (3.3) are consistent with the
natural interpretation of the 5 function as a (bi) scalar
density of weight 1. To express the commutation rela-
tions of the constraints C0 and C», it is convenient to
introduce functionals of the vector X\x) and the scalar
density/U) of weight -1:

C (X) - f Ck (x) X" (x) A'x, C, (/) = j C0 (x) f (x) d'x, (3.14)

1C (X,), C (X,)] = C (IX^ XJ), (3.15)

(3.16)

(3.17)

1C (X), C0 (/)] - C0 (X/),

[Co (A), c0 (/a)l = c ([/„ /,!>,

where [x^X^] is the vector field with the components

X{a,xf-x',a,x», (3.18)

Xf is the scalar density of weight -1 of the form

X/ = x'dif - fd,X> , (3.19)

and [/!,/2] is the vector field with components

q* UJJ, - fM- ' (3-20)

The action of the constraints C(X) and C0(/) on the
canonical variables reveals their geometrical signifi-
cance: C(X) are the generators of three-dimensional
coordinate transformations, and C0(/) corresponds to
the transformation of the first and second quadratic
forms of the surface when it is deformed.

The equations of motion that follow from the Lagran-
gian (3.3) are identical to the Einstein-Hilbert equa-
tions. One can therefore say that this Lagrangian gives
the generalized Hamiltonian formulation of the theory
of gravitation. In particular, the generalized Hamil-
tonian is given by the expression

H = H = j 1 (n»nftm - nitn,m) + «? + r00l d»z,
(3.21)

and the numerical values of the energy are equal to the
possible values of this functional on the constraint sur-
face:

Ch (x) = 0, C0 (x) - 0. (3.22)

We emphasize that the Hamiltonian (3.21) has the usual
structure for relativistic field theory, i.e., it is a
quadratic form in the momenta plus a quadratic form of
the first derivatives of the generalized coordinates.
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Comparing (3.4) and (3.6), we see that the Hamiltoni-
an density H(x) differs from the constraint C0(x) by an
expression of divergence type. Thus, the numerical
values of the energy can be calculated as the limit of an
integral over a closed two-dimensional surface S which
is "inflated" to infinity:

(3.23)

It is such an expression for the energy that is given in
monographs on the theory of gravitation; see Refs. 2-5.
From our point of view, (3.23) gives only the numerical
value of the energy, and the Hamiltonian and the gener-
ator of a displacement in time are given by the expres-
sion (3.21).

Formula (3.23), which expresses an observable quan-
tity—the energy—in terms of the asymptotic behavior
of the field, is not a characteristic feature of the theory
of gravitation. In electrodynamics, the constraint equa-
tion makes it possible to express the total charge in
terms of the asymptotic behavior of the electric field:

Q= fp(a:)d3z = Hm f£kdSf t . (3.24)

Formulas (3.23) and (3.24) are similar in that in them
the field sources—the charge in electrodynamics and
mass-energy in the theory of gravitation—are ex-
pressed in terms of the asymptotic behavior of the field.
An important difference, however, is that in electrody-
namics the charge has two signs, and the vanishing of
Q does not entail vanishing of the field, whereas in the
theory of gravitation mass is always positive, and van-
ishing of the total mass leads to an absence of matter
and gravitational field, i.e., to flat space-time. This
assertion will be proved formally in the following sec-
tion.

Unfortunately, in contrast to electrodynamics, the
expression (3.21) for the total energy is not manifestly
positive. Therefore, the question of the positivity of
the energy of the gravitational field cannot be readily
solved. We shall consider here the comparatively sim-
ple case of weak gravitational waves. The general case
of a strong gravitational field interacting with matter
will be discussed in the following section.

Xf* = >+4-<

Thus, suppose

(3.25)

where x'* and n(t are small and matter fields are ab-
sent. The constraint equations can then be linearized:

a.dh%ik = 0] gp^ = ^n,,, (3.26)

and we do not distinguish subscripts and superscripts,
since they are raised and lowered by means of the me-
tric tensor 5'*. The energy (3.21) in the first nonvanish-
ing order is given by the quadratic form

(3.27)
which is still not positive. However, it becomes posi-
tive when we take into account the constraint (3.26).
Indeed, we use the orthogonal expansions

n ,*

where

=

(3.28)

(3.29)

The tensor xft is parametrized by two functions, so that
X^ together with the three functions x( and the one func-
tion x parametrize the arbitrary symmetric tensor \lk.
The same applies to na. The constraints (3.26) lead to
the equations

v4x = o, vzn, + 39Anft = u, (3.30)

from which, using the boundary conditions, we obtain

SC = 0, II, = 0. (3.31)

Further, it can be shown that xf and II disappear from
the expression (3.27). This is natural, since they are
canonically conjugate to the constraints (3.31). As a
result, (3.27) is reduced to the following manifestly
positive expression

ff= { i/g vj ) 2 . • .(n? )2l d3x (3 32)

which contains the wave energy of the transverse grav-
itational waves.

In the presence of matter fields, the total energy al-
so includes the instantaneous Newtonian energy of at-
traction, which arises when x and l\{ are eliminated by
means of the constraint equations, these being modified
by the presence of the components T00 and T0{ of the
energy-momentum tensor of the matter on the right-
hand sides of (3.26).

We emphasize that the expression (3.32) is quadratic
in the deviation of the metric <y'* from flatness. In Ref.
22, it is incorrectly asserted that the energy of gravi-
tational fields vanishes on the basis of the fact that the
energy vanishes in the first approximation.

Like the energy, we can introduce the total momen-
tum Pk as the generator of the coordinate displacement

*"-

so that

(3.33)

(3.34)

Note that the integrand of Pk(x) in (3.34) differs by a
divergence from the constraint C^x). To see this, we
take into account the weights of the densities n j A and qik

and write Cs(x) in the form

Ck (x) - - 23, n- Ulmdkg"" - Toh. (3.35)

Therefore, the numerical value of the momentum is
given by a formula analogous to (3.23):

(3.36)

and in (3.36) we can replace qlk by its asymptotic value.

The other generators of the Poincare" group can be
introduced similarly. Here, we shall not make the cor-
responding calculations, since they are not important
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for the discussion of the energy problem. We merely
point out that the final expressions can be cast into the
customary form for relativistic field theory by using
the asymptotically Cartesian coordinates and taking
H(x) as T00 and Pk(x) as TotU).

To conclude this section, we give a brief history of
the results and discuss a number of typical objections.
The constraints Ck(x) and Ca(x) and their Poisson brack-
ets were first given by Dirac in Refs. 9 and 16. Their
derivation from the Hilbert-Palatini Lagrangian and a
detailed discussion were given in a series of papers by
Arnowitt, Deser, and Misner11 and Schwinger.12 The
differences between the formulas in the quoted papers
are explained by the choice of the weights and variants
of the first and second quadratic forms. In the present
paper, we follow Schwinger's choice. The clearest
proof of the necessity of subtracting the divergence in
(3.6) is given in Ref. 14 by Regge and Teitelboim.

The expression (3.23) for the energy is identical in
asymptotically flat space-time with the expression for
it in terms of the so-called energy-momentum pseudo-
tensor already given in the first papers of Einstein.1

We shall now consider some typical critical objections
to such a definition of the energy of the gravitational
field.

a) The expressions (3.21) and (3.23) are not generally
covariant.

As a rule, this criticism is leveled at the noncovari-
ant energy—momentum pseudotensor TUI/, whose compo-
nent Tm is (in Fock's formulation) equal to the density
in the integral (3.21). The objections of Lorentz, Levi-
Civita, and Schr'6dinger mentioned in the Introduction
refer precisely to this concept. In the papers of Logun-
ov et al.,23 this criticism is taken to extremes: "In
Einstein's theory, the energy-momentum pseudotensors
are not physical characteristics of the gravitational
field and have no meaning."

I agree that the procedure of introducing the energy-
momentum pseudotensor in Einstein's papers and in the
fundamental monographs Refs. 2-5 has a formal heuris-
tic nature. (Actually, Fock does not even use such an
expression.) Therefore, in the present review I have
used the Hamiltonian approach to the definition of the
energy as the generator of displacement in time. How-
ever, the agreement between the results of the Hamil-
tonian approach and the approach based on application
of the energy—momentum pseudotensor to definition of
the total energy in asymptotically flat space-time shows
that Einstein's definition of the total energy was cor-
rect.

With regard to the critical comment concerning gen-
eral covariance, the answer to it was already given at
the end of Sec. 2. To give a clear physical description
of localized masses and fields, it is convenient to use
the asymptotically flat coordinates (2.1). In these coor-
dinates, the energy is given by the expression (3.23).
To calculate it in arbitrary coordinates (for example,
in spherical coordinates, which were first used by
Bauer in Ref. 24 in a criticism that was then repeated
in Refs. 23, 8 and other papers) it is necessary to make

a conversion using the appropriate Lame' coefficients,
etc. (see, for example, Ref. 36).

b) The expression (3.23) gives a value identically
equal to zero for the energy.

This assertion is formulated in its clearest form in
Ref. 23. The proof is based on the following argument:
For fields concentrated in a compact spatial region q'"
= 6" and S.qik= 0 identically outside this region.
Therefore, the integral (3.23) gives a vanishing expres-
sion for the energy.

The natural and correct way out of this problem is to
note that 8^'* has a nonvanishing term OU/r2) in the
asymptotic behavior as r~°°, namely, the Newtonian
tail. The physically obvious but mathematically non-
trivial fact is that a gravitational field that decreases
too rapidly in spatial directions is identically flat.

4. PROOF OF POSITIVITY OF THE ENERGY

The property of positivity of the energy has funda-
mental significance and is associated with stability of
the system. In relativistic field theory, the expression
for the energy of matter fields deduced from the ener-
gy-momentum tensor or from the Hamiltonian formula-
tion is manifestly positive. We have demonstrated this
once more in Sec. 1 for the example of electrodynamics.
However, the expression (3.21) obtained in Sec. 3 for
the energy of the gravitational field is not manifestly
positive. Even less can be said about the numerical
value of the total energy of the gravitational field and
the matter fields given by formula (3.23). The example
of a weak field considered in Sec. 3 shows that the proof
of positivity must be based on solution of the constraint
equations, which in the general case form a complicat-
ed nonlinear system of partial differential equations.

The question of the positivity of the energy of the
gravitational field was not discussed seriously during
the classical period of development of this theory. Its
active history has lasted about 20 years. Examples of
special strong fields considered by Araki25 and Brill26

in 1959 showed that the actual formulation of the prob-
lem of positivity of the energy is meaningful. The hy-
pothesis of positivity was supported by the papers of
Brill, Deser, and the present author,27'28 though our
variational arguments were far from mathematically
rigorous. Throughout the seventies, the positivity
problem attracted the attention of many specialists in
mathematical physics,29"31 and it was finally solved by
Schoen and Yau.32'33 Their work is based on complicat-
ed mathematical methods, and we cannot present it
here. Fortunately, a remarkable paper has recently
been written by Witten,6 and this gives a new and for-
mally simple proof of the positivity. We shall give this
proof in a form somewhat different from the original
in Ref. 6.lj

'*In the journal version'7 of Witten's preprint, which was pub-
lished after the present review had been sent to press, Witten
notes that his original arguments contain an error. In pre-
paring this review, we found this error (or rather, two errors
that cancelled each other), and it is not contained in our text.
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Witten's main result consists of the following asser-
tion: The total energy of the gravitational field and
matter fields with positive energy- momentum tensor
can be represented as a manifestly positive quadratic
form in the solution of an auxiliary linear equation in
which the gravitational field plays the part of an exter-
nal field.

The linear equation used by Witten is a Dirac equa-
tion restricted to the initial surface x° = 0. As is well
known, to give expression to the Dirac equation it is
necessary to use the orthogonal frame formalism, in
which the gravitational field is described by a set of
four orthogonal vectors e% and connection coefficients
W>»,a6- The local index a (the number of the vector) is
raised and lowered by means of the tensor 77"* (2.3).
The connection with the variables gw and r°v is given
by

where e° is the matrix that is the inverse of e:

(4.1)

(4.2)

The connection coefficients <*>Uiab can be expressed di-
rectly in terms of e* as follows:

(4.3)

(4.4)

We shall make the further calculations in a syn-
chronous coordinate system, imposing the conditions

(4.5)

which are compatible with the asymptotic conditions
(2.1).

We define the three-dimensional Dirac operator D by
the formula

where y", a = 1,2,3,0, are the ordinary constant Dirac
matrices satisfying

Consider the solution of the equation

D\|) = 0,

(4.7)

(4.8)

for which the spinor i&x) at large r has the asymptotic
behavior

(4.9)

and ^0 is a constant spinor. Witten showed that for an
asymptotically flat gravitational field satisfying the
Einstein-Hilbert equation such a solution exists and is
unique (see also Appendix If).

Elementary but lengthy calculations, which we give in
Appendix II, lead to the identity

(4.10)

= -i- (E (il'H'o) + P«

where G0li are components of the Einstein-Hilbert ten-
sor

(4.11)

and E and Pa are the energy and momentum defined by
(3.23) and (3.36) in Sec. 3. The positivity of the energy
follows directly from this identity.

Indeed, if the Einstein-Hilbert equations are satis-
fied,

rf
|iv '— -* iivi (4.12)

then the left-hand side in (4.10) is positive. For the
second term this is obvious, and for the first it follows
from the fact that the matrix aay°fa has the eigenvalues
± | a I , where I a I = V d{ + a^ + 0% , and from the inequality
(3.10). Taking now ip0 to be an eigenvector of the ma-
trix Pay°va with eigenvalue -\P\, we obtain from (4.10)

£ > ! / > ! ,

so that the vector P = (E,P ) is timelike.

(4.13)

We now show that the energy E can vanish only if the
matter fields are absent and the metric g^v is flat, i.e.,
there are also no gravitational fields. Indeed, for E = 0
it also follows from (4.13) that Px = 0, and then from
(4.10) we find that

v,n-=o, (4.14)

for any solution ip of Eq. (4.8). A covariantly constant
spinor which does not vanish at infinity does not vanish
at all x on the surface x°= 0. Considering different
asymptotic values i/)0 for ip, we can construct four lin-
early independent spinors fys, s ~ 1,2, 3, 4, for which
(4.14) is satisfied, and also

(4.16)

By virtue of the linear independence of the ips, we ob-
tain from this

flift<11J = 0, (4.17)

i.e., the curvature tensor restricted to the initial sur-
face vanishes.

Further, choosing $0s in such a way that 4>s for given
x are eigenvectors of the matrix ek

cfToky°'ya, we find
from (4.15) that roo=±Tot, whence

rco == o. (4.18)
This last equation leads to the vanishing of the matter
field by virtue of the positivity of its energy density.
Thus, Tw= 0, and from Eqs. (4.12)

*„, = (>. (4.19)

It is easy to show that (4.19) in conjunction with (4.17)
leads to the equation

floft.oc, = 0, (4.20)

from which we find that on the initial surface x° = 0 the
total curvature tensor vanishes:

= 0. (4.21)
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We now note that the energy is an integral of the motion
and that, thus, we can repeat our arguments for any
surface x°= a°. Thus, the curvature tensor vanishes
identically in the entire space-time and the metric guv

is flat. This completes the proof of the positivity of
the energy for any nontrivial configuration of the gravi-
tational field and matter fields.

CONCLUSIONS

Using the systematic Hamiltonian approach to Ein-
stein's theory of gravitation, we have shown that in the
case of asymptotically flat space-time this theory ad-
mits the fundamental integrals of the motion of rela-
tivistic theory, including the energy and the momentum.
The total energy of the gravitational field and matter
fields is positive and vanishes only in the absence of
matter and gravitational waves. We have also consid-
ered a number of criticisms that have been leveled
against this result and have shown that they are without
substance.

Thus, the generally accepted theory of gravitation is
completely self-consistent and corresponds to the main
physical requirements. The positive solution to the en-
ergy problem removes all doubts with regard to this
question and shows once more that Einstein's theory is
the most natural and beautiful variant of the theories of
gravitation.

APPENDIX I

Here, we reduce the general Lagrangian (2.11) to the
form (3.3). The only specific features of the derivation
are associated with the gravitational field, so that for
simplicity we shall assume that there is no matter
field.

(A7)

The Lagrangian density

0 - r° (Al)

contains the 10 variables /ZM" and 40 variables r*,,. Of
the 50 equations of motion, 30 do not contain time de-
rivatives, and we can use them to eliminate the nondy-
namical variables, in the same way that the magnetic
field is eliminated in electrodynamics.

We write these equations in the three-dimensional
form

= 0,

= 0,

= 0.

We denote

qik = h"hal<

and show that

(A2)

(A3)

(A4)

(A5)

(A6)

where y'k is the contravariant three-dimensional metric
corresponding to the restriction £\t of the metric gltv

to the surface x° = 0, and y is the metric determinant.
Indeed, by definition, y"g,i,= 5J, so that

where g is the determinant of the metric guv. On the
other hand, by the definition of the inverse matrix^00

= yg~

(A8)

and (A6) is proved. Combining Eqs. (A2), (A3), and
(A4) in an obvious manner, we arrive at the relation

W-l- rU"1" -- O"1' - 2O!*
+ r,0,,*""*01 -f rj^*""*0*—2r?m/!'M<"»=o.

(A9)

In the first row, we have an expression whose vanishing
is the definition of the Christoffel symbols y'ik of the
metric glt. As a result, solving (A9) for r{4, we obtain

rU=4+^-r«,. (A10)

Further, from Eqs. (A3) and (A4) we obtain

(All)

(A12)

where v, is the covariant derivative with respect to the
metric gik. Here, it is borne in mind that h°° and fe°*
are scalar and vector densities of weight 1, respective-
ly. Indeed, from (A8) we have

\r—«

so that

(A13)

(A14)

and g°° and g0* are to be regarded as a three-dimension-
al scalar and three-dimensional vector, respectively.

We now note that r£, occurs in the Lagrangian (Al)
linearly, and the corresponding coefficient is a linear
combination of the equations (A3) and (A4). Thus, r£0

disappear from the Lagrangian once these equations are
used.

As a result, if we substitute (A10), (All), and (A12)
in (Al), the new Lagrangian can be expressed in terms
of the 10 variables h1"1 and the six variables T°ilt. Let
us make this substitution. We begin with the terms
with time derivatives; after substitution of (A10)-(A12)
and elementary manipulations we obtain

da In

where

(A15)

(A16)

is a symmetric tensor density of weight — 1.

The substitution of (A10)-(A12) in the remaining part
of the Lagrangian involves a more lengthy calculation.
The terms quadratic in n can be collected together into
the expression

(A17)

The terms linear in n are
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2Vh (A18)

Finally, the terms without 17 are

We transform the last expression. We have

-pr

*«].

(A19)

(A20)

The second term on the right-hand side of (A20) can be
combined with the second term in the first row of (A19)
to make the expression

—.!_ ji»fl(J'=—prv*3- (A21)

and the first term on the right-hand side of (A20) can
be written in the form — (l/hoa)Sidnqit in accordance with
the definition of the Christoffel symbols. After this, it
can be combined with the second and third row in (A19)
into an expression of the form

_ / < *"-(-£•)•
The last two terms in (A22) are the divergence

(A22)

(A23)

which vanishes after integration over the whole of
space, since hokdjt0i and fe°'8tA°*have the asymptotic
behavior OU/y3) as r-». The first term in (A22) can
be rewritten in the form

(A24)

and the second term again vanishes after integration.

One further vanishing divergence can be separated in
(A18) by rewriting it in the form

,,)]

'.„). (A25)

Here, in the second row we have replaced the covariant
derivative by the ordinary derivative because the terms
in the brackets are vector densities of weight +1. As
a result, the second row in (A25) again vanishes after
integration.

Finally, the last two terms in (A15) can be written in
the form

In ft00) — 9, In ft00). (A26)

The second term is a vanishing divergence, and the
first makes an uninteresting contribution to the Lagran-
ge function of the type of a total derivative with respect
to the time.

Collecting together the terms which do not vanish
after integration and ignoring the derivative with re-
spect to the time, we obtain the final expression for the
Lagrange function:

f {nik-jj- *'*+-pr

2 — (\-, (fl"n,o-vi, (?' in,,)] + 0,

which can be rewritten in the form (3.3) after the iden-
tification

x - 1 -n i *°* (A?ftfA9 = . o u -rli A.;; = 0 ^i\£OJ

and the addition of the Lagrangian of the matter fields.

APPENDIX II

We here derive the identity (4.10). Let

(A29)

be the Dirac operator restricted to the surface x° = 0.
For the two arbitrary spinors 4>i and jj>2, consider the
expression

, , , , d i (y~!

Using the property of the y matrices
i

we obtain for $ the expression

where

and

rh)

(A30)

(A31)

(A32)

\A33)

(A34)

(A35)

is the spinor curvature tensor restricted to the initial
surface.

We show that the matrices 4* drop out. They con-
tain three matrix structures: /, ^y", and S"e. We col-
lect together the coefficients of each of them. From the
commutation relation

(S"*, Yr1«2nV-2Ti<"-vi (A36)

and the definition (4.6) of the matrix r., we obtain

;r,-. T
p) = "'•'"' I5"6' TBJ = a>'-»"(i'"5v°-'i"V)=o>Lv». (A37)

so that

Y
a{ri, YSJ = a>iaf !+u?,T S^+al Ov°v».

Further,

r,-i-r* = 2. ^-(o>;.c.oYV + U;,DaT°Ya) = a>i. »,

Thus, we must prove the equations

(A27)

(A38)

(A39)

(A40)

(A41)

(A42)

(A43)

Note that in our system of coordinates (4.5) the follow-
ing symmetry relation holds by virtue of (4.1):

(A44)

where we have denoted
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as a result of which (A40) is also satisfied once we have
rewritten it in the form

"aoB + «fteo) = 0. (A45)

The relations (A41) and (A42) follow from the definition
(4.3), which expresses w^^ in terms of e*, if we bear
in mind that

We now transform B. For this, we note that

(A46)

(A47)

where R^v ^ is the total curvature tensor. We use an
obvious identity for the y matrices:
lTa. Y1''] IT"- Y1) = 2ea»°'Ys -f 4rf' V'" -L- 2 (T]al> IT

P, Y°) + 1P" IT"- V1')) - (" -- *)•

(A48)
The first term in (A48) gives a vanishing contribution
to B by virtue of the Bianchi identity

(A49)

The second term in (A48) gives

Finally, in the last term it follows from the symmetry

f<at, <::J=R,:d.al, (A51)

that the only term to "survive" is

(A52)•I^H^oiy- Y"]=4WvV-

Thus, we obtain the final result

(A53)

We now consider a solution if> of the Dirac equation

Bi| = o (A54)

that has asymptotic behavior at infinity as r — °°

where $0 is a constant spinor. The standard methods of
scattering theory show that such a solution exists and
is unique if Eq. (A54) does not have nontrivial solutions
with !/)0= 0. We shall show that there are indeed no
such solutions if the gravitational field satisfies Eqs.
(4.12). We integrate the identity $($, ty) = ip+Bip over
the whole space. If ifia= 0, then the integral of the di-
vergence vanishes, and as a result we obtain the equa-
tion

As was already shown in Sec. 4, both terms are here
negative. Thus, we obtain

(A57)

from which it follows that ip vanishes, since 0 — 0 as r
— «. Thus, a solution of Eq. (A54) with the asymptotic
behavior (A55) exists.

To derive the identity (4.10), we again integrate the
identity $(#,$) = il>*B>p over the whole space. This im-
mediately leads to the left-hand side of (4.10), and for

the complete derivation it remains to transform the
surface integral

\ ^"v^-ds,, (A58)

As S, we take a sphere of radius R. It is clear that in
the limit .R — <*> only the asymptotic part OU/r2) of the
integrand contributes to the integral (A58). We show
that this asymptotic behavior can be expressed in terms
of !/)„ and the asymptotic behavior of the gravitational
field. Indeed, multiplying Eq. (A54) by y&, we obtain

or, after multiplication by e\,

(A59)

(A60)

Returning to the integral (A58), we see that the contri-
bution from the first term on the right-hand side of
(A60) can, by virtue of the asymptotic behavior (A55)
and the asymptotic behavior

which can be assumed without loss of generality, be
cast in the form

IY" (A62)

which vanishes as H-*°°. Thus, the entire integral
(A58) in the limit R -*<*> takes the form

(A63)

We now recall the definition (4.6) and once more use
(A48). As a result, the integrand in (A63) is trans-
formed as follows:

- e w » ' '" (

(A64)
The first term on the right-hand side of (A64) van-

ishes. Indeed, one of the indices c or d must be a
time index, and the complete term disappears because
of the symmetry of (A44). Further, using (4.1) and
(4.3), we can rewrite the coefficient of y"y6 in the last
term on the right-hand side of (A64) in the form

(A65)

Here, the first term does not contribute because of the
symmetry of rflra with respect to the first two indices.
The integral of the second can be rewritten in the form

using the symmetry.

We collect together the remaining nontrivial contribu-
tion to the right-hand side of (A64). From (A42), we
obtain

(A67)
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Further, using (4.1) and (4.3) and the definition of the
Christoffel symbols, we have
l i b o a f t 1 )I,T^O m ,M1 i-. a n I A A Q \

« Co (Wft. oa (V , Y ]~rG)h, flo tY ' Y l) =~n~ W I J tm e a—9 Tb eX) V y . \ADO^

In integrating over the asymptotic region, we can as-
sume that e «1 and e"= 5". Therefore, recalling Eqs.
(3.23) and (3.36), we find finally that the integral (A58)
reduces to

,). (A69)

This concludes the transformation of the surface inte-
gral (A58), and with it the proof of the identity (4.10).

*A. Einstein, Sitzungsber, preuss. Akad. Wiss. 48, 844(1915);
Ann. Phys. 49, 769 (1916); Sitzungsber. preuss. Akad. Wiss.
2, 1111 (1916); Phys. Z. 19, 115 (1918); Sitzungsber. preuss.
Akad. Wiss. 1, 154 (1918); Sitzungsber. preuss. Akad. Wiss.
1, 448 (1918) [Translated in the Russian collection of Ein-
stein's Scientific Works, Vol. 1, published by Nauka, Mos-
cow (1965)] (papers 37, 38, 42, 47, 49, and 51).

2V. A. Fock, Teoriya prostranstva, vremeni i tyagoteniya,
Fizmatgiz, Moscow (1961); English translation: V. A. Foch,
The Theory of Space, Time, and Gravitation, Oxford (1964).

3L. D. Landau and E. M. Lifshitz, Teoriya polya, Nauka, Mos-
cow (1973); English translation: The Classical Theory of
Fields, 4th ed., Pergamon Press, Oxford (1975).

4C. W. Misner, K. S. Thome, and J. A. Sheeler, Gravitation,
W. H. Freeman, San Francisco (1973) [Russian translation
published by Mir, Moscow (1977)].

5S. Weinberg, Gravitation and Cosmology, Wiley, New York,
(1972) [Russian translation published by Mir, Moscow (1975)1.

6E. Wttten, Preprint, Princeton University (1981).
7V. I. Denisov, A. A. Logunov, and M. A. Mestvirishvili, Fiz.

Elem. Chastits At. Yadra 12, 5 (1981) [Sov. J. Part. Nucl. 12,
1 (1981)].

8V. I. Denisov and A. A. Logunov, "New theory of space-time
and gravitation," Preprint P-0199 [in Russian!, Institute of
Nuclear Research, USSR Academy of Sciences, Moscow
(1981).

9P. A. M. Dirac, Proc. R. Soc. London Ser. A246, 333 (1958).
10P. A. M. Dirac, Can. J. Math. 2, 129 (1950).
UR. Arnowltt, S. Deser, and C. W. Misner, Phys. Rev. 117,

1959 (1960); 118, 1100 (1960); 122, 997 (1961).
12J. Schwinger, Phys. Rev. 139, 1253 (1963).
13B. S. DeWitt, Phys. Rev. 160, 1113 (1967).
UT. Regge and C. Teitelboim, Ann. Phys. (N.Y.) 88, 296

(1974).
15L. D. Faddeev and V. N. Popov, Us p. Fiz. Nauk 111, 427

(1973) [Sov. Phys. Usp. 16, 777 (1974)].
16P. A. M. Dirac, Lectures on Quantum Mechanics, Yeshiva

Univ., New York (1964).
17P. A. M. Dirac, Phys. Rev. 114, 924 (1959).
18L. D. Faddeev, Teor. Mat. Fiz. 1, 3 (1969).
19L. D. Faddeev, in: Actes du Congres Intern, de Mathematique

Nice, 1-10 Sept., 1970, P.Gauthier Villars, Vol. Ill (1970),
p. 35.

20A. A. Logunov and V. N. Folomeshkin, Teor. Mat. Fiz. 32,
291 (1977).

21M. F. Shirokov and L. I. Bud'ko, Dokl. Akad. Nauk SSSR,
172, 326(1967) [Sov. Phys. Dokl. 12, 62 (1967)1.

22M. F. Shirokov, Dokl. Akad. Nauk SSSH 195, 814 (1970)
[Sov. Phys. Dokl. 15, 1119 (1970)1.

23V. I. Denisov and A. A. Logunov, Teor. Mat. Fiz. 43, 187
(1980).

24H. Bauer, Phys. Z. 19, 163 (1918).
25H. Araki, Ann. Phys. (N.Y.) 7, 456 (1959).
26D. Brill, Ann. Phys. (N.Y.) 7, 466 (1959).
27D. Brill, S. Deser, and L. Faddeev, Phys. Lett. A26, 538

(1968).
28D.Brill and S. Deser, Ann. Phys. (N.Y.) 50, 548 (1968).
29R. Geroch, Ann. N. Y. Acad. Sci. 224, 108 (1973).
30Y. Choquet-Bruhat and J. Marsden, Commun. Math. Phys.

51, 283 (1976).
31P. S. Jang, J. Math. Phys. 17, 141 (1976).
32P. Schoen and S. T. Yau, Commun. Math. Phys. 65, 45 (1979).
33P. Schoen and S. T. Yau, Phys. Rev. Lett. 43, 1457 (1979).
34W. Pauli, Theory of Relativity, Pergamon Press, Oxford

(1958) (Russian translation of earlier edition published by
Gostekhizdat, Moscow-Leningrad (1947).

35V. I. Denisov and A. A. Logunov, "The inertia! mass de-
fined in general relativity has no physical meaning," Pre-
print P-0214 [in Russian], Institute of Nuclear Research,
USSR Academy of Sciences, Moscow (1981).

S6L. F. Abbott and S. Deser, Stability of Gravity with a Cos-
mological Constant: Preprint TH-3136-CERN (1981).

37E. Witten, Commun. Math. Phys. 80, 381 (1981).

Translated by Julian B. Barbour

142 Sov. Phys. Usp. 25(3), March 1982 L. D. Faddeev 142


