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The most modern methods of differential geometry
and topology are entering into physics. An example of
this is provided by the reviews of Refs. 1-4, which are
devoted to the application of these branches of mathe-
matics in field theory and in solid-state physics. How-
ever, the absence of sufficiently "democratic" books
aimed at physicists makes it difficult to read the cor-
responding literature not to mention the practical ap-
plication of the new techniques. It is hoped that the
present guide will help to partially fill this gap. It
should be regarded as a mathematical supplement to the
review of Ref. 1. The structure of the guide is as
follows:

1) A list of symbols commonly used in the mathe-
matical literature; 2) an index of terms with corre-
sponding references to the literature; 3) four short in-
troductory articles (see Sec. 3), which, albeit self-con-
tained in character, should be read consecutively; 4)
a guide to the literature.

We stress again that the articles are intended for
physicists and do not pretend to either rigor or com-
pleteness. It would be helpful for the reader to ac-
quaint himself with the corresponding mathematical
literature by following the bibliographical guide.

The author expresses gratitude to L.B. Okun', who
stimulated the writing of this guide.

1. LIST OF SYMBOLS

-The element a belongs to the set A
For every a there exists c
The sets A and B are isomorphic
The intersection of the sets A and B
The exterior product of the forms a and (3
The real w-dimensional space
The complex w-dimensional space
The w-dimensional sphere
The w-dimensional real projective space
The w-dimensional complex projective space
The additive group of integers
The cyclic group of p elements

tp'1 -The mapping inverse to the mapping <p

2. INDEX OF MATHEMATICAL TERMS

The index is compiled according to the following prin-
ciple. Whenever a term is explained in the review of

Va3c
A »J3
A nB
a A|3
R"
Cn

S"
RP"
CP"
Z
Z ,

Ref. 1, we indicate the corresponding section of that
review. In other cases, we give references to books
published in Russian:

Homotopy groups: Ref. 7, p. 573.
Homotopy: Ref. 7, p. 499; Rel. 22, p. 60.
Cohomology groups: Ref. 16; Ref. 15, p. 214 of Russian
translation.
The action of a group is free: Ref. 1, Sec. 1. A.
Diffeomorphism: Ref. 7, p. 194; Ref. 22, p. 139.
Compactness: Ref. 22, p. 31; Ref. 24, p. 222.
Differentiable manifold: Ref. 1, Sec. 2.A.I.
Module: Ref. 17, p. 285.
Lift of a vector field: Ref. 1, Sec. 2. E.
Vector field: Ref. 1, Sec. 2. A.I .
Fundamental vector field: Ref. 1, Sec. 2.C.
Exact sequence: Ref. 19, p. 38; Ref. 22, p. 372.
Obstruction: Ref. 21, p. 168; Ref. 20, p. 177.
Projection: Ref. 1, Sec. l.A.
Exterior product (of forms): Ref. 1, Sec. 2. A. 2.
Inner product: Ref. 1, Sec. 2. A, 4.
Exterior derivative: Ref. 1, Sec. 2. A. 3.
Associated fiber bundle: Ref. 1, Sec. I .E.
Principle fiber bundle: Ref. 1, Sec. l.A.
Principal coordinate bundle: Ref. 1, Sec. l.C.3.
Trivial bundle-direct product: Ref. 1, Sec. l.D.
Retract: Ref. 20, p. 5; Ref. 22, p. 22.
Cross section: Ref. 1, Sec. I.C.I.
Postnikov system: Ref. 23, p. 440.
Fiber: Ref. 1, Sec. l .A.
Sobolev extension: Ref. 24.
Transpose: Ref. 1, Sec. 2. A. 5.
Induced form: Ref. 1, Sec. 2 .A.2.
Maurer-Cartan form: Ref. 11, p. 91.
Adjoint form: Ref. 1, Sec. 2. A. 4.
Homotopic equivalence: Ref. 7, p. 537; Ref. 22, p. 62.

3. BASIC CONCEPTS

a) Differentiable manifolds

The abstract concept of a differentiable manifold is
equivalent to the usual definition of an w-dimensional
hypersurface in the w-dimensional Euclidean space R".
This surface can be specified by means of a system of
equations

/; ( = 0 n), (1)
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where ft are infinitely differentiable functions. Mani-
folds can also be specified parametrically:

= Xh (Ul, . . ., um) (k=\, (2)

The parameters (ult . . . ,um) may cover not the entire
space R", but may be, for example, periodic. The
form (2) for the description of a differentiable manifold
is preferable to the form (1), since it indicates explicit-
ly the required number of parameters.

However, the second method of describing a differen-
tiable manifold, like the first, cannot be regarded as
satisfactory. As an example, let us consider the sphere
S2. Its parameters — the spherical coordinates 0andy? —
do not enable us to define all the points of the sphere
uniquely: in the neighborhood of the poles (6 = 0, ir), the
angle q> is not defined.

In addition, the two descriptions (1) and (2) have a
common defect. They give explicitly an embedding of a
differentiable manifold in the Euclidean space R". But
one and the same differentiable manifold can be em-
bedded inR" in different ways; in other words, it can be
described by different functions//!) or x,(2). There-
fore, if we want an invariant definition of a differenti-
able manifold, we must dispense with attempts to de-
scribe a differentiable manifold globally by means of a
single set of functions /y(l) or xt(2).

For a sphere, the way out of the difficulty is well
known. The coordinates of any point on the sphere are
defined by an atlas consisting of some set of overlapp-
ing maps. The number of such maps can be arbitrary,
provided that with some overlap they cover the entire
sphere. For example, we can confine ourselves, to two
maps defined by means of stereographic projections:

t/, = {z=tan-|- e*", n— E>9>0, e>0, 0<q><2nj,

£72 = u>= cot -e"», n>9>e, e>0,

Direct verification shows that the transition from one
map to another, i. e. , the conversion of the z coordi-
nates to the w coordinates and vice versa, is accom-
plished by means of infinitely differentiable functions.
In other words, the maps are mutually compatible.
Each map establishes a one-to-one correspondence
between some region of the sphere and a region of the
plane R2. We note that this description of a sphere by
means of an atlas is the only correct one in a number of
physical problems, for example, in the study of a
monopole (see Ref. 26).

Generalizing this construction, we can give the ab-
stract definition of a differentiable manifold. Suppose
that we are given a set M. It is a differentiable mani-
fold if the following conditions are satisfied: 1) for some
subjects UaaM we are given a one-to-one mapping <p^
into a region of the w-dimensional Euclidean space Rm,
i. e. , we are given a set of maps ({£/„}); 2) any set of
maps {Ua} should form an atlas. By this we mean: a)
each point xeM belongs to at least one map Ua; b) over-
lapping maps Ua and Ue are compatible, i.e. , mappings
<pa<p~t and <p6<pl* of regions of tiie space Rm must be one-
to-one and infinitely differentiable.

Thus, the atlas {Ua, <pa} specifies the structure of the
differentiable manifold in the original setM. Locally,
the differentiable manifold has the structure of the
sphere SJli2j<l of the Euclidean space Rm. The num-
ber m is called the dimension of the differentiable man-
ifold. We stress that in general any differentiable man-
ifold requires for its description more than one map in
the atlas. If a differentiable manifold is topologically
equivalent to a Euclidean space, one map is sufficient.
For example, the upper sheet of the two-sheeted hyper-
boloid H2 = {x2

0-x\ - x\ = \, x0>0} can be mapped in a
one-to-one manner onto the planeR2={xl txz}, thereby
giving an atlas containing only one map, i. e., H2 and
R2 are topologically equivalent. In the general case, one
map is insufficient, i. e., it is insufficient to specify a
single mapping (2).

Local coordinates make it possible to employ the
usual concepts of analysis on a differentiable manifold:
to consider functions on a differentiable manifold, to
construct tangent vectors, and so forth. In particular,
the maps {Ua} occur in the definition of fiber bundles
over a differentiable manifold.

Let/be a mapping of one differentiable manifold onto
another ( f : M - ~ M l } , If this mapping defines a smooth
deformation of the differentiable manifold, it is called
a diffeomorphism.

More precisely, let the point x belong to the map
Ua cM and its image f(x) belong to the map Va cMt. If
tpa is a mapping of the map Ua into R", and ha is a
mapping of the map Va intoR"1, then the mapping/ is a
diffeomorphism if compositions of mappings of R" into
Rm of the form hafip~* and <par

lh~* are infinitely differ-
entiable. Thus, for example, we have an obvious
diffeomorphism of the cylinder {x% + x% = l,xa arbitrary}
and the single-sheeted hyperboloid {x2 - x\ -*2 = -l}.

Nontrivial examples of differentiable manifolds are
provided by Lie groups. Thus, the group SU(2)—the set
of complex matrices of the form (."a *a} = g with deter-
minant 1—is diffeomorphic to the sphere S3. In fact,
the condition det^= a|2 + |£|2 defines the sphere S3 in
the four-dimensional space IT.

By means of a stereographic projection, it is possible
to construct an atlas of the sphere S3 in the same way
that this was done for the two-dimensional sphere S2.
It is well known that the group SU(2) covers the group
SO(3) twice. Let us see what the group SO(3) represents
as a differentiable manifold. Every rotation g^ SO(3)
can be specified by a vector directed along the axis of
rotation, the length of the vector being equal to the
angle of rotation. These vectors fill a sphere of radius
it, the antipodal points on the surface of the sphere
being identified, since rotations through angles IT and
-IT are identical. The resulting manifold is diffeo-
morphic to the three-dimensional projective space
RP3. The points oi RP3 are the lines of the spaceR4

passing through the origin. We shall not prove the
diffeomorphism of the manifolds SO(3) andRP3, but
shall indicate the structure of an atlas forRP3.

It follows from the definition ofRP3 that its points can
be specified by so-called homogeneous coordinates
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(xlt x2,x3, x4), where the numbers xt are determined with
accuracy up to a common factor. We form an atlas of
four maps

a | > 8 > 0},

(a = 1, . . ., 4),

where the functions tpa are defined as follows:

An arbitrary real projective space Ri3" is defined as
the set of lines passing through the origin in the space
R **. It can be shown thatRP" is a differentiable mani-
fold of dimension n. We shall indicate another reali-
zation ofRP". We construct the unit sphere S" in the
space R tl. Then each line inR'*1 corresponds to two
antipodal points on the sphere S. Thus, the sphere S"
with identified antipodal points is another model of the
space R'3". Similarly, the set of complex lines in the
space C "l forms a complex projective space, which is a
differentiable manifold of dimension 2n. Points on the
unit sphere S2"*1 in the space C"*1 which differ by a
phase factor exp(i(p) correspond to a single complex
line.

b) Equivalence classes

Various types of sets can be divided into nonover-
lapping classes according to certain criteria. For ex-
ample, the plane can be represented as the set of con-
centric circles with radii varying from zero to infinity,
and the set of vector potentials can be represented as
the totality of classes of gauge-equivalent potentials.
In the first case, points in the plane fall into a single
class if they are equidistant from a fixed center. In the
second case, equivalent potentials are related by gauge
transformations.

Another example of a partition into equivalence
classes is the partition of continuous mappings into
classes of homotopically equivalent mappings (see Sec.
3d on homotopy).

It is easy to see that in the first two examples an
equivalence relation is established by means of the ac-
tion of a group of transformations. In the first case,
points of the plane fall into a single class if there exists
a rotation which carries one point into the other, or,
in other words, the points belong to a single orbit of the
group of rotations. In the second case, equivalent po-
tentials lie on a single orbit of the group of gauge trans-
formations.

This construction also holds in the general situation.
Suppose that the group G acts as a group of transforma-
tions of the manifold P. Then P is partitioned into a
set of equivalence classes P/G with respect to the ac-
tion of the group G. Each equivalence class is an orbit
O of the group G. The set of equivalence classes P/G
is called the factor space, and the correspondence TT
relating to each point x<=P containing its orbit
Oe-P/G (v.P — P/G) is called the projection.

We shall give two examples.

1) Let P be the sphere S", and let G - Z2 be the group
which takes the point x into —x. Then each orbit O of

the groupZ, consists of two points, and the factor space
S" z j is the real projective space RP".

2) If P is the sphere S2"*1 in the space C"*1: {| z0|
2

+ | zi |2 +1 2n |2 = !} and G is tne group U(l), which takes
points of the sphere into themselves, zk~ex$(i(p)zk,
thenS2n*1/U(l)=CP'1.

An important special case of this construction occurs
when the original space P is itself a group. Suppose,
for example, that P is the group SO(3) and that G = SO(2)
and suppose that the action of G on P is multiplication
to the right by elements g<= SO(2). Thus, the factor
space P/G is the set of elements of the form {pG}.
Elements p1 and p2 belonging to P = SO(3) fall in a sin-
gle class if Pllp2 e SO(2). We shall show that P/G is
the two-dimensional sphere S2. Let XQ be a fixed point
of the sphere. Then any other point xl of the sphere
can be obtained by means of a rotation from the point
xa: x1=pxa. The subgroup G of rotations around the
axis passing through x0 and the origin is SO(2). Thus,
if geSO(2), then X0=gx0. Clearly, the point x1 also
satisfies the representation x1=p1x0, where pi=pgand
g is an arbitrary element of SO(2). Therefore the set
of points of the sphere S2 coincides with the set {pG},
i. e., with the factor space P/G.

The sphere is a homogeneous space with respect to
the action of the group SO(3). This means that all its
points are related by a rotation from the group SO(3).
The subgroup SO(2) is the stationary (little) subgroup of
the point xa. In the general case, a partition of a group
P into equivalence classes with respect to the action of
a subgroup G leads to a homogeneous space P/G with
the stationary subgroup G. Other examples of homo-
geneous spaces are the spheres S" = SO(n+ l)/SO(w), the
upper sheet of the hyperboloid H = {xz

0- x\-x\- x\
= 1,*0>0} = SO(3,1)/SO(3), where SO(3) preserves the
point (1,0,0,0) , and the spheres S2"*1 = SU(n + l)/SU(n)
of odd dimension. It follows from the last example that
the complex space CP" can be regarded as the homo-
geneous space SU(«+ l)/U(l)^SU(n).

c) Exact sequences

The formalism of exact sequences is convenient for
the calculation of homotopy groups (see the next subsec-
tion).

Let/ be a homomorphism of the group Xt into the
group X2, i.e., a mapping such that f(ab) =f(a)f(b) and
f(e1) = e2, where ei (e2) is the unit element of the group
X1 (X2). The set of elements of Xi which are mapped
into e2 is called the kernel of the homomorphism / and
is denoted by Kerf. The image of the group X^ in the
group X2 under the homomorphism / is denoted by
Im/(Im/=/(X1)). Thus, Ker/c-Xj and Im/cX2.

Suppose, for example, thatXx and X2 are two vector
spaces, regarded as Abelian groups, and let/be a
matrix which maps XL into X2. The matrix/ deter-
mines a homomorphous (mapping) of the Abelian group
X1 into the Abelian group X2. Then Ker/ is the set of
solutions of the homogeneous equation fx = 0, and Im/
consists of the vectors of X2 which admit the represen-
tation y—f- x (the space X2 itself may be larger and
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FIG. 1. The unit elements of the groups Xf are plotted along
the horizontal axis.

may contain other vectors). We note that a nontrivial
kernel occurs when det/=0.

Consider a sequence of groups and homomorphisms
fj-. X;.j -*X}. It is said to be exact in the term Xj if

Im f , = Ker fi+1.

A graphical illustration of a sequence which is exact in
the terms Xt and X2 but not in X9 is given in Fig. 1.

We shall consider some interesting special cases.

1) Suppose that we have the exact sequence

Then by definition Im/1 = Ker/2. ButKer/2=Xt. There-
fore Im^ —Xlt i. e. , the entire group X^ is the image of
the group X0.

2) We shall show that exactness of the sequence

leads to the isomorphism X1 & X2. Indeed, Ker/3 =X2,
and exactness in the term X2 leads to the equality
Im/2=X2. Exactness in the term X1 implies the equality
Ker/2 = e. Thus, the homomorphism /2 maps the group
X1 onto the entire group X2 with a trivial kernel, i. e. ,
the groups Xx and X2 are isomorphic.

3) Consider the exact sequence of groups
/ , / , / • , f .

e — > A j — * A2 — *• -A 3 — * e.

Since Ker/2 = e, the image Im/2 is isomorphic to Xj
(im/2s.X1). ButKer/3 = Im/2. Therefore Ker/,,-^.
On the other hand, Im/3=X3. Consequently, if we
consider in the group X2 the set of orbits (see Sec. 3b
on equivalence classes) of its subgroup Im/2 ̂ Xlt the
resulting factor space X2/Im/2 is isomorphic to X3,
since the orbit passing through the unit element is
mapped onto the unit element of the group X3.

We shall give examples which illustrate the last case.

1) Consider the exact sequence of Abelian groups

Here /j is the embedding of zero into the group of inte-
gers, /2 is the embedding of the group of integers into
the group of real numbers, /3 is the exponential ma.p-
ingfs(t) = exp(2irit), and/4 is the mapping into unity.
Thus, the circle S1 is obtained with the factorization
S1=R/z, and the mapping/3 is the projection IT (see
Sec. 3b on equivalence classes).

2) There exists an exact sequence

where

/I 0 0'
«,= 0 1 0

\0 0 1

The homomorphism /3 is accomplished by means of a
stereographic projection of the bilinear transformation
of the complex plane z — • (az - 0)/(j3z + a ) into the group
of rotations of the sphere, SO(3). Thus, SO(3) = SU(2)/
Z2, i- e. , an element gE. SO(3) has two inverse images in
SU(2) under the homomorphism /3: u and -u. This
means that the group SU(2) covers the group of rotations
twice.

3) The exact sequence of unitary groups

SU (ra) 4. U (n) 4 U (1)

As usual, /2 is the embedding of the group SU(n) into
U(w). The mapping /3 has the form f3(g) = detg for

In other words, we have U(l) = U(n)/SU(n).

d) Homotopy group

Homotopy groups constitute one of the possible
variants of the algebraic description of the topological
properties of manifolds.

First of all, we introduce the concept of homotopy of
two continuous mappings of one manifold into another.
Let <p and g be two such mappings of X into Y. They
are said to be homotopic if there exists a parameteric
family of mappings /,: X — Y, continuous in x<=X and
*<E [0, 1], such that/0 = (p and^—g. In other words,
homotopy implies the possibility of continuous defor-
mation of one mapping into the other. All continuous
mappings of X into Y can be partitioned into classes of
mutually homotopic mappings.

Let us see what form the partition into classes takes
in the case of a continuous mapping of a circle into a
circle (X=SX -S1 = Y). Let the circle be given by the
equation | z =1. Then the mapping exp(i6) = exp(i<p(0))
is continuous under the condition (p(2ii) = <p(Q) + 2kv,
where fe is an integer. The number k is called the
degree of the mapping and indicates the number of
rotations under the mapping ip. It can be shown that
mappings having the same degree are homotopic; at
the same time, if mappings have different degrees,
then they belong to different homotopy classes. Thus,
every mapping is homotopic to a canonical mapping

2".

One of the most important problems of topology is the
problem of homotopic classification of the mappings of
the n-dimensional sphere S" into a given manifold X.
It turns out that it is possible to define an operation of
multiplication of homotopy classes of mappings and to
convert the set of classes into a group.

We shall first consider continuous mappings of the
circle S1 into a manifold X. We fix a point x0 in X and
consider only mappings y(f): S1 —X (t is a parameter on
the circle) such that y(0) = *0. The set of such mappings
{y(f)}=n(X,x0), which represents all possible closed
contours in X passing through the point x0, is called the
space of contours (loops). Contours from n(X, xa) can
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be multiplied together as follows. By the product of two
contours yt *y2(0, we mean the contour y(f) which be-
gins at the point x0, passes along the contour y1( and
then along the contour y2. However, this product does
not convert the space of loops n(X, *0) into a group.
The point is that this multiplication is not associative,
owing to the difference between the parameterizations:
ri*(y2 *y3)*(y1 *V2)*y3- Although the contours are not
identical, they are mutually homotopic: yt * (y2 *ys)
* (yj *y2) *y3. Therefore we shall identify homotopic
contours in the space &(X,x0). Thus, i fy j ac^and
y2=CT2, then their products are homotopic: y1ty2(t)
= ax *a2(0. The multiplication which we have intro-
duced converts the classes of homotopic contours into
a group. The unit element of the group is the class of
contours homotopic to the constant mapping y(t) = x0. In
other words, this is the class of contours which can be
contracted continuously into a point. The group which
we have constructed is called the fundamental group of
the manifold X and is denoted by ir1(X, X0).

By definition, the group n^X, x0) depends on the
choice of the point x0. However, if the manifold Xis
linearly connected, i. e. , if any of its points can be
joined by a path, then the groups ff^X, x0) and 7Tj(X, x^}
constructed for different points are isomorphic.
Therefore we make no reference to x0 in these cases.

A manifold X is said to be simply connected if its
fundamental group is trivial, i. e. , if any contour in X
can be contracted into a point. Examples of simply
connected spaces are the Euclidean spaces R":, spherical
regions, and the spheres S" for n^2. However, the
circle S1 is not simply connected. We have in fact al-
ready calculated its fundamental group: T7,(S1) = Z. It is
easy to see that on the torus T2 there are two indepen-
dent noncontractable contours, which generate its fun-
damental group. Therefore 7T!(r2)= Z rZ. The torus is
a direct sum of two circles: T2=S1®S1. This example
is a particular case of a general assertion: Tr^X® Y)

In Sec. 3a on differentiable manifolds, it was shown
that the group SU(2) represents the sphere S3, and it is
therefore a simply connected manifold. At the same
time, in the group SO(3) there exists a closed contour,
not contractable into a point, joining the rotations
around a given axis through the angles u and —it. But
the product of this contour with itself is contractable
into a point. This means that 7^(80(3)) = Z2. The
groups SU(2) and SO(3) are locally isomorphic, and the
fact that their fundamental groups are different indi-
cates precisely that the group SU(2) covers the group
SO(3) twice. We shall give other examples in what
follows. But there we note that although the funda-
mental groups were Abelian in all the foregoing ex-
amples, this is not the general rule. For example,
the fundamental knot group is non-Abelian. However,
the fundamental groups of Lie groups are Abelian.

Higher homotopy groups are defined by analogy with
the fundamental group. For this, it is necessary to
define multiplication of homotopy classes of mappings
of the n-dimensional sphere S" into a manifold X. We
shall consider the mappings a: S"^X which carry a

fixed point of the sphere s0 e S" into a fixed point x0

= a(s0)eX. The product a */3 of the mappings a and |3
is defined as the mapping of S" into X which is identical
to a on one hemisphere and identical to (3 on the other.
Then the equator S""1 of the sphere S", which separates
the hemispheres and contains the point s0, is mapped
entirely into the point x0. If the mappings a ~ at and
)3 a/3j are homotopic, then their product is homotopic:
a */3«a1*/31. Therefore multiplication carries over
to homotopy classes of mappings of S" into X. This
operation determines the homotopy group nn(X, x0) of
order n. It is easy to show that for n>\ these groups
are Abelian. The relation between the groups fln(X, x0)
and TTn(X,Xj) is the same as for the fundamental groups
constructed for different points. We note also that the
set n0(X, x0] does not have a group structure. It indi-
cates the number of components of connectivity of the
manifold X. This follows from the fact that the sphere
S° is a pair of points. But if X is a Lie group, we can
introduce a group operation in the set of components of
connectivity, and i0(X, xa) is converted into a group. In
addition, it can be shown that multiplication in the
group vn(X) is specified by means of multiplication in
the group X.

The next assertion enables us to understand the im-
portance of homotopy groups in topology. If/ is a
continuous mapping of a manifold X into Y, there exists
a homomorphism /* of topological groups:

U- ^ (X) -> nn (V). (3)

If the manifolds are topologically equivalent, their
homotopy groups are identical. In general, the con-
verse is not true.

The calculation of homotopy groups of manifolds in
the general case is a complicated problem. In certain
cases, the answers are intuitively obvious. For ex-
ample, the homotopy groups of a Euclidean space are
trivial. Similarly, 7r.(S") = 0 for i<n and n> 1, and
ir,(S') = Z.

We shall now indicate a method which makes it pos-
sible to express unknown homotopy groups in terms of
known ones. Consider a manifold P, on which we are
given an equivalence relation by the action of a group G
(see Sec. 3b on equivalence classes). We can construct
two mappings: 1) the embedding i of the orbit O of the
group G into the manifold P,

2) the projection of P onto the space of orbits M=P/G:

n: P • M.

According to (3), there exists a sequence of homomor-
phisms of homotopy groups:

Moreover, there exists a relation between the homo-
topy groups of the space of orbits M and the group G.
It is given by the so-called boundary homomorphism:

We shall not construct it in the general case, but shall
give it in the examples which follow. It turns out that
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the sequence continued by means of the boundary homo-
morphism becomes exact (see Sec. 3c on exact se-
quences):

4. nn (O) -^ nn (P) ^» „„ (M) -1 «„., (0) ± .

For the examples given in Sees. Ib and Ic, we shall
show how this exact sequence can be used to calculate
homotopy groups.

1) The factorization S1=R/Z leads to the exact se-
quence

Since TTO(Z) = Z and irn(Z) = 0 forn>0, we have ^(S1)
= 0(n>l)and ir1(S1)=Z.

2) Consider the sphere Sm as a homogeneous space
Sm = SO(m + l)/SO(w). Since for m >2 we have ff2(S

m)
= 0 and 7T1(S

m) = 0, we obtain the exact sequence

0= ns (5
m) 4- n, (SO (m)) -!* nt (SO (m + 1)) ̂  it, ($"") =0.

It follows from this that for m » 3 we have

it, (SO (m)) = it! (SO (m + 1)).

But we have proved that iTj(SO(3))=z2. Consequently,
ir1(SO(w))=z2. This means that the group SO(m) is not
simply connected and covers the group Spin(rn) twice;
for m = 3, the latter is identical to the group SU(2).
Constructing the exact sequence for the higher homo-
topy groups, we obtain

nk (S0(m + 1)) = nk (S0(m)) for k < m — \.

3) The sphere of odd dimension, S2"'1 = SU(«)/SU(w - 1)
(n^2), leads to the exact sequence

0 = Jtj (S2"-') 4 n, (SU (n- 1)) -^ n, (SU (n)) -^ n, (S2"-1) = 0.

It follows from this that the group SU(n) is simply con-
nected: ir,(SU(w)) = 0.

4) Let us calculate the fundamental group of the group
U(n). From the relation U(1) = U(«)/SU(M), we have the
exact sequence

0 = it, (SU (n)) -^ n, (U (n)) ̂  n, (U (1)) -

Since ir1(U(l))=:5r1(S1)=Z and u0(SU(w))=0, we have
Jfx(U(8»=z.

For arbitrary k > 1, we have the exact sequence

Consequently,

n_ (SU(re)) = it,, (U(n)).

5) Consider the real projective space RP" = S"/Z2.
For n* 2, the corresponding exact sequence has the
form

0 = n, (Sn) ^> n, (R/») 4 it0 (Z,) 4- n0 (S") = 0.

Since ff0(Z2)=Z2, we have i?1(RPn)=Z2. By considering
this same sequence for groups of order k « n, we obtain
TTfe(ZP") = 0 ( fe<n) and irn(RP")=Z. In particular,
ir2(SO(3)) =0. It follows from example 2 that for all
groups SO(n) the group ir2 is trivial. It can be shown
that it is trivial for any Lie group.

6) For the complex projective space CP" = S2n*VU(l),
we have vr^C P") = 0, which is a consequence of the fact
that the sphere S2n+1 is connected and simply connected.
At the same time, it follows from the exact sequence

0 = it2 (S
2"< ')

2

n, (U (1)) - ) =0

that 772(CP")=Z. Thus, there exist nontrivial homotopy
classes of mappings S2~CP". In the CP" model, they
correspond to instanton solutions, whose charge is de-
termined by the homotopy class of the solution. 27

7) Consider again a sphere of odd dimension as a
factor space: S2""1 = SU(«)/SU(w - 1). For « &3, we have
the exact sequence

0 n* (SU (n _ t)) - ",(SU (n)) S. n, -«) = 0.

Hence jr3(SU(«)) = jr3(SU(w- 1)). Since 7r3(SU(2)) = jr3(S3)=Z,
we have 7r3(SU(n)) = Z • This fact is related to the classi-
fication of instantons in the Yang-Mills theory.1 There
is a more general assertion: for any simple Lie group,
its third homotopy group is isomorphic to the group Z .

8) Finally, we give the homotopy classification of the
mappings of the sphere S3 into the sphere S2; we shall
calculate the group tf3(S

2). Since S2 = SO(3)/SO(2), by
making use of the results obtained in the preceding
examples we have the exact sequence

0 = n3 (SO (2)) -^ ns (SO (3)) ̂  ji3 (S
2) 4 a, (SO (2)) = 0,

from which it follows that n3(S
2)=Z

We summarize the foregoing information in Table I.

4. GUIDE TO THE LITERATURE

First of all, we shall give a guide to the geometry of
classical gauge fields. A lucid and rather detailed
exposition (and one of the earliest ones) of the geometr-
ical approach to the theory of gauge fields was given in
the book of Konopleva and Popov.5 The paper of Popov6

is also useful.

An exposition of the methods of differential geometry
used in gauge theories which is acceptable to physicists
can be found in the book of Dubrovin, Novikov, and
Fomenko.7 Daniel and Viallet,1 who introduced the
mathematical concepts, made essential use of the two-
volume monograph of Kobayashi and Nomizu,8 whose

TABLE I.

Differentiate
manifold

S1

S*
S'

r» = 5!® 5'
SO (n) (n > 2)

SU(n)
Simple Lie groups

U(n)

RP"

CP"

"i

Z
0
0

1®1
%s
0

—Z
2,(n>l)

0

"l

0
Z
0
0
0
0
0
0

1 0 n > 2
\ Z n = 2

Z

-is

0
z
Z
0
Z
Z
Z
V

tO n>3
\2 n = 3
'
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Russian translation was published in 1981. There is a
closely related book by Nomizu.9 Of the mathematical
books, in addition to the foregoing we can recommend
the books of Steenrod,21 Bishop and Crittenden,10 and
Chern. u In particular, the last of these contains the
theory of characteristic classes. This theory is the
main subject of the paper by Chern12 and the book of
Milnor and Stasheff.13 The theory of differential forms
is outlined in the books by Efimov,14 Cartan,15 and
de Rham.16 The last book contains an exposition of
cohomology theory. For the geometry of Lie groups,
see the collective monograph of Ref. 17. An exposition
of certain problems of topology addressed to physicists
is given in the lectures of Schwarz18 and Shapiro and
Ol'shanetskii.19

Drinfel'd and Manin25 have given a geometrical de-
scription of instantons and a new approach to the geo-
metry of instanton configurations.

Finally, we give a brief characterization of the
above-mentioned reviews.2"4 The review of Ref. 2
gives an account of the application of homotopy theory
to various field-theoretic models. It also contains
considerable factual material on homotopy groups.
Mermin's review3 contains the application of the
same theory to certain problems of solid-state phy-
sics. It explains in detail the basic concepts of homo-
topy theory. The review of Ref. 4 is devoted to the ap-
plication of the methods of algebraic topology and dif-
ferential geometry in the Yang-Mills theory and in the
theory of gravitation.

We turn now to the introductory papers in the litera-
ture. First of all, we note that the definition of differ-
entiable manifolds is contained in most of the mathe-
matical books mentioned in the bibliography. The
reader can best acquaint himself with homotopy theory
from the lectures of Schwarz,18 the book of Dubrovin,
Novikov, and Fomenko,7 or the monograph of Hu,20

which is intended for the reader with previous prepa-
ration. Exact sequences are considered in the lectures
of Shapiro and Ol'shanetskii.19 The reader can ac-
quaint himself with the material contained in Sec. 3c
from the books of Dubrovin, Novikov, and Fomenko7

and Nomizu.9
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