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The behavior of dielectric glasses at low temperatures when acted on by electric and acoustic fields is
discussed. The anomalous low-temperature behavior of the heat conductivity and the heat capacity is
described. A phenomenological model of two-level systems in glasses arising from tunneling transitions is
presented. Results are given of the experimental and theoretical studies of the phenomena of saturation,
induced transparency of the medium by application of acoustic and electric pulses, and "hole-burning" in an
inhomogeneously broadened line. Considerable attention is paid to discussing the experimental results on
generation of coherent responses of echo signals. In order to describe the formation of phonon-echo signals in
glasses, the concept is employed of spectral diffusion, which consists of a dynamic alteration of the resonance
frequency. We stress both the aspects of the properties that are common with the phenomena of magnetic
resonance, and the differences that arise owing to the broad spectrum of the two-level systems.
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1. INTRODUCTION

Heightened interest has been seen recently in studying
disordered systems such as spin glasses, amorphous
metals, superionic conductors, etc. Besides these sys-
tems, considerable attention has been paid to such a
broad class of amorphous compounds as the dielectric
glasses. These objects have attracted little attention
from theoreticians and experimentalists, owing to the
complexity of the calculations of models of disordered
systems and the lack of long-range order parameters.
A breakthrough occurred after the studies of Zelier and
Pohl,1 who first turned their attention to the anomalous
behavior of the heat capacity and the heat conductivity of
various glasses at low temperatures and the study of
Heinicke et al.,z who discovered the anomalous absorp-
tion of sound in analogous objects. Further studies have
shown that the low-temperature anomalies are charac-
teristic of all types of dielectric glasses, independently
of their composition.3-4

Several models have been proposed to explain the ex-
periments. The most successful model has proved to be

that of Anderson, Halperin, Varma, and Phillips, which
postulates the existence in glasses of tunneling transi-
tions that lead to a broad energy spectrum (108_1012 Hz)
of localized two-level systems. This subsequently led
to a phenomenological description of a new spectrum of
elementary excitations using the "pseudospin" S = l/2.
Here a remarkable analogy arose between the phenom-
ena in spin resonance and the low-temperature proper-
ties of glasses. A number of effects was found, such as
saturation and an associated anomalous variation in the
velocity of sound with temperature, induced transpar-
ency of the medium caused by acoustic and electric pul-
ses, "hole-burning" in an inhomogeneously-broadened
line, and the discovery of the electric and acoustic
echo.5'6 Here we must mention that the fundamental dif-
ference from radiospectroscopy is the extremely broad
spectrum of two-level systems. Moreover, it is as-
sumed that the number of states per unit energy interval
is a constant or a slowly varying function. One of the
consequences of this postulate is the deduction of a log-
arithmic dependence of the heat capacity on the time
taken to perform the experiment.
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We note that there is as yet no consistent microscopic
theory to substantiate the existence of localized two-
level systems in dielectric glasses at low temperatures.
More than that, the very possibility of existence of a
low-energy spectrum of elementary excitations in glas-
ses aroused some doubt until recently. Therefore the
discovery and study of coherent responses in amorphous
specimens upon pulsed excitation with electric and
acoustic fields was the most convincing confirmation of
the hypothesis of the existence of two-level systems
arising from tunneling transitions. The description of
the processes of formation of the phonon echo in glasses
by a relatively narrow band of frequencies of exciting
pulses, as compared with the broad spectrum of two-
level systems that we have already mentioned, required
the concept of spectral diffusion to explain it.7 In turn,
this led to a deeper understanding of the phenomenon of
acoustic saturation. In particular, the conclusion was
most interesting that the width of the spectrum of satur-
able frequencies depends on the duration of the saturat-
ing pulse. This was subsequently confirmed experimen-
tally. We see from what we have said that up to now a
large number of results has accumulated on the dynamic
processes in dielectric glasses at low temperatures.
However, the literature contains no sufficiently com-
plete review reflecting the current state of this prob-
lem, apart from the excellent article of Hunklinger and
Arnold,8 which was concerned exclusively with acoustic
studies in glasses up to 1975. We have set ourselves
the problem of reflecting the principal theoretical and
experimental results on dynamic processes in dielectric
glasses in electric and acoustic fields. In presenting
the material, we have deliberately restricted the treat-
ment to a phenomenological description employing the
concept of, the "pseudospin" S = l/2. This has per-
mitted us to put the major stress on the physics of the
phenomena and to describe qualitatively the entire set
of numerous experimental facts. Throughout the re-
view, we stress both what the properties have in com-
mon with the phenomena of magnetic resonance and the
differences that arise owing to the extremely broad
spectrum of two-level systems. In spite of the breadth
of problems discussed, the review is not complete.
Thus, for example, we have hardly treated the anoma-
lous variation of the velocity of sound with the temper-
ature, which has been presented rather fully in Ref. 8.
We should note that the fundamental views on this prob-
lem have not suffered substantial changes in the past
five years.

2. LOW-TEMPERATURE ANOMALIES IN
DIELECTRIC GLASSES

a) Microscopic structure of glasses

The current view on the microscopic structure of
glasses is based on the hypothesis of Zachariasen,9 who
proposed that one can consider a glass to be a disor-
dered network of atoms having the same interatomic
distances as in the corresponding crystal structure.
The simplest and best studied is the silica glass SiO2.
X-ray diffraction studies have shown that the mean dis-
tances between two nearest silicon and oxygen atoms
are 1.62 A, while those between nearest silicon atoms

FIG. 1. a) Two-dimensional diagram of a crystal; b) the dis-
ordered structure of glasses.

are 3 A. This practically matches the interatomic dis-
tances in the crystalline modifications of SiO2. How-
ever, the glasses exhibit a large spread of Si-O-Si an-
gles from 120° to 180° (Fig. 1). The experiments show
that order is conserved in silica glasses at distances of
10-12 A. In the more complex cases the irregular net-
work of multicomponent glasses consists of both plane
units of the type of SiO2 and SiO4 tetrahedra linked at
random.

Kittel10 first paid attention to the difference in behav-
ior of the thermal properties of dielectric crystals and
glasses in the temperature range from 100 to 300 K. In
contrast to Xcryst, the heat conductivity xgl of glasses
declined with decreasing temperature and depended
weakly on their composition. Here xgi was considerably
lower than Xcrrat (

Fii- 2^- Kittel proposed that the mean
free path of phonons is close in order of magnitude to
the dimensions of the SiO4 tetrahedra. This gave rise
to the small spread in values of the heat conductivity of
different glasses as compared with crystals. The de-
crease in the heat conductivity with decreasing temper-
ature was explained by the difference between plane
waves and the normal modes. They coincide in a regu-
lar lattice. In glasses an original plane wave becomes
distorted and one can treat it as a set of normal modes
having different eigenvalues. With decreasing temper-
ature the mean free path of phonons begins to increase
and becomes greater than the dimensions of the tetra-
hedral cell. Actually, Berman11 discovered a plateau in
the temperature-dependence of the heat conductivity at

FIG. 2. Temperature-dependence of the heat conductivity of
crystals and glasses.
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10 K, and associated its appearance with an increased
mean free path in the low-temperature region. Subse-
quently this theory has been refined by a number of
authors and some quantitative estimates have been of-
fered.12 It seemed that the thermal properties of glas-
ses had been explained satisfactorily, at least qualita-
tively. However, subsequent experiments required a
cardinal reexamination of the existing views on the
mechanisms of heat conduction and heat capacity in
glasses in order to interpret them.

b) Low-temperature anomalies of heat conductivity and
heat capacity in dielectric glasses

In order to understand what was expected to be found
in glasses at low temperatures, we recall how the heat
conductivity and the heat capacity behave in dielectric
crystals. According to the well-known Debye theory,
heat is conducted in dielectric crystals by phonons,
while the mean free path I determines the rate of ener-
gy exchange between the phonons belonging to different
modes. The heat conductivity is determined by the ex-
pression

x-Jcw. (1)

Here v is the mean velocity of the phonons and C is the
heat conductivity of the lattice. At low temperatures /
becomes comparable with the dimensions of the crys-
talline specimen, and the variation of the heat conduc-
tivity is determined by the temperature-dependence of
the heat capacity according to the law T3. Tempera-
tures below 1 K correspond to thermal phonons w ith a
wavelength greater then 1000 A- This exceeds by a fac-
tor of hundreds the dimensions of the interatomic dis-
tances and those of the elementary tetrahedra of the
basic structure of the glasses. Therefore, at low tem-
peratures the phonons will propagate in glasses as in a
homogeneous crystalline medium, and there should be
no fundamental difference in the temperature behavior
of the heat conductivity and the heat capacity of amorph-
ous dielectrics and crystals. Zeller and Pohl1 first
studied the heat conductivity of various glasses at low
temperatures. They showed that the temperature-de-
pendence of the heat conductivity of all the studied glas-
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FIG. 4. Temperature-dependence of the mean free path.1 1—
crystalline quartz, 2—quartz glass.

ses in the range from 0.1 to 1 K is determined by the
expression \=ATa, where (7*1.8 (Fig. 3). Moreover,
the temperature-dependence of the mean free path of
phonons was determined. Figure 4 indicates that the
mean free path of phonons increases with decreasing
temperature. This causes the values of the heat con-
ductivity of quartz glass and crystalline quartz to ap-
proach each other at 7X10 K (Fig. 3). Figure 4 implies
that we have I <x w"2 at temperatures from 0.1 to 1 K. In
addition to these facts, Zeller and Pohl discovered an
anomalous behavior of the temperature-dependence of
the heat capacity

C = AT + BT*. (2)

Here the linear term in the heat capacity varies little
for different specimens. These experimental results

BortMilicate glasses 1-3

*" r\
» ° * N

* o°^«* Sodium silicate gl«ie*

FIG. 3. Temperature-dependence of the heat conductivity.1

1—crystalline quartz, 2—quartz glass.

10" -. ro°
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FIG. 5. Temperature-dependence of the heat capacity for
glasses having differing contents of magnetic impurities?
l_pyrex No. 7740, Fe concentration 100 ppm;2—Pyrex No.
9700, Fe concentration 12 ppm; 3—Pyrex No. 9700 in a mag-
netic field H= 33 kG.
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are not explained by models based on various modifica-
tions of the Debye law. Then Stephens3 performed de-
tailed studies of a large number of specimens. He found
that the heat conductivity x~ T2 practically did not de-
pend on the impurities. The heat capacity was de-
scribed by the expression (2), with the value of B about
three times larger than the value obtained on the basis
of the Debye theory, while the linear term predominates
below 0.2 K. While the heat conductivity did not depend
on the impurities, in contrast, an increase in the con-
centration of iron increased the heat capacity. Upon
applying the magnetic field H=33 kG, it became possi-
ble to eliminate the effect of magnetic impurities and
the temperature-dependence of the heat capacity prac-
tically coincided with the analogous dependence for
glasses without the magnetic impurities (Fig. 5). Sev-
eral theories have been proposed to explain these phe-
nomena,13 but we shall take up in detail the theory of
Anderson, Halperin, Varma, and Phillips,14'15 which
has not only explained the results that were obtained,
but also has predicted a number of new effects, which
have subsequently been confirmed experimentally.

3. METHODS OF THEORETICAL DESCRIPTION OF
THE ANOMALOUS BEHAVIOR OF DIELECTRIC
GLASSES

a) Model of localized low-energy excitations

This model is based on the hypothesis that atoms or
groups of atoms exist in all dielectric glasses that can
lie with almost equal probability in two equivalent posi-
tions. This situation is conveniently described by a
double asymmetric well potential (Fig. 6). The most
important parameters are: V-the height of the potential
barrier, e-the energy asymmetry of the two local min-
ima, and rf-the distance between the two minima. Tun-
neling leads to the binding energy A = 7ut;0exp(-X), where
w0 is the frequency of the zero-point oscillations, X
= K ~l(N 2rn V is a parameter that allows for the overlap
of the wave functions, and m is the mass of the tunnel-
ing particle or group of atoms. Tunneling leads to re-
moval of degeneracy, so that the energy splitting of the
two lower levels is

E = yV + A2. (3)

At low temperatures one can restrict the treatment to
the two lower levels, which have the splitting E and the
population difference described by the Boltzmann factor
exp(—E/2&r). The quantities e and A vary randomly,
owing to such factors as a different environment of the
atoms around the two potential minima, local stresses,

etc. In turn, this gives rise to a random splitting of the
energy levels. Upon introducing the number n(E) of •
two-level systems per unit energy interval, we can
easily calculate the heat capacity of the set of such lo-
calized states:

exp(-E/2kT)
(4)

The important hypothesis has been advanced14-15 that
n(E) is a slowly varying continuous function of £, with
n(0)*0. This leads directly to a linear temperature-
dependence of the heat capacity:

C a - (5)

This model also allows one to describe the interaction
of the two-level systems with electric and acoustic
fields. Coupling between the localized two-level sys-
tems and phonons arises from the deformation of the
double potential well by the elastic waves. We can write
the Hamiltonian of the original two-level system in the
form

(6)

Upon assuming for simplicity that the strain of a longi-
tudinal acoustic wave mainly alters the asymmetry E,
we can represent the interaction Hamiltonian as

set=-te(l_l}- (7)

Here y = d t / d e is the deformation potential. Upon ex-
pressing the elastic strains in terms of the operators
for creation and annihilation of phonons,14 we can write
the matrix element between the states 1 and 2 of the
Hamiltonian of (6):

(8)

FIG. 6. Double asymmetric potential well. V—height of bar-
rier, e—asymmetry parameter, d—distance between the en-
ergy minima, 7Tu0/2—energy of the ground state.

Here p is the density, and v± is the velocity of a longi-
tudinal acoustic wave having the wave vector k. By us-
ing the matrix elements of (8), we can easily calcu-
late8'16 the time Tl that it takes the two-level system to
go over to the lower state upon emitting a phonon and
the time rk for resonance absorption of a phonon by the
localized mode:

(9)

(10)

Here vt is the velocity of a transverse sound wave, d>
= kv, and o;=l, t. In the high-temperature approxima-
tion hu<2kT, Eq. (10) implies that the absorption I'1

= rv behaves as follows:

!-'«-£• (ID

The expression (11) explains the observed temperature-
dependence of the mean free path of phonons1 (Fig. 4).
Substitution of Eqs. (11) and (5) into (1) yields x &T2.
Thus the theory developed in Refs. 14 and 15 explains
all the fundamental results on the anomalous behavior of
glasses at low temperatures. Along with this, a set of
conclusions stems from the obtained results that can be
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directly tested experimentally. First there is the rela-
tionship rltr o>2. Further, the effect of diminished
sound absorption, which is associated with the equali-
zation of the populations, is taken into account with the
factor coth(£/2*T). Such effects, which are due to sat-
uration, are well known in magnetic resonance.18>19

For a symmetric potential well (e = 0,£ = A), Eq. (6)
fully coincides with the expression for the time Z\ em-
ployed in calculations of one-phonon processes of spin-
lattice relaxation.20 However, we must note that the
two-level systems possess the essential feature of the
continuous distribution of splittings. And in some cases
a simple analogy with magnetic resonance can give rise
to false conclusions.

Another peculiar property of glasses is the slowly
varying density of states n(E) that we have already
mentioned above. In line with this, it is interesting to
trace what restrictions this feature imposes on the tun-
neling parameter X.14 To do this, let us replace the
density of states n(E) in Eq. (4) by

P (e, X) dedX « P (0, X) dedX = P (X) dedX. (12)

Here .P(e,X) is the number of two-level systems having
the asymmetry parameter e and the tunneling param-
eter & per unit volume. For a given value, of E, the
parameter X cannot be smaller than XmU, which is de-
fined by the condition that the corrections to the eigen-
values of the Hamiltonian of (7) due to the nondiagonal
elements are small:

x>xn i ln- E ' (13)

While employing Eq. (13) and the definition of A, let us
represent Eq. (9) in the more convenient form:

4.
Bl

4. )
B{ ' 2jl* P

Icoth-; (14)

The energy splitting varies continuously from Xmln to
some cutoff value Xmal. We can conveniently introduce
the parameter TJ = xmlx - XmlB + In2, The parameter t] de-
notes the width within which we have ji>(X) =/>. The num-
ber of two-level systems that contribute to the heat
capacity is n(E) = 7]P. We see from Eq. (14) that the re-
laxation time varies by several orders of magnitude for
small changes in rj. The magnitude of n is unknown,
and it has been taken to be from one to ten. On the
other hand, one can find the limit Xmax, which is defined
by the shortest relaxation time Tlfmla for the two-level
systems having the energy splitting E=2kT:

(15)

here we have T = Tlfmlll'
1. H the time t for measuring

the heat capacity becomes comparable with T1>nilll, a
logarithmic dependence of the heat capacity on the time
for performing the experiment arises: C~ln(//TlimjB).

No experimental confirmation of this behavior of the
heat capacity has been obtained. Moreover, results
have appeared that contradict these conclusions.21'22

On the other hand, recent experiments to study the
temperature profiles have detected an anomalous be-
havior for thermal pulses of duration 0.1 ms.23

b) Description of the low-temperature properties of
glasses using the "pseudospin"5= 1/2

A merit of the models developed in Refs. 14 and 15
also consists of the fact that the coupling of the two-
level systems with the acoustic deformations can be
represented in a form analogous to the interaction of
spins § = 1/2 with external magnetic fields.19'24 Actual-
ly, upon diagonalizing the Hamiltonian of (6), we obtain

<% = !!£'#. (16)

Here £' is defined by Eq. (3), and the superscript i
means that the quantity E' pertains to the concrete ith
two-level system. However, the transformation that
diagonal izes<3f0 simultaneously converts the interaction
Hamiltonian of (7) into the form

8t\.= — 21 (S

here we have

(17)

(18)

Since the two-level systems can have an electric di-
pole moment, then, by writing the Hamiltonian for
interaction with electric fields in a form analogous to
(7) and diagonalizing, we obtain the following instead of
Eq. (17):

(
Here M' and M' are the nondiagonal and diagonal dipole
moments, and F' is the electric field.

Thus we see that the tunneling model possesses an
analogy with a spin S = l/2 in the "constant magnetic
field" E(. Here this field varies from node to node
within broad limits. The interaction Hamiltonians in
(17) and (19) give rise to both diagonal and nondiagonal
transitions. Bearing this analogy in mind, we shall
employ everywhere below the terms "spin", "spin-spin
interaction", and "spin-phonon interactions" instead of
"pseudospin-phonon interactions", etc. This allows us
to transfer to the two-level systems, a number of con-
clusions well known in magnetic resonance, e.g., the
Bloch equations. We need not reevaluate Eqs. (16)-(19).
In contrast to the usual magnetic interactions,25 the
Hamiltonian in (7) is symmetry-invariant with respect
to the time inversion J — -t.

4. EFFECTS OF SATURATION BY ACOUSTIC AND
ELECTRIC PULSES

a) The discovery of acoustic transparency in glasses

Simultaneously with the first results of Zeller and
Pohl,1 a disagreement was discovered between the mean
free path I of thermal phonons as determined from the
heat conductivity and the data on propagation of longi-
tudinal acoustic waves of frequency 24 GHz.2 Thermal
phonons of this frequency make the major contribution
to the heat capacity at 0.4 K, and their mean free path
proves to be 0.005 cm. However, experiment2 has
shown that the mean free path is l~ 0.2 cm for longitud-
inal acoustic waves, even at T = 3.5 K. This disagree-
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ment has been explained in subsequent experiments to
study the damping of acoustic pulses in glasses as a
function of their power.26'27 The absorption of acoustic
pulses was measured in fused quartz and borosilicate
glass from 0.1 to 2.5 K at frequencies 0.4-2 GHz. The
energy of the acoustic pulses was varied from 10"7 to
10"2 ergs. A sharp alteration in the damping of the
acoustic pulses was found as their energy was in-
creased above 10"3 ergs. Figure 7 shows oscillograms
of multiply reflected acoustic pulses of frequency 725
MHz propagating in a glass for two values of the intro-
duced power. We see that the pulses of higher power
are damped considerably more weakly. The dependence
of the first reflected pulse on the energy introduced into
the specimen was also studied. When £>10"3 erg, the
medium becomes linear with a damping l~l-=\n(E/E^/
2L, where L is the length of the specimen. We note
that, when one performs the same experiments on
crystalline quartz, the acoustic absorption does not de-
pend on the energy of the applied pulses. The quartz
crystal was a linear medium throughout the energy
range.

The dependence of the absorption of acoustic pulses
on their intensity J has been determined28 at three fixed
frequencies (Fig. 8). Within the limits of experimental
error, the absorption varied as w2, in line with the
conclusions of Eq. (11). For relatively large intensi-
ties the intensity varied as l~J~1/2. One can explain
these results qualitatively with the concept of localized
two-level systems. Actually, starting at a certain in-
tensity (~10~7 W/cm2), the populations become equal-
ized, i.e., saturation sets in, with a consequent de-
crease in sound absorption.

b) Application of the Bloch equations to saturation
processes

For an analytic description of the effects of satura-
tion we shall employ the Bloch equations, which have
enjoyed widespread use in magnetic resonance19:

(20)

Here we have M( u/) = (S') with energies E' =Ku'. 2\ and
T2 are the longitudinal and transverse relaxation times,
Be0/K is the nutation frequency in accordance with Eqs.
(17), M,(w') = (l/2)tanh(Kw'/2fer), and the deformation
e varies according to the law e0cos(citf). One uses

FIG. 7. Damping of pulses of longitudinal acoustic waves in
borosilicate glass at T= 0.35 K.s Power introduced into the
specimen: a) 5 n\V/cm2; b) 1 mW/cm2.
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FIG. 8. Dependence of the acoustic absorption in borosillcate
glass for longitudinal waves on their intensity for three fixed
frequency values.28

the standard method of magnetic resonance to seek a
stationary solution of Eqs. (20). The latter implies that
saturation sets in when the condition is satisfied that
(Be3/2Jz)2Tir2>l.

In the saturation regime the resonance curve becomes
broader in the ratio [l +(Be0/2K)2T1T2]l/a. When we al-
low for the broadening, the formula (10) for the absorp-
tion takes on the form

,_,
I ' =

,
tanh - (21)

Let us introduce the value of the critical intensity /c

which is

(22)

Taking Eq. (22) into account, we write the absorption
in the form

(23)

Here we have l0'
1 = TrpB2w/pv3

a, and J= pv*ael/2. When
which corresponds to resonance absorption in

the absence of saturation, Eq. (23) goes over into Eq.
(10). In the presence of saturation (J/JK» 1), we have

(24)

The results of the experiments26"28 agree well with
the conclusions of (24). Equations (21) and (24) yield a
quadratic dependence of the absorption on the frequency,
both at low powers and in a saturation regime.

c) Interaction with electric fields

As mentioned above, the "spins" are coupled not only
with acoustic fields, but also with the electric compo-
nent of an uhf field. Actually, an anomalous behavior of
the dielectric constant with the temperature and with
saturation by the electric field has been found in studies
on dielectric absorption.29'30 Figure 9 shows the rela-
tionship of the dielectric absorption at the temperature
of 0.4 K and frequency of 10 GHz to the intensity of the
electric component of the uhf field.

At intensities 7>10"3 W/cm2, a saturation process
begins that leads to a decrease in the absorption pro-
portional to /~1/2. One can obtain an analytic expres-
sion for the dielectric absorption by replacing the
acoustic quantities with the corresponding electric pa-
rameters30:
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FIG. 9. Dependence of the dielectric absorption on the Intensity
of the electric component of the uhf field.30

to, (25)

Here c is the velocity of light and EO is the dielectric
constant. The natural question arises: are the same
two-level systems responsible for the elastic and the
electric properties? Recent experiments confirm this
hypothesis. The acoustic absorption was measured in
fused quartz and borosilicate glass while the specimen
was simultaneously treated with an electromagnetic and
an acoustic field at nearby frequencies. The measure-
ments were performed at frequencies of 1 GHz at 0.5
K,30 and 9 GHz at 1.5 K.31-32 A strong dependence of the
ultrasonic absorption on the power of the electromag-
netic field was found (Fig. 10). The effect increases as
the frequencies of the electromagnetic and ultrasonic
pulses approach. Analogous results have been obtained
upon employing a sensitive method of measurement in
which the action of the ultrasonic pulse was detected
from the variation in the electric impedance of a reso-
nance cavity containing the specimen. These experi-
ments resemble in methodology the studies on acoustic
nuclear magnetic resonance and acoustic paramagnetic
resonance.33 Here the oscillating magnetic field is re-
placed with an electric field. These results have con-
vincingly demonstrated that the two-level systems si-
multaneously possess both elastic and electric proper-
ties.

d) Temperature-dependence of the velocity of sound and
the dielectric constant

By employing the Kramers-Kronig relationships, we
can express the variation of the velocity of sound in
terms of the absorption

A.. B(r)-i»(r0) _ I v f-Mo)', r)-t-'(«»'. r,) .....
v ~ "(Ta) "3 n (o»—<o'» (26)

Here the crossed integral sign denotes an integral in
the sense of its principal value.
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In principle the study of the velocity of sound as a
function of the temperature yields the same information
as the absorption of sound. It depends less on the
acoustic power, since both resonance and nonresonance
two-level systems contribute. In the high-temperature
approximation with £co< 2kT, we obtain the following by
using Eq. (26)8:

(27)

here we have

(28)

Similarly we can describe also the behavior of the di-
electric constant in glasses:

I Q (29)
^ '

Figure 11 shows the temperature-dependence of Ac/e.

5. DIRECT INTERACTIONS BETWEEN TWO-LEVEL
SYSTEMS

In the Bloch equations (20), one introduces phenome-
nologically two relaxation times Tl and Tv The time Tl
is governed by direct single-phonon processes and can
be calculated by Eq. (9). The hypothesis was advanced
in Ref. 34 of the existence of a "spin-spin interaction"
in glasses. Here, by analogy with the spin-spin inter-
actions in magnetic resonance, it has been possible to
define a time

r,«?v (30)

Further studies have shown that the width arising from
the static "spin-spin" interactions in glasses are often
masked by dynamic processes, e.g., spectral diffusion.
Owing to the importance of the "spin-spin" interactions
in interpreting a number of the experimental results,
let us take up in greater detail the physical nature of
the source of the coupling between the two-level sys-
tems.

Let us write the Hamiltonian of the interaction of the
two-level systems with elastic fields, taking into ac-
count the fact that the deformations cause not only a
change in the asymmetry e, but also in the parameter
A. Then we obtain the following instead of Eq. (7):

$£,= y, (ea(-^- + «a«.-^-) — ( A _4|' (31)
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here we have

deua (32)

Again, upon diagonalizing the expression (31) and em-
ploying the spin operators, we obtain instead of Eq. (16)
the interaction Hamiltonian in the form

2
i. a. p

af Ei a,af Ei
e ' A < & <

(33)

(34)

(35)

Taking into account the interaction via the phonon field
field analogously to the calculations in EPR,35'36 we ob-
tain the Hamiltonian of the "spin-spin" interactions

ri 4 " tTj
The quantities </" and J" depend in an essential man-
ner on the relationship between the wave vector q and
the distance r from the defect i to the defect j. When
rii«q"i, we have

,t* _ Ba»Bat riz _ D*atDa.f I on \Jli-~A<7^?~> J{j~^W' (6"

Here we have A = 647rp2, and Bj,6 and Dj,fl are deforma-
tion potentials of the order of 1 eV.34 Thus Eq. (36) re-
sembles in structure the dipole-dipole interaction
Hamiltonian well known in magnetic resonance. The
quantities J™ couple only the "spins" having identical
energy splittings, whereas the J" couple all the two-
level systems. The continuous distribution of two-level
systems fundamentally distinguishes the situation in
glasses from the case of magnetic resonance, where
the unlike spins are, e.g., the electronic and nuclear
spins. In glasses all the "spins" are in some sense un-
like. We can consider the like two-level systems to be

those that satisfy the condition37 \Ei-Ej\<J™. One
can determine the concentration of like "spins" for
which we must take into account both </** and J", It
turns out that37 c~10"2. Therefore, below in treating
the phonon echo, we shall restrict the treatment to the
terms containing J".

The treatment of the interaction via the phonon field
assumes a regular lattice. This description is ill-
suited to such disordered systems as glasses. There-
fore the derivation of the spin-spin interactions from
the equations of propagation of sound in glasses as a
continuous medium is of undoubted interest.7 Here
D'agS', plays the role of an "elastic dipole moment" and
can be treated as the source of the elastic field, just as
the magnetic moment is the source of the magnetic
field. Therefore the term e'D'S'^ represents the exter-
nal stress localized at the node i, and according to
Hooke's law38 we have

-i>j)00(avUv) = (Az||S«)<?86(>-). (38)r).

Solution of Eq. (38) yields the displacement ua (ru),
from which we can derive the elastic deformation ten-
sor by employing Eq. (32) for isotropic coupling yaB
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This expression recalls the dipole field well known
from electrostatics. Upon substituting (39) into (33),
we again obtain the Hamiltonian of the "spin-spin"
interactions ^S.8=Z/UJ"S*S^. However, for the iso-
tropic case we have7'34

ap

We can derive an expression for <^"*0 by employing
the general solution of Eq. (38).7 If we know the Ham-
iltonian of the spin-spin interactions (36), we can de-
termine the characteristic time T2 and also study the
dynamics of pulsed excitations of amorphous systems.

6. GENERATION OF COHERENT ELECTRIC AND
ACOUSTIC RESPONSES IN GLASSES

a) Fundamental concepts and methods of observation
of echo signals

The detection of electric and phonon echo signals has
been one of the most convincing confirmations of the
existence of two-level systems arising from tunneling
transitions. It has turned out that the echo in glasses
has much in common w ith other echo phenomena, such
as spin, photon, ferromagnetic echos, etc. Therefore
we shall take up briefly the fundamental concepts of
echo phenomena. Usually one excites echo signals with
two pulses of an electromagnetic or acoustic field, or
by a combination of them. The duration of the pulses
must be shorter than all the relaxation times in the
system being studied. The echo signals appear after a
time equal to twice the interval between the exciting
pulses. The very generation of such a response in-
volves the presence in the system of an inhomogeneous
width 1/T*.,39 in addition to the irreversible relaxation
times Ti and T2. The term "inhomogeneous broaden-
ing" essentially reflects the existence in the system of
interactions that give rise to a scatter in the effective
resonance frequencies. Therefore only a fraction of the
spins participates in the resonance excitation. Usually
the inhomogeneous width 1/T* can be treated as a sup-
erposition of a large number of Lorentzian lines, each
of which has the homogeneous width 1/T2. Here, as a
rule, we have r*<r2<T1. After the resonance excita-
tion of the spins with a uhf pulse, a dephasing process
begins, which is due to the inhomogeneous width 1/T*.
This dephasing can be compensated by applying a sec-
ond uhf pulse after the time r, so that at the instant 2r
the system of spins itself generates a coherent re-
sponse, which has been termed the spin echo signal.40

For the simplest case S = l/2, the amplitude of the spin
echo signal is described for the formula40'41

E (2x) ~ sin (CO,T,) sin2 (-i- O^T, ). (40)

Here TI and r2 are the durations of the first and second
pulses. The amplitude of the echo is maximal when
WiT! = ir/2 and <^iT2~'!!- When the durations of the excit-
ing pulses are the same, the echo signal is maximal
when WIT^ wlr2=2ir/3. With increasing interval be-
tween the pulses, the intensity of the signal declines as
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In addition to the two-pulse methodology that we have
described, there is a three-pulse excitation of the sig-
nals. In this case there is a series of responses, the
most interesting of which is the so-called stimulated
echo, which decays as one varies the interval between
the second and third pulses as extf-t/TJ. Owing to
these features, the echo phenomenon proves to be a
relatively simple and practically sole method of mea-
suring the relaxation times 2\ and Tv

The spin and photon echo signals described above are
characteristic of a system having a discrete spectrum.
Echo signals have also been found in purely classical
systems: the echo in a plasma,42 the electroacoustic
and polarization echo, in piezoelectric powders*3'44 and
crystals,45 etc. In spite of such a great variety of ob-
jects studies by the echo methods, the following general
requirement must be satisfied for generation in them of
coherent responses: a nonlinear mechanism must ex-
ist for the excitation or formation of the echo signals.
For example, the spin echo signal arises from the non-
linear interaction of the spin system with the magnetic
component of the uhf pulse. This nonlinear character
of the interaction gives rise to the expression (40) for
the amplitude of the spin echo signals. Gould46 has
shown that the echo in a plasma is characterized by a
linear interaction of the oscillator systems with the
field of the uhf pulse and a decay or dispersion that is
nonlinear in amplitude of the free oscillations after the
action of the exciting pulses. Interestingly, in contrast
to the spin echo signals, these responses first increase
as one increases the interval between the exciting pul-
ses and only later begin to decline. Up to now all the
known studies of the echo in glasses have shown no such
features. This is one of the arguments for adopting the
Hahn mechanism of formation of the echo signals in
glasses by analogy with the spin or photon echo.

b) Experimental observations of echo signals in glasses

The first report of the experimental observation of an
anomalous echo in glasses at the frequency 10 GHz at a
temperature of 4.2 K was published in Ref. 5 (Fig. 12).
The effect was observed at zero magnetic field and de-
clined rapidly as the latter was increased. The physi-
cal nature of the echo signals in glasses remained un-
elucidated at that time. A phonon-echo effect was pre-
dicted in glasses,*7 while the experiment cited above
was interpreted as a photon echo involving levels linked
by tunneling transitions. Gold ing and Graebner6 first
performed an experiment on the phonon echo at the su-
perlow temperature of 20 mK. The echo signals were
observed in fused quartz at the frequency 0.68 GHz.
Two acoustic pulses of the same intensity were gen-
erated with a film transducer made of zinc oxide and
were propagated in the glass specimen. Signals of the
two- and three-pulse echo were observed with the times
T2=24 MS and ̂  = 200 p.s. The mean coupling coeffi-
cient ye between the longitudinal acoustic deformation
and the two-level systems that contribute to the pho-
non-echo signal can be easily established from the
pulse area &. The Bloch equations (20) imply that the
nutation frequency o^ corresponds in our case to the
quantity Be0/H=ye/R for a symmetric double potential

10 X SO H G

FIG. 12. Decline in intensity with Increasing magnetic field.5

Glass doped with CeO2+ TiO2.

well (.E = A). Therefore the pulse area is defined as

This is true for pulses of rectangular shape. Upon ex-
pressing the area 6 in terms of the measurable acous-
tic energy £ = (l/2)py2Z2, we can determine the mean
parameter y, which proves for fused quartz to be 1.6
eV. This agrees well with the results obtained in satu-
ration experiments.25'27 In experiments on the phonon
echo, one measures not the amplitude of the signal as
described by Eq. (40), but the intensity. Just as in the
case of the photon echo,48 the latter is determined by
the expression

7 = /0Ar2sin2(e,)sin'(-i-92). (42)

Here Z0 is the emission intensity of one of the two-level
systems, and N is their effective number per unit vol-
ume. In view of the extremely large inhomogeneous
width, the acoustic pulse excites only those frequencies
that correspond to its spectrum, with the width Kr'1,
where T is the duration of the pulse. Hence the effec-
tive number of excited two-level systems is N = nKr~1

tanh(£w/2feT). It was of interest to verify the validity
of Eq. (42) for glasses. For two equal pulses having a
small pulse area (61,62«1), the intensity of the echo
s ignal is proportional to

/ a £ « T*. (43)

In the case of two identical pulses that excite the maxi-

Input intensity, W/cm

FIG. 13. Magnitude of the echo signals as a function of the in-
tensity of the exciting acoustic pulses for three fixed values of
their duration.6
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mal response (0 = 2>r/3), the intensity of the echo signal
is governed by a different dependence on the duration of
the pulses:

i
/ « T->. ; (44)

The results of the experiments, which agree well with
the theoretical relationships (42)-(44), are shown in
Fig. 13. Actually we see from Fig. 13 that the maximal
intensities of the echo signal vary as r'2. Thus they
showed that the signal intensity is determined by the
square of the number of two-level signals, as is char-
acteristic of coherent emission.49

c) Model of spectral diffusion

As we have pointed out above, a spin echo signal can
arise when a spread of resonance frequencies of the in-
dividual emitters exists in the system and gives rise to
an inhomogeneous width. Of course, in the case of
glasses the "spin-spin" interactions lead to a static
shift in the splitting and a corresponding spread in the
resonance frequencies. According to Eq. (36) we have

Ein^E' + ̂ Jl'jSi. (45)

However, this shift proves extremely small in compar-
ison with the already existing vast inhomogeneous width.

Along with the static shifts in the splittings, interest-
ing effects arise that involve dynamic changes in £,ff8

A treatment of this kind of the dynamic effects based on
the concept of spectral diffusion50 was first performed
in Refs. 7 and 51. In the mechanism of spectral diffu-
sion, all the spins are provisionally divided into two
types: A-spins and B-spins. The splittings of the A-
spins lie in the frequency band of the uhf pulse, while
the B-spins are all the rest, outside the given frequency
band, Then they considerably exceed in number the A-
spins, owing to the broad spectrum of the tunneling
splittings. We shall assume that flipping of the B-spins
arises from spin-lattice relaxation. This process leads
to the dynamic shift AuU) for the A-spins7:

(46)

Here (.. .)A denotes averaging over the A-spins, we
haveCaT = /<4), and^||nB\ pertains to the B-spins,

whose flipping leads to the spectral diffusion. An im-
portant feature of the mechanism of spectral diffusion
for small t is the monotonic dependence on the time.
This involves the fact that the flipping probability of a
B-spin is proportional to t. Therefore, for small times
t«Tl we have7:

(2H)-1 A (o(t) oc T't. (47)

Let us examine this process as applied to the forma-
tion of the two-pulse phonon echo in glasses. The most
substantial contribution of spectral diffusion to the
process of echo formation consists in the loss of phase
coherence after the first and second pulses. For a
two-pulse sequence, according to Ref. 41, the echo
signal at the instant of time t = 2r is determined as fol-
lows:

I 21

>. (48)

o o
0°

1 JBmtt

a i> s n 20

FIG. 14. Decline of the two-pulse echo for four different tem-
peratures.6

Here C ..} denotes averaging over all the A-spins and
all the flipped B-spins. In the limiting case in which r
« 2\, Klauder and Anderson50 have shown that

E (2-c) = exp (-

here we have

(49)

<50>

If we estimate the relaxation time 7\12 by Eq. (9),
where E = 2kT, then it turns out that the condition T« T1

is satisfied at temperatures 20-80 mK. Upon substitut-
ing the value &w(t, T) from Eqs. (47) and (50), we get

m a 7". (51)

Upon defining T'2 as the time of phase memory during
which an echo at the instant 2r declines by a factor of
e, we find on the basis of Eqs. (49) and (51) that

r, a T-\ (52)

One of the fundamental features of the mechanism of
spectral diffusion consists of the fact that the decay of
the stimulated echo depends on the interval between the
first and second pulses T12.

41 It was shown7 that for
times T12, T13« Tl that we have

£ (* (53)) = exp ( — mil,) exp [ — T12m (T,, — T,,)J .

In connection with the mechanism of spectral diffusion
proposed in Refs. 7 and 51, experiments have been per-
formed on the phonon echo that confirm a number of the
theoretical conclusions.6 The temperature-dependence
of the decline of the two-pulse echo was studied. Fig-
ure 14 shows the results for four different tempera-
tures. Analysis shows that the relationship T'^T~2

a ma zoo soon wo

FIG. 15. Decline of the stimulated echo for two fixed intervals
between the first and second pulses.6'7

111 Sov. Phys. Usp. 25(2), Feb. 1982 B. P. Smolyakov and E. P. Khaimovich 1 1 1



holds, in agreement with Eq. (52). An analogous tem-
perature-dependence has also been observed for the
stimulated echo. The decline of the stimulated echo has
been studied for two different intervals between the
first and second pulses (Fig. 15). The right-hand side
of the same diagram shows the theoretical curves as
calculated by Eq. (53). Thus the results of the experi-
ments on the two- and three-pulse echo show that the
mechanism of spectral diffusion plays a substantial role
in the formation of the phonon echo in glasses.

d) Other echo-type effects in glasses

In addition to the rather well studied phonon echo,
there have been a number of experiments in glasses on
excitation of coherent responses by the electric compo-
nents of uhf pulses (Fig. 16). The observed signals5'53"56

have a number of features that distinguish them from
the well known phenomenon of the spin echo. Further
studies have shown that the echo effect is manifested in
a broad class of glasses of different compositions, both
without special introduction of paramagnetic impurities,
and with various paramagnetic dopants of rare-earth
ions and ions of the iron group. A characteristic fea-
ture of all glasses containing paramagnetic dopants is
the strong dependence of the intensity of the echo on the
external magnetic field. It is also interesting to note
the identical course of this variation for ions belonging
to the same group. Figures 17 and 18 show typical
curves for glasses doped with rare-earth ions and ions
of the iron group. The suggestion naturally arose of
whether the echo signal in glasses is a mixture of the
electric and spin echos caused by inexact placement of
the specimen at the maximum of the electric component
of the uhf field, and hence, a partial effect on the speci-
men of the magnetic component. A control experiment
was performed for this purpose. A plane parallel cy-
lindrical X-cut specimen of quartz was placed in the
cavity of a volume resonator, and the quartz rod was
displaced until a series of reflected ultrasonic pulses
of greatest amplitude had appeared. This corresponded
to positioning the quartz at an antinode of the electric
component of the uhf field. Thereupon the specimen
under study was placed at the very same position in the
resonator, which corresponded to echo signals of max-
imum amplitude. Of course, this arrangement of the
specimen does not rule out a weakened action of the
magnetic component of the uhf field, in particular,
arising from distortion of the magnetic and electric

AM,

FIG. 17. a) Dependence of the intensity of the two-pulse echo
signal in a glass containing Ce3* on the magnetic field when the
power of the exciting pulses is maximal and the interval be-
tween them minimal (&HI= 9.25 kG); b) the corresponding de-
pendence for minimal power and maximal interval (A#2

= 12.9 kG).53

fields around the specimen, which could give rise to a
spin echo. Yet a number of factors contradict this: 1)
All the specimens exhibit an echo signal for H = 0. It is
improbable that the initial splittings for different ions
coincide with the quantum energy at the frequency of
measurement. 2) the EPR absorption lines do not coin-
cide in field with the maxima of the echo signal, but
sometimes are found at field values in which the echo
signals are zero. 3) A shift and narrowing of the peak
of maximum intensity of the echo signal as a function of
the interval between the pulses and of the power of the
uhf pulses is unusual for the spin echo. Figure 19 shows
the dependence of the echo signal on the magnetic field
in sodium aluminosilicate glass for three different val-
ues of the interval between the exciting pulses. We see
from Fig. 19 that the width of the peak declines with in-
creasing &t, and its maximum shifts with respect to the
field. Therefore the cited phenomenon is most likely
due to tunneling transitions in the glasses, and it has
been called the microwave tunnel echo.

The discovery of an electric-dipole echo in fused
quartz55'56 at superlow temperatures of 20 mK in the
frequency range from 108 to 109 Hz is also of undoubted
interest. As usual, the decline of two- and three-pulse
echo signals was studied as a function of the interval
between the applied pulses. The decline is nonexponen-
tial, just as in the phonon echo discussed above (see
Fig. 13). The times for decline are proportional to &t,
both for the two-pulse echo and the stimulated echo, as

0.2 wt. % Cr

FIG. 16. a) Two-pulse echo in an undoped glass; b) two-pulse
and three-pulse (stimulated) echo in a glass doped with Nd3*
ions.

FIG. 18. Dependence of the intensity of the echo signal on the
magnetic field for two specimens of lithium aluminosilicate
glasses having different concentrations of Cr ions (weight %).54
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FIG. 19. Dependence of the intensity of echo signals on the
magnetic field in sodium aluminosilicate glass containing Fe
ions for three values of the interval Af between the exciting
pulses.

is characteristic of the mechanism of spectral diffu-
sion. The effect of an electric field on the formation of
echo signals has also been studied.57'58 In order to do
this, after the first exciting pulse, a static electric
field was applied during the time A< (Fig. 20), and the
amplitude of the echo was studied as a function of the
value of the electric field for a fixed interval between
the two pulses. The application of the electric field ac-
celerates the natural process of dephasing of the elec-
tric dipoles after the first pulse, and consequently the
echo signal decreases.

7. "HOLE-BURNING" IN AN IN HOMOGENEOUSLY
BROADENED LINE

In optical spectroscopy and magnetic resonance, the
effect is widely known of saturation of individual spin
packets of an inhomogeneously broadened line, which
has been termed "hole-burning".39-59'60 Mathematically
this stems from the nonlinear dependence of the ab-
sorption on the energy of the electromagnetic or acous-
tic field. Before we take up its features as applied to
glasses, we shall briefly discuss its manifestations in
spin resonance. Here the concept of an inhomogene-
ously broadened line that we have discussed above is of
fundamental importance. As we know, the resonance
curve of an inhomogeneously broadened line is the en-
velope of the ensemble of spin packets, each of which
has a homogeneous width determined by the irreversi-
ble relaxation processes. Therefore, if a specimen
having an inhomogeneously broadened line is placed in
a saturating uhf field, the spin packets will be satu-
rated whose intrinsic frequencies satisfy the condition

7 .j. *-

JliTUv

200 400 SOD 800 V, mV

FIG. 20. Dependence of the intensity of the echo signal on the
amplitude of the static electric field.57 The static field acts
between the first and second uhf pulses.

FIG. 21. a) Unsaturated line; b) "hole burning" in an inho-
mogeneously broadened line; c) saturation of a homogeneously
broadened line.

v=g$H/n. All the other spin packets will not be satu-
rated, and a hole is formed in the inhomogeneously
broadened line at the site of the resonating and satu-
rated spin packets. Naturally, a homogeneously
broadened line will be uniformly saturated, which will
lead to diminished resonance absorption and to a
broadening of the entire curve. Figure 21 shows an un-
saturated line, an inhomogeneously broadened line with
a "burned hole", and a saturated homogeneously broad-
ened line.

The most substantial difference of glasses from mag-
netic resonance is the vast inhomogeneous width of the
spectrum of two-level systems. Therefore a powerful
acoustic pulse will saturate only those two-level sys-
tems that lie in the frequency band of the given pulse.
Experiments of this type were first performed in Ref.
61. In view of the distinctive character of the experi-
ment, let us take up the methodology of performing it
in somewhat greater detail. A powerful saturating pulse
</1; whose carrier frequency could be varied was applied to
one of the ends of a glass rod (Fig. 22) located in abroad-
band resonator. The other end of the rod was located in a
narrow-band resonator and a pulse J2 was applied to it
with an intensity somewhat below saturation. The elec-
tric components of the pulses J± and J2 excited in the
glass rod acoustic pulses generated by cadmium sul-
fide transducers and propagating in opposite directions.
The reflected acoustic pulses excited by J2 were de-
tected as a function of the frequency of the pulse Jt.
Figure 23 shows the results of the experiment for two
values of the intensities of the saturating pulse «7j. It
turned out that the minimum absorption of the acoustic
pulse excited in the narrow-band resonator is observed
when the frequencies of the pulses Jl and J2 coincide.
Very interestingly, the widths coincide for the reso-
nance curves of sound absorption for two different in-
tensities of the pulse </t differing by an order of magni-
tude. The dotted line shows the curve that would have
existed for a homogeneously broadened line in agree-
ment with Fig. 21, c .

The interesting question arises of what determines
the width of the "burned hole" and how it will change
shape after the saturating pulse ceases. When the pulse
acts on a spin system, the width of the hole is deter -

FIG. 22. Diagram of the experimental apparatus for studying
the inhomogeneous width of two-level systems.61
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FIG. 23. Resonance absorption of the probe acoustic pulse as
a function of the frequency of the pulse /( in borosilicate glass
at 0.55 k.61 The curve 1 corresponds to intensity 7t= 5X lo"6

W/cm2, 2—74= 5XHT7 W/cm2.

mined by the lifetime of the quantum states between
which the transitions occur. Theoretical and experi-
mental studies of the echo in glasses8'7 have shown that
the mechanism of spectral diffusion contributes sub-
stantially to the width. Moreover, in a number of cases
the width Aw (t, T) is larger than T'1. In line with this,
we can neglect the latter. We have shown above [see
Eq. (47)] that the width AuU)<xf. In this case t is noth-
ing other than the duration of the applied pulse. There-
fore the width of the hole should depend on the duration
of the saturating pulses, and this has recently been con-
firmed experimentally62 (Fig. 24).

8. CONCLUSION

Recently the number of studies on dielectric glasses
by physical methods has been growing rapidly with most
of the results being rather clearly explained on the bas-
is of the Anderson-Halperin-Varma-Phillips model.
Nevertheless, in a number of aspects this theory offers
no satisfactory explanation. For example, contradic-
tory results exist on the problem of the dependence of
the heat capacity on the duration of the experiment. We
should note the difficulty of performing such experi-
ments. The striking similarity in the acoustic proper-
ties of glasses of the most varied composition as yet
remains mysterious. The question remains open of the
role of OH impurities, which possess a dipole moment,
and of their contribution to the electric echo in glas-
ses.63'64 In particular, studies65 have appeared that ad-
vance the hypothesis of the existence of two types of
centers that yield an electric-echo signal: OH impuri-
ties and two-level localized states. There are a num-
ber of studies that have tried to overcome the stated

700 aoo
Frequency of saturating pulses, MHz

FIG. 24. Variation of the resonance absorption as a function
of the frequency of saturating pulses of different durations.62

difficulties by partial alterations of the Anderson-Hal-
perin-Varma-Phillips model or by constructing a
microscopic theory of the low-temperature anomalies
in glasses.68"69 However, the results of these studies
have not become widely disseminated up to now. For
this reason we have restricted the treatment in this re-
view to a detailed examination of the problems that have
received an experimental confirmation.

Characteristically, in studying the properties of di-
electric glasses we encounter the same features that
arise in completely different types of amorphous com-
pounds. Up to now a number of anomalies have been
discovered in the heat capacity, heat conductivity, and
the temperature-dependence of the velocity of sound and
of the dielectric constant in superionic conductors,
amorphous metals, and in a number of other amorphous
systems.70"77 We must note that the cited physical
processes amazingly recall the behavior of dielectric
glasses. Moreover, a number of hypotheses have been
advanced that in a number of cases one can also apply
the two-level model to these objects taking into account
the specifics of the concrete systems, e.g., conduction
electrons in amorphous metals. This indicates a num-
ber of universal properties inherent in disordered sys-
tems, to whose study much attention is currently being
paid.
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