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The theory for the propagation of electromagnetic waves in gyrotropic media with boundaries is reviewed.
Media which simultaneously exhibit a natural activity and a magneto-optic activity are discussed. The optical
irreversibility effects in such media are analyzed. Magnetic crystals with a natural optical activity are
discussed. The meaning of the magnetic permeability at optical frequencies is discussed. The optical
properties of magnetically active ferromagnets are examined in the case of coincident roots of the dispersion
relation. The propagation of light in a bigyrotropic medium is also discussed. Certain distinctive properties
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external magnetic field are discussed briefly.
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1. INTRODUCTION

Arago discovered natural optical activity—the first
type of gyrotropy—in 1811, and Faraday discovered
magnetooptic activity 35 years later. These two types
of gyrotropy are superficially similar but very different
in physical nature. Natural activity is a manifestation
of spatial dispersion; i.e., it occurs because the polar-
ization of a medium at a given point depends on the field
not only at that point but also in its vicinity. Magneto-
optic activity, in contrast, is a consequence of a fre-
quency dispersion: A magnetic field causes a relative
shift of the curves showing the frequency dependence of
the refractive index for waves which are (in the sim-
plest case) right-hand and left-hand circularly polar-
ized. The difference between the two types of activity
can be seen in the following effect in the simplest case:
In isotropic naturally gyrotropic media, the rotation of
the polarization plane occurs around the wave vector k,
and if the propagation direction is reversed the sense of
the rotation also changes (with respect to a fixed coor-
dinate system). In magnetoactive media, in contrast,
the rotation is around the magnetic field, and it is iden-
tical for propagation parallel and antiparallel to the ex-
ternal magnetic field.

Soon after its discovery, natural activity became a
highly useful research tool. Suffice it to say that stere-
ochemistry owes its very origin to this phenomenon:
The realization that a molecule must be pictured in
three spatial dimensions stems, in particular, from the
discovery of enantiomorphism (The existence of a medi-

um in two mirror-symmetry forms). In optics enantio-
morphism can be seen in the circumstance that two sub-
stances having the same chemical formula can rotate
the polarization plane in opposite directions. The theo-
ry of natural optical activity and experimental research
methods developed continuously. There was much less
interest in the Faraday effect, on the other hand, for
some time. As Vol'kenshtein has pointed out,1 there
may have been a psychological reason for this circum-
stance, in that the assertions advanced in the 1920's re-
garding the unique possibilities of the Faraday effect
for studying the structure of matter proved incorrect.

Research on the magnetic rotation of the polarization
plane grew extensively in connection with research on
ferromagnetic media in the microwave frequency range.
Other spectral regions, including the visible spectrum,
later came under study. Magnetooptics is of consider-
able interest in connection with research on the electro-
magnetic properties of plasmas and the ionosphere.2"5

Because of the very direct relationship between the
optical properties of a medium and its structure, the
optical research methods, even the very old ones, have
remained effective. On the other hand, the development
of ideas regarding the structure of matter which has oc-
curred in a setting of a close mutual encouragement of
theory and experiment suggests new experimental prob-
lems and stimulates a reexamination of long-familiar
phenomena from the standpoint of new ideas. In this re-
gard, gyrotropy is of course a subtle research tool (in
the words of I. V. Obreimov, "The natural activity is an
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intramolecular interferometer"). We are now seeing a
rapid intensification of interest in both spatial disper-
sion6"10 and magnetooptic activity.11"16 An important
circumstance which sustains an unflagging interest in
these long-familiar phenomena is the possibility of using
them to obtain valuable information in a variety of re-
search fields. Along with the major role played by the
methods based on the natural optical activity for study-
ing molecular structure (see Refs. 17 and 18, for ex-
ample), there is the possibility (pointed out by Kizel'8)
of studying crystal fields by introducing active centers
in a crystal and introducing selectively absorbing cen-
ters in gyrotropic media (see also Ref. 19). Research
in the field of gyrotropy has led to several interesting
results, which frequently improve our understanding of
not only gyrotropy but the interaction of light with a
medium in general. We do not, of course, have room
here to list all the corresponding studies. We will sim-
ply mention the discovery of several optical effects in
crystals.20"29 e.g., the discovery that there are media
which, although they do not rotate a polarization plane,
are gyrotropic20'21; the discovery of certain distinctive
aspects of reflection and refraction at the boundary of
a gyrotropic medium24'25; the discovery that an exter-
nal electric field can give rise to gyrotropy26"28; the
discovery of optical anisotropy of cubic crystals29; and
the discovery that new waves appear in crystals with a
spatial dispersion.9 Magnetooptic methods have found
widespread use in a wide variety of research fields.
We might mention their use to study the electron struc-
ture of metals,30 the magnetooptic research on surface
layers and the discovery and study of surface magnet-
ism,31"33 and the prediction of several optical effects in
magnetic crystals.34'35 These examples give some idea
of the wide variety of phenomena which can be seen in
gyrotropic media.

The macroscopic theory of the optical properties of
gyrotropic media, the subject of the present review,
encompasses both research on the propagation of elec-
tromagnetic waves in such media and the interaction of
waves with boundaries. Although we are always dealing
with boundary-value problems in using optical methods
to study media, these boundary-value problems have
not received the attention they deserve (see Refs. 36
and 37, for example). It is true that until recently the
relatively poor experimental accuracy (due, for exam-
ple, to the frequency spread of the light), it was fre-
quently possible to ignore the role played by boundar-
ies. For example, although the rotation of the polari-
zation plane in a magnetically active medium is pro-
portional to the path traversed by the wave (Verdet's
law) only in an unbounded medium38'39 (there are other
restrictions as well40), this law has been applied to
plates; in fact, the law was established in the first
place through the use of plates (as would be natural). If
the experimental accuracy is good enough, however,
we ignore the role of boundaries only at the risk of
reaching an incorrect interpretation of experimental
results,41 as was pointed out a long time ago.39'42 In
particular, one way in which boundaries are ignored is
to assign the so-called principle of the superposition of
gyrotropy and birefringence36 to plates, while this

principle is of limited applicability even in the absence
of boundaries40'43 (that the superposition principle does
not operate in the presence of boundaries can be seen
by analyzing the expressions for a wave which has tra-
versed an anisotropic magnetically active plate43).

To take the boundaries into account in optical prob-
lems, particularly in a study of gyrotropy, is of pri-
mary importance. It is sufficient to point out that even
in the simplest case in which there is no anisotropy in
a gyrotropic medium the rotation of the polarization
plane and the axial ratio of a wave which has traversed
a gyrotropic plate consists of three terms (a surface
term, due to the difference between the reflection coef-
ficients for the right-hand and left-hand circularly po-
larized waves; an interference term due to multiple re-
flection; and a volume term), two of which stem from
the presence of boundaries.44"46 It is thus not justified
to study the polarization of a wave which has traversed
a plate without an accurate account of the boundaries,
as has been pointed out repeatedly.39'42"44

As yet another example we might cite the normal
propagation of light through a naturally gyrotropic iso-
tropic plate in a magnetic field directed perpendicular
to the plate boundaries. If, as the light propagates from
the first boundary to the second, its polarization plane
does not rotate (if the natural and magnetooptic rota-
tions cancel out), the transmitted wave nevertheless has
a rotated polarization plane—by virtue of the multiple
reflection from the boundaries (see Subsection 2b and
Ref. 43). We might add to these examples the question
of the boundary conditions themselves for naturally gy-
rotropic media; this question has emerged as an inde-
pendent object of research in recent years.24'25

Several approaches are being taken to study boundary-
value problems and the propagation of electromagnetic
waves in media. Along with the method which is based
on the choice of a definite coordinate system, there is
the covariant method,47 which has been widely used in
applications to gyrotropic media.10 The matrix method
of Miiller and Jones52 has been used in several stud-
ies48"51 (see also Ref. 53).

In the solution of boundary-value problems, the par-
ticular features of the propagation of electromagnetic
waves in these media are automatically taken into ac-
count through the use of the dispersion relation and the
constitutive equations, which contain in principle all the
information about the optical properties of the medium
(this assertion may be incorrect in the case in which a
naturally gyrotropic medium has a diffuse boundary, in
which case it becomes necessary to introduce a param-
eter to take into account the discontinuity of the tangen-
tial component of the magnetic field at the boundary24'25).
The distinctive features of the propagation, however,
may not be explicitly manifested in the boundary-value
problem. For this reason, an analysis of the propaga-
tion of electromagnetic waves in various media in the
absence of boundaries may not only be useful for inter-
preting experimental results (see Ref. 54 and several
papers cited there: Refs. 55-73) but may also be of in-
dependent interest.
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We might note, for example, the distinctive optical
properties of media in situtations in which there are co-
incident roots of the dispersion relation74'75-77 and a
monorefringence arises1' (Ref. 76); the possible exis-
tence of three waves instead of two9'78; the invariance
of the dispersion relation (with respect to reversal of
the propagation direction) for naturally gyrotropic me-
dia in a magnetic field,79'80 which has been mentioned
previously81"83 (see also Ref. 84); the possible propaga-
tion in such media of two waves for which the polariza-
tion ellipse is traversed in the same direction85; the
distinctive features of reflection and refraction at the
boundaries of a medium simultaneously exhibiting a gy-
roelectric and a gyromagnetic activity86; the interesting
polarization properties of crystals of the planar classes
(predicted in Ref. 20), which are stimulating a reexam-
ination of the concept of gyrotropy as the property of
necessarily rotating a polarization plane20'87"89; and the
optical anisotropy of cubic crystals,29 mentioned earli-
er, which has expanded our understanding of the anisot-
ropy of optical properties in general.

Systematic theoretical and experimental research has
given us a phenomenological theory for the propagation
of electromagnetic waves (light) in gyrotropic media
and for the interaction of waves with boundaries and has
revealed the rich variety of optical properties of gyro-
tropic media—naturally gyrotropic media and magneti-
cally active media (see Refs. 90-106 and 107-134, re-
spectively, in addition to the papers cited above). Only
some of these topics have been covered in reviews and
monographs.

Our list of papers cannot, of course, be complete; it
simply circumscribes the range of topics covered in the
present review.

This review consists of five sections unified by a
common theme: the propagation of electromagnetic
waves in gyrotropic media in the presence of boundar-
ies. Section 2 deals with media which simultaneously
exhibit a natural and a magnetooptic activity. The dis-
persion relation for such media is not invariant with re-
spect to a reversal of the propagation direction, and for
this reason such media exhibit optical irreversibility
effects. Magnetic crystals exhibiting a natural optical
activity are discussed, along with the meaning of the
magnetic permeability at optical frequencies. Section 3
covers the propagation of electromagnetic waves in a
magnetically active medium for which the dispersion
relation has multiple roots. This situation has been ex-
amined previously for absorbing crystals and for gyro-
anisotropic media. Section 3 also deals with light prop-
agation in a bigyrotropic medium and reflection and re-
fraction at its boundary. Certain distinctive features
stemming from the presence of two types of gyrotropy,
anisotropy, and absorption are pointed out. For all
these media, some boundary-value problems required
for an experimental study of the effects are discussed.
Section 4 takes up a circular dichroism which is not due
to the imaginary parts of the gyrogropy parameters.
The distinctive features of the dichroism of naturally

gyrotropic media in the presence of an external mag-
netic field are discussed.

The terms "gyrotropy" and "optical activity" are both
applied to the right-left asymmetry in the interaction of
light with a medium, usually (but not necessarily) man-
ifested as a rotation of the polarization plane. The two
types of gyrotropy which have been recognized for the
longest time can be described more specifically by the
terms "natural optical activity" and "magnetooptic ac-
tivity." For greater detail, the terms "gyroelectric
magnetooptic activity" and "gyromagnetic magnetooptic
activity" are used. For the same purpose, we use the
terms "artificial gyrotropy," "intrinsic gyrotropy," and
"natural gyrotopy."10 In connection with the develop-
ment of the optics of crystals with spatial dispersion,9

natural optical activity has acquired the meaning of a
particular manifestation of a more general phenomenon:
spatial dispersion. "Electrogyration" or "electric gy-
rotropy"26"28 mean the gyrotropy induced in medium by
an external electric field.

Concepts such as optical activity and circular dichro-
ism which are applied to the types of gyrotropy men-
tioned above are also applied to cholesteric liquid crys-
tals, although in the latter case, in contrast with the
media mentioned above and in accordance with a differ-
ent mechanism for the activity and dichroism, the di-
electric tensor can be put in a diagonal form, if only in
a local coordinate system.

2. NATURALLY GYROTROPIC MEDIA IN EXTERNAL
MAGNETIC FIELDS

a) Dispersion relation and its consequences

We consider the propagation of a light wave

E (r, t) = E exp [i (kr — co()l (2.1)

''See Ref. 47 regarding monorefringence.
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in a naturally gyrotropic medium in an external magnet-
ic field.

In the absence of an external magnetic field, with p.fl
= ^n (v-ji is *ne magnetic permeability, and 6;-( is the
unit matrix), the electric displacement is related to the
electric field by

D, = KnEi + iT>>im£ikm,

and the magnetic induction B is the same as the mag-
netic field H. When an external magnetic field is ap-
plied, a term z'[geE] that takes into account the gyro-
electric magnetooptic activity appears on the right side
of this equation. If the medium also has a magnetic or-
der, the high-frequency branch of the magnetic-moment
precession described by the Landau-Lifshitz equa-
tion135'122'125 leads to nonvanishing off-diagonal compo-
nents of the magnetic susceptibility, which give rise to
a gyromagnetic magnetooptic activity.65 We therefore
replace the relationship B = H by Bt= jj.ilHJ + i[gmH]i.
Although the difference between ^jt and 6y!, on the one
hand, and the differences between the various compo-
nents (o.^,, on the other, are quantities of higher order
than^m, the difference between ^tl and 5,, can give rise
to effects of the same order of magnitude as those re-
sulting from the parameter g (Ref. 43). We thus find
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the constitutive equations

B,

(2.2)
(2.3)

Experiment has shown65 that ji>( and gm must be re-
tained in the optical frequency range. We will therefore
make use of the concept of magnetic permeability in the
optical frequency range (see Ref. 136 and Subsection 2c
below). The natural optical activity is entirely incor-
porated in the relationship between D and E; this cir-
cumstance simplifies the derivation of the dispersion
relation, although the boundary conditions are slightly
more complicated in this case than the conditions cor-
responding to the formulation of the problem in Refs.
138 and 139 (see Refs. 24, 25, and 98).

The properties of media (2.2) and (2.3), which simul-
taneously exhibit a natural and a magnetooptic activity,
can be discussed more simply in the case of an isotrop-
ic medium (isotropic in the absence of an external mag-
netic field) with a scalar magnetic permeability. In an
isotropic medium we have yjlm= -yejlm, where ejlm is
the totally antisymmetric unit tensor.137 We can there-
fore replace (2.2) and (2.3) under the conditions gm=0,
V-n~ ^ii'^n'^n ty

B=(iH. (2.5)
The second term in (2.4) is not equivalent to the sec-

ond term in (2.2), since in (2.2), in the case of an iso-
tropic medium, the rotE (rot=curl) (i.e., i[kE]) is mul-
tiplied by a quantity which is independent of k, while in
(2.4) the corresponding quantity, y/k, depends on k and
has different values for right- and left-hand circular
polarizations. This difference causes k to behave in
different ways as a function of the gyrotropy param-
eter, and the difference between the wave vectors in the
use of Eqs. (2.2) and (2.4) appears in the terms of or-
der y2. Equation (2.4) leads to a simpler dispersion re-
lation than that corresponding to (2.2), so we will use
Eq. (2.4), but only in examining questions for which this
nonequivalence indicated above does not affect the phys-
ical conclusions.

In an external magnetic field the parameters e, n,
and y cease to be scalars,82 and this circumstance must
be taken into account in (2.4) and (2.5). The anisotropy
of these parameters is a small quantity of second order
in their power-series expansion in the external magnet-
ic field, while gt is a quantity of first order in the mag-
netic field. Consequently, if y and gt are comparable
in magnitude, the anisotropy may be ignored in a first
approximation in these parameters. (This assertion is
valid if we are dealing with propagation in an unbounded
medium; it is not valid for determining the amplitudes
at boundaries.) As we will see below, it is under the
condition y~g, that the distinctive features of these me-
dia are expressed most clearly. From (2.4), (2.5), and
the field equations we find the following dispersion re-
lation79-85:

I, (2.6)

waves with the wave vectors k* and k".

Let us examine the dispersion relation and its conse-
quences.

1. Reversal of the propagation direction changes the
sign of cosa*, so that while we have

for waves which are propagating in the same direction
(with, say, cos a* = 1), for waves propagating in the op-
posite direction (cosa* = -l) we find

fc±2 ° ^back c s r |
(V._Js.) I
V e s I J

(2.8)

where cf and a are the angles between the external
magnetic field and the propagation directions of the

It follows from (2.7) and (2.8) that all four values of the
wave vector are different in magnitude; i.e., the rever-
sibility of the light waves is violated. This is one of the
manifestations of the noninvariance of dispersion rela-
tion (2.6) with respect to the replacement k- -k. The
reason for the noninvariance is as follows: When the
waves are propagating, say, along the direction of the
magnetic field, the natural rotation and the magnetoop-
tic rotation are in the same direction (or the opposite
direction), while when the waves are propagating back-
ward the two rotations are in opposite directions (or the
same direction), respectively, since the natural rota-
tion reverses direction (if we are always looking along
the same direction, e.g., along the direction of the
magnetic field), while the magnetic rotation does not
reverse. It is this asymmetry which gives rise to the
noninvariance of the dispersion relation.

In the case y - 0, when the propagation direction is
reversed (cosa — -cosa) the ± signs in (2.6) are re-
placed by T signs; this switch does not, of course,
change the absolute values of fe* ( \k* \ transforms into
|fe"|). When^,= 0, on the other hand, cosa does not
appear in (2.6), so that reversal of the propagation di-
rection does not change the absolute values of fe* and k'.
The noninvariance thus results from the simultaneous
presence of two types of gyrotropy: natural and mag-
netooptic activities.

There is another way to interpret this noninvariance.
Time reversal changes the sign of gt, but the param-
eter y remains unchanged.13 Consequently, changing
the sign of the phase velocity (this corresponds to time
reversal) changes the absolute values of the velocities.
We might note that inversion of the spatial coordinates
changes the sign of y but leaves g, unchanged.13 Ac-
cordingly, if the waves along a given propagation direc-
tion have phase velocities v± and v2 in a right-hand ro-
tating (left-hand rotating) medium in a magnetic field,
we find the same velocities in a left-hand-rotating (or,
respectively, right-hand-rotating) medium for propaga-
tion in the opposite direction or if the medium is placed
in a magnetic field in the opposite direction.

2. If the propagation directions and amplitudes of
right- and left-hand polarized waves are approximately
the same, we may speak in terms of a rotation of the
polarization plane of the resultant wave, which is a
plane-polarized wave under these conditions. The ro-
tation of the polarization plane over a path length I in
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an unbounded medium is (we are replacing gecosa* and
gecosa~ by gt cos a, thereby introducing an error pro-
portional to gl)

kfn.,., — "r - ii\ i - D — n _ r . n « r y _ i f * r*\
(6. a)f forw =

"fora *forw — I eny — ge cos g

Reversal of the propagation direction leads to

<Pback=
»_ 7-

c ' r
(2.10)

The rotation of the polarization plane over a unit path
length is different for the forward and backward waves:
^,or»*^back-

3. When a wave is incident from a gyrotropic medi-
um on a boundary with another medium, the reflected
wave splits in two (right- and left-hand polarized
waves), which propagate at different angles.104'111 The
reflection angle for one of the two waves is equal to the
angle of incidence, but that for the other is not. In a
naturally gyrotropic medium in an external magnetic
field, this equality of the incidence and reflection an-
gles is violated for both waves, as can be seen by
working from the continuity of the tangential compo-
nents of the wave vector upon reflection and refraction.

To show this, we consider a plate described by Eq.
(2.6) and occupying the region 0 « z « d. An external
magnetic field is directed perpendicular to the plate
boundaries. A plane wave with a tangential wave-vector
component equal to k% is incident from the region z < 0 on
the boundary z = 0. In a plate we have four waves: two for-
ward and two backward waves. From the constancy of the
tangential components of the wave vectors of all the waves
we find the following values for the angles between the
wave propagation directions in the plate and the z axis:

The angles a^orw are the refraction angles at the z = 0
boundary; they are equal to the angles of incidence of
these waves at the z = d boundary. The angles a^ch are
the reflection angles at the z = d boundary. It follows
from (2.11) and (2.12) that none of the reflection angles
at the z = d boundary are equal to any of the angles of
incidence on this boundary, i.e., that the equality of the
angles of incidence and reflection is completely dis-
rupted:

With g-e=0 and y = 0 we find o>4
forw = a*aol[ and a*forw =

= Qback. respectively.

It also follows from (2.11) and (2.12) that with a suit-
able choice of the signs of the parameters y and ge we
can satisfy the condition sina^c][>sina!jorw or sina^act

>sinajorw; i.e., we can arrange a situation such that
both reflection angles are larger than the incidence an-
gle ajorw or a~tOTV. If only the wave corresponding to
aforw or ffl(ori» is incident on the boundary, then if these
angles are large enough the reflection angles reach 90°.
With a further increase in the angle of incidence, the
reflection angles do not correspond to real values. Let
us assume y > 0 and gt> 0, for example. If a wave with

is incident on the z = d boundary, we then have

sinoi;acl(>sina*forw,

i.e., both reflected waves propagate closer to the
boundary than does the incident wave. If sin ot*tOTW is
sufficiently close to 1, we find from sin a$,u.t> ojorw,
the result sina*ick>l. In other words, the reflected
angles do not correspond to real values; the reflected
waves are damped (or grow) with distance from the
boundary. To analyze this situation we need to resort
to higher-order approximations to derive the dispersion
relation. If sinajorw is sufficiently close to 1, then
cosajorw is a small quantity, and the term
(ge/£) cosajorw in the dispersion relation is a small
quantity of higher order than gjt. In this case we must
take into account, along with this term, other quanti-
ties of higher order.

Before we go on to the higher-order approximation,
let us examine the geometric reason for the absence of
real reflection angles. We assume an isotropic, natu-
rally gyrotropic medium. The wave-vector surfaces in
the absence of an external magnetic field are spheres
of radii V and k~, where k* and k~ are the numerical
values of the wave vectors for right- and left-hand cir-
cularly polarized waves. We consider the reflection of
a wave incident from this medium on a boundary with
another medium. We place the xz plane in the propaga-
tion plane of the wave. Figure la shows the intersec-
tion of the wave-vector surfaces with the propagation
plane. The wave incident on the boundary at a glancing
angle 3 excites reflected waves which propagate at an-
gles 3' and 3".

We now apply an external magnetic field along the z
axis. In this case the wave-vector surfaces are displaced
in opposite directions parallel to the magnetic field (Fig.
Ib). If a wave with a wave vector k+is incident on the
boundary at an angle such that the tip of this vector lies
on the arc Ira2 (Fig. Ib), the perpendicular drawn from
the tip of this vector to the x axis does not intersect the
wave-vector surfaces anywhere in regions In3 and 4p5
(the region of reflection angles). This result means
that the z components of the wave vectors of the re-
flected waves are imaginary; i.e., the reflection angles
do not correspond to real values, as was stated above.

4. To go to a higher-order approximation, we work
from (2.2) and (2.3). If the medium is isotropic (£•„=£„,
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= E«> ^«= tj-yy
= tJ-ii'Vw = '>'ytx = '>'*n) in tnc absence of a

magnetic field, the imposition of a magnetic field leads
to82 (the external magnetic field is directed along the z
axis)

£« == &yu ~ ^ ̂  ^11 == ^3» / O 1 o\
H*» = (*», = H =5* J»zz = l*3- (2.13)

These conditions hold when the isotropic medium is
converted in a magnetic field to a medium with the sym-
metry of a uniaxial crystal (generally speaking, in the
case of magnetic media there may also be a conversion
to a medium with the symmetry of a biaxial crystal72).
The differences c3 - e and fi3 - M cause a linear bire-
fringence in the magnetic field and are quantities of
second order in their expansion in powers of the mag-
netic field. The anisotropy introduced in ytjl is also a
quantity of second order.82

We turn now to the dispersion relation, working from
the constitutive equations (2.2) and (2.3) and assuming
that the medium is isotropic before the magnetic field
is applied. If the medium has only the gyroelectric part
of the magnetooptic activity (g,*Q,gm=Q), we find the
equation

(2.14)
The noninvariance of the dispersion relation, expressed
by the presence of odd powers of /3 in (2.14), is caused
by the two terms

and . ( T l _

The second of these terms results from the anisotropy
of the medium, since it vanishes if YI = YV In the ab-
sence of a magnetooptic activity (gt=0) or of a natural
activity (yl = y2=0), Eq. (2.14) contains no odd powers
of /3, i.e., is invariant with respect to reversal of the
propagation direction.

The possibility mentioned above, that both reflected
waves will graze along the boundary, corresponds to
the possible existence of values of kx for which the real
values of k, are exclusively positive (values k,>0 cor-
respond to waves incident on the z = d boundary of the
plate form the z = 0 boundary). To determine the possi-
bility of arranging such a situation, we examine Eq.
(2.14). Dispersion relation (2.14) is biquadratic in x

(i.e., in fex), so that we can express x in terms of /3
(i.e., kx in terms of k,):

(2.15)
where O(4) means small terms of fourth order in the
magnetic field. To single out these terms we have as-
sumed that gt/e. and w/cylr2 are small quantities of the
same order. Differentiation shows that #*2 and x~2 go
through maxima. The maximum values of *42 are

FIG. 2.

reached at

and are

We thus see the following picture: The k, dependence
of k% has two branches, in accordance with the two
signs in front of the radical in (2.15). One branch cor-
responds to a wave with a right-hand elliptic (or, in a
particular case, circular) polarization, while the sec-
ond corresponds to a wave with a left-hand elliptic po-
larization, as usual. The points at which the maxima
occur, however, have a relative displacement along
both the abscissa and the ordinate. The maxima of fe*2

are reached at

<*'>'•>=±f 717

and are

Figure 2 is a rough sketch of the functions fe*2 =/*(&,)

Let us assume that a plane wave with a tangential
wave-vector component kxlK is incident from the region
z<0 on a plate described by (2.14) which occupies the
region O^z^d. To determine the propagation direc-
tions of the waves in the plate, we must draw a line
parallel to the k, axis which cuts out from the k% axis a
segment equal to ferinc. The abscissas of the intersec-
tions of this line with the curves give us the z compo-
nents of the wave vectors of the wave propagating in the
plate. If k2

 Uc< fe~2
max, we have four intersection points

(the line aa') in accordance with the four waves in the
plate. If, however,

^x max < KX inc <C Kx maxi V^.l" )

then we have only two intersection points, both corre-
sponding to the same branch. If k2, lnc and k*2

mu. are suf-
ficiently close together, positive values of fe, corre-
spond to both intersections. This result means that on-
ly forward waves are excited in the plate, and the z
components of the wave vectors of the backward waves
are complex. Since the complex solutions are complex
conjugates, the imaginary part of the z component of
one of the "reflected" waves is positive, while that for
the other wave is negative. The amplitude of one of
these waves will thus increase, while that of the other
will decrease along z. In connection with the presence
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of a wave of increasing amplitude we should point out
that in solving the boundary-value problem in this situ-
ation we do not run into any infinite amplitudes, since
the determinant of the system of equations determining
the amplitudes at the boundaries also contains an in-
creasing term, which suppresses the unbounded growth
of the waves inside the plate.

These properties of the medium result from the si-
multaneous existence of natural and magnetooptic activ-
ities. Because of the natural activity, the maxima of
the branches of the dispersion relation are displaced
vertically from each other, while the magnetooptic ac-
tivity causes a horizontal displacement. With such an
arrangement of branches there may also be an inter-
section of a line running parallel to the k, axis with the
curves, at which only two intersection points would be
obtained (instead of four), and the two would have the
same abscissa sign.

We also note that the reflection and refraction geom-
etry at the boundary of a naturally gyrotropic medium
in a magnetic field was studied in Ref. 85 by means of
Sturm function series. Small terms of second order
were retained in the dielectric tensor, while the anisot-
ropy of the magnetic permeability and of the natural
activity were ignored. The results derived in Ref. 85
lead to the same picture of the reflection of the bound-
ary as we have seen here. Furthermore, when only
forward waves with real wave numbers are excited in a
plate (and the wave vectors of the backward waves are
complex) the two forward waves will trace out their po-
larization ellipses in the same direction, since they
correspond to the same branch of the dispersion rela-
tion.

b) Boundary-value problem for a plate

As we saw in the preceding section, the existence of
two types of activity (natural and magnetooptic) causes
an irreversibility of the light waves, disrupts the law
of sines, changes the absolute value of the rotation of
the polarization plane upon a reversal of the propaga-
tion direction, and leads to the distinctive properties
discussed in Subsection Ia4. Here we will examine the
propagation of light through a plate in order to deter-
mine how noninvariance of the dispersion relation af-
fects the optical properties of the plate. For simplic-
ity, we assume normal transmission. We will thus not
take up the particular properties of the medium which
are related to the propagation geometry of the incident
and reflected waves in the plate. Those aspects of the
problem which are related to the change in the absolute
value of the rotation of the polarization plane upon a re-
versal of the propagation direction, however, will be
seen most clearly.

We assume that a plane monochromatic wave

(-^-z — at) (2.17)

waves: two forward waves, corresponding to cos a* = 1
in (2.6) and two backward waves, with cosa±= -1. Ac-
cording to (2.9) and (2.10), for forward waves propagat-
ing from the 2 = 0 boundary toward the 2 = d boundary the
rotation of the polarization plane over a unit length of
the beam is proportional to the sum y +gt, while for
backward waves it is proportional to the difference y
-ge. We consider the case in which a wave propagating
from the 2 = 0 boundary toward the z = d boundary under-
goes no polarization- plane rotation, i.e.,

Y + ?e = 0-

Using the relations derived in Ref. 43, we then have the
following expressions for the components £4l and E±y of
the field of the transmitted wave (in the amplitudes we
are ignoring terms proportional to the gyration param-
eters2' when we have Ex=0, Et = Q, and Ey*Q in the in-
cident wave):

(2.18)
where &„ is the determinant of the system of equations
representing the boundary conditions (the continuity
conditions on the tangential components of the electric
and magnetic fields).

It follows from (2.18) that the polarization plane of the
transmitted wave is rotated with respect to that of the
incident wave (E4:c* 0) although the wave propagating in
the plate from the z = 0 boundary to the z = d boundary
does not undergo a polarization-plane rotation. The ro-
tation of the polarization in the transmitted wave in this
case results from multiple reflection. The multiple re-
flection rotates the polarization plane in the transmitted
wave because of a polarization-plane rotation in the
backward wave in the plate (under the condition y +gt

= 0 the expression y -g,, to which the rotation in the
backward wave is proportional, is nonzero). If Ve/pi
= 1 (i.e. , if there are no reflections from the plate
boundaries) we in fact find Etx=0. Consequently, non-
invariance of the dispersion relation gives rise to a po-
larization-plane rotation in the transmitted wave in the
absence of a rotation in the wave propagating from the
first boundary of the plate to the second.

This example shows how wrong we can be if we try to
discuss the wave transmitted through the plate by work-
ing from propagation in an unbounded medium. In Ref.
83, for example, it is concluded that the natural rota-
tion of the polarization plane can be cancelled by a mag-
netic rotation. It follows from (2.18) that under the
conditions V e / M = l, i.e., when there are reflections

is incident from the region z < 0 on the z = 0 boundary of
a plate which occupies the region O^z^d and which is
described by dispersion relation (2.6). There is a vac-
uum at z < 0 and z > d. Inside the plate we have four

2>The discontinuity of the tangential component of the magnetic
fie Id24-25 was not taken into account in Bef. 43, so that to in-
corporate terms proportional to the gyration parameters in
the amplitudes would be to go beyond the attainable accuracy.
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from the boundaries, it is not possible to arrange can-
cellation of the natural and magnetic rotations.

c) Magnetic crystals exhibiting a natural optical
activity

Natural optical activity is seen in the visible wave-
length region when the change in the wave phase over
characteristic atomic distances cannot be ignored. In
this region the magnetic susceptibility cannot be as-
sumed equal to zero.137 It may thus appear at first
glance that a joint analysis of the magnetic properties
and the natural activity is meaningless. As we men-
tioned above, however, it has been shown that in the
optical region the magnetic susceptibility should be as-
sumed nonzero, at least for ferromagnetic media.65 In
particular, it has been shown that the Landau-Lifshitz
equation remains applicable up to the optical frequency
range65 (see also Ref. 64). Since this conclusion con-
tradicts the assertion that the magnetic susceptibility
must be assumed equal to zero at high frequencies (be-
ginning in the far-IR region) (§60 in Ref. 137), we
should point out the following136: a) The most favorable
conditions for manifestation of the magnetic properties
of a material arise in magnetooptics. The Faraday ef-
fect in an external magnetic field makes it possible to
see evidence of some rather small off-diagonal compo-
nents of the magnetic susceptibility, which are caused
by rotation of the polarization plane. For example, for
off-diagonal components of the order of 10"6 the rotation
of the polarization plane over 1 cm at the wavelength X
~ 6-10"5 cm in a dielectric (e~ 5) is of the order of 0.1
rad. b) The case for retaining the magnetic suscepti-
bility at high frequencies must include, in addition to
numerical estimates, proof that the very meaning of
magnetic susceptibility is retained at these frequencies.
The proof that the meaning of magnetic susceptibility is
untenable is based on the requirement that two values
of the magnetic moment of an object, expressed respec-
tively in terms of currents and in terms of the magnet-
ic-moment density, must be equal (§60 in Ref. 137).
This requirement is valid, however, if there are no
convection currents. In the proof in §27 in Ref. 137
that these two values of the total magnetic moment of
an object are equal for the case of static magnetic
fields it was assumed that there are no convection cur-
rents capable of transporting charge across the total
cross section of the object. Consequently, when there
are direct convection currents (zero-frequency cur-
rents) (§29 in Ref. 137) these two values of the total
magnetic moment cannot be the same, although the
magnetic susceptibility retains its meaning in a static
field. These two values of the total magnetic moment of
an object may thus disagree, regardless of whether the
frequencies are high or low, although in §60 this dis-
crepancy and the related lack of meaning of the magnet-
ic susceptibility are attributed to high frequencies (at
which the polarization currents become significant).
These arguments and the applicability of the Landau-
Lifshitz equation at high frequencies furnish a basis for
use of the magnetic susceptibility if only for ferromag-
netic media, provided only that the macroscopic ap-
proach is applicable.

On the basis of all these arguments, we feel com-
pletely justified in examining media which simultane-
ously exhibit a natural optical activity and a nonzero
magnetic susceptibility. Such media are described by
constitutive equations (2.2) and (2.3). We used these
equations above under the assumption .§̂  = 0, however,
and under the assumption of a small anisotropy /!„
- /!„. We turn now to a medium described by Eqs. (2.2)
and (2.3); everywhere below we assumegm*Q, which
means that the magnetooptic activity has a gyromagnet-
ic component.

1. To simplify the problem while retaining the non-
invariance of the dispersion relation—a characteristic
property of the medium—we assume that the medium is
uniaxial.

Assuming that the optic axis (the z axis) is along the
external magnetic field, we can write

?*»!=— V»M=

?«„«=— Y»«c=
—7l.

— Yz.

i — (gm)y = 0,

(2.19)

Using (2.2), (2.3), (2.19), and the field equations, we
find the dispersion relation

ajt\ + a3kl + ojfcf — a ,fc, -r- o0 = 0, (2.20)

where kt is the z component of the wave vector of wave
(2.1), which is propagating in the medium.

The exact expressions for a, (i = 1, 2,3,4,0) are quite
lengthy. If we ignore in them terms proportional to the
parameters gt/c,gm/ //, and (w/c)yjj, v'pi/e raised to the
third or higher orders, we find some comparatively
simple expressions:

(2.21D)

O)1

2 tr)4

— geST

a, = - 2 £ E

(I)3 U* \ . #m T o «>4

7 ej-L- ) + -^ [ 3 —

_ _ e | i _
Ms / c Ma

n I " . W4 n -i / > , W2 \

Yjfe - — P Yi ( *i -- — « 3^ )

Mi

V2fci + 2

(2.21c)

'(2*.'21d)

(2.21e)
The quantity kx in (2.21a)-(2.21e) is the x component

of the wave vector of wave (2.1), and ky is assumed to
be zero. It follows from (2.20) and (2.21) that when
there is a gyromagnetic rotation (^^O) a new term
with an odd power of k, (<z3 *0) appears along with the
term containing the first power of kt (at *0). The ap-
pearance of this new term should change the shape of
the index ellipsoid and of the gyration surface.
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2. Boundary-value problem. We consider now the
normal propagation of light through a plane-parallel
plate described by constitutive equations (2.2) and (2.3)
under simplifying conditions (2.19). The plate fills the
region 0 * z « d and is bordered by vacuum on each side.
The plane wave

E(z, ()- -Eexp[ i (-f z-ui)], £, = 0,

is incident from the z<0 half-space.

(2.22)

The boundary conditions depend strongly on the form
of the constitutive equations. With the constitutive
equations as in (2.2) and (2.3), where the entire contri-
bution of the natural activity is taken into account in the
expression for the electric displacement D (as was
mentioned earlier, the constitutive equations of a natu-
rally active medium can be formulated in another way
also; see Ref. 10, where the various possible formula-
tions are discussed), the tangential components of the
magnetic field are discontinuous.24>25l9B The reason is
that the constitutive equation relating D and E contains
a gradient parameter which is a characteristic of the
medium and which is naturally discontinuous at the
sharp boundary as we go from one medium to another.
In the simplest case of an isotropic medium, for exam-
ple, D and E are related by24-25-98

D rE — 6, rot E -;- rot (6,E) tE — (6, - b2) ml E --- Igrad 6..E).

(2.23)

In each of the homogeneous media adjacent to each
other we have grad 62= 0, but if the parameters 62 for
these media are different, then grad 62 is discontinuous
at the tangential components of the magnetic field. This
field is related to D by rotH=(l/c)9D/9<. [The case of
an inhomogeneous medium was taken up in Ref. 98, and
the meaning of the parameter 62 was determined (the
tensor /3jy, in Ref. 98)].

Working from the boundary conditions, and using the
discontinuity of the tangential component of the magnet-
ic field,98 we find the following expressions for the field
amplitudes of the transmitted wave:

(2.24)
) £ » , (2.25)

a_f - <-) exp [i (A-* + ft±) d], 1
±) exp (ik*d), \

where

.4- =., (A
-U - (1 -- a.- ) (1 -Of ) exp (ikftd) - (1 -a?) (1 + a

a,r ., - -^ ,
c*:2, 3;

(2.26)
Within small terms of first order in the activity param-
eters, the quantities fe|_3l are

, , , _ ^ ^ l d : ± f , (2.27a)

for forward waves and

for backward waves.

(2-27b)

It follows from (2.27) that the reversibility of the light
waves is disrupted, since neither k\t nor k~3t is equal in
absolute value to fe2*

 or k'2l. In contrast with the medi-
um discussed in the preceding subsection, we are in-

terested here in the sum (ge/t) + (gm/ M) instead of gj
e. This statement means that the gyroelectric and gy-
romagnetic rotations are indistinguishable from the
standpoint of wave propagation. A difference is re-
vealed, however, upon wave reflection (see Refs. 39,
43, and 86 and Subsection 3b below).

The rotation of the polarization plane over a unit path
length during wave propagation in the forward and back-
ward directions is, respectively,

^Hv + f-^TV^-rJf1.'^- (2-28)

Since (pl *\<pz\, the rotations during forward and
backward propagation are not equal in absolute value.

The absence of a rotation of the polarization plane for
the forward wave corresponds to the relation

^e J_ ^m ' (>> V P M "̂  — 0 (9 90^~7~ ' 7T~ " ^ / • • r ^ c — \£*t u& f

From (2.25) and (2.26) we have E^*Q; i.e., as in the
case discussed in Subsection 2b, multiple reflection
causes a rotation of the polarization plane of the trans-
mitted wave. In the absence of reflections from the
plate boundary (Ve/|Lt = 1) we find

and, by virtue of (2.25), £4r=0.

We will complete this subsection with the approxi-
mate dependence of k, on kx (accurate to the second
power of the activities parameters). Although the ex-
act functional dependence can be found from (2.20) and
(2.21) as the solution of the complete fourth-degree
equation, the corresponding solutions are not very in-
formative because the expressions for the coefficients
a( are very complicated. The function kt= F(kJ must
be found, for example, in solving the boundary-value
problem in the case of oblique incidence. Assuming
that the anisotropy parameters (e - e3)/e3 and (n - p.3)/
p.3 are no greater than the squares of the activity pa-
rameters (y/!m£'1-(w/c)VTj;I,^ee"1,Jg

r
mM"1) in order of

magnitude, and writing k, as

k-_ = A - 0 z ( l --s).

we find from (2.20) and (2.21)

(2.30)

(2.31)

where
. . . . . tl)

/ (*02- K,) - -
/ (I)2 , o \ . ,

, ^ — e|i -}- 4;. J &?,.

i CO2 , ., / 0 to2 , 9 \ , , f-'iri ('J1 o vi *+ TT gmVzh ( 2 -^ ELI - kl ) AV -- -jjj- — e^ki:

+ 2 £ tpg,gmkl: ± ̂  y? (f\k'x - T;fc4
n=) -f 2 -£- n'-v,V2«fc-;

+ 2 f |̂ .T,*:; + 2 % |i»fcVl*S*0, + % ̂ glkl, (2. 32)

For the forward and backward waves, respectively,
k0i is
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If y y j m = 0 , the medium becomes bigyrotropic, and for
s we find

s= ± — — (— -:--?2-') , k =^L]/J]7 (234)

These relations hold if s is of the order of the activity
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parameters. This condition is violated for propagation
directions making angles with the z axis near ir/2, for
which k0l is small.

It follows from (2.30)-(2.34) that the wave-vector
surface and the gyration surface are symmetric with
respect to the plane perpendicular to the external mag-
netic field. These surfaces can be seen to have differ-
ent shapes, depending on whether the medium has a gy-
romagnetic activity in addition to its gyroelectric activ-
ity.

3. MAGNETOACTIVE MEDIA

a) Propagation of an electromagnetic wave in a
magnetized ferromagnet near a point of coincident
roots of the dispersion relation

1. Generally speaking, the field equations for aniso-
tropic and gyrotropic media yield two values for the
wave vector of waves propagating in the same direction.
These waves differ in polarization, and each has a sin-
gle independent field component (electric or magnetic),
in terms of which the other components can be ex-
pressed. In determining the field amplitudes of the re-
flected and refracted waves we deal with a system of
equations (boundary conditions) equal in number to the
number of independent components. If, for example, a
wave is incident from vacuum on a gyrotropic half-
space, we have four field-continuity conditions and four
unknown components for a given amplitude of the inci-
dent wave: two components (of, say, the electric field)
in the reflected wave and one component in each of the
two refracted waves. All the other components of the
electric field can be expressed in terms of these by
means of the constitutive equations and the equation
divD=0.

The magnetic field components are expressed in
terms of the electric field components by means of one
of the first two Maxwell equations.

Under certain conditions, however, this ordinary
situation may be disrupted. For example, if roots of
the dispersion relation coincide, the number of unknown
components may not be the same as the number of
boundary conditions. However, we must distinguish
from the outset between two cases of coincident roots.
In the first, one of the relationships between compo-
nents disappears because of the coincidence. It turns
out in this case that two waves with independent polari-
zations correspond to the two coincident roots. This
case (degeneracy9) does not pose any difficulties in the
boundary-value problem or any singularities in the
wave propagation. In the second case, the polarizations
of the waves are also equal when the roots are coinci-
dent. In this case the roots are called "essentially
multiple."9

The propagation directions for which the roots of the
dispersion relation are essentially multiple are gener-
ally called "singular." There may be isolated singular
directions74'140-141 or cones of such directions.142

Situations of the second type are interesting not only
because they complicate the formulation of the bound-

ary-value problem but also because the media exhibit
distinctive optical properties under such conditions.
The case of coincident roots of the dispersion relation
in absorbing crystals was examined by Khapalyuk.74 He
concluded that there are, in addition to ordinary nor-
mal waves, waves of a new type, of the form9'7

E (r, t) - A-(kr) oxp [i (kr - tat)]. (3.1)

Such waves may arise when absorption is taken into ac-
count, and this circumstance prevents an unbounded
growth of the field upon an unbounded increase in (kr):
As (kr) — °°, the exponential function tends toward zero
more rapidly than the product (kr) tends toward infin-
ity, and the field amplitude decreases.

Kaganov and Yankelevich75 examined the case of co-
incident roots of the dispersion relation in a nonabsorb-
ing gyroanisotropic medium. In such media, without
absorption, waves of the type in (3.1) cannot arise.9 It
turns out that when the roots of the dispersion relation
coincide the picture of the wave field is completely dif-
ferent: The waves propagate undamped in the medium,
and the energy flux is zero. The reason why there is
no energy flux is that the electric and magnetic field
vectors are parallel to each other.

We turn now to the situation which arises in the case
of essentially multiple roots in a magnetized ferromag-
net with a scalar dielectric permittivity.77

2. We assume that a plane wave (2.1) is incident from
the region z <0 on a ferromagnetic medium occupying
the 2 «= 0 half-space in an external magnetizing field H0.
We denote by E2 the dielectric permittivity of the ferro-
magnetic medium, and we write the magnetic permea-
bility as122-125

a = 4n 1/J" ' f*" = P** = •*« = ̂  = 0-

where wfl is the ferromagnetic resonance frequency, w
is the frequency of the wave propagating in the medium,
and M0 is the magnetic moment per unit volume. Equa-
tions (3.2) hold if

(3.3)

where ur is the relaxation frequency.122

We denote by kx the tangential component of the wave
vector of the incident wave, and we assume ky= 0. We
then find the following expressions for the z components
of the wave vectors of the refracted waves:

.i± I ^,, (3.4)
K - m'c-'e.V. (3.5)

Dispersion relation (3.4) has multipole roots if

%« = 0. (3.6)
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Condition (3.6) is satisfied along with the condition of
real multiple roots (in the absence of intrinsic absorp-
tion) on the following curve:

if the frequency interval is determined by
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1<- (3.8)

The wave is elliptically polarized.77 We might note that
by varying kx we could change u in (3.7); i.e., the situa-
tion in which multiple roots appear may occur not at a
single frequency but over an entire frequency interval.
There is the possibility of modulating the wave polari-
zation and the energy transport across the boundary in
this interval (see the following subsection).

3. Differentiating (3.4), we see that under condition
(3.7) the z components of the group velocities vanish:

«g--^r = 0. (3.9)

It is interesting to examine the way in which the ener-
gy flux in the z direction vanishes. In a gyrotropic me-
dium the Poynting vector frequently rotates over space
at the wave frequency w, and we are interested in its
average value s rather than its instantaneous value.
Constructing the Poynting vector, we find the following
condition on curve (3.7):

32I = 0 (3.10)

in accordance with (3.9). The vanishing of the z compo-
nent of the group velocities in this case results from
the phase difference (of ir/2) between the components of
the electric and magnetic fields, in contrast with the
case of a gyroanisotropic medium.75 This phase differ-
ence causes the z component of the vector product [EH]
to vanish when averaged over time.77

We assume that k, is fixed. If ww^1 satisfies (3.7),
we then have u\,= 0. We denote this value of wo^1 by q0.
If we now vary u> or wff, we move away from (3.7). We
assume that the value of wwj,1 differs from q0 by A<7
= wWfl1 - q0. A displacement of q from q0 changes the z
components of the group velocities. At small values of
the ratio b.q/q0 we find the following expressions for

_

-lJ'1}/^', (3.11)

where k2t = k*2t=k~2, on curve (3.7). If A<7<0, then the z
components of the group velocities of the two waves
propagating in the same direction have different signs
near the frequencies at which the roots of the disper-
sion relation coincide: The energy of one wave is prop-
agating forward, and that of the other is propagating
backward [the direction of these waves is determined by
whether k2t is positive or negative in (3.11)], On curve
(3.7) itself, there is no energy flux along the direction
of the z axis, although the waves propagate undamped.
If A<?>0, then the amplitude of one of the waves in-
creases exponentially, and the amplitude of the other
decays. The components u\t are imaginary when A<?
>0. Clearly, we can move away from curve (3.7) not
only by changing co or WH but also by changing kx.

4. The fields of the waves propagating in the medium
under discussion depend on the coordinates and the time
in accordance with Egexy[i(kxx + k^z-ut)]. These waves
coalesce to form a single wave on curve (3.7). To de-
termine how the field depends on the coordinates in the
case of coincident roots of the dispersion relation we
need to know the amplitudes E* and E~0. To find them,

we briefly examine the boundary-value problem."

In determining the field amplitudes we ordinarily have
two waves in a semi-infinite refracting medium. Of the
four possible waves we select those which are damped
and do not grow with distance from the boundary (damp-
ing and growth always occur, regardless of other fac-
tors, because of the unavoidable presence of absorp-
tion; in the case at hand, the absorption results from
the imaginary part of the dielectric permittivity). We
thus have two independent amplitude components in a
refracting medium. If the roots of the dispersion rela-
tion are essentially multiple, on the other hand, the two
waves coalesce to form a single wave, and instead of
two unknown amplitudes we have one. To determine the
amplitudes when the roots of the dispersion relation co-
incide, i.e., when A? = 0, we find expressions for these
amplitudes under the condition A<?*0 (in which case the
number of unknown amplitude components is equal to the
number of conditions at the boundary), and we let A^
tend toward zero in these expressions. We then find an
expression of the following type for the field of the re-
fracted wave:

Erefr (r, f (3.12)

The sum of the two refracted normal waves of the type
E£exp[t(£xA: + ̂ |̂  - ut)] thus transforms to an expres-
sion like (3.12) as we tend toward curve (3.7), on which
the condition k\x = k~2t holds. Since Imk2f>0, the field
remains finite despite the term Az; the reason is that
the function exp(lmk2tz) tends toward zero more rapidly
than |Az | tends toward infinity.

b) Bigyrotropic media

Such media are described by constitutive equations
(2.2) and (2.3) with rjlm= 0. The variety of optical prop-
erties of bigyrotropic media have been revealed in a
series of studies.39'75'76'86-117-121'123-129 For example,
the ellipticity of a wave transmitted through a bigyro-
tropic plate is caused not only by the different absorp-
tion levels for right- and left-hand polarized waves but
also by the difference between the impedances for these
waves.39 Several distinctive features have been found
for propagation in bigyrotropic media; in particular,
there is the possibility of monorefringence,76'47 and
there is the possibility that the electric and magnetic
fields may be parallel in a standing wave in a semi-in-
finite gyroanisotropic medium.75 It has been shown that
it is possible to distinguish between the gyroelectric
and gyromagnetic effects86-117 (which are caused by the
parameters ge and gm, respectively). We now consider
the amplitude relations for a bigyrotropic medium with
absorption and with a (usually neglected) slight aniso-
tropy, and we will briefly discuss certain polarization
properties of bigyrotropic media which result from the
presence of the two gyrotropy parameters gt and gm.

We assume that a bigyrotropic medium described by
the dielectric permittivity and magnetic permeability
tensors

-igm 0

(3.13)
fi

occupies the region z ^ 0. A wave
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E(r . 0 Ee.x]> \i (kr - cat)I (3.14)

is incident from vacuum on the z = 0 boundary. We
seek a refracted field in the form E2(r, 0 = E2exp[i(k2r
- orf)]. We then find the dispersion relation

(3.15)
In a discussion of the frequency interval with

_£mJ2

Hi I ' ~ T - ~ ' <3-16)
I t2

and with terms of the order of the gyration parameters
retained, the customary approach has been to ignore
the anisotropy.123 This simplification is justified in a
study of light propagation in an unbounded medium. As
mentioned above, however, in the presence of boundar-
ies it turns out that an anisotropy gives rise to terms
in the amplitudes which are of the same order as those
caused by the gyrotropy.43 Consequently, anisotropy
has been retained in the derivation of the dispersion re-
lation (3.15), so that these terms can subsequently be
taken into account.

For the components Elx and Ely of the electric field
amplitude of the reflected wave we find43

, 2<E,t,k,k,,rtgm g, } k, 2Q,-m)ti 1

^ Ao *| I A H« E2 I klz Hi l(*e/e.) + 0?m/Hi)l *u*'« J '
, „

y

where

The second term in brackets in the expression for £lx
results from the anisotropy. According to (3.16), it is
a quantity of the same order of magnitude as the gyra-
tion parameters g,t~2 and ga^- Consequently, in de-
termining the field amplitudes within terms of the or-
der of the gyration parameters, we must also take into
account the small parameters of higher order which
are caused by the anisotropy.

The geometry of this ellipticity which results from
the anisotropy can be understood from the following
arguments. We assume that a wave with an electric
field parallel to the y axis is incident normally on the
2 = 0 boundary of a gyrotropic medium. In the absence
of anisotropy, the refracted wave is elliptic because
the amplitudes of the waves with right- and left-hand
circular polarizations are not equal: An x component
of the field appears with an amplitude numerically
equal to the segment AB (Fig. 3a). This anisotrqpy
"deforms" the polarization circles into ellipses, com-
pressing one circle in one direction and the other in a
perpendicular direction (Fig. 3b). We thus have a fur-
ther difference between the parallel semiaxes of the
two polarization ellipses: The amplitude of the x com-
ponent of the field is now numerically equal to the seg-

FIG. 3.

ment A^B^. By virtue of the boundary conditions, an
additional ellipticity also arises in the reflected wave.

It can be seen that there are two ways in which the
ellipticity can be cancelled: because of a difference
between the radii of the polarization circles and be-
cause of the "deformation" of these circles. Ellipticity
is thus a necessary property of a wave reflected from
a magnetoactive medium on which a plane-polarized
wave is incident.

There is also the possibility that there will be no el-
lipticity in the case of a medium which is not aniso-
tropic. To pursue this possibility we consider the case
kx = 0. There is no ellipticity in the reflected wave if
(g,^z> ~(gm/ Vzl - 0. The polarization plane rotates in
the medium [(^re/E2) + (gmiJ.2) *0]. If, on the other hand,
we have (g,/t2) + (gm/iJ.2) = 0, then the medium does not
rotate the polarization plane, although it clearly has
two types of gyrotropy and must therefore be assumed
gyrotropic. The gyrotropy is seen in this situation in
the reflected wave: in its ellipticity. Here we see yet
another case which shows that the concept of a gyro-
tropic medium as one which rotates the polarization
plane is of limited applicability, as was pointed out in
Refs. 7, 10, and 20. This limitation is incorporated in
the definition of gyrotropy given in Ref. 10.

We now consider the role played by absorption in the
polarization of the reflected wave. We assume that a
plane wave with electric vector in the plane of incidence
is incident on a medium. If we take into account the ab-
sorption caused by the imaginary parts e2|3 and jn2'i3 of
the components e2l3

 = E2i3+iE2'(3, Ji2i3= Mz.a+J/^'.s) we ^n<^
an additional phase difference in the reflected wave.

Ignoring the terms proportional to E2i3 and ^2,3 raised
to the second and higher powers, and also ignoring the
products of E2'i3 and n'2>3 with gt or gm, we find the fol-
lowing expression for the additional phase difference $:

0 01-02, (3.18a)

where *lf2 are the arguments of the complex numbers

(the subscript "1" corresponds to the upper sign), and
3 is the angle of incidence.

When absorption is taken into account, the phase dif-
ference between the components of the electric field in
the reflected wave (one of these components lies in the
propagation plane, and the other is perpendicular to
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this plane) ceases to be a constant (equal to IT/2) and
becomes dependent on the angle of incidence. If the
electric vector of the incident wave lies in the propaga-
tion plane or is perpendicular to it, then the major
semi-axis of the polarization ellipse of the reflected
wave correspondingly departs from this plane or slopes
toward it.

Expressions (3.18) hold if

I e',\\'.~sin2 <

We will complete this subsection by examining yet
another property of magnetoactive media. If the medi-
um is isotropic in the x,y plane, and if we have By= 0
in the incident wave, then the ratio Ely/iE1JC in the re-
flected wave is (with kx=0)

"-,=-^ = ̂ %r(^-^). Z0=/II. (3.19)

The rotation of the polarization plane over a unit path
length in an unbounded medium, which we can use to
estimate the rotation during propagation of a wave
through a plate, is proportional to

Km '
(i, ;

(3.20)

We assume for definiteness Za> 1. Then it follows from
the last relations that if o^ and a2 have different signs
then the medium is gyroelectric (or that the gyroelec-
tric effect is stronger than the gyromagnetic effect),
while if the signs of aj and a2 are the same then the
medium is gyromagnetic (or the gyromagnetic effect is
stronger than the gyroelectric effect). This assertion
remains valid in the case of oblique incidence, although
in this case at and a2 are not the same as in (3.19) and
(3.20). We can thus draw conclusions about the nature
of the rotation simply by comparing the signs of a: and
a2.

4. CIRCULAR DICHROISM, DICHROISM
MECHANISMS, AND IRREVERSIBILITY

1. The absorption related to the gyrotropy parameter
is known to cause circular dichroism: different ab-
sorption levels for waves with right- and left-hand cir-
cular (or elliptic) polarizations.17'18'138 This is the
simplest type of dichroism, and the one known for a
long time, but it is not the only type.

In an anisotropic medium, both the rotation of the po-
larization plane and the different absorption levels for
right- and left-hand elliptic polarizations depend on
both the imaginary parts of the gyrotropy parameters
and the imaginary parts of the dielectric permittivity
tensor.143'144 For example, if light is propagating along
one of the primary directions in an anisotropic crystal,
a direction along which an external magnetic field is
applied, then the wave vectors are

(4.1)

where g is the projection of the gyration vector onto
the propagation direction, and EJ and £2 are the princi-
pal values of the tensor c i f in the plane perpendicular
to this direction. It follows from (4.1) that when EJ and

E2 have imaginary parts the wave vectors k* and k~ will
have different values even if the parameter g is real.
The rotation and the circular dichroism depend on the
linear dichroism because the circular polarization of
the waves becomes elliptic in an anisotropic medium.143

The effect of linear dichroism on circular dichroism
should apparently be regarded as yet another dichroism
mechanism.

2. There is a circular dichroism different from
those discussed above.145 It operates even if there is
neither an anisotropy nor an imaginary part of the gy-
rotropy parameter. To explain this mechanism we
consider the propagation of light along an external
magnetic field in a medium which is isotropic in the
absence of the magnetic field and described in the
presence of the field by

D -- eE ~ i [geE1. B |jH. (4.2)

For the wave vectors of the waves with right- and left-
hand circular polarizations we find

i ^ *> T ~~;—i „ > (A i\k± ——Vfl(e±£e)- \*'»l

If E has an imaginary part (E = e' +iz"), the imaginary
parts of k* and k~ will not be the same. Specifically,
they will differ by an amount proportional to the prod-
uct t"ge. Although the imaginary parts of the expres-
sions in the radicals,

e' — i e," -- ge and e' — it" — g„

are equal, the values of the corresponding roots are
not, because of the difference between the real parts of
the expressions in the radicals.

This type of dichroism occurs because the condition
ge*Q makes the optical path lengths traced out by the
right- and left-hand circularly polarized waves differ-
ent over the same geometric path lengths (because of
the difference between the wavelengths); as a result,
the waves experience different absorption levels at a
given value of the damping parameter E". With a real
gyration parameter, the circular dichroism may thus
occur even in the absence of anisotropy in a magnetized
medium (in contrast with isotropic naturally gyrotropic
media10).

To observe this type of dichroism might require large
imaginary parts of the tensor £(y (or p.u; see Ref. 145,
where this type of dichroism is discussed for the case
of a bigyrotropic medium) and large values of the gyro-
tropy parameters. Large values of the gyrotropy pa-
rameter were measured in Ref. 146, for example. The
large values of the parameter ge in magnetooptic exper-
iments in megagausss fields147 should also give rise to
this type of dichroism in the presence of an absorption
due to the imaginary part of the dielectric permittivity.

3. In naturally gyrotropic media in an external mag-
netic field, with waves propagating in opposite direc-
tions (not perpendicular to the magnetic field), the
magnitude of the circular dichroism is not the same.
From (2.27a) and (2.27b), with real E and ji, for exam-
ple, we find

" " . ' (4.4)
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(the double prime means the imaginary part of the cor-
responding quantity). The inequality \k% -k~£ * \k"l
— k~^ | is responsible for a difference in the absorption
levels for plane-polarized and unpolarized light propa-
gating through a plate in opposite directions.145 We thus
see an irreversibility of the absorption with respect to
a reversal of the propagation direction.

4. Yet another type of dichroism appears in a bigyro-
tropic medium. Let us consider the propagation of light
along the magnetic field in the medium described by
(3.13). For the wave vectors we find

(4.5)

If E = e'+ie", n= fi' +ifJ."> and ̂ , and ^m are real, then
*" = cu/c{(e' n' +gtgm - e" jx") ± (e'*.+ n'gj ± i[(t'gm + M"

The quantity i(e"gm + n"gt) appears with different
signs in the expressions for k* and k~ and thus causes
different absorption levels for waves with right- and
left-hand circular polarizations. Each of the terms
£"£-, and n"gm, we might note, is the product of two
parameters, one appearing in the equation relating D
and E and the other appearing in the equation relating B
and H. We should emphasize that the possible appear-
ance of terms with a structure of this sort was pointed
out by Bokut' and Fedorov90 for naturally gyrotropic
media with constitutive equations formulated in such a
manner that the gyrotropy parameter appears in both
the equation relating D and E and that relating B and H.

5. CONCLUSION

We have touched on some of the many problems in the
optics of gyrotropic media. The trends seen today in
research fields bearing more or less directly on the
optics of gyrotropic media suggest certain specific
questions as worthwhile to pursue. The first is the op-
tics of boundary layers.25 Generally speaking, an in-
terface presents new conditions for studying the struc-
ture of matter (say the intermolecular interaction), the
reason being simply the "cutoff" of the medium at its
boundary (which, for example, changes the crystal
wave functions because of the disruption of the perio-
dicity). Magnetooptic methods constitute a subtle in-
strument for studying boundary layers.31'32 A detailed
derivation of a theory for the optics of boundary layers
incorporating gyrotropy and the anisotropy of the di-
electric function would clearly be worthwhile. The
number of papers on this topic is small, and the over-
whelming majority have so far addressed nongyrotropic
media."8-149

A second group of questions involves a detailed de-
rivation of a phenomenological theory for reflection and
refraction at the interfaces of half-spaces and plates
incoporating the optical properties of unbounded gyro-
tropic media with which we are familiar at this point
(the appearance of new roots of the dispersion relation,
the coincidence of roots of the dispersion relation,
etc.). Research in this field is required not only for
studying these effects and identifying them experimen-
tally but also for taking boundaries into account prop-
erly. Such research may also reveal some new effects

due to boundaries. The derivation of a detailed phe-
nomenological theory incorporating the observed ef-
fects would also eliminate some difficulties which
arise in experimental studies of these effects, e.g., the
difficulties resulting from the appearance of anisotropy
in research on the gyrotropy caused by mechanical
stress.

There is a perceptible need for effective new (non-
computer) methods for solving boundary-value prob-
lems and for refining the existing methods for problems
involving many boundaries.

Several interesting new optical effects have recently
been predicted,150'152 and gyrotropy effects occupy an
important position among them. The derivation of a
theory for light propagation through bounded media in-
corporating these effects would accelerate their exper-
imental discovery, a matter of much interest.

I am deeply indebted to B. M. Bolotovskii for discus-
sions and advice and to V. M. Agronovich and V. L.
Ginzburg for interest in this study and for several use-
ful comments. Discussions with M. I. Kaganov regard-
ing multiple roots in ferromagnets and the dispersion of
the magnetic permeability and the advice offered by
G. S. Krinchik on magnetooptics and (in particular) the
magnetic susceptibility at optical frequencies were ex-
tremely useful, and again I am deeply indebted.
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