
Solitons in quasi-one-dimensional molecular structures
A. S. Davydov

Institute of Theoretical Physics, Academy of Sciences of the Ukrainian SSR, Kiev
Usp. Fiz. Nauk 138, 603-643 (December 1982)

Theoretical investigations of solitons arising in quasi-one-dimensional molecular structures such as alpha-

helical protein molecules are described. The properties of solitons and excitons are discussed. The reasons for

the great stability of solitons are investigated. It is noted that the vibrational energy of Amide I vibrations of

peptide groups can be transported in the form of solitons along a protein molecule without losses due to

creation of phonons. Deceleration of solitons by dissipative forces and the effect of thermal motion and

external fields are investigated. A new mechanism for muscle contraction in animals, based on the idea of

solitons, is discussed on a molecular level.

PACS numbers: 87.15.By, 31.90. + s

CONTENTS

1. Introduction 898

2. Solitons and excitons in molecular chains 899

a) Basic equations describing the interaction of intramolecular excitations and

acoustical phonons. b) Exciton excited states, c) Soliton excited states.

3. Solitons in biological molecules 904

a) Alpha-helix structure of proteins, b) Solitons in alpha helical proteins, c) Numerical

calculations of soliton excitations in discrete protein molecules.

4. Solitons and the molecular mechanism of muscle contraction 908

a) Structure of striated muscles, b) Current models of the mechanism of muscle contraction.

c) New hypothesis concerning the mechanism of muscle contraction.

5. Dynamic properties of solitons 910

a) Free solitons with low velocities, b) Motion of solitons in the presence of friction.

c) Motion of solitons under the action of external inhomogeneous fields, d) Motion of

solitons in molecular chains in the presence of thermal motion.

6. Excitation of solitons in a one-dimensional molecular system 915

a) Method of the inverse scattering problem, b) Initial pulse in the form of a hyperbolic

secant, c) Initial pulse in the form of a rectangular step.

References 917

1. INTRODUCTION

The word soliton, as a brief designation of solitary
waves, corresponding to particular solutions of some
nonlinear equations and describing the propagation of
excitations in continuous media which are dispersive
and nonlinear, was introduced into the scientific litera-
ture by Zabusky and Kruskal in 1965.1 However the
first qualitative scientific description of solitary waves
on the surface of water in a shallow channel was given
by the English marine engineer John Scott-Russell more
than 140 years ago.

Writing in the Proceedings of the Royal Society of
Edinburgh, Scott-Russell wrote2 that he observed a
large solitary wave, moving off the bow of a barge,
pulled along a channel by a pair of horses, after the
barge suddenly stopped. Assuming the shape of a high,
solitary, smooth, rounded, distinctly outlined mound of
water (height of about one-half meter, length ~10 m),
the solitary wave rolled rapidly along the channel. "I
galloped after it on a horse," wrote Scott-Russell, "and
when I caught up with it, it continued to roll forward
without an appreciable decrease in velocity, retaining
its initial shape ... Thus my first encounter with this
unique and wonderful phenomenon occurred in August
1834."

On the surface of a heavy shallow fluid, solitary waves
are isolated rises in the fluid level propagating along a

channel. If the depth of the channel is small, then the
equation for the average velocity of the fluid (u) in a
given section reduces to the equation for one-dimen-
sional motion

du
(1.1)

where β is a parameter that characterizes dispersion.
In the case of water in a channel with depth h, it is de-
termined by the acceleration of gravity g by the expres-
sion β = -Jgh? /6.

This equation was derived by Korteweig and de Vries3

in 1895 and is now called the Korteweig—de Vries equa-
tion or, briefly the KdV equation.

Based already on the first observations of solitary
waves, Scott-Russell noted their extraordinary stability
and automatic self-adjustment. It is the great stability
of solitons that has stimulated in the last ten years nu-
merous attempts to use them in describing many new
phenomena in different areas of physics and other
sciences.

The formation of solitons in a continuous medium, de-
scribed by nonlinear equations, is related to spontane-
ous breakdown of the local symmetry of a homogeneous
system, i.e., with self-localization of excitation ener-
gy, electric charge density, or other physical quanti-
ties.
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Interest in solitons has increased considerably in the
last ten years in connection with research in plasma
physics. In 1958 Sagdeev4'5 showed that solitons, anal-
ogous to the solitons on the surface of water, can
propagate in a plasma located in a strong magnetic
field. In a review paper, Kadomtsev and Karpman6

gave a detailed account of the application of the KdV
equation to the description of magnetosonic and iono-
sonic solitons in a plasma. The nonlinear Schroedinger
equation (NS) is mentioned in the same review (Sec.
4.2). In the simplest one-dimensional case it has the
form

(,-/j-fi.4-_^_JL_. G | if |=l ' | = 0 . v l . 2 )

where G is the nonlinearity parameter and H2/lm* is a
parameter that characterizes dispersion.

The NS equation is used to describe self-focusing phe-
nomena in nonlinear optics, one-dimensional self-
modulation of a monochromatic wave in a plasma, sta-
tionary two-dimensional self-focusing of plane waves,
etc.

Some problems in the theory of superconductivity and
ferromagnetism reduce to the sine-Gordon equation

</=- ,ir- — M " Ί· (1.3)

The simplest solutions of this equation in a one-dimen-
sional space are typical examples of so-called topologi-
cal solitons, for which the boundary conditions at in-
finity are not the same: for example, in a one dimen-
sional system ψ(°°)# ψ(-°°). The solutions of one-di-
mensional KdV and NS equations, satisfying the bounda-
ry conditions ψ(°°) = ψ(- °° ) = 0, are called nontopological
or dynamic solitons.

Aside from the equations mentioned above, several
other nonlinear equations are known that contain dis-
persion, whose solutions due to the mutual balancing of
the effects of nonlinearity and dispersion have particular
solutions in the form of stable solitary waves, i.e.,
solitons.

The solutions of Eqs. (1.1)—(1.3) have been studied in
greatest detail for one-dimensional systems. In the
one-dimensional case, these equations have a remark-
able mathematical property. They can be integrated by
the so-called method of the inverse scattering problem
for the auxiliary linear operator. The inverse problem
method originated in the work of Gardner, Green,
Kruskal, and Miura.7 This method was further de-
veloped by Zakharov, Faddeev, Novikov, Cologero,
Marchenko, et al.s'12 The method of the inverse scat-
tering problem is systematically described in the
monograph by Zakharov, Manakov, Novikov, and
Pitaevskii.13

Applications of the soliton concept to different areas
of applied sciences are examined in the exhaustive re-
view by Scott, Chu, and McLaughlin.14 The present re-
view presents the results of theoretical investigations
of solitons arising in quasi-one-dimensional molecular
structures. In particular, such structures are realized
in alpha helix protein molecules of living organisms. In

connection with biological applications, only cases when
a single soliton is excited at one time in the system are
examined in the review. The object of the study are mo-
lecular chains in which molecules (groups of atoms)
connected by weak hydrogen bonds are periodically re-
peated. Such molecular chains are in some approxima-
tion models for the alpha-helix protein molecules.

Studies conducted at the Institute of Theoretical
Physics of the Academy of Sciences of the Ukrainian
SSR have shown that with the help of solitons vibrational
intramolecular excitations and electrons can be trans-
ported along protein molecules without energy loss.
This work opens up a new area for application of the
soliton concept.

2. SOLITONS AND EXCITONS IN MOLECULAR
CHAINS1»

a) Basic equations describing the interaction of
intramolecular excitations with acoustical phonons

The interactions of intramolecular excitations with
acoustical phonons in one-dimensional systems were
first studied by Rashba.15·16 In these papers, as in a
number of subsequent papers (Toyazawa, Davydov, et
a!.17'20), the conditions for formation of bound states of
the intramolecular excitation and deformation of the
chain, neglecting the motion of the excitation, were
examined.

In studying the motion, two basic difficulties arise.
These are related to separation of the center of mass of
the excitation, moving together with the deformation,
and to correctly take into account the lag of the de-
formation as the excitation moves along. These diffi-
culties were overcome most accurately and systema-
tically by Bogolyubov21 and Tyablikov.22 In these papers,
concerning the analogous problem of the motion of an
electron, an adiabatic perturbation theory was developed
in which the kinetic energy of the phonon field was
viewed as a small perturbation. For this reason, it is
convenient to use the theory only in studying excitations
moving with low (compared to the velocity of sound veloci-
ties in comparatively rigid systems with the parameters
of asolid. The problem of the separation of the center of
mass of the excitation was also correctly solved in these
papers. However, this was achieved by introducing three
extra variables and three additional conditions in order to
conserve the correct number of degrees of freedom.
This circumstance greatly complicated the theory and
did not permit calculations beyond the first order terms.
Adiabatic perturbation theory was also used in later
papers by Mel'nikov, Volovik, and Edel'shteFn.23·24

In what follows we present the results of investiga-
tions of collective (not transporting electric charge)
excitations in one-dimensional "soft" molecular chains
without using the adiabatic perturbation theory. The
kinetic energy of the phonon field is taken into account
exactly. The center of mass is separated by a simple
(widely used in the theory of traveling waves) trans-
formation to a system of coordinates moving together

"This section was written based on the studies performed by
Eremko, Kislukha, Sergienko, and Davydov.25"28
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with the excitation. It is shown that such excitations
are described by nonlinear differential equations that
include the time lag.

In order to obtain the basic equations describing ex-
citations in a chain of weakly coupled molecules, we
shall assume that molecules of mass Μ are situated
along the ζ axis at nodes na (n = 0, ± 1,...). Each mole-
cule can pass into an excited state with energy &0, in-
cluding the energy of the resonant interaction with
neighboring molecules. The electric dipole moment d
for the transition is oriented in the excited state either
along or perpendicular to the ζ axis. If B* and Bn are
creation and annihilation operators for the excitation,
while un is the operator for longitudinal displacements
of the equilibrium position of the n-th molecule, then
the Hamiltonian operator of an infinite chain of mole-
cules can be written as a sum of three terms

Η = He% — ffph — Him,

where

[fS [if Ρ»

(2.1)

(2.2)

(2.3)

#int = X?" ·β^η(»η+1— «n-l)· (2.4)
η

In these expressions the parameter κ describes the
longitudinal elasticity of the chain, pn is the momentum
operator, canonically conjugate to «„; χ is the param-
eter coupling the intramolecular excitations and dis-
placements of the molecules wn.

Hex is the operator of intramolecular excitations with
molecules fixed at the nodes na· The energy of the
resonant dipole-dipole interaction (- J) between neigh-
boring molecules is expressed in terms of the dipole
moment d for the transition by the equalities

2dVo3, if d is parallel to ζ axis,

-dVn3, if d is perpendicular to ζ axis. v2.5)

For strong coupling between intramolecular excita-
tions and molecular displacements, all three terms in
(2.1) must be considered on an equal basis. The wave
function of collective excitations of the chain described
by the Hamiltonian (2.1) can be sought in the form

(2.6)

where 10"> is the vacuum state function,

The normalization condition for the function (2.6) leads
to the equality

2M,l'=i. (2.8)

Therefore, \An\* characterizes the probability for ex-
citing the n-th molecule in the chain.

The transformation from the displacement operators
un and the momentum operators conjugate to them f>n

to the functions £„(£) and *„(£) with the help of a uni-
tary operator for displacements expc(i), entering into
expression (2.6), corresponds to describing the dis-
placements of equilibrium positions of molecules in

the language of coherent states. As is well known, 2 9 · 3 0

the temporal evolution of coherent s tates follows the
classical equations of motion (see Eqs. (2.12) and
(2.12a) below). However, this does not mean that the
quantities βη(ί) and vn(t) can be given a strictly c lass i-
cal interpretation. They character ize the average dis-
placement of the equilibrium positions and momenta in
the state (2.6):

Pn (*) = <<t («) I «„ Ι ψ (Φ, π η (ί) = Of (ί) Ι Ρη Κ (*)>·

The coherent states correspond to wave packets both in
coordinate and momentum spaces, corresponding to
states in which the product of the quadratic deviations
from the averages is determined by the minimum value
H*/4 permitted by quantum mechanics.

Using the explicit form of expressions (2.1)-(2.7), we
find

(2.9)

(2.10)

where

is the total deformation energy of the chain. Viewing
the expression (2.9) as a Hamiltonian function in the
variables A» and &„ and the generalized momenta con-
jugate to them, we find the Hamiltonian equations

ih ~ L = [ S o - W + χ(βη+ι — βη-ι)] An~J(/ln+1 + Αη_,), (2.11)

Λ/i!^L + κ (2βη — βη + 1 — βη.,) = χ ( | Αη+, | 2 — |Λη_, | 2 ) , (2.12)

πη = Λ/%. (2.12a)

In going over to the continuum approximation, we per-
form the transformations

An (t) -* Φ (ζ, t) exp [i (kz ~ -^-) ] ,

pK(t)-P(*. 0.
(2.13)

where Φ(ζ, t) and β(ζ, t) are real smooth functions of the
variable z, assuming the values Φη(ί) and βΒ(ί) at ζ =ηα.
According to (2.8) and (2.13), the function Φ(ζ, t) must
satisfy the normalization condition2'

(2.14)

According to (2.13), in making the transition to the
continuum approximation, it is necessary to use the
equalities

An±i(t)^exV{i[k{z±a)—|^-]}

Performing the transformations (2.13) and (2.15) in ex-
pressions (2.10)-(2.12), we obtain a system of equations
for the real functions

»«®£ι«.=.-2e/4£.eiiifa«, (2.16)

2>Here and In the following expressions of this review (unless
otherwise mentioned) the integration is performed between
infinite limits.

900 Sov. Phys. Usp. 25(12), Dec. 1982 A. S. Davydov 900



A-.-a.zj JL·- 2χρ(ζ, ί)]Φ(ζ, 0,

JL·
dl-

(2.16a)

(2.16b)

where

~J = / cos ka (2.17)

is the renormalized resonant interaction energy;

v° = flKlf (2.18)

is the velocity of longitudinal sound in the unperturbed
chain;

p(z, ί)=-β-£-β(ζ, ί) (2.19)

describes the decrease in the distances between neigh-
boring molecules [ a ~ a — p(z, t)];

Ε = Λ + g0 + W - 2J

is the total energy of the soliton;

(2.20)

(2.21)

is the kinetic and potential energy owing to displace-

ments of equilibrium positions of the molecules.

Equations (2.16)-(2.16a) determine the energy Ε and
the functions Φ(ζ, t) and p(z, t) of the states of the chain
corresponding to a single intramolecular excitation
with energy gf0.

Due to the translational invariance of the operator
(2.1), stationary solutions of the system of equations
(2.16)-(2.16b) can be sought in the form of excitations
propagating with constant velocity V. For this, it is
sufficient to set

P (2. t) = ρ (ζ), Φ (ζ, t) = Φ Q ,

where

ζ = 2 - Zo - Yt.

For such excitations

dip («, t) ΥάΦ (L)

dt di; '

0Φ(:, Ο dHi(J)

gp(z, 0 _ V dp (ζ)
dt ~ at

(2.22)

(2.23)

so that the partial differential equations (2.16) trans-
form into the ordinary differential equations

άΦ
(KV -2a J sin ka) ~- = 0,

where

(2.24)

(2.25)

(2.26)

(2.27)

It follows from Eq. (2.26) that the decreases in the
equilibrium distances between molecules, caused by
the intramolecular excitations, are determined in a
system of coordinates moving together with the excita-
tion by the function

P(O-j^· (2.28)

Substituting this value into Eq. (2.25), we transform it

into the nonlinear Schroedinger equation for stationary
states moving with constant velocity V=sV0 along the
chain:

(2.29)

(2.30)

where the nonlinearity parameter

ακ(1—s

takes into account the time lag of the deformation dis-
placements. For Vo = °°, the displacements follow the
displacement of the excitation without a lag and G does
not depend on V.

For s 2 - l , the nonlinearity parameter (2.30) and the
decrease in the distances (2.28) between molecules in-
crease sharply. For large displacements of molecules,
the harmonic approximation used in (2.3) is not appli-
cable. The theory developed is valid only for s2« 1. In
order to enlarge the range of applicability of the theory,
it is necessary to include a more rapid, than quadratic,
increase in the potential energy of interaction between
molecules.

b) Exciton excited states

If the velocity of the excitation exceeds the velocity of
longitudinal sound (s2 > 1), then the nonlinearity param-
eter in Eq. (2.29) is negative. In this case the equation
does not have stationary solutions, normalized by the
condition (2.14), in an infinite chain. In a sufficiently
long chain with length L (when end effects can be neglec-
ted), the normalized stationary solutions of Eq. (2.29)
correspond to Φ(£)= L'in. In this case Eq. (2.24) is
satisfied for any value of the wave number k, charac-
terizing the wave function in the form of a plane wave

Ah{;, (2.31)

In this case, according to (2.29), the excitation energy
is

-a, G<0.
(2.32)

In sufficiently long chains (L » a) the second term in
(2.32) can be dropped.

States described by plane waves (2.31) are called ex-
citons. In these states all molecules are excited with
equal probability. In addition, according to (2.28), the
change in the intermolecular distances is determined
by the expression

Δα=-ρ(ζ) = -
2αχ (2.33)

In long chains this change is very small. However the
total length of a chain L, containing h/a molecules,
changes by a finite amount

&L-- (2.33a)

The condition &L « L restricts the permissible values
of s2.

For J>0 (see (2.5)), the minimum in the exciton en-
ergy (2.32)
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«0-2/--X- №»«). (2.34)

corresponds to k = 0. The value £(0) is called the ener-
gy of the bottom of the exciton band. All energy states
of the exciton energy band are determined by wave num-
bers satisfying the inequality |fea|«ir. Near the bottom
of the exciton band, when the inequality | ka \« 1 is sat-
isfied, expression (2,34) can be put into the form

(2.35)

where

hk
(2.35a)

is the effective mass of the exciton. In order for the
condition s2 > 1 to be satisfied, it is necessary that J
>nvo/2a.

For J< 0, Eqs. (2.35) retain their meaning in the
range | fea |« l . In this case, the effective mass of the
exciton is negative. The value k = 0 corresponds to the
maximum energy of a soliton (top of the band). The en-
ergy of the bottom of the exciton band corresponds to
\k\ = n/a. Near the bottom of the exciton band, in this
case as well, the energy is expressed by Eq. (2.33) with
positive effective exciton mass and with the values

The energies (2.32) examined above for the stationary
states of excitons are characteristic values of the total
energy operator (2.1) excluding the vibrational energy
of the molecules. When transforming into such excited
states, the length of the chain changes by an amount de-
termined by Eq. (2.33a). It increases for s 2 > 1 and de-
creases for s2 < 1.

Exciton states in the chain can be excited by light with
frequency ω (without participation of phonons) with the
energy and quasimomentum conservation laws satisfied
if the projection of the electric field intensity on the
vector d for the transition is not equal to zero. For in-
frared, visible, and ultaviolet light, au«c, so that
excitons with small ka are excited. In this case, how-
ever, it should be kept in mind that at the time of the
light-induced transition of the chain into an excited
state, the molecules do not have time to move to new
equilibrium positions (Franck-Condon principle). For
this reason, strictly speaking, the transitions occur
not into states corresponding to the complete Hamil-
tonian (2.1) but into states determined only by the opera-
tor (2.2), in which the distances between molecules re-
main equal to a. The characteristic functions of the op-
erator (2.2) also are plane waves (2.31), corresponding
to a definite value of k (excitons). Their energies are
determined by the expression

Ε (k) = g, — 2/ cos ka,

which, when the inequality α « I - i s satisfied, practical-
ly coincides with (2.32). However these excitons are
not stationary. The interaction described by the opera-
tor (2.4) leads, with the participation of phonons, to
transitions between states with different k. In particu-
lar, for s > 1, due to the Cherenkov effect, excitons
can be retarded (at low temperatures), emitting acousti-

cal phonons. These effects are usually taken into ac-
count by perturbation methods.

The exciton states with definite values of k are dis-
tributed uniformly over the entire length of the chain.
Excitations encompassing a small part of the chain lB

are not stationary. They are described by a superposi-
tion of plane waves, i.e., a wave packet:

Ψ(ζ, t ) = \ C(k)Ah(z, t)Ak, Δλ· = - ϊ - , (2.36)

made up of the plane waves (2.31) with different values
of k. Such an excitation propagates along the chain with
group velocity

v = »<·. = 2fc.°M-M (2.37)
m e I ft >

where %k0 is the average momentum of an exciton in the
quasistationary state (2.36). However, with time the
region encompassed by the excitation expands. If at
time t it equals l0, then at time ί + τ it will equal

Spreading of the wave packet (2.36) is an indication of
the inexact stationariness of the states in the packet.

The plane waves (2.31) with Φ(ε, t) = const will be solu-
tions of Eq. (2.29) for s2 < 1 as well. However in this
case, as will be shown in what follows, together with
excitons with energies in the region of the exciton band
E{k), very stable excitations (solitons) with energies
lying above the bottom of the exciton band are possible.
For this reason, excitons are metastable for s2< 1.

c) Soliton excited states

For s2< 1, the nonlinearity parameter in Eq. (2.29)
is positive. If J > 0, then this equation has a particular
solution normalized by condition (2.14) in the form

with values

—«'Jcosia
and

Λ = a?QlJ cos ka.

(2.38)

(2.39)

(2.40)

The value of k is expressed in terms of the velocity V
(see below).

The excitation described by the amplitude (2.38) of the
wave function (2.13) is called a soliton. It is distributed
on the segment Δ£ = 2ir/Q in the system of coordinates
£, moving together with the excitation with velocity V
= sV0. The condition for applicability of the continuum
approximation requires that the inequality

a<?«l. (2.41)

be satisfied. According to (2.39), this inequality
establishes, within the scope of the approximation used,
the upper bound for permissible soliton velocities.

In the region of the excitation d<fc/d£ *0, so that ac-
cording to (2.24) the inequality
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sin ka = - ην
= τ,

(2.42)

which implicitly relates the value of h and the velocity
V of the excitation, must be satisfied. From the condi-
tion that the factor coska= VI -T2 entering into (2.17)
be real follows the inequality

τ 2 <1, F <
2 a | / I

(2.43)

The velocity Vg in inequality (2.43) corresponds to the
maximum group velocity of an exciton in the band.

Inequality (2.43) together with inequalities (2.41) and
sz< 1 limits the permissible velocities of the soliton.
From (2.42) and (2.43) it follows that for J > 0 the
values of k can fall in the range \ak\«v/2, while for
J<0 they fall into the range \ak~ti\ «ir/2.

We shall proceed to calculate the energy of a soliton
moving with constant velocity V. With the help of (2.19)
and (2.23), expression (2.21), determining the total de-
formation energy of the chain, is transformed into the
form

W = M (V* + VI) (2o2)-' ( ρ2 (ζ) άζ. (2,44)

Using the values (2.28) and (2.38), we obtain the final
expression

2χ'(1-ι-'*)W-- 3x l ( l— «·)» I / | c o s ka • (2.44a)

The total energy of the soliton (2.20), taking (2.40) and
(2.44a) into account, is determined by the expression

(2.45)

where

It follows from (2.44a) and (2.45) that as the velocity
of the soliton increases, the energy of deformation of
the chain and the total energy of the soliton increase
considerably. For this reason, the final values of E(V)
correspond to soliton velocities V less than the smaller
of the velocities Vo and Vg.

For low soliton velocities, when s 2 « l and τ 2 « ι , the
total energy of the soliton (2.45) can be put into the form

τ ' (2.46)

3κ« | / I Vg (2.49)

In soft chains (for Vo < Vg) the soliton mass greatly ex-
ceeds the exciton mass, since the motion of the soliton
is accompanied by motion of the local deformation of the
chain. Due to the large soliton mass, it can transport a
considerable amount of energy at low velocities as well.

Substituting (2.38) into (2.28), we find the function

where

(2.50)

which, taking into account the value of (2.39), describes
the decrease in the intermolecular distances in the
chain in the region of soliton excitation. The qualita-
tive distribution of probabilities of intramolecular ex-
citations and distances between molecules in the re-
gion of soliton excitation are indicated in Fig. 1. Fig-
ure 2 illustrates the dependence of the soliton and ex-
citon energies on their velocity.

The presence of the energy gap (2.48) in the spectrum
of excited states of the molecular chain is one of the
reasons for the very high stability of solitons. In order
to destroy a soliton, i.e., split it into a free exciton and
a uniform deformation, it is necessary to expend the en-
ergy Δ£.

Since solitons always move with velocity less than the
velocity of longitudinal sound in the chain, they do not
emit phonons. In other words, their kinetic energy is
not transformed into energy of thermal motion. This is
the second important characteristic, which provides
for the high stability of solitons in molecular chains.

The bell-shaped form of solitons (2.38) does not de-
pend on the method for exciting them. It is self-con-
sistent. For s 2 « 1 the shape of the soliton does not
change even when its kinetic energy decreases. On the
contrary, the shape of the wave packet (2.36) depends on
the initial distribution of the amplitudes C{k). With the
passage of time, the wave packet "spreads out."

As the resonant interaction energy (J) and the chain
rigidity κ increase, the differences between solitons
and excitons decrease. The region encompassed by the
excitation &£ = 2ir/Q, according to (2.39), increases in
this case. The effective mass of the soliton approaches
the effective mass of the exciton at the bottom of the
band. The internal energy of the soliton Ε (0) ap-
proaches the energy of the bottom of the exciton band

(2.47)

is the energy of a soliton at r e s t It is lower than the
energy of the bottom of the energy band of exciton states
(2.34a) by an amount

χ' . «
l - 3xs I / I ~ 3 | / | MV\ (2.48)

which is large when the coupling of intramolecular ex-
citations to displacements of the molecule (parameter χ)
is large and the elasticity of the longitudinal deforma-
tions (parameter κ) is small.

The effective mass of the soliton is determined by the
expression

Absorption of light by molecular systems is not ac-
companied by a change in the coordinates of heavy par-
ticles at the time of the quantum transition (Franck-
Condon principle). Since the formation of solitons is

FIG. 1. Qualitative probability distribution of intramolecular
excitations (vertical lines) and distances between molecules
(points) in the region of a soliton excitation.
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accompanied by a displacement of the equilibrium posi-
tions of molecules, it cannot be brought about by light.
The probability for emission of light by a soliton is
small for the same reason. The theory of this problem
was developed in a paper by Erenko and Davydov.26

Solitons corresponding to positive values of J can be
excited by local external actions, for example, chemi-
cal reactions. The probability for excitation of solitons
is highest when such local action takes place at the end
of the molecular chain. If the bottom of the exciton band
corresponds to the value k = it/a (for J< 0), then in the
soliton state the excitations of neighboring molcules
have opposite phases. Excitation of such solitons re-
quires very specific and difficult to realize conditions.

3. SOLITONS IN BIOLOGICAL MOLECULES

It is well known that many biological phenomena are
related to spatial displacement of energy along protein
molecules. As has now been established, the universal
unit of energy transported by protein molecules is the
energy (about 0.43 eV) liberated with the hydrolysis of
adenosine triphosphate (ATP) molecules. This energy
is only 20 times greater than the average thermal energy
under physiological temperatures. This energy is in-
sufficient for exciting electron states. For this reason,
vibrational excitation of some groups of atoms in pro-
tein molecules must play the basic role in transporting
the energy of hydrolysis of ATP molecules.

It has been proposed repeatedly that vibrational os-
cillations C=O in peptide groups play the greatest role
in energy transport in proteins (see Sec. 3 a below).
These vibrations are called Amide L They have an
energy of about 0.21 eV and a comparatively large elec-
tric dipole transition moment d = 0.3 Debye, ensuring a
large resonant interaction between peptide groups
leading to collectivization of the excitation.

Isolated vibrations of this type in a condensed medium
have a short lifetime of about 10"12 s. With a probable
velocity of 104 cm/s they could move over a distance of
the order of 10"8 cm. As a result, many researchers
doubted the possibility of participation of these vibra-
tions in energy transport along protein molecules having
dimensions of 10"5 cm. Thus, for example, in 1973 in
discussing the problem of energy transport in biologi-
cal systems, some participants at the conference of the
New York Academy of Sciences spoke of a "crisis" in
bioenergetics and of the necessity of establishing spe-
cial laws of bioenergetics by an a priori method.31·32

It was shown by Davydov33"35 that the difficulty noted
above is removed if the fact is taken into account that
the energy of hydrolysis of ATP molecules is trans-
ported along alpha-helical molecules as solitons moving
without loss of energy to phonon emission. In what fol-
lows, we shall present the basic results of this work.
But, we shall first in Sec. 3a generalize some of the
elementary information on the structure of proteins.

a) Alpha-helix structure of proteins

The specific structure of protein molecules plays a
key role in the stabilization and increase in the lifetime

of the vibrational states of these molecules. In what
follows we shall present only some information con-
cerning the structure of proteins, necessary to under-
stand the mathematical models that we use. More com-
plete information is contained in the monographs by
Vol'kenshtein36 and by Davydov.37

Proteins are polymer molecules with very high molec-
ular weight These are the largest and most compli-
cated molecules entering into the composition of cells
of living organisms. All proteins are constructed from
a small number (about 20) of structural units, the
aminoacid residues.

Figure 3 illustrates the structure of an aminoacid.
Polymerization of aminoacids (in the presence of the
appropriate catalyzers and energy) is accompanied by
the formation of water molecules with the detachments
of hydrogen from the aminogroup NH2 of one of the
aminoacids and hydroxyl OH from the carboxyl group
COOH from another. At the same time, the nitrogen
and carbon of the aminoacid residues join with one
another forming a chemical peptide bond. This poly-
merization process can continue repeatedly, forming
long polypeptide chains (proteins) with repeating groups
of four atoms

"X,
called peptide groups. Figure 4 shows a section of the
protein chain containing two peptide groups. The se-
quence of the position of different residues of amino-
acids in the molecule is called the primary structure
of the protein.

The atoms making up each peptide group lie in a single
plane. However, the entire protein molecule is a very
flexible structure due to the possibility of rotation
around single bonds. Such rotations are indicated in
Fig. 4 by arrows. The flexible protein molecule can
form different spatial configurations (secondary struc-
ture of the protein).

In particular, the protein chain can curl into a helix.
This helical structure of protein molecules was first
established by Pauling and Curie in 1953 (see Ref. 38).
They called it the alpha helix and showed that it arises
with the formation of three chains of hydrogen bonds
between the peptide groups of the protein molecule. In
Fig. 5 the peptide groups are indicated by ellipses and
the hydrogen bonds are indicated by the lines connecting
these groups.

The equilibrium position of peptide groups in a mole-

FIG. 2. Qualitative dependence of the excitation energy on
velocity V. a) Solitons; 2) Excltons. Vo Is the velocity of
longitudinal sound.
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FIG. 3. Structural diagram of an aminoacid molecule. NH2

is an amino group; COOH is a carboxyl group; Λ is a group
of atoms distinguishing one aminoacid from another.

cule, whose axis coincides with the ζ axis, can be
represented by the position vectors

Λη, = Λ [e* cos -y- (3n -j- α) + e,, sin -y- (3/ι + α) ] + e2 -j (3n - a),

(3.1)

where e r, ey, and e, are mutually orthogonal unit vec-
tors and the index a= I, II, and III corresponds to the
three chains of peptide bonds; a is the pitch of the helix
(5.4 A); R is its radius (2.8 A) along the center of the
peptide groups; £=3.6 is the number of peptide groups
per single loop of the helix; and, n = 0,1, 2 , . . . is the
number of the cells of the three nearest peptide groups
with different indices α . One such cell would coincide
with the elementary crystallographic cell for fi=3.

b) Solitons in alpha-helical proteins

We shall examine the collective excited states of an
alpha-helical protein, corresponding to the charac-
teristic Amide I vibration with energy fo = O.21 eV and
electric dipole transition moment rf = 0.3 Debye,3'
oriented at a small angle to the axis of the helix. Ac-
cording to estimates by Nevskaya and Chirgadze,39 the
energy of the resonant interaction between neighboring
peptide groups in a single chain is —J = 7.8 cm"1. The
energy of the same interaction between neighboring
peptide groups in different chains is L= 12.4 cm"1.

When studying collective excitations corresponding to
intrapeptide oscillations Amide I, we shall examine as
a model of the protein a system of three parallel chains
of peptide groups (in what follows we shall simply call
them molecules), occupying equilibrium positions (3.1).
We shall restrict our analysis to only the resonant in-
teractions J and L and two types of displacements of
molecules, determined by the change in the pitch of the
helix a~a + um and a change in its radius R —

FIG. 4. Section of a protein molecule containing two peptide
groups (surrounded by the dashed line).

I-

FIG. 5. Three chains of hydrogen bonds betweeen peptide
groups (shown by ellipses) in an alpha-helical protein molecule.

With these simplifications, the previously examined
Hamiltonian function (2.9) of a single molecular chain
will be replaced by the function

where

In these expressions the quantity \\a(t)\2,
by the condition

(3.2)

(3.3)

normalized

0.3a)

3)One Debye equals the product of the proton charge and 10"'

determines the probability for exciting the molecule no
in the state sought |<Kf)>. The functions 0n(,(i) and Yna{t)
characterize the average values of una and rna> respec-
tively, in the same state. Compared to (2.9), expres-
sions (3.2) and (3.3) contain new quantities: η is the
coupling parameter for intramolecular excitations and
displacements Ύ, and w is the coefficient of elasticity
relative to the change in radius of the helix. Since w
is determined by chemical forces acting between atoms
of the main protein chain, while ? is determined by the
weaker hydrogen bonds only, the inequality

«' > * (3.4)

is satisfied.

The function (3.2) determines the Hamiltonian equa-
tions, which in the continuum approximation with re-
spect to η and for small velocities of excitations along
the protein can be written in the form

>Aa(z, t);

(3.5)
(3.6)

(3.6a)

| 2 ~ M a - l P ) .
(3.7)

The normalization condition (3.3a) now assumes the
form

4-2 j \Aa(z, t )pd 2 =l. (3.8)
•x

By taking into account the translational symmetry of
Eqs. (3.5)-(3.7), we can seek their solution in the form
of excitations propagating with constant velocity V lower

rVa-l) \Aa = L (Aa+i -f/1α_ι),
— J

At »2·ι
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than the velocity of longitudinal sound waves VB = a^/n/m
and the maximum group velocity of excitons Vg = 2aJ/K
in the form

Aa (z, t) = CαΦ (ζ) exv{i[k(z-z0)-—-]},

P« (

where
) = Ρα (Ο,

(3.9)

(3.9a)

(3.10)

The real function Φ(έ) is defined by the expression

(3.11)

with the parameter Q to be determined.

From the normalization condition (3.8) follows the

equality

2 | C a p = l. (3.12)
a

Taking (3.9) into account we find from Eq. (3.6)

Ρ«(ϋ = 1 ^ ^ Φ 2 ( 0 . (3.13)

Using the inequality (3.4), the first term in (3.7), which
is of the order of y.V/wV0«\, can be neglected. Then
we obtain

(3.14)

Substituting the values of (3.9), (3.13), and (3.14) into
Eq. (3.5) and expressing the resonant interaction param-
eter J with the help of (2.35a) in terms of the effective
mass of the exciton, we obtain a system of equations4'
for the unknown coefficients Ca and the parameter Q:

(3.15)

(3.16)

This system of equations together with condition (3.12)
determines three types of solitons with values Qt, P'a,
and y'a, t= 1, 2,3. They correspond to energies

ε,Μ-ΐ,+ντ,-ν+Α, + ιψ—g-, ( 3 > 1 7 )

Δ,= - £ , 2L,-L.
The deformation energies of the molecule W{ entering

into this expression are determined by expression (3.3).
Neglecting the small derivative dy,/dt and going over to
the continuum approximation, we transform (3.3) into
the form

Γ + χ ^ . + νΙ-,)·] d»· <3·18)

Finally, substituting the values (3.13) and (3.14) and
calculating the integral, we find, using inequality (3.4),
the final expression

w, -4-og, [ 'ffii1].?' Σ ι a i ' + £ ? (ι a p+1 <?.-. P)]

3κ(1-.«) 2j
. 4

(3.19)

*The system of equations (3.15) and (3.16) was obtained by
Eremko and Serglenko.40 For η = 0 they coincide with the
equations obtained by Eremko, Sergienko, and Davydov.41

The case of solitons at rest was examined by Suprun and
Davydov.42

For the first type of solitons, called in Ref. 41 un-
symmetrical solitons, the solutiorrof the system of
equations (3.15) and (3.16) has the form

(3.20)
1 2

(3.21)*<- ft* |. x.(l-<=) 8,r J ~ x(i-s»)ft» •

In the case that s2« 1 the energy (3.17) can be written
in the form

where

is the energy of a soliton at rest;

(3.22)

(3.23)

(3.24)

is the effective mass of the soliton.

The motion of an unsymmetrical soliton is accom-
panied by local deformation of the protein molecule. In
the region of excitation the distances between molecules
in the two chains decrease. According to (3.13) and
(3.20) these changes are determined by the quantities

Pi (0 = 0, 2 κ ( 1 — s (3.25)

The diameter of the helix in the region of excitation in-
creases, but, also nonuniformly. As follows from
(3.14), the increase in the distances between chains and
the center of the helix is determined by the expression

(3.26)

Thus the helical molecule bends in the region encom-
passed by the unsymmetrical type soliton excitation (see
Fig. 6c).

The examined solutions (3.20) with constant values of
the coefficients Ca are approximate. They separate out
the α-th chain. Due to the resonant interaction L be-
tween peptide groups, entering into the makeup of dif-
ferent chains, there is an exchange of excitations be-
tween chains, so that the coefficients Ca must depend on
time. The period of the exchange is approximately de-
termined by the quantity T = 2vK/L = 2.7 · 10"12 s. Thus
the motion of an unsymmetrical soliton along the mole-
cule must have a helical character.

The exchange of excitations between chains was first
examined by Scott,43"45 who used it to interpret the ex-
perimental investigations by Webb,46 who was studying
the scattering of laser radiation by metabolically active
bacteria (see Sec. 3c).

FIG. 6. a) Unperturbed helical protein molecule; b) excita-
tion of a symmetrical soliton in the molecule; c) excitation of
an unsymmetrical soliton.
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In the case of the second type of excitation (symmetri-
cal solitons), the solutions of the system of equations
(3.15) and (3.16) have the form

(3.27)

(3.28)_ a m e r Γ 2χ» , η ' Ι χ . 2meIay*

For s 2 « 1 the energy of such solitons is determined by
the expression

(3.29)

(3.30)

w h e r e

Ίπί ='"<••. I ' (3.31)

In this case in the region of excitations the distances be-
tween molecules in the three chains decrease sym-
metrically:

rtf> (0 == Pi2!, (0 = 3x(i-^chHC- ' (3.32)

while the diameter of the helix increases (see Fig. 6b)

(3.33)

Finally, the third type of solution of the system of
equations (3.15) and (3.16) can be written in the form

: r 1 / 2 p x p (~^), a 1.2,3,

i'"o\ r 2/.- η21 "̂•fx"x;

•ih1 Lz(l->') "' J "~ 3zi-'(l— s") '

In this case, for s 2 « 1, the energy of the soliton is de-
v tha arnroficinn

(3.34)

(3.35)

termined by the expression

E, (V) = E, (0) •- γ »Ul\V-. m&\ ----

where

1 - / or / 2mKa*y.'

(3.36)

(3.37)

Thus the effective masses and spatial extent of solitons
of the second and third types coincide. However the ex-
citations of separate chains are shifted in phase for
solitons of the third type (see (3.34)). As a result, their
energy is less than the energy of symmetrical solitons
by an amount 3 i .

Unsymmetrical solitons are more compact (Q1>Q2

= Q3). They have a much lower energy and a higher
effective mass. Thus, of the three possible types of
solitons transporting the energy of the Amide I vibra-
tional excitation through the protein molecules, the un-
symmetrical solitons are the most stable ones. They
can transport the vibrational energy of Amide I without
losses.

c) Numerical calculations of soliton excitations in
discrete protein molecules

In all the preceding calculations, a continuum model
of an infinite chain was used in order to obtain analyti-
cal results. In studying more realistic discrete finite
chains, the corresponding systems of equations must be
integrated numerically on modern computers. In the
case of helical protein molecules, modeled by three

discrete chains of peptide groups held together by hy-
drogen bonds, these equations follow directly from the
Hamiltonian function (3.2). For η = 0 the corresponding
equations were first obtained by Eremko, Sergienko,
and Davydov.41 They have the form

a) + L (An

(3.38)

= Ζ (I An+l. a | 2 - I / ! „ . , . α Ι 2), α = 1, 2, 3.

(3.39)
The quantity W entering into (3.38) is determined by
the expression

Equations (3.38) and (3.39) were integrated numerical-
ly by Hyman, McLaughlin, and Scott47 with the help of
the computer at the Los Alamos Scientific Laboratory
in 1979. They studied excited states of three chains of
helical protein molecules. Each chain contained 200
peptide groups. The molecule was characterized by the
following quantities: -E0 = 0.205eV; M= 70 proton
masses; K0~106cm/s; J= 1.55· 10'22 J, L = 2.46· 10'22

J. The initial conditions at t=0 were taken as

for #i = l ,

for #i==l,
β».=0. (3.40)

The calculations were performed for different values
of the coupling parameter χ of intrapeptide Amide I ex-
citations with displacements of their equilibrium posi-
tions. It was shown that for the initial conditions (3.40)
distinct solitons are formed and propagate in the mole-
cule with XS3-10-11 N. 5 '

Solitons with χ close to the critical value propagate
with velocity ~1.26· 103 m/s. Therefore, the distance
1700 A, corresponding to the length of the alpha-helical
myosine molecule in muscle fibers (see Sec. 4), could
be traversed by solitons (neglecting friction forces and
the work performed by them) within 130 ps.

Hyman et al.47 arrived at the conclusion that "numeri-
cal studies of Davydov's nonlinear dynamic model of
alpha-helical proteins confirm his prediction of the
formation of solitons."

Reference 47 is interesting in that the process of
formation of solitons from a definite initial state is in-
vestigated and the role of the discreteness of the chain,
which, apparently reduces to the fact that solitons are
formed in the chain only with supercritical values of the
coupling parameter χ, determining the nonlinearity of
the system, is clarified.

In 1979, Eilbeck, in consultation with Scott, made a
computer film48 that demonstrates the propagation of

5)The values of the velocity Ko used in the calculation are too
high. The velocity of longitudinal sound in helical protein
molecules is determined by weak hydrogen bonds between
peptide groups. For this reason Vo must be of the order of
104 cm/s. Therefore, the critical value of χ for formation
of solitons will be lower.
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an internal vibrational excitation of an edge group along
a PG (peptide groups) chain. This film clearly shows
that for an above threshold value of the coupling param-
eter X between the vibrational excitation and displace-
ments of PG along the molecule, the excitation propa-
gates in the form of a soliton, i.e., in the form of a
local pulse, whose shape and width remain constant
during the motion. Eilbeck's film is important for two
reasons: first, it confirms the previous calculations
performed at the Los Alamos Laboratory and, second,
it clearly demonstrates the stability of solitons relative
to interactions with sound waves. The sound wave was
excited together with the soliton. Moving faster than the
soliton, it reflected several times from the ends of the
chain passing through the soliton and not causing any
changes in it.

Eilbeck's film and the numerical calculations in Ref.
47 show that the soliton forms at the very beginning of
the peptide chain. Therefore, solitons can arise within
comparatively short sections of alpha-helical proteins.

The necessity of exceeding some threshold value of the
coupling parameter χ for exciting a soliton, discovered
in the numerical calculations, as shown by Brizhik and
Davydov47 (see Sec. 6 of this review) is due to the con-
ditions for excitation of a soliton. In the continuum ap-
proximation slow solitons can exist in an infinite chain
for any values of X. As χ decreases the properties of
the solitons continuously approach the properties of ex-
citons.

In the continuum description, the role of short wave-
length displacements is not taken into account. Such
displacements lead to an effective decrease in the reso-
nant dipole-dipole interaction between PG. In the paper
by Davydov50 the displacement of peptide groups was
described in the language of quantum theory taking into
account short-wavelength displacements. It was shown
that a smooth change in the magnitude of the coupling
of an exciton (electron) with acoustical phonons can lead
to a jump-like change in the parameters of the nonlinear
equation: the magnitude of the resonant interaction (ef-
fective exciton mass) and the nonlinearity coefficient.
In easily deformed systems, considerable self-localiza-
tion is realized in a jump-like manner, if the coupling
parameter exceeds a critical value. The problem of
the jump-like transition into the self-localized state
was examined by Toyazawa back in 1961.

In recent years, indications of solitons in some bio-
logical phenomena have appeared. Thus, for example,
Scott43"45 used the theory of solitons to explain inter-
esting experimental results obtained by Webb46 in
studying Raman scattering of laser radiation by the
rod-shaped intestinal bacteria (E. Coli). Anti-Stokes
frequencies appeared in the scattered spectrum in the
range 40-200 cm"1 only in the case when the bacteria
were in a metabolically active state. Scott asserts that
these frequencies are due to vibrational states of soli-
tons arising in live bacteria as a result of chemical re-
actions.

According to numerical estimates made by Scott43"45

the motion of a soliton along an alpha-helical protein

is characterized by two internal periods: the period
T, = 2 • 10"16 s, corresponding to the time for a soliton
to jump from one chain of hydrogen bonds to another,
and the period T2= 8/3 x 10"13 s, corresponding to the
discreteness of these chains. These periods corre-
spond to the frequencies El = 17 cm"1 and E2= 125 cm"1.
The sums and differences of these frequencies coincide
in a surprising manner with the values found experi-
mentally by Webb. On this basis Scott comes to the
conclusion45 that "Raman spectroscopy can give a direct
experimental indication of the functional role of Davydov
solitons in metabolic processes."

Solitons were used in work by Italian scientists51 to
explain the changes, in a certain temperature range, in
the Raman spectrum of laser radiation scattered by
green algae (chlorella pyrenoidosa).

4. SOLITONS AND THE MOLECULAR MECHANISM
FOR MUSCLE CONTRACTION

One of the most interesting problems in biophysics is
the explanation of the molecular foundations of the trans-
formation of the chemical energy of hydrolysis of ATP
molecules into mechanical energy of motion. At the
present time, striated muscles, which form the entire
skeletal muscular structure and the heart muscle of
vertebrate animals, man, and some nonvertebrate ani-
mals, have been studied in greatest detail. The present
author has used the idea of the motion of solitons in heli-
cal protein molecules to explain the mechanism for con-
traction of striated muscles on a molecular level. In
order to understand the idea on which the explanation is
based, we shall first recall the basic information on the
structure of such muscles.

a) Structure of striated muscles

The principal contracting element of muscle is the
muscle fiber. Ths muscle fiber is an independent, very
long and thin (diameter 20-80 μηι) cell with many nu-
clei. The internal part of this cellforms abunch of sev-
eral thousand densely packed, filaments or myofibrils
with diameter 1-2 Mm, situated parallel to one another.
Each myofibril consists of regularly alternating sections
or sarcomers (Fig. 7a). The sarcomer is the smallest
elementary section of a muscle capable of contraction.

Sarcomers are separated from one another by trans-
verse membranes called ζ plates. Thin protein strands
(Fig. 7b), consisting of the proteins actin, tropomyosine,
and troponine, extend inside the sarcomer on both sides
of the ζ plates. They partially penetrate into the space
between the thick strands, situated in the interior re-
gion of a sarcomer (see Fig. 7b). The thin and thick
strands are surrounded by a fluid medium, the sarco-
plasma, which contains ATP molecules, Mg2* ions, and
some other particles.

b) Current models of the mechanism of muscle
contraction

Contraction of sarcomers and, therefore, of the mus-
cle fiber, occurs at a time when under the influence of
the nerve pulse calcium ions enter the sarcoplasm from
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FIG. 7. a) Myofibril of a muscle fiber, separated by mem-
branes ζ into sarcomers; b) diagram of the structure of a
single sarcomer.

special microtubes. The calcium ions stimulate the
process of hydrolysis of ATP molecules at locations
where the thick and thin protein strands touch.

With the help of electron microscopic studies, Hanson
and Huxley52 and Huxley and Nidergerke53 established in
1954 that contraction of a sarcomer is associated with
the penetration of thin filaments into the space between
the thick filaments without contraction of the filaments
themselves (Fig. 8). This model of slipping of thin pro-
tein strands relative to the thick strands received rapid
general recognition. The experimentally established
model of contraction of sarcomers raised a very im-
portant problem for researchers: to explain the mecha-
nism of slipping on a molecular level. What forces
cause the slipping of thin strands relative to thick
strands? How does the energy of hydrolysis of the ATP
molecule transform into slipping energy?

At the present time biologists widely believe that the
slipping of thin strands relative to thick strands is due
to the active motion of the "heads" of the myosine mole-
cules, which makes up the thick strands.

The myosine molecule with molecular weight of about
500,000 resembles a thin rod with diameter ~40 A and
length ~ 1700 A with a thickening at one end called the
"head" of the molecule. The main part of the molecule
is called the "tail." The molecule is formed by two
polypeptide chains, having the conformation of an alpha
helix over a large distance. The thick strand, shaped
like a long cigar, contains about 400 myosine mole-
cules. They are arranged in such a manner that the
molecular heads are oriented toward both ends of the
thick strand, extending to its surface, while the tails
are oriented toward the center (see Fig. 7).

It is proposed that with hydrolysis of an ATP mole-
cule, attached to the head of the myosine molecule, the
latter stretches, forming a bond ("bridge") with the

globular actine molecule, which is contained in the thin
strand; then, the head rotates, moving the thin strand
toward the center of the sarcomer and, finally, sepa-
rates from the active molecule, returning to the pre-
vious size and position in the thick strand. Attaching
a new ATP molecule, it repeats this cycle, if calcium
ions are present in the sarcomer. These motions of
the head of the myosine molecule are illustrated in Fig.
9, which we took from the review by Murray and
Weber.54

According to this model, the slipping of the thin
strands relative to the thick ones is reminiscent of the
motion of water near a boat with oarsmen, sitting at
the ends of the boat facing one another. The heads of
the myosine molecules play the role of oars. For this
reason, this model can be called the "oar model."

The idea of bridges between the thick and thin strands,
which close, pull the fibers, causing their displace-
ment, and then rupture, does not describe the molecu-
lar nature of the phenomenon. Many questions remain
unanswered. How is the energy of hydrolysis of ATP
expended on elongation, formation of bonds, pulling
forces, and rupture of bridges? What is the molecular
mechanism for the changes in the head of the myosine
molecule, leading to these phenomena? And, finally,
why does only the head of the enormous myosine mo-
lecular take an active part in the contraction mecha-
nism?

c) New hypothesis concerning the mechanism of
muscle contraction

Based on theoretical studies of solitons in helical pro-
teins (see Sec. 3b), Davydov proposed a new hypothesis
to explain the mechanism of contraction of sarcomers
in muscle fibers.3 5·3 7 > 5 5 '5 9 According to this hypothesis,
calcium ions entering the sarcomer near the ζ plates
diffuse toward the center of the sarcomer and, reaching
the first row of myosine molecule heads at the ends of
the thick strands, cause hydrolysis of the ATP mole-
cules perpendicular to them. The energy liberated cre-
ates unsymmetrical solitons, which move from the

FIG. 8. Illustration of the model of slipping of thin strands
relative to thick strands in a sarcomer.

FIG. 9. Phenomenological model of contraction of sarcomers
of striated muscle. The motion of a single head of a myosine
molecule, leading to displacement of ζ plates, is shown. The
figure is taken from Ref. 54.
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heads of the molecules to their tails. As shown in Sec.
3b, the motion of the unsymmetrical soliton is ac-
companied by local expansion and bending of molecules.
For this reason, in the region of excitations, moving
along the bunch of myosine molecules, the thick strand
expands (Fig. 10). As a result of the expansion of the
thick strands the heads of the myosine molecules, lo-
cated on their surface, are pressed against the thin
strands. As the "swelled" regions of the thick strands
move toward the center of the sarcomer, they carry
the thin strands with them. The hydrolysis of ATP
molecules in the second row of myosine molecule
heads gives rise to new solitons. Their motion inside
the thick strands gives rise to motion of new swelled
regions of thick strands, which also displace the thin
strands toward the center of the sarcomer. Hydrolysis
of other ATP molecules leads to additional displace-
ment, etc.

According to the model that we have proposed, the
heads of the myosine molecules press against the thin
strands, push them over a small distance, and move
away from them (as in the model of formation and rup-
ture of bridges). However this motion is due not to
elongation, rotation, and contraction of the heads them-
selves, but to the penetration of an excitation and de-
formation wave in the form of solitons into the thick
strand. In this case the kinetic energy of solitons
transforms into contraction energy or leads to
stretching, if the muscle has a load on it. In this mod-
el, the active elements of contraction are all parts of
the myosine molecule and not only its head.

Expending their kinetic energy on the work necessary
to contract the muscle fiber, the solitons are slowed
down and, stopping near the centers of the thick
strands, are annihilated, giving up their rest energy
to thermal motion. Thus, only the kinetic energy of
solitons is used in contraction of muscle fibers.

If we take into account the fact that with hydrolysis of
ATP molecules -0.43 eV is liberated, while the in-
ternal energy of a soliton is ~0.20 eV, then the maxi-
mum efficiency of muscle contraction is about

A good macroscopic illustration of the mechanism of
displacement of thin sarcomer strands due to the mo-
tion of the swelled region of thick strands, in which
solitons are excited, are the vibromotors of Ragulskis
and his coworkers at the Vibration Technology Scienti-
fic Research Institute at the Kaunas Polytechnical Insti-
tute. 8 0 ' 6 1 In these motors, elastic oscillations excited
in piezoelectric films in the form of pulses move along

FIG. 10. Motion of solitons arising at the heads of myosine
molecules along the tails of molecules inside a thick strand
causes the thick strand to swell and displaces the swelled part
toward the center of the sarcomer. The arrows 1—4 indicate
the direction of motion of the heads of myosine molecules on
displacement of the swelled region.

their surface and give rise under the action of friction
to rotation of displacement of the bodies next to them.
Figure 11 shows a functional diagram of the simplest
vibromotor. Elastic pulses are excited at the input
unit^l. The bulges that arise, moving along the film
toward the absorbing outlet unit B, cause the cylinder
to rotate due to sliding fraction forces.

5. DYNAMIC PROPERTIES OF SOLITONS

The possibility of using the soliton concept to explain
some phenomena in physics, biology, and other sci-
ences necessarily involves the investigation of dynamic
properties of solitons and the reasons for the nonline-
arity and dispersion. The dynamic properties of soli-
tons are manifested when they interact with external
fields and other degrees of freedom of the system,
leading to their relaxation. The mathematical analysis
of such interactions is usually conducted using perturba-
tion theory.

Different variants of the perturbation theory for soli-
tons in one dimensional systems were developed by
Karpman and Maslov,62 Bishop et al.,*3 Keener and
McLaughlin,64 and other researchers. In this section
we shall present the results of investigations by
Eremko and Davydov,65 who studied the effect of ex-
ternal actions on solitons, arising in the case of local
excitations in molecular quasi-one-dimensional chains.

a) Free solitons with low velocities

As shown in Sec. 2, the properties of free solitons in
a molecular chain are determined by the system of
equations (2.11) and (2.12) with the normalization condi-
tion (2.8). When the condition V0<2aJ/ti is satisfied,
which characterizes the soft chains with strong reso-
nant dipole-dipole interaction, this system in the con-
tinuum approximation takes the form

} (5.1)

("W·-^ &) β<*. *-?4?\?*, t) P = 0. (5.2)

*--cJ["(*)i + '"i(4)>: (5-3)
here mex is the effective mass of the exciton and Ee>i(0)
is the energy of the bottom of the exciton band.

If we introduce the transformation

A{z, t) = VaB(z, t)exp {--L lE }

and the function

PfcO—·-*£*-. (5.4)

which characterizes the decrease in the intermolecular

FIG. 11. Functional diagram of the simplest Ragulskis vi-
bromotor.
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distances, then the system of equations (5.1) and (5.2)
takes the form

Here, in accordance with (2.8), the condition

j \B(z, t) I2 dz = 1. (5.7)

is satisfied. In the case of excitations moving with
constant velocities V, much lower than the velocity of
longitudinal sound Vo, we obtain from Eq. (5.6)

2αχ\Β(ζ, t) |
(5.8)

Substituting (5.8) into Eq. (5.5), we obtain the nonlinear
Schrodinger equation

B{z'i)=0·
where the nonlinearity parameter is given by

(5.9)

(5.10)

The solution of this equation normalized by condition
(5.7) has the form

i eh | , ( . -

in which
hkt

θ •-- q -----

(5.11)

(5.12)

The function (5.11) describes a solitary wave (soliton)
with maximum of the envelope at ζ = £ and phase θ
moving along the ζ axis with constant velocity

V — - (5.13)

b) Motion of solitons in the presence of friction

If the molecular chain is located in some medium,
then friction will act on the moving soliton and the soli-
ton will slow down. This deceleration can be included
by introducing on the right side of Eq. (5.2), which de-
termines the shift in the equilibrium positions of the
molecules, dissipative terms. In the presence of fric-
tion forces, proportional to the displacement velocity
(ε79/3/θί), Eq. (5.6) assumes the form

_ e V ^ e . , (5.14)

where ε is a small positive parameter. Therefore, in
the presence of friction the motion of a soliton is de-
termined by the system of equations (5.9) and (5.14).

In order to solve this system of equations, A. Eremko
and Davydov65 used the method of "slowly varying co-
efficients," introduced by Van der Pol and developed in
detail by Ν. Ν. Bogolyubov and Yu. A. Mitropol'skii.68

Let us assume that at f = 0 the soliton is described by
the function (5.11) with k-k0. In order to determine
how this function changes under the action of friction
forces we shall seek the solution of the system of equa-

tions (5.9) and (5.14) in the form

(5.15)

(5.16)

(5.17)

while the function ύο(ζ, t) coincides with expression
(5.11), in which the time dependent quantities k, £, and
Θ are determined by the equations

(5.

(5.

5)

6)

Β (ζ,

Ρ (2,

where

Po(z

t)

t)

. 0

= Bt> (z,

= Po (z,

i)

t) -

B,{>

+ eB,
•f Φι

:, i) I2

L ( *

(z, *).

hk tlif (ft)

(5.18)

(5.19)

(5.20)

Thus the problem reduces to determining the unknown
functions f(k), <p(k), and B^z, t) with the additional re-
quirement that the function Βχ(ζ, t) not include terms
containing the derivatives 3£0/θέ and dB0/dQ. These
terms increase quadratically with time and are called
secular terms. 6 6

Substituting expression (5.16) with values (5.17) and
(5.11) into Eq. (5.14) and retaining terms of the first
order with respect to c, we obtain in the case of a weak
time dependence of p^z, t)

(5.21)

As the next step, we substitute expression (5.15) and
(5.16) into Eq. (5.9). Taking into account (5.21) and
(5.18), we obtain an equation determining the function

(5.22)
where

F (Bo) = [/ (k) (ζ - ζ) + φ (k) - 2χΡ ι (ζ, t)\ Β, (ζ, t). (5.23)

The conditions for the absence of secular terms in
•BjU, t) reduce to the requirement that the function F(B0)
be orthogonal to the functions dB0/d£ and 9£ 0/θθ. Satis-
faction of these conditions leads to equations determining
together with (5.21) the unknown functions

/(*)

φ(*)

After

„(*)
where

D =

\ thlq(z-t)){z-t)\B0(z, t)

~^jlB0(z,t)]'Pi(z,t)dz.

calculating the integrals

m,oi-mfx

| 2 d j

,(z,

we

ί ) ί 2 Ρ . (

find

2, t) th [q (z-Old*.

(5.24)

(5.25)

(5.26)

(5.27)

Substituting (5.26) into (5.18), we obtain after integrating
and using the equality (5.13) the law for the decrease of
the soliton velocity in the presence of friction forces
proportional to velocity

V (t) = Voexp (-at), (5.28)
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where

ey («sol —
(5.29)

If the friction force is proportional to the square of
the velocity (-ελ(3β/θ<)2) and is directed opposite to it,
then Eq. (5.14) is replaced by the equation

In this case, with analogous calculations, we find that
the decrease in the soliton velocity is determined by the
expression

(5.30)

(5.31)15msmx«Vj ·

Thus the decrease in velocity is nearly linear with a
coefficient of proportionality $V\.

c) Motion of solitons under the action of external
inhomogeneous coefficient of proportionality β\/%

The effect of external inhomogeneous fields or local
inhomogeneities in the distribution of molecules can be
taken into account by introducing into Eq. (5.1), to-
gether with the energy -Eex(0), the additional term cUiz),
depending on the ζ coordinate. In this case the system
of equations for the soliton moving along the chain of
molecules with velocity V« Vo, has the form

£ ^ £ ] z < t ) = *u Μ Β (*>*)> (5.32)

( ? T S ) ^ ^ \ B { z , t ) \ * = o. (5.33)

The solution of this system in the first approximation
can also be sought in the form (5.15)-(5.17). In this
case from (5.32) and (5.33) follow the equations

*'
4°*' A

I
XB (z, t) = ε [U (z) + p, (z, *)] Β (ζ, ί), (5.34)

(5.35)

Using the weak dependence of the function P^z, t) on
time, the explicit form of (5.11), and the value d2£/di2

from (5.19), we obtain after integrating (5.35),

Pi<*. 0=—^j-/( fc) th[ ? (z-O]. (5.36)

Substituting (5.15) and (5.36) into (5.34), we transform
Eq. (5.34) into the form

where

Ρ (Β,) = W (ζ) - 2xpt + (ζ - ζ) f (k) + φ (*)] Bo (ζ, ί). (5.37)

From the conditions that terms increasing with time are
absent in B^z, t), we obtain two equations:

<p(fc)= )r \ \B,(z, t)\*U(i)dz,

/(*)=-! [B0{z, t)\W(z)tii[q{z-l))dz,ft(H-fl)

where D is determined by expression (5.27). Substi-
tuting this value into Eq. (5.19) and including the in-

(5.38)

(5.S39)

equality m e x ( l + D) = m s o l, we obtain an equation deter-
mining the motion of the center of the soliton, i.e., the
maximum of the envelope of the solitary wave:

(5.40)

where

F (ζ) = - 2 ε 3 f | £„ (z, t) |2 U (z) th [q (z - ζ)1 dz. (5.41)

Equation (5.40) is reminiscent of Newton's equation for
particles with the soliton mass. The soliton is affected
by the potential field u(z) from the entire region where
|.Β 0 | 2*0. At the same time, from the region z> £, the
potential Uiz) makes a contribution with negative sign,
while from the region z < ί it contributes with a positive
sign. It is very significant that Eq. (5.40) contains the
effective mass of the soliton and not the effective mass
of an exciton, entering directly into Eq. (5.32). This
is due to the fact that the nonlinearity of the collective
excitation being examined is determined by the interac-
tion of the exciton with the local deformation of the
chain, created by the exciton itself and whose inertial
properties change the effective mass of the free ex-
citon.

In a number of papers,67·68 the effect of a perturbation
on the nonlinear Schroedinger equation is studied by
solving the equation

I2) B <*• ί> = β (5.42)

This equation corresponds to the problem in which the
nonlinearity is due to the self-action of the field Β or
its interaction with another inertia-less field, for ex-
ample, in a plasma neglecting the inertia of ions. In
this case it can be shown that the function f(k), entering
into Eq. (5.19), has the form

/(fc)--ii \ |£fo(z, t)\W (z)th[g(z-O]dz,

and the equation of motion of the maximum of the en-

velope reduces to the equation

(5.43)

where F(t) is determined by expression (5.41), while
the mass me x coincides with the mass directly entering
into Eq. (5.42).

d) Motion of solitons in molecular chains in the
presence of thermal motion

In all preceding sections of this review it was assumed
that the temperature of the molecular chain is absolute
zero, so that only the forced displacement of equilib-
rium positions of molecules was examined. It is in-
teresting to clarify the effect of thermal motion of
molecules on the properties of solitons. In what fol-
lows we describe the results obtained in Ref. 69.

We shall assume that the chain contains a large num-
ber Ν of molecules; therefore, end effects can be
neglected.
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Phonons with all Ν possible values of the wave num-

ber q, satisfying the inequality

(5.44)

participate in the thermal motion. For this reason, the
displacements w, the equilibrium position of molecules
entering into the operators (2.3) and (2.4) must be ex-
pressed in terms of the creation 6* and annihilation bq

operators for phonons with wave numbers q,

( * « + 6 t » > e x p { i q m ) ·

where the phonon frequency is

(5.45)

(5.45a)

Vo is the velocity of longitudinal sound in the chain.

In this case the energy operator of the acoustical pho-

nons is determined by the expression

(5.46)

while the operator describing the interaction of dis-
placements with intramolecular excitations (2.4) as-
sumes the form

HWyW Σ F(g)BiBnexp(ikna)(bt+bt,),

ι
Ι ί I

(5.47)

(5.48)

We shall define the collective states of the chain by the
functions

(5.49)

where

I v) •• | {v,}> = Π | vt>, | v,> = [v,l]

is the phonon function;

Un (i) - exp Σ [ft- (t) 4, - Κ» (ί) btl

-"2 № | 0> (5.50)

(5.51)

is the unitary operator of displacements of equilibrium
positions of peptide groups, in which the unknown func-
tions are chosen in the form of modulated plane waves

ββη (ί)=β,η (i)exp(igno). (5.52)

The squares of the moduli of the unknown wave func-
tions <Pn(t) characterize the probability distribution of
the intramolecular excitation. They satisfy the normal-
ization conditions

Σΐ<Ρη(ί)Ρ=1· (5.53)

We shall calculate the unknown functions <Pn(t) and
β^,(ί), characterizing the excited state of the chain,
which is in thermal equilibrium with a thermostat
having a temperature T. For this we form the function

= 2

where

Pvv
<v I exp(—gpa/β) | v)

2 t—ffph/θ) |{v,})

(5.54)

(5.54a)

are the diagonal elements of the density matrix of pho-
non states, B=kT;

(5.54b)
here, f 0 is the energy of the bottom of the energy band
of free excitons and mcx is their effective mass.

The statistical averaging (5.54) of the operator Evv

reduces to replacing ν by the average value

- Γ ι «a, \ 4 -j-i

and replacing the function Wn by the function

Wn = ja'^lg'(2xq+i)\(,n^. (5.55)

Now, using the function (5.54), it is possible to obtain
the equations of motion

~γψ 2 F (1Ϊ Vn iPJn (t) - β-,, η («)].
1

(5.56)

(5.57)

We shall choose periodic boundary conditions. Due to
the translational symmetry of the system, the velocity
V is conserved together with the energy and the total
momentum. In order to include translational symmetry
from the very beginning, we shall choose the unknown
functions β,Β(/) in the form

β,η (<) = β,Β (0) exp (-i?Vi). (5.58)

Then it follows from (5.57) that

•„.(«)
f( l) I Tn I8

y Λ'( ΐ+ ι« ι (5.59)

ν
T-7

In writing (5.59) we used the abbreviated notation

•^ * "*" l4"",Pvl~W'") · (5.60)

In the region where Ι Ψη\
2*0, there is a change in the

equilibrium distances between neighboring molecules
by an amount determined by the function

6n (t) = <0|?7J (() («„ -«„. , ) Un (i)|0)

3 l fn(
MNV (5.61)

Substituting (5.58) into (5.56), we obtain the nonlinear
equation

in which the quantity

MVIN

(5.62)

(5.63)

in its turn, depends in a complicated manner on <?„(<).
The sums over q entering into (5.61) and (5.63) can be
replaced by integrals according to the equality
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τ- Σ /(HI)-·£

then

J· (5.63')

We shall further assume that the inequality

«o«n < *· (5.64)

is satisfied. In this case, taking into account (5.63'),
expressions (5.61) and (5.63) assume the simpler form

. - J * ^ , ( 5 - e 5 )

(5.66)

In the same approximation expression (5.55) assumes
the form

where

f i + » if
I 2 ' no,'

βΩ0»θ,

(5.67)

(5.67a)

(5.67b)

with o = qoVo.

The energy of phonons (neglecting the zero-point en-
ergy), entering into expression (5.54b), assumes the
form

Bh

(5.68)

In this expression the first term determines the energy
of deformation of the chain (virtual phonons).

The nonlinear equation (5.62) in the continuum ap-
proximation reduces to the equation

t)=0

with the normalization condition
(5.69)

•*· (5.70)

Equation (5.70) is still too complicated, since the
function W according to (5.67), depends on | φ(ζ, t)\4.
Equation (5.69) can be simplified due to the small value
of Β and satisfaction of the inequality | φ{ζ, t)\4< 1. We
introduce the quantity g equal to the average value of
the function | ψ{ζ, t)\2 in the region where it differs
greatly from zero. We shall then determine this num-
ber from the requirement of consistency with the solu-
tion obtained below. Then, in Eq. (5.67) we can make
the substitution

ί)Ι2Β/(θ)φ(2, t), (5.71a)

and, taking into account the smoothness of the function
<p(z, t), in the next term of Eq. (5.67) we can use the
rougher approximation

f. (5.71b)

With these simplifications Eq. (5.69) reduces to the

nonlinear Schroedinger equation

in which the parameters

i)=0, (5.72)

(5.73)

(5.74)"»βΐ(θ) = m.x exp [fB] (Θ)]

depend on the temperature.

Solving Eq. (5.72) we find that the probability distribu-
tion of the excitation along the chain is determined by
the function

, „ , . rtll -<?(β)

where

(5.75)

(5.76)

The average value of (5.75) in the interval Δζ=ιτ/Φ(θ)
equals

aQ (Θ) _ q'm e x (Θ) G (6)
π ~~ 2.1ft1

Substituting this value into (5.73) and (5.74), we obtain
the explicit values

(e)/m)] '

The decrease in the nonlinearity parameter (5.77) in
Eq. (5.72) with increasing temperature is related to the
effective decrease in the coupling between the excitons
and the deformation of the chain. The increase in the
exciton mass (5.78) is due to the effective decrease in
the resonant interaction between molecules, caused by
breakdown of phase coherence due to thermal motion.

Transforming in (5.65) to the continuum approximation
and using (5.75), we shall find the function charac-
terizing the change in the equilibrium distances be-
tween the neighboring molecules

8 ( ? , t ) = -
q'Q (θ) σ

(5.79)

Using the same approximations, from (5.68) we find
the energy of deformation of the chain

i (6) G (Θ)
6VJ Afh* (!—«>) (5.80)

The energy of a soliton moving in the chain with con-
stant velocity Vo including the energy of deformation
(5.80) is determined by the expression

(5.81)
where

P ( Q ) - 1 ι "ex(
2

An approximate expression follows from (5.81) for low
exciton velocities

where

F im-X aO'm,, (6)
BOI ( U J - B O — 24JI#«VJMS (Θ)

(5.82)

(5.83)

914 Sov. Phys. Usp. 25(12), Dec. 1982 A. S. Davydov 914



is the energy of a soliton at rest, and

is its effective mass.

6. EXCITATION OF SOLITONS IN A ONE-
DIMENSIONAL MOLECULAR SYSTEM4»

a) Method of the inverse scattering problem

The nonlinear Schroedinger equation (NSE) (2.29), de-
scribing stationary solutions moving with constant
velocity V, in dimensionless units

χ = Jt/n, a- - ζ/α, g GI2J~ J = h'!2m,ia* (6.1)

can be transformed into the standard form

{ί£^-& + 2^ψϊήψ(*' τ)=°· J m2d*=i.
( 6 · 2 )

This equation for arbitrary positive, nonzero value of
has a particular solution of the form

ψ,χ

ωτ)]

2ch\-lrg(x-ikT)\

for values

0 ) = 4A-- _- 2k mtIaYlh.

(6.3)

(6.4)

It is interesting to study the change with time brought
about by Eq. (6.2) in the excitation described initially
by an arbitrary function *(*, 0). This is conveniently
done by the method of the inverse scattering problem,
which was first developed by Zakharov and Shabat9 for
the NSE.

They showed that the NSE with the initial state corre-
sponding to a function *(r, 0) decreasing arbitrarily
rapidly at infinity can be compared to the linear prob-
lem of scattering for the characteristic vectors

satisfying the system of equations

ι·,' - ίζυ, =^q (x) f2, q (x) - i μ | ψ (χ. 0),

u'-ilv=- "(χ) ν ( 6 - 6 )

with characteristic values ζ = i + iij. Here and in what
follows the prime in the functions indicates differentia-
tion with respect to x. The system of equations (6.6)
can also be written in the form

Ι1- Ml-iW''ih--0. (6.7)

(6.7a)

According to the method of the inverse scattering
problem, as a first step, it is necessary to find the
solutions of the system (6.6) which have the following
asymptotic behavior for a fixed function q(x) and real

l im ι>(ξ, χ) —

(J)exp(-i^), if
(6.8)

The complex coefficients a(t) and bit) satisfy the in-
equality

I «(I) I 2 -i- I Mi) I 2 - 1· (6.9)

The quantity, inverse to « | | | , determines the trans-
mission coefficient of a plane wave incident on the po-
tential q(x) out of the region x~°a, while the ratio

determines its coefficient of reflection.

(6.10)

The functions (6.8) can be analytically continued into
the upper half-plane (»)>0) of the complex variable £.
In the method of the inverse scattering problem (see
Refs. 9-13) it is proved that from o(£) and δ(£), found
for time r = 0, it is possible to obtain their values at

using the equalities

α (ζ, τ\ = α (ζ), b (ζ, τ) = b (ζ) exp (4ίζ2τ). (6.11)

If the coefficients α{ζ,) vanish in the upper half-plane
of the complex £ plane, then for these values of £y the
asymptotic behavior of the functions v(if,x) is deter-
mined by the expressions

7 = 1 N,

(6.12)

Therefore, the function (6.12) for 7jy*0 decrease asymp-
totically for \x\ ~°° and describes bound states corre-
sponding to complex characteristic values tf of Eqs.
(6.6).

The set of values

p ] ; ^ , / = !, 2 N,
Λ (|, τ) = 6(ξ, τ)/ο(ξ)

forms the set of so-called "scattering data." With the
help of these data we can determine the auxiliary func-
tion

ξ ' τ )

i—I
( 6 # 1 4)

which enters into the Gel'fand-Levitan-Marchenko inte-
gral equation

K(x, y)-=F*(x + y, τ) - j ds j Az F* (s + y, x)F(s + z, τ)Κ{χ, z).

(6.15)

The function being sought q(x, r) and the wave function

ί <*·•<> = - 2 * <*.*> ( 6 . 1 6 )

satisfying (6.2) with initial value * (* , 0) can be ex-
pressed in terms of the solution of Eq. (6.15) with the
help of the equality

Ψ (χ, τ) = - iq (χ, τ)/Yg. (6.17)

As an illustration of the use of the inverse scattering
problem method, in what follows, following the work
of Brizhik and Davydov,49 we examine special cases of
initial conditions.

b) Initial pulse in the form of a hyperbolic secant

We shall assume that at T = 0 the initial momentum is
given in the form

±Vie™*seek(gz/2), 2k~mnaV/H. ( 6 1 8 )

In order to calculate the scattering data it is sufficient
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to find the asymptotic solutions of Eq. (6.7) with values

q(x, Ο)=ί]/£Ψ(*, 0)=^-e"^secb(gx/2). (6.19)

If \x\~°°, then Eq. (6.7) goes over into the equation

k^igl2)vl=0. (6.20)

The upper sign in (6.20) corresponds to # — °° and the
lower sign corresponds to χ — •». This equation has the
solution

where

my = ζ + k - ig/i, m2 = ζ + k + ig/4. (6.22)

For g *0 the functions (6.21) coincide with the asymp-
totic functions (6.8) with the values

ζ! = It τ iih, £i = - *. ηι = gl*· (6.23)

From (6.8) it follows that for # - » , w2(£)= b{i)e'tr. On
the other hand, for values (6.21) it follows from Eq.
(6.7a) that the function v2(°o) = 0. Thus, for the poten-
tial (6.19), the factor δ(ξ) and the coefficient of reflec-
tion R(i) are equal to zero. Such potentials are called
nonreflective potentials and they cannot be observed by
scattering of plane waves arriving from infinity.

Thus, in our problem the spectral data (6.13) have the
values

(6.24)Λ (ξ. τ)=0, ζ^-k + ig/i,

For this reason, the function (6.14) has the simple form

F (i, t) = Cx (τ) exp (ίζ^). (6.25)

Substituting this expression into Eq. (6.15) and as-
suming that

K(x, y)=f (i) exp ( - O ) ·

we find

Thus the square of the modulus of the wave function, in
accordance with the exact solution (6.3) up to time T, in-
cluding (6.16) and (6.17), will be determined by the ex-
pression

(6.26)

where

ao=iln(2|C,|/g)=O.

Thus the initial pulse (6.18) propagates with time with
velocity V in the form of a single soliton with arbitrary
nonzero value of g.

c) Initial pulse in the form of a rectangular step

Let us assume that at time T = 0 the pulse is given in
the form

f—^-expilikx), if 0<x</, ,
Ψ(Ι „,= {/« V (6.27)

lO, if x<0andx>l.

In this case the solution of the system of equations (6.6)
can be sought in the form

e>>'.for x>Uυ=α(ζ) (J) e">

while in the region 0 « χ « I

i;1={i4, sin mx~ A2cos mz) e''·*,

"2=-Q- {[(? -r k) A, -(- imA2\ sin mx — [(t — k) A2 — imAl] sin mx) e-'hx,

where

QoSSyg-l, ni2ssQl...(Z-.lc)K (6.28)

From the condition of continuity of the solutions it fol-
lows that

Λ, ( 0 = - , №-:. i),m. A,*-*. ( 6 > 2 g )

α (ζ) = m-'S (ζ, k) e«*+u' , b (ζ) - im-iQ^-W ,

where

S (ζ, k) = m cos ml — i (ft + ζ) sin ml. (6.30)

Using (6.29) we find the coefficient of reflection at time

R ( E ) = iQ0S~l ( E , k) e x p [ - 2 ; (A- .;- E) I].

At time τ, according to (6.11), it assumes the value

R (Ε, τ) = R (|) exp (4ίξ2τ). (6.31)

The parameters of the bound states are determined
from the condition

S (ζ, k) = 0.

This equation has the solution

So = — k -J- ι η 0 , (6.32)

in which i)0 is determined by the transcendental equation

lr\0=-V gl-l*i\l clgV gl-vllK (6.33)

For values -Jgf less than π/2, this equation does not
have nonzero solutions. In this case the starting pulse
(6.27) does not give rise to solitons, but, oscillating,
spreads out along the chain with probability density de-
creasing with time according to the law l/ι/τ .

If the inequality

π/2< Kiisg3n/2,

is satisfied, then Eq. (6.33) is satisfied by a single^
positive value η 0 * Qo· When the inequality 3ir/2 <
«στ/2 is satisfied, Eq. (6.33) has two roots. Figure
12 indicates the dependence of the ratio \/Q0 on the
quantity V§7.

ForJ) 0*0, according to (6.11), (6.13), and (6.28)

Co (τ) = α exp (4iCJt),
„ _ m{ exp (21η.) m S = = O I ,

(6.34)

(6.35)

(6.36)

0 η/2 η 3η/2 Zn Sri/2

FIG. 12. Dependence of the ratio 7jo/Q0 on the quantity </gl.
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Thus the function (6.14) assumes the value

F(x. τ) = C 0 (T) « Λ (ξ, (6.37)

where C0(T) and R(£, T) are determined by expressions

(6.35) and (6.31), respectively.

The first term in (6.37) determines the soliton solu-
tions, while the second term determines the "tail" ac-
companying the soliton.

For long times τ the value of the integral can be ap-
proximated by the expression

a m

Thus, for long times, the amplitude of the "tail" de-
creases with time according to the law 1/-/F.

Retaining for long times in (6.37) only the first term
and solving Eq. (6.15), we determine the value of K(x, y)
and the wave function

where

Y'gchz

J -

(6.39)

(6.40)

Thus, with the initial excitation in the form of the
pulse (6.27), soliton solutions appear with a nonlinear -
ity parameter g exceeding the critical value

A'cr = -1-/4/. (6.41)

The amplitude of the soliton increases and its width de-
creases with increasing g. For g = n2/4l, the soliton
makes the main contribution to normalization of the
wave function, since

j | Ψ, (x, x) I'd* « 0.85.

The role of the "tail" in this case is negligibly small.

In the inertia-free approximation, i.e., when the non-
linearity parameter % does not depend on the soliton
velocity V, the excitation described by Eq. (6.2) corre-
sponds in units of K2/2ma2 to the energy

If the nonlinearity parameter % = %0/(l - s2) depends on
velocity, then the inertia of the displacements of pep-
tide groups appears. In this case, the energy integral,
including deformation of the chain is determined by the
expression

ι· /i gar 12 \ (r> A n\

E(v)=\ Ι Λ-Μ — g(i— 2s2)l<fl' d*. (6.42)

In the initial state this energy is determined by two
terms:

Ε (v) = Ε (0) +

where

(6.43)

(6.44)

For k = 0 the energy (6.43) is less than the bottom of
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the exciton band by an amount £(0).

For T > 0 the part of the energy (6.43) is transported
by the "tail," and the remaining part

E, (I) =£,(0) + £,.»,

where

(6.45)

(6.46)

is carried by the soliton. The excitation loses part of
its initial energy in establishing the asymptotic single-
soliton form (6.39).

The calculations performed in this section show that
the presence (or absence) of a threshold for excitation
of solitons and the magnitude of the threshold depend on
the nature of the spatial distribution of the initial pulse.
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