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Elementary processes in many-electron atoms—radiative and Auger transitions, photoionization, ionization
by electron impact, etc.—are usually accompanied by relaxation of the electron shells. The conditions under
which such an inherently many-electron problem can be solved in the shake-up approximation are examined,
and the shake-up processes occurring as a result of electron transitions are described from a unified point of
view. The features that are common both to this form of excitation and to the shake-up of atomic electrons
following nuclear transformations are pointed out, and the distinguishing features are also noted. The various
electron shake-up processes considered are the radiative Auger effect, the two-electron-one-photon transition,
double ionization, spectral line broadening, the post-collision interaction, Auger decay stimulated by collision
with a fast electron, and three-electron Auger transitions (the double and half Auger effects). These processes
are classified according to the type of electron transition causing the shake-up, and the experimental data and
methods of theoretical description are reviewed. Other effects of a similar nature that could accompany
transitions in the electron shells of atoms are also mentioned. A derivation of the shake-up approximation is
given, and it is pointed out that this approximation is to a large extent analogous to the distorted-waves
approximation in scattering theory. It is shown that the shake-up approximation is rather effective for
obtaining estimates of the probabilities of the various effects.
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INTRODUCTION

The change in the nuclear charge during K capture
and a and 0 decay and the change in the momentum of
the nucleus during collisions with neutrons or in radio-
active decay are perceived as sudden by the compara-
tively slow atomic electrons and are accompanied by the
shake-up of the electron shells, leading to their excita-
tion and ionization. However, a shake-up of the elec-
tron shells occurs not only after nuclear transforma-
tions, but also after transitions in the electron shells,
especially those in the inner shells, during which there
is an abrupt change in the screening of the field of the
nucleus and, hence, in its effective charge. A typical
example of such a process is the shake-up accompany-
ing an Auger transition, where the change in the
screening of the nucleus upon the filling of a vacancy in
an inner shell and the ejection of the Auger electron
leads to the "shaking off" of yet another electron from
the outer shell. Processes that can be discussed in
terms of the shaking up of atomic electrons as a result

of electron transitions have been the subject of active
experimental and theoretical research in recent years,
but earlier review articles1'2 on the use of the sudden
approximation have not given them adequate attention.

At the same time, however, processes of the shake-
up type play an important role in the electron transi-
tions in many-electron atoms, particularly during col-
lisions with electrons and other atoms. Practically all
the elementary transitions in the electron shells of
atoms are accompanied by a relaxation of the shells
that is of the nature of a more or less intense shake-up
leading to the excitation or decay of the system by ion-
ization or dissociation processes. Without allowing for
the shake-up processes one cannot describe completely
the final state of the system nor even the elementary
processes themselves that lead to excitation of the
electron shells. For example, the ionization cross
sections for the inner shells and the ionization thresh-
olds as well depend on the subsequent shake-up proc-
esses. The spectra of the emitted photons and Auger

881 Sov. Phys. Usp. 25(12), Dec. 1982 0038-5670/82/120881 -17$01.80 © 1983 American Institute of Physics 881



electrons are determined in an essential way by the
shake-up processes, which cause a broadening and
shifting of the peaks and also give rise to new peaks.
The spectra observed in experiments cannot be inter-
preted correctly without taking the shake-up processes
into account. It should be pointed out that processes of
the shake-up type are by no means always small ef-
fects; in some cases they alter the whole picture of the
event. For example, in post-collision interactions it
becomes possible for the ionizing particle to be cap-
tured. Allowance for shake-up processes substantially
alters the cascades of Auger transitions following ion-
ization of an inner shell of a many-electron atom and,
hence, causes changes in the relative abundances of the
multiply charged ions formed and in the spectra of the
Auger electrons. Unless the shake-up processes are
taken into account, one cannot give a correct explana-
tion for the appearance of highly charged ions.

In the present review we describe from a unified point
of view the shake-up processes that occur in the elec-
tron shell of an atom as a result of the sudden perturba-
tion due to electron transitions, pointing out both the
similarities and differences between this form of exci-
tation and the shake-up processes that accompany nu-
clear transitions. We examine the various electron
shake-up processes and classify them, review the ex-
perimental data and theoretical descriptions, and men-
tion other effects of a similar nature that could accom-
pany transitions in the electron shells of atoms. We go
through a derivation of the shake-up approximation and
point out the high degree of analogy between this method
and the distorted-waves method in scattering theory.

The sudden approximation is used in quantum mechan-
ics to solve the time-dependent Schrodinger equation in
the case where the external perturbation acting on the
quantum system is rapidly changing in time. In that
case, one can construct a perturbation theory in which
the small parameter is not the magnitude of the pertur-
bation but rather the ratio of the characteristic time for
changes in the external perturbation to the characteris-
tic period of the quantum system.1"4 A rather wide
group of problems which can be solved by this method
are given in the reviews by Dykhne and Yudin.1-2 How-
ever, the sudden approximation as formulated there
cannot be directly applied to the shake-up of the atomic
shells which accompanies radiative or Auger transi-
tions in atoms, since in that case it is generally impos-
sible to separate out a time-varying perturbation. Let
us therefore consider how the sudden approximation
(the shake-up approximation) must be modified for ap-
plication to transitions in the electron shells of atoms.
Radiative and Auger transitions are two-particle tran-
sitions, so we shall examine the shake-up of the elec-
tron shell during such transitions mainly as illustrated
by the three-particle decay of autoionizing states. Ex-
amples of such transitions are the two-electron radia-
tive Auger decay,5"7 in which an Auger transition is ac-
companied by the simultaneous emission of a photon,
and the two-electron-one-photon relaxation of states
with two inner-shell vacancies, which results in the
filling of the vacancies with all the excess energy being
carried off by a single photon.8"10 Three-electron Aug-

er transitions also occur. These are the double Auger
effect,11 in which the filling of one vacancy leads to the
ejection of two electrons from the atom, and the half
Auger effect,12"14 in which the filling of two inner-shell
vacancies leads to the ejection from the atom of a sin-
gle electron, carrying off the entire transition energy.
One can also include in the category of three-particle
relaxation effects the post-collision interaction,15"18

which arises in the scattering from an atom of an elec-
tron whose energy is slightly higher than the excitation
energy of an autoionizing state, so that the decay of the
autoionizing state excited in the collision occurs in the
presence of a slow electron.

The excitation and ionization of atomic electrons dur-
ing nuclear transformation can be interpreted as
shake-up processes because the system admits a clear
division into two subsystems—the nucleus and the atom-
ic electrons. The "nucleus" includes the high-energy
particles which interact through short-range forces and
participate in the nuclear transitions. The change in the
nuclear state occurs over a time which is much shorter
than the characteristic atomic times, and so the nucle-
us can be considered the fast subsystem and the atomic
electrons, the slow subsystem. The interaction be-
tween subsystems is well described by an average
field—the Coulomb field of the nucleus, which changes
quite rapidly on the atomic time scales during the emis-
sion or absorption of fast charged particles.

In contrast, the electron shells cannot be so clearly
divided into fast and slow subsystems whose interaction
can be well described by an average field. However, if
the transitions in the inner shells involve rather fast
particles or hard photons, the electrons of these shells
can be considered a fast subsystem with respect to the
electrons of the outer shells. In this case one can in-
troduce an average field amounting to a central Cou-
lomb field with a certain effective charge, the rapid
change of which during transitions in the inner shells is
"felt" by the outer electrons and causes their shake-up.

1. THE MECHANISM FOR SHAKE-UP AFTER
ELECTRON TRANSITIONS

Just as the half-life for radioactive transformations
of the nucleus (which often reach hundreds or thousands
of years) cannot serve as the characteristic time deter-
mining the shake-up of the electron shells, the lifetime
~r-1 of a vacancy in an inner shell with respect to Aug-
er or radiative transitions cannot serve the analogous
purpose in a treatment of the shake-up accompanying
these transitions.

The characteristic small time that governs whether a
process is of a shake-up nature could be taken, for ex-
ample, as the time of flight of a j8 particle or a fast
Auger electron through the shell in question, or as the
time of flight of a photon. We shall consider below the
question of how and under what conditions the inherent-
ly many-particle problem of the relaxation of the elec-
tron shells following radiative and Auger transitions,
photoionization, electron-impact ionization, etc., can
be solved in the shake-up approximation.
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a) Sudden change of average field

Let us examine how the average field changes during
a one-electron radiative transition in a two-electron
atom. As usual, we assume that the radiative transi-
tion occurs in a frozen core, i.e., for a fixed state of
the electron which does not take part in the radiative
transition. In accordance with this assumption, we
seek a total wave function in the form

* (r,, r2 t) = T] (r,, t) E (r2, t), (1.1)

where rf are the coordinates of the electrons, ^(r^) is
the known wave function of the electron undergoing the
radiative transition in the presence of a frozen state of
the second electron, and £(r2, t) is the unknown wave
function of the second electron, for which we easily ob-
tain the equation

i JLt( r , . t) = (H,-r\V(T,, t))l(t,,t), (1.2)

where H2 is the Hamiltonian of the second electron
without allowance for the interaction W(r1,r2) between
the electrons, and

if (r2 , t) \ (r,, t) W (!•!, r,) i) (rL, t) (1.3)

is the time-varying average field acting on the second
electron during the radiative transition of the first. If
the radiative transition of the first electron is from
state TII to state t\z, then

i] (r,, t) - a (t) t), (r,) + b (t) r), (r,). (1.4)

where \a(t) \2 + \b(t) | 2 = 1. If we neglect the products
?71(r)?72(r), we have for the time-varying average field
during the radiative transition an expression of the
form

W (r,, t) = W, (i,) ~ | a (t) \*[W, (r=) - "'2 (r2)].

where

W, (r,)= ,, r2) |

(1.5)

(1.6)

is the average field acting on the second electron if the
first electron is in state 7j,(r). Since \a(t) |2~exp(-rY),
the probability of finding the atom in the excited state
changes in time from unity to zero, and the average
field (1.5) acting on the second electron due to the first
electron changes in time from Wj(r2) to W2(r2) with a
characteristic time ~T~l.

The period of revolution of an electron in an atomic
orbit is in fact much shorter than the radiative decay
time T"1, but that does not mean that the electron fol-
lows the radiative decay adiabatically and that one may
use the adiabatic approximation. The lifetime of the
excited state has the meaning of the time during which
the wave function flows from one orbital to another,
i.e., the time in the course of which the electron will,
with a high probability, undergo a quantum jump from
one orbital to another and emit a photon.19 The actual
jump of the electron, which leads to an abrupt change
in the wave function, takes place suddenly. In the pres-
ent case a phenomenon occurs which is analogous to the
collapse of the wave packet,20 only here the "device"
measuring the state of the electron undergoing the
transition is the electron experiencing the shake-up

(the "shake-up electron"). Therefore, the change in
the average field here is also sudden, and the shake-up
approximation is suitable for solving the problem.

The average field acting on the shake-up electron
changes over a time T which characterizes the actual
reorganization of the system after the quantum jump.
The ratio of the time r to the orbital period of the
shake-up electron, or the quantity WT, where w is its
frequency, can serve as the criterion for the applicabil-
ity of the shake-up approximation. If WT« 1, the per-
turbation is sudden, while if WT * 1 it is adiabatic in
character.

The-applicability condition for the shake-up approxi-
mation is conveniently illustrated by the case of the
Auger transition. The lifetime of an autoionizing state
with respect to Auger decay is known to reach 10"13 s,
but the Auger transition itself is sudden. Nevertheless,
the change in the screening of the nucleus which causes
the shake-up of the outer electron occurs over the finite
time T required for the Auger electron to leave the
atom (or its inner shells). The condition COT « 1 neces-
sary for the effect of the Auger transition on the outer
electron to be of a shake-up character in this case re-
duces to the condition that the speed of the Auger elec-
tron be much higher than the speed of the outer elec-
tron, a condition that is usually well satisfied.

The approximate nature of the shake-up mechanism
stems from the use of the concept of an average field
for the system of interacting electrons, which is an ex-
ternal field for the system experiencing shake-up. In
this case the transition energy is distributed between
the photon and the shake-up electron. By measuring
the photon energy one can therefore determine whether
the radiative transition was accompanied by shake-up
and, if so, find the energy acquired by the shake-up
electron. The same can be said for the case in which
one of the electrons is shaken down to a lower energy
state. In the latter case the photon acquires a larger
energy than it would if the transition were not accom-
panied by shake-up.

Sudden quantum jumps are also caused by transitions
involving the simultaneous emission (absorption) of
several quanta. A sequential shake-up is also possible
in the case of the sequential emission (absorption) of
quanta, where the system, in interacting with one quan-
tum, undergoes a transition to a real (not virtual) sta-
tionary state in which it lives for some time before the
absorption (emission) of the next quantum. An analo-
gous sequential shake-up was examined by Smirnov and
Firsov,21 who described the sudden capture of an elec-
tron by a molecule and the subsequent excitation
(shake-up) of the vibrational levels of the molecule,
followed by a sudden decay and concomitant shake-up
of the molecule.

It is of fundamental importance that the system can
be divided into two subsystems whose interaction can
be well described by an average field, with one of the
subsystems undergoing a quantum jump and the other
subsystem "feeling" this jump through the change in the
average field and being "shaken up." Such a separation
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of variables is possible when the system undergoing the
transitions of interest consists of two interacting sub-
systems—a fast and a slow.

Generally speaking, the change in one of the subsys-
tems can occur as a result of many quantum jumps, as
when a rather strong external field is applied. For cal-
culating such a change it is inconvenient to use the lan-
guage of perturbation theory, i.e., to speak of quantum
jumps, and it is necessary to solve the Schrodinger
equation some other way. If the change in the first sub-
system occurs over a time much shorter than the char-
acteristic periods of the second subsystem, then one
may use the shake-up mechanism, i.e., to examine the
change in the first subsystem with the state of the sec-
ond subsystem "frozen"; the second subsystem "feels"
the change through a change in the average field and is
"shaken up." But if we are considering a situation in
which the change of state occurs through the absorption
of soft quanta, i.e., a slow change brought about by a
weakly varying field, then to solve the problem one
must take into account the sequential absorption of a
large number of soft quanta; although each quantum is
absorbed suddenly, the accumulation of a sensible
change of state requires the absorption of many quanta,
and that takes a long time.

Thus, in the shake-up approximation one proposes to
represent the amplitude of the process as a product4'21

of the amplitude a{ of the first, rapid stage in one of the
subsystems and the amplitude a2 of the shake-up stage
of the other subsystem, i.e., a = a^az.

b) Shake-up efficiency
We have seen that every quantum transition in an

electron shell causes a sudden change in the average
field (in the screening of the nucleus) and may be ac-
companied by the shake-up of the remaining atomic
electrons. The shake-up will be the entire effect if the
interaction among the atomic electrons is well de-
scribed by the approximation of an average field char-
acterized by an effective charge.

One can introduce a shake-up parameter N, which
serves as a measure of the shake-up efficiency:

«•=•*£-,
where A«* is the change in the effective charge z* of
the nucleus.

In treating the shake-up of atomic electrons accom-
panying a sudden change in the momentum of the nucle-
us, Dykhne and Yudin1 introduced as a measure of the
shake-up efficiency the parameter N= &v/v, where An
is the speed imparted to the nucleus by a sudden impact
and v is the orbital speed of the shake-up electron. The
parameter N introduced above in (1.7) can be put in the
same form by considering that the speed of an electron
in its orbit is v = z*/n, where n is the principal quantum
number, while the speed of an electron in an orbit with
the same value of n but in the field of a nucleus of
charge z* + Az* is equal to v + &v = (z* + &z*)/n, and
therefore N= &z*/z* = tw/v.

According to the sudden approximation,3'* the shake-up

probability upon an instantaneous change in the Hamil-
tonian is proportional to the square of the overlap inte-
gral of the wave functions of the shake-up electron de-
scribing the stationary state of the Hamiltonian before
and after the change. But the overlap integral turns out
to be directly proportional to the shake-up parameter
[see (3.7) and (3.8) below]. Therefore, in accordance
with our qualitative arguments, the snake-up probabil-
ity increases with increasing N.

c) Selection rules for shake-up processes

Expressing the shake-up probability in terms of the
overlap integral leads to monopole selection rules for
the quantum numbers characterizing the state of the
shake-up electron,3 namely, that the orbital angular
momentum and its projection should be preserved dur-
ing shake-up: AZ = Aw = 0. These selection rules cor-
respond to the physical situation that the interaction of
the subsystems can be validly described with the aid of
an average field which undergoes a sudden change but
remains central before and after the change. The ap-
plication of the shake-up approximation to transitions
in the electron shells of atoms therefore leads to mono-
pole selection rules. However, experiments show that
it quite often happens that an electron which can be in-
terpreted as a shake-up electron has changed its orbital
angular momentum and projection. Such a change in the
selection rules for shake-up can be explained by the in-
herently many-electron nature of the problem. It is
clear that it is especially important to take this cir-
cumstance into account in cases where the electrons in-
volved in the transition responsible for the shake-up
and the electrons experiencing the shake-up are located
in the same shell. It is shown below that it is neces-
sary to take into account the change in the angular mo-
mentum and its projection during the shake-up process
in order to describe the majority of the effects listed in
the Introduction. The probabilities of such transitions
can be estimated in the average-field approximation by
introducing appropriate multiplicative factors to take
into account the possibility of shake-up processes in-
volving a change in the angular momentum and its pro-
jection.

(1.7) d) Shake-up approximation for electron transitions

In essence, all the qualitative arguments given above
constitute an interpretation of the expressions for the
transition probabilities in many-electron atoms. Let us
consider, for example, the single-photon decay of the
excited state ^(r^ r2) of the helium atom. According to
perturbation theory the decay rate to state ^(i^, r2) is
of the form

FL r,), (r, + r2) ifa (r,, r2)) f . (1.8)

Let ^(T!, r2) describe the 2s2p state. In the single-
electron approximation for distinguishable electrons we
have ̂ ^(r^Ua), ^(^(r,)^^). The decay rate
is given by

r = rr/b, (1.9)
where Tr is the rate for the one-electron-one-photon
transition 2p— Is for a frozen state of the 2s electron,
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and Ib = (gb.g2!.) is the overlap integral of the initial and
final states of the 2s electron. If the electrons are as-
sumed to be noninteracting, then 76 is zero in all cases
except that in which the 2s electron stays in the same
state. However, if the interaction between the elec-
trons is taken into account, such as by a self-consistent
field, then the overlap integral is nonzero for transi-
tions involving a change in the state of the 2s electron
as well. We shall treat these transitions as resulting
from the shake-up of the 2s electron due to a one-elec-
tron radiative transition. The fact that the rate (1.8)
for one-photon decay involving a change of state for two
electrons has the typical form for the shake-up approx-
imation1 is a consequence of expressing the two-elec-
tron wave function as a product of single-electron func-
tions. Such an approximation is, of course, valid in
the case that the shake-up electron is slow compared to
the electron involved in the emission of the photon.
However, in atomic physics the representation of
many-electron wave functions as products of single-
electron functions is used even in cases where the
speeds of the electrons are comparable. The best one-
electron representation is obtained in the solution of the
Hartree-Fock equations. They are based on a varia-
tional principle, and there are no simple criteria for
the domain of applicability. For this reason the domain
of applicability of formulas such as (1.9) in the shake-up
approximation is determined in a more complex way
(see below).

Formula (1.8), just as (1.9), has the form of an ex-
pression in first-order perturbation theory. However,
formula (1.8) contains the two-electron wave functions
which are the exact wave functions for the helium atom.
Of course, the exact wave functions are unknown, but
there are various methods of obtaining the approximate
form of the two-electron wave functions. It is natural to
consider expressions of type (1.8) as a generalization of
the shake-up approximation. In particular, an approxi-
mation of this type which incorporates the interelectron
correlations enables one to make allowance for the ex-
change of angular momentum during the shake-up proc-
ess. In the next section we consider a more rigorous
derivation of the shake-up approximation for electron
transitions.

2. THE SHAKE-UP APPROXIMATION

Suppose that at some instant of time an unstable sys-
tem is formed in a state <pa which is an eigenfunction of
the approximate Hamiltonian K, i.e.,K<pa = ttt(pa. The
total Hamiltonian is H = K + U, where the interaction re-
sponsible for the decay is the sum of two operators:
U= V+ W. The system decays to a state <pb such that
K<pb=tb<pb an&(<(>b,Ucf>a) = 0, i.e., the transition <pa- <pb

is due to an effect of higher than first order in pertur-
bation theory. According to Goldberger and Watson,22

the initial decay rate is

r=2ndp(e a ) |S£a(ea)|2, (2.1)

•where &f^ta) is the density of final states, and the ma-
trix element of the operator for the shift and width of
the level is

here the function i]ia satisfies the equation

!|-a ^ fa - (t'a - »1 - A')"1 (1 - Aa) t / t f a ,

(2.2)

(2.3)

where Aa is the operator for the projection onto state
<pa. By introducing a function \j>b in accordance with the
equation

we can write expression (2.2) in the more convenient
form23:

We shall assume that the operator V is small enough
that it may be taken into account only once; then in (2.3)
we have U°*W, and Eqs. (2.3) and (2.4) can usually be
written in the form

(2.6)(Ea — K- W)$a •" 0,

(ea — K — W)$t =- 0.

Here 4>a<b~ <fia>b upon the adiabatic switching off of W;
£„ = £„ + Raa(ta) is the energy of the quasistationary state
tpa', Re-Ea = £a +Refl,a(ea), Im£a = Im^aa(£<I);and^0(I(£a)is
the width and shift of level £„.

The shake-up approximation is obtained from the ex-
act two-potential formula (2.5) by substituting the solu-
tion of Eqs. (2.6) into it. The situation is thus analogous
to the case of scattering by two potentials22 when only
the linear terms in the small potential are retained and
the strong potential is taken into account exactly by the
change in the initial and final states (the distorted-
waves method in scattering theory). The problem of
evaluating the transition probability in a higher order of
perturbation theory is thus replaced by a formula having
a form typical of the first order in perturbation theory.
We note that in (2.6) one can usually assume Ea to be a
real quantity equal to £a + Refl(la(£a), since, according to
Baz' et al.,24 for lmEa «£n such a change has a negligi-
ble effect in a matrix element of the type in (2.5), ex-
cept in the case when the wave functions are those of the
continuum (see Sect. 4a below).

Taking the strong potential into account exactly leads
to a substantial improvement in the results of calcula-
tions in scattering theory in comparison with the Born
approximation.25

3. TWO-ELECTRON RADIATIVE TRANSITIONS

A two-electron radiative transition involves a change
of state for two electrons and the simultaneous emission
or absorption of a y photon. In this case V is the inter-
action with the electromagnetic field, and W is the in-
teraction between the electrons. Since the small opera-
tor V is taken into account only once, the functions $a>6

are products of the electron wave functions 4>at6 and the
photon wave functions SiBifc. We then obtain from (2.6)
the equations for just the electron parts of the wave
functions

( e « - K - W) <$„ ---- 0,
(et, - K — W) <£& = 0,

£,, = £„ ± o>, where o> is the energy of the y photon (the

(3.1)
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plus sign corresponds to absorption of the photon and
the minus sign to emission). The boundary conditions
for Eqs. (3.1) are that the functions $a>b tend toward the
states of an atom with noninteracting electrons as the
interaction between the electrons is adiabatically turned
off. It is these states that we take as the zeroth ap-
proximation (see the beginning of Sec. 2) for the excited
states, while Eqs. (3.1) describe the atomic states that
should be obtained when the interaction between the
electrons is taken into account exactly. Such a choice
for the zeroth approximation enables one to show clear-
ly that allowance for the interaction between electrons
even in the average-field approximation [in the solution
of Eq. (3.1)] and allowance for the interaction with the
electromagnetic field in the first order of perturbation
theory lead to a nonzero amplitude for the two-elec-
tron-one-photon transition.

The second term in (2.5) is equal to zero, since the
state <pa does not contain a photon but ij)tt does, and so
the transition amplitude is of the form

flba = (<t>l,, Vr®a), (3.2)

where V2 = (Slb, VW0) is proportional to the dipole mo-
ment d. The amplitude for the two-electron radiative
transition is thus of the same form as the amplitude for
the one-electron transition, with the distinction that the
dipole-moment matrix elements are taken between
many-electron wave functions *a>6 satisfying Eqs. (3.1).

If it is assumed that the operator W for the interac-
tion between electrons is small, then Eqs. (3.1) can be
solved using perturbation theory. In that case, of
course, we obtain all the diagrams for the amplitude
RK that would appear in a direct perturbation-theory
solution of the problem, as was carried out in Refs. 8,
9, and 10 for the case of two-electron-one-quantum re-
laxation; in those papers the diagrams were calculated
which appear in the second order of perturbation theory.
On the other hand, solution of Eqs. (3.1) is equivalent
to taking all the terms of the series in powers of W into
account. The advantages of the shake-up approximation
are realized in cases where Eqs. (3.1) can be solved,
because then the transition amplitude is calculated from
an expression which is formally identical to the formu-
la which appears in the first order of perturbation the-
ory.

Let us illustrate this for the case when Eqs. (3.1) are
solved in the average-field approximation. In this case
we seek functions $BiS of the form

(2), (3.3)

where /tft(l) are states of the first electron which are
coupled together by the radiation operator with the po-
sition of the second electron frozen. In other words,
/0>6 are the known functions used in calculating the one-
electron-one-quantum relaxation under the assumption
that the transition does not affect the second electron.
We note that state/„ is orthogonal to state/„, i.e., (/„
/6) = 0. Substituting (3.3) into (3.1), we obtain equations
for the unknown functions Xtit of the second electron:

FIG. 1. Radiative Auger effect, a) Auger electron in the
continuum; b) Auger electron in bound state; c) two-electron-
one-photon transition.

where ea2 and tb2 are the energies of the second elec-
tron before and after the transition, and (fa<l>, Wfa<b) is
the average field acting on the second electron before
and after the one-electron transition. It is this ap-
proach that is generally taken when the shake-up ap-
proximation is used. The simplest way of taking the
average field into account reduces to the method in
which the charge of the nucleus is screened by the first
electron.23 The average field can be taken into account
more exactly by using self-consistent wave functions
/Oit, as was done, for example, by Aberg.6 The transi-
tion amplitude in the average-field approximation is of
the form

= (/», (3.5)

where the states Xa and Xft are not orthogonal since they
are solutions of Eqs. (3.4) with different Hamiltonians.
It is customary to say that as a result of the radiative
transition /4-/M the second electron, which we as-
sumed to be frozen, remains in a state Xa which is not
an eigenfunction of the new Hamiltonlan, and the over-
lap integrals (X4,Xt) with the eigenfunctions of the new
Hamiltonian determine the shake-up amplitude. The
error in such a method can be estimated by taking stock
of all the diagrams in a perturbation theory in W that do
not contain the average field.

a) Radiative Auger effect

The radiative Auger effect is the two-electron-one-
photon decay of an autoionizing state involving the
emission of a photon, the filling of an inner-shell va-
cancy by one of the electrons, and a transition of the
other electron either into the continuum (Fig. la) or in-
to a bound state (Fig. Ib). The first theoretical esti-
mates of the probability of such a transition were made
back in 1935 by Bloch7 using perturbation theory, while

-iff -ffff

(/„, Wf,)} Xa (2) = 0,
(jb, Wfb)} Xb (2) = 0, (3.4) FIG. 2. Low-energy part of the y-ray spectrum emitted in

K-MM radiative Auger transitions in the argon atom.
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the experimental proof of the existence of the effect
was obtained relatively recently.26"28

In the radiative Auger effect the transition energy is dis-
tributed between the electron and the photon, and so radia-
tive Auger transitions are manifested in the low-energy
part of the photon spectrum emitted during the filling of an
inner-shell vacancy in an atom. Figure 2shows the low-en-
ergy side of the (Is)"1 ̂ -(Sp)'12?0 line in argon.5 It
consists of several peaks (A, B, C, D, and £), a low-
energy tail, and a bump F at 55 eV. Peaks A and B
arise from transitions to the final states (3p)"2wp2P°,
peak C is due mainly to the discrete transitions (Is)"1

-[(SsrtSpJVP/Plras.wd, 2P°(seeFig. Ib), the posi-
tion of peaks D and E corresponds to the onset of the
transitions (Is)"1- (Ssr^SpPes, ed, 2P° (see Fig. la),
and the position of bump F corresponds to the onset of
transitions to the (3s)"2 *S states. The relative intensity
of the low-energy part of the spectrum amounts to 5%
of the intensity of the entire spectrum, in fair agree-
ment with the results of calculations6 in the shake-up
approximation (7.3%). The spectrum shown in Fig. 2
was obtained by observing radiative Auger transitions
in the free argon atom, whereas the first observations
of these transitions were made in atoms of Mg, Al, Si,
and S in solid compounds.26 It has been found that the
ratio of the intensity of the K-LL radiative Auger tran-
sition to that of the Ka line of the one-electron radia-
tive transition falls off as the atomic number increases
from 12 to 16, the average value of the intensity ratio
being 0.007. The spectrum of Auger electrons emitted
in the radiative Auger transition turns out to be similar
to the spectrum of electrons "shaken off" from the L
shell as a result of photoionization of the K shell.29 On
this basis it is assumed that the radiative Auger transi-
tion is a consequence of the shaking off of an outer
electron as a result of a one-electron radiative transi-
tion. According to this interpretation, the observed
spectrum should not depend on the way in which the K
vacancy was formed. A study was therefore undertak-
en21 to compare the spectra of the K-LL transitions for
the cases in which the K-shell vacancy was produced by
an electron and by a photon. The spectra were found to
be identical to within 0.4%. The probabilities for K-LL
and K- MM radiative Auger transitions calculated6 in the
shake-up approximation with self-consistent wave func-
tions are in fair agreement with experiment.

As we have seen, the radiative-Auger transition
probability can be calculated using the formulas of
second-order perturbation theory. However, calcula-
tions of this kind are generally rather awkward, where-
as the shake-up approximation yields relatively easy
estimates that are in satisfactory agreement with ex-
periment. Let us consider, for example, the radiative
Auger decay of the 2s2p state of a heliumlike ion. For
simplicity, we treat the electrons as distinguishable
and the wave functions as hydrogenic, and we introduce
an effective charge to take care of the average field.
Since the amplitude of the two-electron radiative tran-
sition is of the same form as that of the one-electron
radiative transition, the probability for the emission of
a photon of energy w6 in a two-electron transition is
(cf. Ref. 30)

r yi 1 "̂ \ ,i* 1 r T* f Q C\= 1"-~^r 2j 'Oi> I 'i< r> (3.6)
6

where Tr is the probability for the one-electron radia-
tive transition 2p- Is when the state of the second
electron is frozen, to is the energy of the photon which
would be emitted under this condition, It is the overlap
integral of the 2s state with the states into which the 2s
electron is "shaken" as a result of the one-electron ra-
diative transition, and Z/b calls for a summation over
the final states. For a shake-up into a state tj>n of the
discrete spectrum, the overlap integral is evaluated as

/ - l.(2\3'2V I 2
y"" 2 \ n } ^TT (3.7)

where N is the shake-up parameter introduced earlier
(see Sec. Ib). For shake-up ("shake-off") into a state
i}>k of the continuum we have

/,==-
V 1— exp( — 2.-I/A)

A' exp| — (2/t) arcc
-(4+ 2*') (3.8)

where k = -f2c/z* and z* » A2*. The effective charge
can be evaluated using the Slater rules31 or some more
detailed rules.32 Performing the summation in (3.6)
over all the bound final states of the Auger electron
(see Fig. Ib), we obtain the following transition proba-
bility:

r „ n=. in-ic~*\-2 f t Q\-ĵ  = u.yo-iu \<. ) . \o.y)
1 r

Analogously, for transitions into the continuum (see
Fig. la) we have

-i^=3.87-10~2(z*)"2. (3.10)1 r

The combined relative probability for radiative Auger
transitions for z* = 14 is equal to 0.004, in rather good
agreement with experiment (see Ref. 26).

As another example, let us consider the radiative
Auger decay of the autoionizing state 2p23P of the heli-
um atom. In light atoms, the autoionization probability
(where such is possible) is known to be significantly
higher than the probability of a radiative transition.33

Exceptions to this are states of double excitation, for
which autoionization is forbidden by selection rules.
The double excited 2p23P state of the helium atom is
just such a state.3* We take the wave function $0 of the
initial state in the form proposed by Wu35:

(D0 =-ff-r,r, exp [—r(r, (3.11)

where Qtr^rg) is the known58 angular part of the 2p23P
wave function, and j3= 1.68 is a variational parameter.
The final state

~ ̂ (ra) * (T (3.12)

where <p(r) is the wave function of the ground state of
He*, and $(r) is the wave function of the electron in the
excited state or in the continuum in the field of the He*
ion, whose effective charge for all such states we take
to be unity. The ratio of the width of the two-electron
radiative transition to the width of the one-electron
transition is then found to be 6.6%, of which 3.0% is due
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to the radiative Auger effect with shake-off into the con-
tinuum, and 3.6% with shake-up into the discrete spec-
trum.23

b) Two-electron-one-photon transition

A study36 of the decay of autoionizing states with two
inner-shell vacancies revealed transitions in which both
vacancies were filled and all the energy was carried off
by a single photon (see Fig. Ic). Such a transition can
be regarded as a particular case of a radiative Auger
transition for which the final bound state is one of the
vacancies. In the spectrum of photons emitted as a re-
sult of the radiative decay of states with two inner-shell
vacancies, the two-electron-one-photon transition is
detected by the presence of a bump on the high-energy
part, located at a photon energy approximately equal to
the sum of the energies of the one-electron radiative
transitions to the inner-shell vacancies. Figure 3
shows the spectra of photons emitted in the decay of
states having two inner-shell vacancies in atoms of Ni
and Fe. The lower part of the figure shows blowups of
the energy regions in which the bumps are observed ih
the high-energy parts of the spectra. It is seen that
this region contains peaks XI, X2, X3, and X4 at en-
ergies corresponding to the two-electron-one-photon
transitions. The peak XL is located at an energy that is
slightly higher than twice the energy of the Ka satellite
in Ni; the peak X3 corresponds to the same transition
in Fe. The energies of peaks X2 and #4 are slightly
higher than the sum of the energies of the K a and K/3
transitions in Ni and Fe, respectively. The probability
of the two-electron-one-photon transition turns out to
be smaller by a factor of -lO"4 than the probability of
the corresponding one-electron radiative transition.36

A two-electron-one-photon transition involving the fill-
ing of vacancies in the L shell of Cl and Ar atoms has
been observed in experiments.37 The state with two in-
ner-shell vacancies was produced by the hard collision
of Cl and Ar ions with Ar atoms at a projectile-ion en-
ergy of 48 keV. It was determined that the probability
for two-electron-one-photon decay is ~10"6 of the total
decay probability.

n

10 20 -3S,£keV iff

FIG. 3. High-energy part of the spectrum of Ka and KJ3 satel-
lites arising as a result of the radiative decay of states having
two Inner-shell vacancies formed during 58Nl-58Ni and 58Ni-Fe
collisions.

The use of collision experiments to study the decay of
states with inner-shell vacancies was motivated by the
relatively large cross section for ionization of the in-
ner shells, which can reach values of the order of the
geometric dimensions of these shells. For other meth-
ods of ionizing the inner shells— photoionization and
electron- and proton-impact ionization— the cross sec-
tion for the formation of two inner-shell vacancies is
much smaller. A discussion of the quasimolecular
mechanism for the formation of two inner-shell vacan-
cies and the energy dependence of the one-photon decay
can be found in the paper of Greenberg et al.3S (for Ni-
Ni collisions in the energy range from 17.6 to 91.5
MeV).

The two-electron-one-photon transition probability
has been evaluated in second-order perturbation theo-
ry8"10-39 and also by methods that do not make use of the
assumption that the interaction between electrons is
small. 23-40-42

The shake-up approximation permits an extremely
simple estimate of the transition probability for (Is)"2

- (2s)"1(2p)"1. From (3.6) we have

= ^ / » < 2 8 , Is) = (17.7. ; (3.13)

where I(2s, Is) is the overlap integral of the 2s and Is
states (3.7). This estimate is in rather good agreement
with the results [r/rp=(8.3-22)n] of second-order per-
turbation-theory calculations.9 A similar, but some-
what more complex, calculation scheme was employed
by Aberg et al.*° to evaluate the (ls)"2-(2s)"1(2p)"1 tran-
sition probability in the shake-up approximation with
Hartree-Fock wave functions. The discrepancy between
the calculated and experimental results can be attribu-
ted to the fact that the average-field approximation does
not adequately describe the interaction between elec-
trons located in the same shell. Nussbaumer41 has
proposed a method of incorporating the interelectron
correlations whereby the wave functions of the Initial
and final states— the solutions of Eqs. (3.1)— are sought
by a method involving the superposition of configura-
tions. Moiseev and Katriel42 proposed a different way of
of taking the interelectron correlations into account —
they introduced a factor (1 -Xcos0l>2) in the hydrogenic
wave functions, where X is a variational parameter and
01>2 is the angle between the radius vectors of the elec-
trons.

The use of single- electron wave functions leads to
rigid selection rules for the angular momentum and its
projection, but it has been shown9 that transitions in-
volving a change in the angular momentum of the shake-
down electron give a contribution to the amplitude that
is comparable to that from transitions without a change
in angular momentum. In other words, in the two-
electron-one-photon transition the two electrons par-
ticipate on equal footing, effectively doubling the num-
ber of final states. This explains why the relative
probability (3.13) is roughly half that calculated by
Safronova and Senashenko.9

We can thus formulate a general rule for applying the
average-field approximation in calculating shake-up ef-
fects when the shake-up and transition electrons are
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both in the same shell: Use the single-electron approx-
imation to estimate the probability for the allowed tran-
sitions (shake-ups) preserving the angular momentum
and its projection and then multiply by the number of
transitions which are allowed by the many-electron se-
lection rules.

c) Two-electron transitions involving absorption of a
photon. Photoionization with simultaneous excitation

Let us for simplicity consider the effects which occur
upon the absorption of a photon by the helium atom in
its ground state as the photon energy w increases.
When w£ 58 eV, the probability of exciting the first
autoionizing state begins to appear against the back-
ground of single ionization. At wS 65.4 eV one begins
to see ionization accompanied by the simultaneous ex-
citation of the He* ion into states with n= 2 and higher,
and at u^ 79 eV, double photoionization of the helium
atom begins.

The probabilities for these transitions are nonzero
only when the interaction between electrons is taken in-
to account. Photoionization with simultaneous excita-
tion has been studied in the helium atom by a number of
authors (see, for example, Refs. 43-47), with different
choices for the wave functions of the initial and final
states. Let us examine in some detail the paper by
Brown.45

The initial state $„—the solution of the first of Eqs.
(3.1)—is the wave function of the ground state of the
helium atom. Here, as in the study of radiative Auger-
type transitions, the average-field method is inadequate
and the interaction between electrons must be consid-
ered more exactly.48 For treating the photoionization
and simultaneous excitation of the helium atom, Brown45

therefore chose the following variational wave function
for the ground state:

r,)P,(cose,.,), (3.14)

where P^cosS^.,) are Legendre polynomials, 01>2 is the
angle between the directions of the vectors r and r2,
and the parameters of the function F,(rlt r2) are found
from a variational principle. On the other hand, the
wave function of the final state can be adequately rep-
resented in the framework of the effective-charge meth-
od, i.e., in the form of a symmetrized product of the
wave function of the bound state in the field of charge z
= 2 (the state of the He* ion) and the continuum wave
function in the field of charge 2 = 1 (in the field of the
He* ion). When functions of this kind are used to eval-
uate the amplitude (3.2) there is no overlap integral,
and in this approach one cannot single out a "shake-up"
electron. Nevertheless, this approximation is the
shake-up approximation (see Sec. Id), namely, the ap-
proximate treatment of the weak potential of the inter-
action with the electromagnetic field in the first order
of perturbation theory and the "exact" treatment of the
strong interaction between electrons (see Sec. 2).

d) Double photoionization

In evaluating the double photoionization of the helium
atom, Brown49 used a six-parameter Hylleraas wave

function for the ground state of the atom:

<!>„ -•-- O X ] ) ( — (Is) (1 -f £-!« — Ctt- -- C3S -rf ts- - C3U-), (3.15)

where s = r1+r2, t = ri-r2, and M = |r1-rz|; this wave
function gives a deeper energy minimum than the func-
tion in (3.14). The final states were taken to be the
symmetrized product of two Coulomb wave functions in
the field of a charge z = 2, i.e., it was assumed that the
interaction of the electrons in the continuum could be
ignored. The interaction between electrons in the con-
tinuum becomes important near the double-photoioniza-
tion threshold and can be taken into account by pertur-
bation theory.50

In complex atoms it is also necessary to incoporate
the interelectron correlations if the photoelectron and
shake-up electron are in the same shell.48 However, if
the photoelectron is ejected from an inner shell by a
hard enough photon, the one-electron shake-up approxi-
mation, as we mentioned earlier, works rather well.
The escape of the fast photoelectron is felt by an outer
electron as a sudden change in the screening of the nu-
cleus or, what is the same, as a change in the effective
nuclear charge. The situation is thus similar to the
shake-up of atomic electrons that accompanies nuclear
|3 decay. One can therefore estimate the shake-up
probability P for this case using the shake-up probabil-
ity P8 for the case of /3 decay.51 Considering that during
photoionization the effective charge changes by an
amount &Z, we have P=(A.Z)2PB, as was shown by
Carlson and Krause.52-53 Calculations with this formu-
la give results which are similar to those obtained by
direct evaluation of the overlap integrals for Hartree-
Fock wave functions of the shake-up electron. Since the
overlap integral falls off rather rapidly as the energy of
the shake-up electron increases, the energy spectrum
of the electrons shaken off from an atom is maximum at
zero energy; this result is in full accord with experi-
ment.29

The shake-up approximation with relativistic Har-
tree-Fock wave functions has been used to calculate the
double photoionization of noble-gas atoms.54

It becomes necessary to include in the calculations
the interelectron correlations in the final state when the
energy of the y photons is low, since the low speed of
the photoelectron in this case does not allow one to
neglect its interaction with the shake-up electron,55

The shake-up processes which accompany photoioni-
zation have a substantial effect on the photoelectron
spectra56 and must therefore be taken into account in
atomic shell-structure studies based on analysis of
these spectra. The shake-up mechanism plays an es-
sential role in the formation of multiple vacancies dur-
ing the reorganization of the atomic shells after photo-
ionization; a review of the corresponding experimental
results can be found in the paper by Krause.57 The lit-
erature cited43"57 also contains experimental data on
two-electron transitions accompanying the photoioniza-
tion of various atoms, discussions of these data, and
comparisons with theory.
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e) Spectral line broadening

Electrons scattered by radiating atoms interact dif-
ferently with the upper and lower states of the radiative
transition. Therefore, the atom and the projectile elec-
tron exchange energy during the emission of the photon,
thereby affecting the photon energy.58 In this case we
are dealing with a two-electron radiative transition,
and so the photon-emission probability per unit time is

the transition amplitude in the average-field approxi-
mation will be of the form

d, xa), (3.16)

where Fr is the emission probability for an isolated
atom, and Xb and Xa are the wave functions of the pro-
jectile electron before and after the emission of the
photon, i.e., the transition is of the typical form for
the shake-up approximation.

4. THREE-ELECTRON TRANSITIONS

In the case of the two-electron radiative transitions
the choice of the small potential is rather simple: The
interaction with the electromagnetic field is weak [an
exception (see Sec. la) is the emission or absorption of
soft quanta, as in the scattering of charged particles3],
and the interaction between the electrons is strong and
must be taken into account exactly. For three-electron
transitions, on the other hand, the separation of the
perturbation into weak and strong parts is determined
by the form of the final and initial states. As an illus-
tration, let us consider the post- collision interaction
(see Sec. 4a below). In this case the interaction of a
slow electron with electrons in an autoionizing state
must be treated exactly, since the low energy of the
electron makes perturbation theory inapplicable, while
the Auger-decay amplitude can be calculated by pertur-
bation theory. This is the approach that has been tak-
en18"18 in applying the shake-up approximation to this
effect. We face opposite situation in considering auto-
ionization in the field of a fast charged particle39 (see
Sec. 4b below), where the interaction of this fast parti-
cle with the electrons in the autoionizing state can be
treated by perturbation theory.

The transition amplitude (2.5) consists of two terms,
and, while the second of these was exactly zero in the
case of the radiative transition (see the beginning of
Sec. 3), for three- electron transitions this term is non-
zero. However, this second term is quite often small.
In fact, in the post-collision interaction, for example,
the strong potential W is the interaction of the slow
electron with the electrons in the autoionizing state,
while the second term — the matrix element between
bound states and the continuum — is small, since there
is little chance that a slow particle will cause one of
the electrons to go into the continuum with a high veloc-
ity and the other electron to go into a deeper bound
state. For the case of Auger decay in the field of a fast
particle the second term in (2.5) is zero, since the ma-
trix element is taken between different states of the
fast particle, and its coordinates do not appear in the
operator W. Thus, in applying the shake-up approxi-
mation to three -electron transitions, one must, gener-
ally speaking, make allowance for both terms in (2.5).
However, in cases where the second term is small,

r,), ,, r 2 ) ) (X t ( r 3 ) ,X 0 ( r 3 ) ) , (4.1)

where the overlap integral (Xt,Xa) determines the
shake-up probability of the third electron. This formu-
la also works fairly well for the shake-up of outer elec-
trons accompanying an Auger transition in an inner
shell of a complex atom.

For the case of three-electron Auger transitions (see
Sees. 4d, e below) in which all three electrons are in
nearby shells, the two terms in (2.5) are comparable,
since one cannot separate the weak and strong parts of
the potential. However, the transition amplitude can be
represented in the form of (4.1), since allowance for
the second term has the physical meaning that it is nec-
essary to take into account the different pairings of the
three electrons involved in the transition, and this can
be done in averaging the transition rate over the initial
states and summing over the final states. Here we
neglect the interference terms in the transition rate.

We also note that Eq. (4.1) assumes rigid selection
rules on the angular momentum and its projection for
the shake-up electron. But here, as in Sec. 3, these
restrictions stem from the use of the average-field ap-
proximation and do not occur in the three-electron so-
lution of Eqs. (2.6). Kishinevskii et al.13 therefore es-
timated the matrix elements which do not preserve the
angular momentum of the shake-up electron using per-
turbation theory and included them in the calculation,
even though the overlap integral in (4.1) was zero by
virtue of the different angular parts of the functions Xb

a) Post-collision interaction

The post-collision interaction was discovered by
Hicks et al.15 in a study of the reaction

e, + A -* A** + e, - -es, (4.2)

when the electron eg scattered by atom A has an inci-
dent energy C0 that is slightly higher than the excitation
energy of autoionizing state A**. In that case, in ex-
citing the autoionizing state the scattered electron loses
almost all its energy, and, if the lifetime of the auto-
ionizing state is less than or comparable to the charac-
teristic separation time, the Auger decay occurs in the
field of the slow electron. Here energy can be ex-
changed between the decaying atom and the scattered
electron, and the shape of the spectrum of the emitted
Auger electron ea depends on the initial energy c0 of the
scattered electron, being shifted toward higher ener-
gies as EO decreases. This means that the excitation of
the autoionizing state begins not at a value of c0 equal
to the excitation threshold of an isolated atom, but
rather at higher energies. In other words, the post-
collision interaction (following the excitation of the
autoionization state) causes the fast (Auger) electron to
be accelerated and the slow (scattered) electron to be
slowed. Experiment has shown60 that the increase in
the energy of the fast electron is equal to the decrease
in the energy of the slow electron. Figure 4 shows the
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FIG. 4. Inelastic scattering spectra for electrons on atomic
helium; the electron energies are close to the excitation
threshold of the (2s2) *S and (2s2p):iP states.

spectra60 for the inelastic scattering of electrons by the
helium atom for two final energies ES of the scattered
electron, plotted as a function of the initial energy e0 of
this electron (what is actually plotted is the current of
inelastically scattered electrons versus the inelastic
energy loss ea = EO - cs). The autoionizing states appear
in the spectrum as resonant line shapes and are indi-
cated by arrows in Fig. 4. Also shown here is the dis-
placement 6E of the excitation threshold from its posi-
tion in the isolated atom.

The post-collision-interaction effect is also ob-
served61 in the Auger decay of an atom with an inner-
shell vacancy produced by absorption of a photon whose
energy is slightly above the threshold for ionization of
the inner shell, since here the Auger decay occurs in
the presence of a slow photoelectron. Figure 5 shows
the spectrum of Auger electrons emitted at various
photon energies. It is seen that as the photon energy
approaches the inner-shell ionization threshold (67.5
eV), the threshold shifts toward higher energies and
becomes asymmetric. The dashed curves show the
peaks in the isolated atom.

Interestingly, the energy of the slow electron can be
decreased by the post-collision interaction to such an

roa

Energy, eV

FIG. 5. The N5-O2>3O2r3 'S0 Auger peak in xenon for various
photon energies.

FIG. 6. Cross sections for the excitation of the 43D, 43S, 53S,
and 63S states of the helium atom as functions of the initial
energy of the scattered electron.

extent that this electron can be captured into a bound
state by the positively charged residual ion. Such a
resonant population of the high-lying bound states was
discovered simultaneously by two groups of authors.62"65

The corresponding cross sections are shown in Fig. 6.
Experimental data and discussions can also be found in
Refs. 16, 66, and 67.

Several theoretical models have been proposed16"18'68

to explain this effect, in essence consisting of sudden-
approximation calculations of the three-electron transi-
tion probability for reaction (4.2).

Let us begin by considering the so-called "shake-
down" model,16'69"71 in which the three-electron transi-
tion amplitude is evaluated by formula (4.1), i.e.,

R = A l ( k t , k t ) , (4.3)

where A is the Auger transition amplitude of the iso-
lated atom, ks is the momentum of the scattered elec-
tron after excitation of the autoionizing state, kf is the
momentum of the scattered electron in the final state,
i/^ and ipkt are the corresponding wave functions of the
scattered electron, and

/(ks , k,)= (4.4)

is the overlap integral of the wave functions of electron
es before and after the Auger transition. In particular,
</IM can be taken as a bound-state wave function in the
field of ion A*. In evaluating this integral it must be
kept in mind that the energy £a in the first of Eqs. (2.6)
contains an imaginary part; the energy of electron ea

after excitation of the autoionizing state is then

(4.5)

where y is the width of the autoionizing state in the iso-
lated atom. This damping makes it possible to evaluate
the overlap integral.

Another theoretical model, based on a semiclassical
approach,75 has been proposed by Niehaus and co-work-
ers.68'72"74 According to this model, the observable
spectrum of the Auger electrons differs from that of the
isolated atom because the Auger transition occurs at
different distances between the atom and slow electron,
the motion of the latter being described classically,
i.e., a definite trajectory is assumed. It has been
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shown by Van de Water and Heideman76 that this model
reduces to the shake-up approximation if the final state
of the scattered electron is described semiclassically.

A more systematic application of the adiabatic ap-
proximation to the post-collision interaction, in which
the scattered electron is described^quantum mechanical-
ly, has been set forth by Ostrovskii.17 In the adiabatic
approximation the solution of Eqs. (2.6) is of the form

«>„. *.. 6 (TI, rt; R) X0, b (H), (4.6)

where #Bi6 are the known wave functions for the two-
electron Auger transition #€ - $4 in the quasimolecule
formed for a fixed position R of the slow electron, and
Xa<b are the unknown wave functions of the initial and
final states of the slow electron, which are found by
solving a system of equations analogous to (3.4). As a
result, the two-electron Auger transition rate is depen-
dent on R, i.e., rasr,(R), and the amplitude for a
three-electron transition which leaves the atom ionized
and the scattered electron in state Xb is of the form

flM= jd'RVO7(5)(XS(R), X,(R)). (4.7)

Finally, one can solve system (2.6) using perturbation
theory, taking into account the diagrams containing the
average field in all orders, as was done by Amus'ya et
aZ.18

Since calculation of the quasimolecular states is a
separate and rather complicated computational prob-
lem,77'78 it was assumed by Ostrovskii17 that the pres-
ence of the slow electron affects only the energy of the
Auger electron, just as in the semiclassical model, the
width of the autoionizing state in (4.7) was assumed to be
independent of R and equal to the width in the isolated
atom.

The above models agree fairly well with experiment,
but, as we mentioned earlier, the single-electron sud-
den approximation cannot account for the transfer of an-
gular momentum in a shake-up process, whereas ex-
perimentally64"67'77 one observes transitions which in-
volve a change in the angular momentum of the slow
(shake-up) electron. Furthermore, it happens that the
displacement of the excitation threshold (see Fig. 4) is
not described by 6E~v~l for all the autoionizing states,
as is implied by the semiclassical model.61 The devia-
tions can evidently be explained using a quasimolecular
approach (4.7). Qualitative agreement can be achieved79

by incorporating the deviations of the autoionizing terms
from Coulomb terms and taking into account the R de-
pendence of the width of the autoionizing state, using
the mixing of the autoionizing states of the isolated
atom by the field of the slow electron,59-80-81 which is
analogous to the Stark effect In addition, the quasi-
bound states of the He" ion lying near the autoionizing
states of the helium atom apparently contribute to the
exchange of angular momentum.64'65'67

b) Auger decay stimulated by collision with a fast-
electron

Let us consider for the sake of definiteness the scat-
tering of an electron by a helium atom in the autoioniz-

ing state 2p23P, the Auger decay of which is forbidden
by selection rules.34 The presence of the scattering
electron lifts this restriction on Auger decay (cf. Sec.
3a), and one can characterize the process by a cross
section. The transition is accompanied by a change of
state of three electrons — the projectile electron and two
atomic electrons; one of the atomic electrons fills the
Is state, the other goes either to a state of the discrete
spectrum or to a continuum state in the field of the He*
ion, and the projectile electron is scattered. The per-
turbation responsible for the transition is

where r{ are the coordinates of the atomic electrons
and R the coordinates of the projectile electron. We
have retained in (4.8) only the dipole terms, as is the
usual practice in considering the scattering of fast elec-
trons by atoms.4 To apply the shake-up approximation,
we can separate the perturbation (4.8) into strong W
= rll and weak V= R(r1 +T2)R~3 parts. However, let us
first treat the problem by perturbation theory. To get
a nonzero three- electron transition amplitude one must
go at least to the second order of perturbation theory in
the potential U. Then, of the products of matrix ele-
ments UU, only VW and WV will appear in the states of
the three particles. The transition amplitude is thus

(4.9)

where

"- A e,,-6,+(6 ' ^ 1,-1,-T-* ' X"'"'
i

where (/)„, if,, ^ and ea, e3, tt are the wave functions and
energies of the atom in the initial, intermediate (s),
and final states, respectively, and 4PI|t(R) = exp(tp(|tR)
are the states of the projectile electron. Integrating
over the angles of the scattered electron, we obtain the
cross section of the transition as69

8« /lnts-£.}.
"' \ 9mm '

(4.11)

where q is the momentum transfer in the collision and,
as usual,4 ?„,,„= \tt -ca \v~l, while q^-r'J is found
from the conditions for applicability of the dipole ex-
pansion (4.8), which is valid at distances down to around
the atomic dimensions £r0. Amplitude (4.9) formally
coincides with the amplitude for the two-electron radia-
tive Auger transition (see Sec. 3a), so we shall esti-
mate the amplitude in the shake-up approximation rath-
er than using the somewhat complicated formula (4.10);
in other words, the projectile electron causes a transi-
tion of the atom from state 2/>2 to state 2/>ls, and the
electron remaining in the 2p state is shaken up to either
a bound state or continuum state. This approach en-
ables one to compare the cross section for the three-
electron transition with that of the two-electron transi-
tion in which the projectile electron is scattered and the
atom goes from 2p2 to 2pls; Landau and Lifshitz4 give
the latter cross section as

- 8"8" fin "mal }
»2 \ 9mln '

'' d> l92p)|2 (4.12)

where q'min= |E»- £„ \v~l, with e£ being the energy of the
2pls state.
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In the shake-up approximation

B (L'p , cl, ] > ) ( . \ , , , X,,p). (4.13)

The ratio of the cross sections for the three-electron
(4.11) and two-electron (4.12) transitions, after cancel-
lation of the slowly varying logarithmic functions, will
be of the form

-£ «!(Xt . X2Pm (4.14)

i.e., will be simply the overlap integral of the 2p state
with the final state of the shake-up electron. Conse-
quently, in a certain percentage of cases, scattering
involving the transition 2p2 — 2pls will be accompanied
by the transition 2p2-(« or e)pls.

c) Excitation of atoms by fast electrons

When a fast electron is scattered by a many-electron
atom, the possible effects include double ionization and
single ionization with simultaneous excitation. Here,
as in Sec. 4b, the interaction between the projectile
and atomic electrons is considered small and only the
dipole terms in the expansion of the potential (4.8) are
taken into account. The problem then becomes analo-
gous to photoionization. If it is considered that the pro-
jectile electron is adequately described by plane waves,
then the wave functions of the atomic electrons in the
initial and final states can be chosen in the form de-
scribed in Sees. 3c,d. The transition amplitude

!>„ (r,, (4.15)

in this case is proportional to the photoionization am-
plitude and has the typical form for the shake-up ap-
proximation.

d) Three-electron Auger transitions. The double
Auger effect

The term "three-electron Auger transition" is ap-
plied to transitions involving three bound electrons
which result in the filling of an inner-shell vacancy and
the transition of an electron to the continuum, with the
remaining electron being either "shaken off" into a con-
tinuum state (the double Auger effect; Fig. 7a), "shaken
up" to a bound excited state (Fig. 7b), or else, if there
is another inner-shell vacancy, "shaken down" into it
(the half Auger effect; Fig. 7c). This last effect was
first observed experimentally by Afrosimov et al. ,12

who called it a "three-electron Auger transition," a
name which unfortunately does not distinguish it from
the double Auger effect, for example. To describe the
many-electron Auger transitions it is convenient to use

a fraction, with the number of Auger electrons emitted
in the numerator and the number of vacancies filled in
the denominator. Following this principle, Kishinevskii
and the present authors, in giving the theory for the ef-
fect illustrated in Fig. 7c, called it the "half Auger ef-
fect."13

If one of the electrons is in a highly excited orbital
(i.e., is slow), then the three-electron Auger transi-
tions would be more correctly treated in the shake-up
approximation, as in the case of the post-collision in-
teraction, while second-order perturbation theory
would not give as good results on account of the small
electron energy. As a rule, however, the three elec-
trons involved in the transition are all in the same
shell, and it is more correct to calculate the transition
amplitude using second-order perturbation theory.14

Such calculations are rather complex and can be done
only numerically, whereas the shake-up-approximation
calculation can easily be done analytically and is ex-
tremely easy to interpret. For this reason, the first
calculations for the three-electron Auger effect were
done in the shake-up approximation (for both the doub-
le82'84 and half13 Auger effects).

The double Auger effect was first detected82 in an
analysis of the charge state of neon ions following pho-
toionization of the K shell by y rays at a photon energy
too low to cause two vacancies simultaneously in the K
and L shells. At such energies, Ne3* ions can only re-
sult from the double Auger effect. More careful mea-
surements have since been made83 by analysis of the en-
ergy spectrum of the Auger electrons emitted in the de-
cay of vacancies in the L shell of argon. In the double
Auger effect the energy of the Auger transition is di-
vided between the two emitted electrons (Fig. 8). The
authors of these papers offered a shake-up mechanism
to explain the existence of the double Auger effect, but
calculations of the overlap integral with Hartree-Fock
wave functions for the shake-up electrons gave a value
for the probability (0.6%) that differed by more than an
order of magnitude from the experimental value (10%).
This led those authors to conclude that the interelectron
correlations must be taken into account. Here it is nec-
essary to take the correlations into account not only in
the initial state, in which all three electrons are in
nearby shells, but also in the final state, since in this

FIG. 7. Three-electron Auger transition, a), b) Double
Auger effect; c) half Auger effect.

FIG. 8. Spectrum of Auger electrons emitted in the decay of
L2i3 vacancies in argon. The hatched part of the spectrum is
due to Auger electrons emitted as a result of the double Auger
effect. The threshold energy for the onset of the double Auger
effect is 165 eV.
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case there are two slow electrons in the continuum. In
particular, it is necessary to take into account the
terms in perturbation theory that describe the double
Auger effect as the knocking out of another electron by
the outgoing Auger electron. One can nevertheless es-
timate the probability of the double Auger effect using
single-electron wave functions. If it is considered that
the electrons participating in the double Auger transi-
tion have comparable velocities in both the initial and
final states, the operative angular-momentum selection
rules are not the monopole rules but the less stringent
three-electron selection rules. This circumstance
makes it possible for the shake-up electron to exchange
angular momentum during the shake-up process. Since
the three electrons all participate in the transition on
equal footing, it is to be supposed that shake-up involv-
ing a change in angular momentum is about as probable
as shake-up without a change in angular momentum.
This leads to a substantial increase in the number of
final states of the shake-up electron, and in order to
obtain a correct estimate of the probability of the doub-
le Auger effect, one must multiply the probability in the
single-electron approximation by the number of final
states. This results in a value for the transition proba-
bility that agrees in order of magnitude with the value
found in experiment.

The shake-up accompanying Auger transitions, as in
the case of radiative transitions, has an important ef-
fect on the relative abundances of the ions obtained as
a result of the reorganization of the electron shells fol-
lowing the formation of inner-shell vacancies and also
on the energy spectrum of the electrons emitted in the
process. Therefore, shake-up processes must be tak-
en into account in calculating the cascades of transi-
tions which arise in the decay of inner-shell vacancies
in many-electron atoms. Table I, which was taken
from Ref. 84, gives the relative probabilities (in %) for
the shake-off of electrons from the various shells of
krypton as a result of photoionization and Auger transi-
tions, as calculated in the sudden approximation with
self-consistent wave functions. The probability for
shake-off of an electron from state #,_„, into all the oth-
er states was evaluated by the formula

where N is the number of shake-off electrons, Pf is the
probability of a transition to levels which are forbidden
by the Pauli principle, and #,_„, is the wave function de-

TABLE I. Electron shake-off probabilities due to photoioniza-
tion and Auger processes In krypton.

Is
23
2p
3s
3p
3d
4s
4p

Totdi

Fhotoionfeation

Is 2s

0,004
0.053
0.27
0.25
1.22
3.66
2.23

13.90

21,6

0.00(1
0.003
0.026
0.085
0.523
3.39
1.85

12.18

18.1

2p

0.000
U.U07
0.034
0.100
0.59
3.48
1.98

12.37

18.6

Auger transition

18 - 2p2p

0.0(13
0.019
0.016
0.042
0.22
2,88
1.46
7.23

11.9

2p - 3p3p

O.uti2
0.032
0.019
0.05
0.16
0.95
5.09

6.3

2p - 3d3d

0.008
0.03
o;oia
0.067
0.112
1.00
5.36

8.59

scribing the state of the shake-off electron that has the
same quantum numbers n and I as the initial state, but
after the photoionization or Auger transition. The data
in Table I should be considered correct if the initial
states of the shake-off electron (column 1) lie above the
states of the electrons involved in the photoionization or
Auger transition. If the shake-up occurs from the same
shell one must, as we mentioned earlier, allow for the
exchange of angular momentum. The calculated charge
spectra of krypton ions formed as a result of the cas-
cade decay of an inner-shell vacancy are in fair agree-
ment with experiment.

e) Half Auger effect

The three-electron Auger decay of states having two
inner-shell vacancies, wherein the vacancies are filled
by two outer electrons and all the excess energy is car-
ried off by the third electron, was discovered12'85"87 in
studies of the high-energy part of the spectrum of elec-
trons emitted during atomic collisions. The existence
of the half Auger effect is detected by the appearance of
a bump in the high-energy part of the Auger-electron
spectrum at an energy roughly twice that of the Auger
electron emitted in the ordinary Auger decay of a single
inner shell vacancy. Figure 9 shows the spectrum of
Auger electrons emitted in the decay of two K vacancies
formed in nitrogen during N*-N2 collisions. The in-
tense peak at an electron energy of 345 eV corresponds
to the ordinary K-LL Auger transitions. The peak at
765 eV corresponds to KK-LLL three-electron Auger
transitions. A review of the experimental data on the
half Auger effect has been given by Shergin and Gor-
deev.87 The transition probabilities have been calcu-
lated in second-order perturbation theory by Ivanov et
al.1* Such calculations require some rather awkward
numerical computations. Let us therefore consider how
one might estimate the probability for the half Auger ef-
fect in the shake-up approximation.13

Suppose we have a three-electron ion whose K shell is
empty and whose L shell contains the three electrons,
with an initial configuration of 2s22p and a final config-
uration of lszep. According to (3.7), the overlap inte-
gral of the 2s and Is states is given by

0.012 (4.17)

N*"-Nz.S<7k«V

\m-Ui

o wo aoo e,ev

FIG. 9. Spectrum of Auger electrons emitted In the decay of
two K vacancies In the nitrogen atom.
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One can immediately arrive at a very simple estimate
by considering the fact that according to (4.1) the ratio
of the three-electron transition frequency T to the two-
electron Auger-transition frequency Ta is described by
the relation

r
r (4.18)

Then for z = 6 we have P= 3.3-10"4 and for z = 7 we have
P= 2.4-10"4, in rather good agreement with the results
of Afrosimov et al.12

To obtain more exact estimates, we must perform the
averaging over the initial and summation over the final
states of the electrons involved in the three-electron
Auger transition. Since the electron shells of all the
atoms for which the three-electron transition probabil-
ities have been measured87 contain only s and p elec-
trons, we introduce the following notation for the rates
of the two-electron Auger transitions: M>SS for the tran-
sition involving two s electrons, wav for that involving s
and p electrons, and wn for that involving two p elec-
trons. Because of the large number of Auger transi-
tions, one can use the average values of the two-elec-
tron Auger transition rates and of the overlap integrals.
Furthermore, in the three-electron transition all the
electrons may participate on an equal footing, and only
the spin selection rules need be considered. The prob-
ability ratio for the half Auger effect compared to the
two-electron Auger transition is therefore of the form13

(4.19)

where N is the number of initial states; n f , m{, and k(

are the numbers of possible Auger transitions accom-
panied by the shake-up of a third electron which involve
two s electrons, an s and a p electron, or two p elec-
trons, respectively; Nit M(, and/f{ are the corre-
sponding numbers for all the possible two-electron
Auger transitions from the initial state i; I is the av-
erage value of the overlap integral, which for KK-LLL
transitions is taken from (3.7), while the overlap inte-
grals of the 2s and 3s and of the 2p and 3p states are
given by

I - (2s, 3 s ) = 0,78 ( )

/2(2p, 3p)=l.l -Y.
(4.20)

In this case there are many possibilities for transitions
to vacancies in the L shell or into ss, sp, and pp holes;
simply taking the average value for Az according to the

TABLE II. Relative probabilities of three-electron Auger
transitions.

Atom with
two inner
vacancies

C
N
Si

Transition

KK — LLL
KK-LLL
LL— MMM

Experi-
ment
(X10*)

0 <>

3.1
ll . 5

Theory
(X10«)

2 5
2.8
2.6

Atom with
two inner
vacancies

g
Cl
Ar

Transition

LL — MMM
LL — MMM
LL— M M M

Experi-
ment
(X104)

5.4
6.2
0.7

Theory
(X10")

5.9
6.5
9.8

si Cl Ap

FIG. 10. Dependence of the relative probability for three-
electron transitions on the number n of electrons in the outer
shells of neutral atoms. The points are experimental values;
the curve, theoretical.

rules of Burns,32 we find that

75(25, 3s)«72(2p, 3p) » 9.10~2z-2. (4.21)

The results of the calculations are given in Table II.
Figure 10 shows how the relative probability of the
three-electron transition depends on the number n of
electrons in the outer shells of neutral atoms. It is
seen that the dependence is linear. Such a dependence
is easily explained by the following qualitative argu-
ments: Because essentially all n electrons can partici-
pate in the three-electron transition, the probability for
such a transition goes as n(n - l)(n - 2), while the prob-
ability for the two-electron Auger transition goes as
n(n - 1); their ratio then goes as (n - 2), as was ob-
served experimentally.12

Thus the calculated results agree with experiment.12

Furthermore, the coefficient 0 in formula (4.19) turns
out to depend very weakly on the probability ratios for
the two-electron Auger transitions, being given for all
configurations of three electrons as /3=*3/4, for four
electrons as P—l, for five electrons as /3=*1.6, and for
six electrons as 3 — 2.

5. CONCLUSION

In this short review of the various shake-up effects
accompanying transitions in the electron shells we have
seen that these effects are rather widespread and are,
in fact, manifestations of the reaction of a many-elec-
tron system to a sudden change in the state of a part of
the system. The fact that complex relaxation processes
can be reduced to a physically clear and easily calcu-
lated shake-up effect is a great convenience for theo-
rists and also for experimentalists who wish to inter-
pret and estimate effects of this type.

The shake-up approximation for atomic transitions
provides a unified method of examining three-particle
transitions whose amplitudes are nonzero in perturba-
tion theory only in orders higher than the first. In
cases where one can separate the perturbation respon-
sible for the transition into weak and strong parts, the
shake-up approximation has a wider domain of applica-
bility than perturbation theory, since the weak part is
treated by perturbation theory while the strong part is
taken into account exactly with the aid of the different
wave functions for the initial and final states. In cases
where the potentials causing the three-particle tr'ansi-
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tion can be considered weak, the shake-up-approxima-
tion results go over to the perturbation-theory results.

The method employing a change in the average field
permits a substantial simplification of the calculations
for transitions and can be used to estimate the proba-
bilities of various effects.

We have examined three-particle transitions whose
amplitudes are nonzero in the second-order of pertur-
bation theory in the potential causing the transition. In
this case, one can, as a rule, carry out direct calcu-
lations of the transition amplitudes by perturbation the-
ory, and the shake-up approximation is an alternative
method. However, for treating transitions involving
four or more particles a direct perturbation-theory
solution would be prohibitively complex. For example,
transitions to three inner-shell vacancies are possible
(three-electron-one-photon or four-electron Auger
transitions), in which the three inner-shell vacancies
are filled by three outer electrons and all the excess
energy is carried off by a single photon or electron.
More than double ionization by a photon or by an elec-
tron is also possible. In the cases just mentioned, the
transition amplitude will be nonzero only in the third
and higher orders in perturbation theory. Here the
shake-up approximation is the only practical way of
calculating these effects.
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