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Expressions are derived for the scattering cross sections and the macroscopic properties of gases and plasmas
in a hard-sphere model in which the first two terms are retained in the expansion in the small parameter of the
theory. These expressions are analyzed and compared with the results of the Maxwell model and also with
numerical calculations for model interaction potentials.

PACS numbers: 52.20. - j, 52.90. + z, 51.10. + y

1. The hard-sphere model is a common one in prob-
lems involving the scattering of atomic particles (see
Refs. 1-4, for example). With simple expressions for
the collision cross sections, this model furnishes ana-
lytic expressions for macroscopic properties, in par-
ticular, transport coefficients. The value of the hard-
sphere model goes deeper than its simplicity: It also
furnishes numerical values of macroscopic properties.
Its popularity is thus not surprising.

Figure 1 shows the interaction potential for classical
particles according to the hard-sphere model, along
with the real interaction potential for atoms. If the
particular macroscopic property of interest is deter-
mined by the repulsive region of the potential, it is
reasonable to replace the real interaction potential by
a model potential and adopt the hard-sphere model.
The success of this approximation improves as the rate
of change of the potential along the coordinate in-
creases; i.e., for a good approximation, the following
parameter must be small:

«1, (1)

where U is the interaction potential and R is the dis-
tance between the particles. The hard-sphere model
obviously corresponds to the zeroth approximation in
the expansion in this small parameter.

When we replace the real potential by the hard-sphere
model potential, there is some uncertainty regarding
the radius of the hard sphere. This uncertainty can be
eliminated by finding the next term in the expresion of
the given property in the small parameter (1). Taking
into account the first two terms in the expansion in pa-
rameter (1) brings us back to the real potential in the
repulsive region. The expressions for the macroscopic
properties turn out to be the same as in the hard-sphere
model, but the effective radius of the hard sphere must
be found. This modified hard-sphere model thus pre-

serves the simplicity of the hard-sphere model and
makes it possible to take into account the real, rapidly
varying atomic interaction potential. It is this modified
model which we will be discussing below.

How accurate is the hard-sphere model in real situa-
tions? Table I lists values of the parameter

» / n \n(«o)

for the interaction of two inert-gas atoms at that dis-
tance between the nuclei where the interaction potential
U(R0) is 0.1 eV. We see that the conditions for the ap-
plicability of the hard-sphere model (£ = !/««!) are in
fact satisfied quite well in the repulsive region.

2. In deriving expressions for the collision cross
sections according to the hard-sphere model we will
begin with the collision of classical particles with a
steep repulsive interaction potential. The nature of the
scattering of the particles in this case is illustrated in
Fig. 2, from which we find the differential cross section
for the scattering of the particles in the center-of-mass
system to be

- d cos 9. (2)

Here we have used 8 = v - 2X and P = R0 sinX. The differ-
ential cross section is seen to be independent of the
scattering angle. Expression (2) can be used to deter-
mine integral scattering cross sections. In particular,
the transport or diffusion scattering cross section is

a*= f (I — cos6) da = IT/?;. (3)
J

The scattering cross section which appears in the ex-
pression for the thermal conductivity and the viscosity
of a gas is

o<»= f (1 — cos" 9) da = yit.fi;;. (4)

The integral collision cross sections do not depend on

TABLE I. Values of the parameter* n.

FIG. 1. Interaction potential in the hard-sphere model (solid
line) and the actual Interaction potential of atoms (dashed
curve).

Interacting
atoms

Hei
Ne~
Ar
Kr
Xe

He

7.6

Ne

8.1
7.0

Ar

8.8
8.3
7.5

Kr

8.2
9.4
9.0
7.2

Xe

7.6
8.8
7.7
9.1
9.6

*The parameters of the potential for the
repulsive interaction of the atoms are
taken from the review by Leonas.6
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FIG. 2. Scattering of classical particles in the hard-sphere
model. r0—Radius of the hard sphere; p—impact parameter;
0—scattering angle.

the velocity of the colliding particles. The hard-sphere
model thus has the distinguishing feature that the cor-
responding differential scattering cross section depends
on neither the scattering angle nor the velocity of the
particles, while the integral scattering cross sections
do not depend on the velocity.

These properties are not restricted to the case of the
scattering of particles in classical motion. Let us ex-
amine the scattering of a slow electron by an atom or
molecule. The amplitude for the scattering of a slow
electron is6

/ (6) = -L, (5)

where L is the scattering length for the scattering of the
electron by an atomic particle. We then find the dif-
ferential cross section for the scattering of the electron
by the atom or molecule to be

dcr = 2n | / (8) |" d cos 0 = 2nL- d cos 6. (6)

We see that the differential cross section for the scat-
tering of a slow electron by an atom or molecule de-
pends on neither the scattering angle nor the velocity
of the electron, and the integral cross sections are in-
dependent of this velocity. The scattering of a slow
electron by an atom or molecule thus exhibits the prop-
erties of the hard-sphere model.

3. Let us examine some specific physical problems
in which the hard-sphere model proves convenient. One
type of problem is that involving the calculation of trans-
port coefficients in a gas. The transport coefficients in
gases and weakly ionized plasmas are expressed in
terms of the cross sections for collisions of the atomic
particles. We consider the case in which these cross
sections are determined by a rapidly varying repulsive
potential, which we approximate by1'

V (K) = Ae-"*. (7)

This is the correct behavior, for example, when the in-
teraction is determined by the overlap of electron shells

approximation, we might note, holds for an arbitrary
potential which varies monotonically over some distance
interval. Specifically, we have

V (R) = U (Ra) exp I-o (fl - *„)],

where a =—dlnJ7/dfi l^o, and this approximation holds for
Afi=|fl-fi0|<|d2lntA/dfl2|so]-1/2. The potential U (R)
= BR~n, for example, can be approximated by (7) in the
interval \R -R<t\<R0/-</n. We see that in this distance inter-
val the condition |ln (U(R)/U(R0))\ <Jn holds; i.e., if the
potential varies rapidly, there may be an important change
in the potential itself in this interval.

of the interacting particles (an exchange interaction).
Clearly, the parameters of the potential, A and a, are
of the order of the corresponding atomic quantities. If
we are interested in, say, the collision of particles at
thermal energies, the scattering cross section is there-
fore determined by the characteristic distances between
the particles, R0, which are determined in turn by

~6. (8)

Since c«A, we have atR0»l', in other words, the con-
ditions for the applicability of the hard-sphere model,
(1), are satisfied. Relation (8) determines the radius of
the hard sphere, which may be used in the expressions
for the cross sections, (3) and (4), for example.

If the macroscopic properties of the gas in which we
are interested are determined by the repulsive part of
an atomic interaction potential,2' we can therefore use
the hard-sphere model to calculate the scattering
cross sections. Since we have a small parameter to
work with, we would naturally like to write the next
term in the expansion for the scattering cross section in
(3) and (4), thereby obtaining a more definite expres-
sion for the radius of the hard sphere. Let us deter-
mine ra, the radius of the hard sphere in the zeroth ap-
proximation, from

In calculating the corresponding integral cross section
(the diffusion cross section, for example), we obvious-
ly find

cr* = ji (rt> + -^-)" = "#5, (9a)

in the next approximation. Here a is a numerical co-
efficient of the order of unity, and (ar0)~l is the small
parameter of the expansion. According to (7) we thus
have

)-£/(r0)e- (9b)

Expression (9) is thus convenient for determining the
integral cross section (in this case, the diffusion cross
section). In the Appendix we calculate the cross sec-
tions a*(e) and (r'2)(s) for a rapidly varying potential
and average them over a Maxwell distribution.

The form in which the cross section is represented
does not depend on the shape of the potential in this
case, as long as the potential varies rapidly. To
demonstrate this point, we approximate the potential
by U(R) = BR~" instead of (7). A rapidly varying poten-
tial corresponds to the condition n» 1; i.e., the small
parameter of the theory in this case is 1/n. We can
then replace (9a) by

so that

£/(«„) = £7( r 0 ) ( l+- i - )"" = Be-.

We have thus ended up with expression (9b) again.

Table II gives expressions for certain kinetic trans-
2) Actually, the applicability condition here is e «D , where D

is the depth of the well in the interaction potential.
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TABLE Q. Expressions for the kinetic transport coefficients
in the hard-sphere model.

Coefficient

1 Diffu 'on oef
ficient of parti-
cles in a gas*

2. Thennal conduc-
tivity of a gas*

3. Viscosity*

4. Drift velocity of
an election in a
gas in a static
electric field**

5. Transverse-dif-
fusion coeffi-
cient of elec-
trons in a gas in
a static electric
field**

6. Energy lost by an
electron per unit
time due to elas-
tic scattering by
gas particles**

Expression from Refs. 1-4, 7

3/Sr
8-V0 *y 2ji

00

a * = \ e~***o* (x) d*,

0

a*= J (1 — cos 6) da

25/nT1

ao

0

ot>)= J (1— co«*B)do

11 24 oW
tE / I d l"'\\

3mJV \p* du \a* 1 /

BJ.=— (-V>d/v \ o~e /

/ ds \ m'
( "iTT ) == ~M ^ ^"*CT*'' ' el

Expression for the hard-
sphere model1 -*"

g J/^_.
o1 = n/7j

25/5?

"~ 32 /So, '

'1= 5 2to,M

2eE / 1 \ 1 .
3mJV \ o / 0* '
o* = 4n/i1

l

L is the scattering
length for the scatter-
ing of an electron by a
gas particle . .

-1- 3JVo*

/ At\

* ' el
m tj IQ*.A\

ixptession for the
cross section in the
modified hard-
sphere model1"10

'
aMaU^) = 22T
.

..-|l
where

at = °,("t). ',
3 „»

2\T/
-ii/iS***'

4 r m
°l = ".("«).

<»'> M
"«=~M"' °"

_____ ,„
| / *^"e

4 r m

a* — a / - )e

D — '"^ P
M

* (p1) ' o

151/
r2n?;***)

16 V ~

*Here T is the gas temperature,N is the number density of
the gas particles, M is the mass of the gas particle, M is the
reduced mass of the colliding particle and the gas particle,
andti is the relative collision velocity.

**Here e is the electron charge, E is the electric field, m la
the electron mass, AT is the number density of the gas
particles,v is the electron velocity, o£ is the diffusion cross
section for the scattering of an electron by an atomic
particle, M is the mass of the gas particle, and the angle
brackets denote an average over the electron velocity.

***Heret)j5 is the value of the velocity in the argument of the
cross section for a Maxwellian distribution of electrons with
a temperature Te.

port coefficients according to the hard-sphere model.
The modified hard-sphere model referred to in this
table corresponds to retention of the next term in the
expansion. The argument in the collision cross sec-
tion is determined by both the dependence of the scat-
tering cross section on the energy or velocity of the
collision and the shape of the particle energy distribu-
tion. For atoms and molecules, this would be a Max-
wellian distribution, while for the scattering of slow
electrons by atoms it would depend on the particular
way in which the electrons reach equilibrium. Table
II shows some specific values of the argument in the
cross section for a Maxwellian electron distribution.

Equations (9) describe the collision cross section for
heavy atomic particles. It follows from these equations
that, with an accuracy corresponding to the first two
terms in the expansion in the small parameter, the par-

tide scattering cross section in the modified hard-
sphere model, for a rapidly varying interaction poten-
tial, is

g (c) — a (c ) ( 1 I 2 In "" ] (10)

This cross section was used in taking the average over
the Maxwellian distribution of the particles in Table II
(see Appendix I). For the scattering of slow electrons
by atoms or molecules, the diffusion cross section is
(see Ref. 7, for example)

(11)

where L is the scattering length for scattering by the
atom or molecule, v is the electron velocity, ft is the
polarizability of the atom or molecule, and we are
using atomic units, with n = me = cz = 1. The expansion
of the cross section for low electron energies is thus
a(v) = <T0 + Av, where 00 i

s the cross section for scat-
tering at a zero collision velocity, and A = d<7/dw|r.„.
This form of the cross section was used in taking the
averages in Table IL

The convenience of the modified hard-sphere model
can be seen in Table II. Taking into account the fol-
lowing term in the expansion in the small parameter of
the theory does not change the expressions for the
macroscopic properties according to the hard-sphere
model, but it does refine the radius of the hard sphere,
when this parameter is determined by the collision of
heavy atomic particles, or it tells us the particular
collision velocities for which we should take the cross
sections in the expressions for the parameters deter-
mined by the collisions of slow electrons with atoms.

Figure 3 compares the thermal conductivities cal-
culated for helium from the asymptotic expression in
Table II, on the one hand, with experimental values, on
the other. In the case under consideration here, the
thermal energies of the helium atoms are considerably
larger than the depth of the well in the potential for the
interaction of two atoms. The thermal conductivity is
thus determined by the repulsive part of the potential.

V'3 W/(cm • Kl

FIG. 3. Thermal conductivity of helium. Dashed curve—
experimental11'12; solid curve—calculated from the formula
in Table n. The use of the Interaction potential in the form
in (7), with the parameters A =196 eV and a =4.21 A from Ref.
5, leads to the following analytic expression for the thermal
conductivity in this case: H =7.37/5V(14.82 -In T)2, where the
helium temperature T is in kelvins, and the thermal conduct-
ivity is in units of 10"3 W/(cm K).
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TABLE m.

mIM

A

c

<1

»-«(5r
i-i2°/l

0.1

0.400

3.75

0.2

0.572

2.70

0.5

0.701

1.84

0.8

0.777

1.47

1.0

0.811

1.34

1.5

0.864

1.17

2.0

0.893

1.09

3.0

0.925

1,02

4.0

0.943

0.977

>1

1.000

0,867

Since the interaction potential is described by a simple
expression, we can derive a simple analytic expres-
sion for the thermal conductivity.

4. Table III shows another example of this type, in
this case for the transport coefficients of ions in a
static electric field E in an atomic gas. These coeffi-
cients are determined by the cross section for the
elastic collisions of ions with the gas particles. In this
case the average ion energy is of order c ~ eE\ [e~ is
the energy acquired by the ion in the field between suc-
cessive collisions, *. -(Mr)'1 is the mean free path, and
a is the collision cross section]. The ion drift velocity
is given in order of magnitude by w~ -JeE\/m ; where
m is the ion mass, and the ion diffusion coefficient in
the gas is D~ •fe-E/m*- . In these estimates we are as-
suming that the ion mass is comparable to that of the
gas particles. Clearly, the proportionality factors in
these expressions depend on the ratio of the ion mass
m to the mass of the gas atom, M. We write the ion
drift velocity as

(12)

where M is the reduced mass of the ion and the gas
atom, a* is the diffusion cross section for the collision
of these particles, and A and c are numerical param-
eters which depend on the ratio of m and M and which
are listed in Table III.3' In this case, we might note,
the diffusion cross section for the scattering of the ion
by the atom is

cr* = !!/??, J7(fl,) = 0.81c2 J^-. (13)

Equations (12) and (13) thus describe an unambiguous
relationship between the interaction potential of the ion
and the atom, on the one hand, and the ion drift vel-
ocity, on the other, in strong fields.

5. The hard-sphere model is of interest not only for
problems involving the collisions of atoms with a rapid-
ly varying repulsive potential but also for problems in
which the results are determined by the interaction it-
self. As one such problem we consider the equation of
state in a gas with a high temperature and a low density,
which is written as follows if we retain the first term of
the expansion in the small density (see Ref. 15, for ex-
ample)'-

P - NT (1 + NB); (14)

3)These quantities were calculated from the data of Skullerud,13

who calculated the unknown characteristics by the Monte-
Carlo method for the ion-atom interaction potential?/ ~R~".
The results of these calculations were analyzed in the modi-
fied hard-sphere model in Ref. 14.

TABLE IV. Collision cross sections in the hard-sphere model
and exact values of the cross sections for classical particles
interacting by the potential U (R) =BR ~n. The elastic cross
section is a = C(B/E)2''11, where t is the energy in the center-
of-mass system. This table gives the values of the coefficient
C and also the ratio of the cross section in the hard-sphere
model, <JK, to the exact cross section ffT. The exact cross
sections are taken from Refs. 3, 4, and 16—18; the model cross
sections are calculated from expressions (A1.12) and (A1.16).

4
6
8

10
12
14

Exact cross section

4
3.75
3.49
3.39
3.32
3.29
3.26

42)

3.87
3.24
2.95
2.76
2.65
2.56

Cross section in the hard-
sphere model

°a*c

3.33
3.27
3.23
3.22
3.20
3.19

•i?
4.37
3.42
3.02
2.81
2.68
2.58

Ratio of cross sections

* *
"ao-'^T

0.888
0.936
0.953
0.969
0.974
0.972

•SH11

1.127
1.056
1.025
1.016
1.010
1.008

here P is the gas pressure, T is the gas temperature,
N is the density of atoms in the gas, and B is the
second virial coefficient, given by

(15)

where U is the interaction potential of the two atoms and
R is the distance between them. In this particular case
the thermal energy of the atoms is much larger than the
depth of the well of their interaction potential. The
value of the virial coefficient is thus determined by the
repulsive part of the interaction potential, and according
to Eq. (15) it is

B(T)-;= (16)

where the dimensionless coefficient c is of
the order of unity. This coefficient is calculated in Ap-
pendix 2 and found to be c= 1.78.

6. Clearly, the hard-sphere model can be used in its
range of applicability, where the interaction potential
of classical particles varies rapidly with the distance
between the particles, or where the cross section for
scattering of electrons by atoms or molecules depends
only slightly on the collision velocity. In practice, we
would like to know the accuracy of the model. The ac-
curacy can be determined by comparing the exact colli-
sion cross section with that calculated from Eqs.
(A1.12) and (A1.16), which correspond to the hard-
sphere model. This comparison is made in Table IV.
It is even more informative to compare the physical
characteristics calculated from the hard-sphere model
with the exact solutions, where the latter are available.
Here we will compare the transport coefficients for the
hard-sphere model and the Maxwell model. According
to the Maxwell model, the collision cross section varies
with the reciprocal of the collision velocity, <r~ l/t>.
From this dependence we can generate some simple
analytic expressions for the transport coefficients.

The Maxwell model is advantageous in problems in-
volving the motion of electrons in a gas, as can be seen
from Table II. Under the assumption that v=Nvv*(v)
does not depend on the velocity, we can immediately
find the drift velocity, the transverse diffusion coeffi-
cient, and the energy lost by the electron per unit time
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due to elastic collisions: TABLE VI.

". (17)

where s is the average electron energy, and these ex-
pressions do not involve the electron energy distribu-
tion.

The Maxwell model is convenient in the case of colli-
sions of heavy particles because analytic expressions
can be derived for the integral relations from the par-
ticle collision integral. It is thus possible to generate
analytic expressions for the transport coefficients of
the particles in a gas. In Appendix III we illustrate the
procedure by calculating the ion drift velocity in a gas,
which turns out to be

,E
(18)

where p, is the reduced mass of the gas and v = Nva*(v)
is the rate at which ions collide with gas atoms [cf. Eq.
(15)]. This expression holds for an arbitrary electric
field, and we do not need to know the ion velocity dis-
tribution in order to determine the drift velocity.

Using this expression for the case of a weak field, and
also using the Einstein relation

tD
'•~-

we find the ion diffusion coefficient in the gas to be

(IV

(19)

(20)

This result also holds in the limit in which the ion
charge approaches zero; i.e., expression (20) gives the
diffusion coefficient of atoms or molecules in a gas.

Table V summarizes the expressions for the transport
coefficients according to the Maxwell model. The cor-
responding expressions from the hard-sphere model are
given in Table II. Table V compares transport coeffi-
cients found from the hard-sphere model with the exact
values in the case in which the Maxwell model holds.
We see that although the applicability conditions of the
hard-sphere model are not satisfied in this case, this

TABLE V. Expressions for the transport coefficients accord-
ing to the Maxwell model.

Coefficient

1. Diffusion coefficient of particles in
agas

2. Thermal conductivity of a gas

3. Viscosity of a gas

4. Election drift velocity*

5. Transversfrdiffusion coefficient of
electrons*

6. Electron energy loss per unit time*

Expression for the Maxwell
model

T
D=— , V- m (o)

x = JiZ— , *<>>= w(i) (,,)

_ 4T

_ *E

~~ mv

D —- 2S_

/ d e \ _„ n> -
\~Sila -*M™

Ratio of the result
calculated for the
hard-sphere model
to that from the
Maxwell model

1.18

0.935

0.935

1.00

1.00

0.906

*The electron is moving in a gas in a static electric field; e
is the average electron energy, and M is the mass of the gas
particle.

n

"n
»n

4

1.59
0.975

6

1.71
0.907

8

1.76
0.864

10

1.83
0.851

12

1.85
01838

14

2.05
0.835

.

2.25
0,826

model still predicts results which are quite acceptable
in practice.

This analysis demonstrates the attractiveness of the
hard-sphere model in which two terms are retained in
the expansion in the small parameter in the expressions
for the collision cross sections and for the macroscopic
properties of gases. This procedure does not alter the
expressions for the corresponding macroscopic pro-
perties which are predicted by the traditional hard-
charge approaches zero; i.e., expression (20) gives the
ments for which the cross sections are to be taken, or
it refines the radius of the hard sphere. The expansion
of the macroscopic properties in the small parameter
of the hard-sphere model thus leads to a good descrip-
tion of the actual situation, without complicating the
general expressions.

7. In practice, how reliable is the hard-sphere model
for calculations of transport coefficients? The asymp-
totic approach in the hard-sphere model runs into two
difficulties. First, the expressions for the cross sec-
tions may converge only slowly to their limits, for
which the small parameter of the theory vanishes.
Second, the real interaction potential of atomic par-
ticles has an attractive region, while the model as-
sumes that the interaction is repulsive over the entire
range of distances between the particles. The well in
the interaction potential makes its presence felt even
if it is shallow in comparison with the thermal energy
of the colliding particles.

To determine how the average cross sections con-
verge toward their asymptotic limits, we write the cor-
responding expressions in the same form4' as in Table
II:

2 _ nt T T / O \ I. 71 (99^Onl . \&&)

Table VI shows the coefficients an and bn found from the
exact expressions for the S integrals in the case of a
repulsive interaction potential U(R) = BR~". We see from
this table that for the average cross section o( l > 1 > the
coefficient an converges slowly toward its asymptotic
limit as n ~ °°. In practice, therefore, it is more con-
venient to choose the value of a, for a large but realistic
value of n. The value of a, found in this manner is not
the same as its asymptotic value.

Can we, for the average cross section Si'1'1', take
the potential well into account roughly when the scat-

4)WrltIng the cross section In this form is convenient because
the Interaction region responsible for the given process
automatically reduces to a single point. Accordingly, as we
go on to incorporate other factors we will try to keep the
expressions in this form.
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tials, given by

FIG. 4. Comparison of the average cross section J2(ll l)

calculated from (24) for the corresponding interaction
potential with tabulated values of R for this interaction poten-
tial.

tering is determined by the repulsive region? In this
case the potential in the scattering region is con-
veniently approximated by U(R) = BR~" - C(R), where n
» 1, and where the function C(R) varies slowly over the
distance R and may be treated as a constant. The
second term, which causes a "shift" of the potential,
takes into account the actual behavior in the repulsive
region. Incorporating this part of the potential, we con-
vert (21) to

Q<>. '> = nlil U(Rl)^--aT-F. (23)

Clearly, the parameter F is of the order of the well
depth, D. For the real potential, the following empiri-
cal relation between the average cross section and the
potential may be proposed:

QL'c'l) = "fil, U(Rt)~-1.9(r — 2.5D). (24)

Figures 4 and 5 show the results calculated from these
expressions for the 12-6, 12-4, and 8-4 model poten-

FIG. 5. Comparison of the interaction potential UK construct-
ed from (24) using the tabulated values of n'1-1^ for the given
interaction U, on the one hand, with this interaction potential,
on the other.

(25)

where x=R/Rtn, R is the distance between the particles,
and Rm is the distance between the particles at the po-
tential minimum [V(Rm) = Q]. Figure 4 compares the
values of Si'1-1' calculated from (24) with the exact
values for these potentials.3 Figure 5 compares the
values found for the potentials with their exact values.
The interaction potentials UK were constructed from
(24), in which we used the tabulated values of the ^
integrals3 for the corresponding interaction potentials.
We may conclude from these comparisons that expres-
sion (24) generates accurate values of the average
cross section and of the corresponding diffusion coeffi-
cient from known interaction potentials. We see from
Fig. 4 that the accuracy of this procedure is no worse
than 1% if T>3D; this condition corresponds to the re-
pulsive region of the interaction. The inverse pro-
cedure — reconstructing the particle interaction poten-
tial from the measured diffusion coefficients— is far
less accurate. Furthermore, this inverse procedure
requires knowledge of another parameter: the depth
of the potential well. The reconstruction of the interac-
tion potential from the measured transport coefficients
is less convenient than a reconstruction from the differ-
ential scattering cross section. The latter procedure is
the procedure currently used to find the interaction po-
tentials of atomic particles.

Summarizing this analysis, we conclude that the
modified hard- sphere model, which takes into account
the actual nature of the interaction between the colliding
particles, is convenient for calculating the transport
coefficients and other characteristics of the interac-
tions and collisions of particles. This model rests on
the assumption that the scattering of the particles is
determined by the repulsive part of the interaction po-
tential. This approach also leads to simple relations
between the interaction potential and the average cross
sections which appear in the expressions for the kinetic
transport coefficients. Even more important are the
simple expressions for the differential scattering cross
section, which are required for determining the proper-
ties of nonequilibrium gases and plasmas and for finding
the parameters of the processes which occur in them.

APPENDIX 1. CALCULATION OF THE DIFFUSION
CROSS SECTION FOR A RAPIDLY VARYING
POTENTIAL

The diffusion scattering cross section is

a* = HI — cos6)-2npdp. (Al.l)

where p is the impact parameter of the collision, and
0 is the scattering angle, determined by19

( -1 /2 ( >dfi (A1.2)

Here R is the distance between the particles, e is the
collision energy in the center-of-mass system, U(R) is
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the interaction potential, and r0 is the distance of
closest approach, which satisfies

We expand the cross section (AH) in the small pa-
rameter l/«, where n= -dlnl7(R)/dlnR. In the zeroth
approximation we assume U(R) = 0 for r> r0 and U(R)

We then find

e = it — 2arcsin-£ -- 246, (A1.4

'-^r2}^- CAi.5)

Expressions (A1.4) and (A1.5) are exact. This is a con-
venient representation for the scattering angle, since
we have A#= i/« in our case. To avoid divergences in
the evaluation of integral (A1.5), we use

finding

Since the last integral converges near R= r0 (R - •
n), we find, with an accuracy to 1/n,

(A1.6)

0~l/

where

Hence

_ rf
- ' " -

(A1.7)

Expressions (A1.3), (A1.4), and (A1.7) can be used to
derive an expression for the scattering angle in the case
of a rapidly varying repulsive potential. Introducing «
=f/(Jl0)/c, we find from these expressions

= 2 arcsin y u —2 - 2 — ( n —2) In 2 '
l + t(n-2)'2|

where « = - d Inw/d Inr0. This expression is important
in its own right, since it allows us to find the depen-
dence of the scattering angle on the impact parameter
p, which is in turn related to the distance of closest
approach, r0, by expression (A1.3):

(A1.9)

Figure 6 compares exact values of the scattering angle
from Ref. 20 for the interaction potential U(R) = AR~12

3.0

2.0

0.1 o.s

FIG. 6. The scattering angle 6 In the cenier-of-mass system
for the Interaction potential U =AR ~12. The quantity plotted
along the abscissa Is « = Ufr0)/E, where r0 is the distance of
closest approach of the particles, and £ is the kinetic energy
of the particles In the center-of-mass system. Curve—Re-
sults calculated from the modified hard-sphere model, from
Eq. (A1.8); circles—exact results.20

with values calculated from expression (A1.8). The
discrepancy does not exceed 3% in the region of colli-
sion parameters where the scattering is significant.

In calculating the diffusion scattering cross section
we note that this cross section is dominated by values
w~l , for which expression (A1.8) becomes

(A1.10)

Assuming the second term to be small, we find, with an
accuracy to terms ~l/n,

Working from (A1.9), we have used the relation dp2

= (1 - w)drj; - r|dw, and we have made use of the circum-
stance that the first term is a fraction - 1/« of the
second. Evaluating the integral over dw in the first
term by parts, we find5'

0

— J

where M(RO) = I, i.e., tf(H0) = e. Repeating these calcula-
tions for the other integrals, and restricting the discus-
sion to terms ~l/«, we finally find

3—41n2 (Al.ll)

We write the diffusion cross section in the form <r*
i.e.,

We find

The diffusion scattering cross section is therefore8

5'We note that the value p =0 corresponds to u =1, while p =»
corresponds to a =0.
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where 0.89. (A1.12)

Let us take the average of the cross section over a
Maxwellian particle distribution. We find the average
cross section, which appears in the expression for the
diffusion coefficient

) = -£- o«(e)e-**»d*. (A1.13)

where x = t/T and T is the gas temperature. From
(A1.12) we find <T*(e)~e-2'", so that

0*(e)=a«(ej(-^)2/" = a.(eo)[l-.JLln-^]. (A1.14)

This expression holds at E~C O , where the second term
is smaller than the first. Substituting (A1.14) into
(A1.13), we find the average cross section to be

5^0 = 0* (ej (l+-|-ln -^-—;j- f i' In or* di) .

We choose S0 such that the first and third terms cancel
out. Wef inde 0 = TexpU(3)], where #(3) = - C+ (3/2) is
the derivative of the gamma function, and C= 0.577 is
the Euler constant. We thus have

and using (Al.12) we find the average diffusion cross
section to be

-= 4e-c=2.25. (A1.15)

This method can also be used to derive expressions
for other cross sections for large-angle scattering if
the interaction potential varies rapidly over space. In
particular, for the cross section in the expressions for
the thermal conductivity and the viscosity we have7

o(») =0.23.

The average cross section is

(A1.16)

(A1.17)

APPENDIX 2. CALCULATION OF THE SECOND
VIRIAL COEFFICIENT

We wish to determine the value of the second virial
coefficient, (16),

B(T)=( 2nB'dfl(l-c-t"r), (A2.1)

for an interaction potential U(R) which varies rapidly
with the distance R between the atoms. In the hard-
sphere model this integral is equal to half the volume
bounded by the sphere (2v/3)R3

0, where U(R0)~T. We
must determine this volume more accurately, i.e., take
into account the first two terms in the expansion in the
small parameter for this integral. For this purpose
we approximate the potential in the region with U(R)
~T as U(R) = AR~"; for a rapidly varying potential, we
would have n» 1. Evaluating the integral (A2.1) we find

We see that B= (2ir/3)/R*, where
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where 4(1) is the logarithmic derivative of the gamma
function. Expression (A2.2) can be used to determine
the volume, which also appears in the expression for
the second virial coefficient in the case of a rapidly
varying repulsive interaction potential.

APPENDIX 3. ION DRIFT VELOCITY IN A GAS

To derive an expression for the ion drift velocity in
a gas in a static electric field for the Maxwell model,
we begin from the Boltzmann equation,

££='«• (A3'1)

where/(vj is the velocity distribution function of the
ions, m is the mass of the ion, and Je is the collision
integral, given by

= [ / ( v , )<p (» , ) - / (v ; )9 ( i> ; ) ] JVi>dodv 8 ; (A3.2)

Here vx and v2 are the velocities of the ion and the gas
particle before the collision, v( and v2 are the same,
but after the collision, v= \vl -v2| is the relative colli-
sion velocity, <p(v2) is the Maxwellian velocity distribu-
tion function for the gas particles, N is the number den-
sity of gas particles, and the distribution functions are
normalized.

Multiplying the Boltzmann equation by the ion momen-
tum mvi, and integrating over the ion velocity, we find

«E= ( ™lJc dv,. (A3.3)
J

The left side of this expression is the force exerted on
the ion by the electric field, while the right side is the
frictional force in the gas which results from the colli-
sions of the ion with gas particles and which balances
the force exerted by the field. Our problem is to evalu-
ate the right side of this expression.

In the right side of (A3.3) we make use of the reversi-
bility of the laws of mechanics with respect to time in
elastic collisions of particles, and in the second term
we make the interchange v1 - 2~vj i 2 . We find

vj) / (v ) jVu d<7 dv, dv2. (A3.4)

We integrate over the scattering angle, singling out the
part which depends on this angle. We evaluate the inte-
gral /W^-YI), and we use

M

where M is the mass of the gas particle, vc m is the
velocity of the center of mass of the colliding particles,
and v and v are the relative velocity of the ion and the
gas particle respectively before and after the collision.
After these steps we find

m(v, — o= n(v — v'Jdo,

where ^ = mM/(m + M) is the reduced mass of the col-
liding particles. We can also write V = vcos6 + k#sin0,
where 6 is the scattering angle, and k is the unit vector
perpendicular to v. Since all directions perpendicular
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to the relative velocity are equiprobable, we find, after
an integration over the scattering angle,

j I (1— cos6) da = (iv

where v*(v) is the diffusion cross section for scattering
of the ion by the gas particle.

Using this result in (A3.4) we find

r i*^ mv^c dV[ = n I v/ (v,) if (D2) Nva' dv,d\2.

We now make use of the conditions of the Maxwell mod-
el, according to which the quantity vo*(v) does not de-
pend on the relative velocity of the particles. We in-
troduce the rate at which the ion collides with gas par-
ticles,

v = Nva* (i-)

and we bring it outside the integral sign. Using v = vt

-v2, we find

| m\ljc dV[ = |iv ((v,) — (v,)),

where the angle brackets indicate that averages are
taken over the distributions of the ions and of the gas
particles. Introducing the ion drift velocity w = (v^,
and noting that the average velocity of the gas particles
is zero, (v2> = 0, we find, using (A3. 3),

from which we find the ion drift velocity to be

(A3.5)

This simple expression holds only for the Maxwell
model, which allowed us to break up the integrand into
factors which depend exclusively on the scattering
angle and exclusively on the particle velocities.
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