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1. INTRODUCTION

In recent years the optics of metal surfaces has again
occupied the focus of attention of researchers con-
cerned with surface phenomena. This has primarily in-
volved the fact that the experimental technique of the
studies has taken a true revolutionary leap in the past
decade. This involves the development of ellipsome-
try,I>2 modulation spectroscopy,3'4 attenuated-total-re-
flection spectroscopy (ATRS),5'6 studies of external
photoemission at the boundary of a metal with a vacuum
or other media,7'8 and also studies of surface Raman
scattering by molecules adsorbed on a surface, which
have led to the discovery of the so-called1' anomalously
intense Raman scatter ing*. 9'to These studies have en-
abled us to obtain considerably more accurate quantita-
tive data than previously on the light reflection coeffi-
cients and on the characteristics of surface excitations.
In order to characterize the potentialities of optical
studies of metal surfaces, it suffices to mention the ex-
treme accuracy of the results obtained in the experi-
ments listed aboVe. For example, in using the modula-
tion methodology, the accuracy of measuring the phase
shift of the reflected light caused by a change in the
properties of the surface reaches y=10"6 radians, or if
we transform to lengths, then we have yc/w» 10"12 cm,

where u> and c are the frequency and velocity of the
light.2)

In a number of cases, the observable relative effects
of the electronic structure of the surface of metals have
proved to be considerably larger than the natural pa-
rameter &ui/c, where 6 is a quantity of the order of
atomic dimensions. This development of the experi-
mentation was substantially stimulated by the demands
of theory and applications in microelectronics, metal
physics, catalysis, adsorption, etc. It was found that one
can determine from the results of optical measurements
the most important characteristics of the electronic
structure of metal surfaces, and the effect on it of ad-
sorption and external fields. In interpreting the new
experimental data, it has proved necessary to develop
the electrodynamics of metal surfaces with the micro-
scopic structure of the surface taken into account.
Here we should stress that experiment considerably
outstripped theory until recently. A number of experi-
mental results, in particular, anomalously intense Ra-

J)In the English-language literature this phenomenon is called
surface enhanced Raman scattering (SEES).

2)Whereas the results of the studies employing ellipsometry,
photoemission, and ATRS are relatively well known, '•2'5"8

the very recent development of the modulation methods such
as electroreflection (ER) and electromodulation of the phase
of reflection [= modulation interferometry (MI)1 have not yet
been duly reflected in the physics review literature. In line
with this, we shall give a special description in Sec. 3 of the
various possible applications of ER and MI.
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FIG. 1. Schematic diagram of light reflection from a metal-
external medium.boundary. The x\ axis lies along the normal
to the surface of the metal, which occupies the half-space
xl < 0. The plane of incidence of the light coincides with the
plane (*,, x^l, and 8 is the angle of incidence of the light.

man scattering, had not yet found even an unambiguous,
generally accepted explanation, not to speak of a quan-
titative one. In view of the complexity of the phenomena
that we are describing, one has often employed phenom-
enological models with unclear limits of applicability in
interpreting the experiments.

In recent years the theory of the optics of metal sur-
faces has begun to develop especially intensively. Sub-
stantial results have been obtained that have made it
possible not only to provide a quantitative or semiquan-
titative description of various phenomena, but also to
predict a number of new effects. The description and
analysis of the fundamental results of the development
of the theory in the given field in the past decade consti-
tute the main conent of this review. Here we have re-
stricted the treatment to discussing problems in which
the dimensions of the transition region from the metal
to the external medium are much smaller than the
wavelength of light. For example, we do not treat the
influence on reflection of rather thick films on the sur-
face of a metal. Since we are discussing the optical
range of frequencies, we shall pay especial attention to
the electron response to an external electromagnetic
field.

We recall the scheme of derivation of the well-known11

Fresnel formulas for the coefficients of light reflec-
tion, which we shall employ later in the theoretical de-
scription as a zero-order approximation. We consider
the reflection of light in the geometry presented in Fig.
1. Reflection is described by the macroscopic Maxwell
equations with the dielectric function c(xlt u>), which has
a discontinuity at the surface:

,), (1.1)= Ble (-*,) 4-

Here eL ^ and e2 are respectively the permittivities
of the metal and of the external medium, and d^xj is
a step function. Upon employing the continuity of the
tangential components of the electric field $n={&2, gP3}
and the component of the displacement D^ normal to the
surface, one can derive11 without difficulty the following
expressions for the reflection coefficients Ra and JJp for
s- and />-polarized light, respectively:

\ ' / 2

Lr: U-2)

Here k,, = {fe2) fc3} are the tangential components of the
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wave vector in the incident monochromatic wave. Let
us state immediately the features that will be essential
below in the derivation and structure of the formulas
(1.2). First, in deriving (1.2), we have treated only the
components of the field continuous at the surface. This
can be interpreted as a rearrangement of Maxwell
equations by choosing the continuous quantities W,, and
3>l as the sought functions. The need to pass in a sim-
ilar manner to treating only quantities continuous in the
zero order in 6w/c subsequently arises in taking into
account the microscopic structure of the transition lay-
er at the surface.

Second, the magnitude of the amplitude of the reflec-
tion coefficient for />-polarized light r*(kn) becomes in-
finite when

(1.3)

That is, this happens when the frequency w and the
wave fector k,, are related by the dispersion law
for surface plasmons.12 As we shall elucidate below,
the fulfillment of the relationship (1.3) is equivalent to
the appearance of a pole in the Fourier components with
respect to x,, of the Green's function for the Maxwell
equation. The appearance of this pole in the Green's
function proves to be the most general condition for ap-
pearance of surface excitations. Third, the formulas of
(1.2) imply a substantial dependence on the frequency u
of the tangential component §;,(0) and the normal compo-
nent gP1(+0)=.3?1(0)/£2 of the fields near the surface?
This is caused by interference of the wave incident on
the metal with the reflected wave. For example, for
^-polarized light we have

|g i ( + 0 ) | a = | l - r J ( A u ) p s i n 2 e . ^ ,

| S | l ( 0 ) l i ! = | l + r£( i l l )Pco s i>e. rJ , A'n = f VT2sine, (1.4)

Here iPp is the amplitude of the field in the incident
wave, and 9 is the angle of incidence of the light. How
essential is a relationship of the form of (1.4) for ef-
fects determined by the value of the field near the sur-
face can be seen from Fig. 2, which is drawn from the

.It
at all'

10 c; 2.0 ufa,,

FIG. 2. Frequency-dependences of the tangential component
lgPH (0) I and the normal component I g?i(0+)| of the fields near
the surface, as given by the relationships (1.4), Diagram (c)
shows the experimentally measured14 frequency-dependence of
the photoemission cross-section from surface states localized
in the (100) surface of Al, The angle of incidence is 9 =45°,
and the plasma frequency is Kto=15 eV.
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data of Refs. 13 and 14, which dealt with photoemission
from surface levels. In order to emphasize the non-
triviality of the explicit correlation between the van-
ishing of the normal component of the field and the sup-
pression of photoemission (Fig. 2), we note that until
very recently the frequency-dependence of photoemis-
sion had been associated only with the features of be-
havior of the electron densities of states in metals.
The general laws of the effect of the structure of the
surface layer on the spatial distribution of the electro-
magnetic field and the light relfection coefficients have
been treated in greatest detail within the framework of
the microscopic theory in Refs. 15-22. Just like the
authors of the cited studies, we shall start with the fol-
lowing mode of writing the Maxwell equations in the
medium for the monochromatic field W(x, u>) having the
frequency o>:

A*(x,o>) — gracldivj(x,co)= _ ̂ L f dsx'V(x,x', < B ) » ( X ' , <o).(l-5)

Equation (1.5) is derived in first-order perturbation
theory with respect to the interaction of the electromag-
netic field with matter. Henceforth the main role will
be played by the Green's function corresponding to Eq.
(1.5), in terms of which the observable macroscopic
quantities are expressed, rather than by Eq. (1.5) it-
self. The tensor for the nonlocal dielectric permittivity
"e?x, x', u>) that enters into (1.5) describes the response
of the system being studied to the external electromag-
netic field. According to the scheme of Kubo,23 the
quantity T(x,x', o>) is expressed in terms of the values
of the commutators of the electron currents averaged
over the Gibbs ensemble. The possibility arises simi-
larly of taking microscopic effects23 into account within
the framework of various models. In the general case
Eq. (1.5) must be supplemented with the dynamic equa-
tion for the material (for the electrons), including its
own response function. The latter equation can de-
scribe independent electron excitations, which are dy-
namically coupled with the field f (x, co) only in the high-
er orders of perturbation theory. The problems that
arise here are still far from solution. We shall touch
upon them in Sec. 6, which is concerned with the spec-
trum of surface excitations.

It proves convenient to represent the quantity
e(x, x', to) that enters into (1.5) in the form

6j j (x , x', a>) = e?,-(x, x', ta) + deit(x, x', w),

Here we have

, ta) + deit(x, x', w), (1.6)

, (o)e(-z1) + E28u6(x-x')6(a:1) (1.7)

The coordinate xt lies along the normal to the surface
of the metal, whose bulk properties are characterized
by the nonlocal dielectric-permittivity tensor
ej'/x-x', co). We shall assume that the dielectric per-
mittivity e2 of the external medium is a real quantity in
the frequency interval under study. Theterm Se^x.x', w)
that takes into account the effect of the surface region
rapidly declines at atomic distances from the surface
|*i | • |*i I < 5- Tne quantity 6 denotes the distance at

which an external perturbation becomes screened by the
electrons of the metal. Correspondingly, 6 is much
less than both the wavelength of light in the external
medium X2 = (e2)~1/2- 2?rc/co and the wavelength in the

metal Xl = (|s|)"1/2' 2vc/a. In the frequency interval
under study, we can also rule out features of light re-
flection involving the anomalous skin effect.

At a fixed point x, the tensor e(x,x', w) usually dif-
fers substantially from zero only in a certain region
with dimensions of the order of 6 near the point x' =x.
The influence of nonlocality, or what is the same thing,
of spatial dispersion of the dielectric permittivity
£(x,x', to) is determined by the parameter SXx^ Usual-
ly 6 is of the order of the lattice constant: 6~ KT'-KT8

cm. Therefore in the optical region the parameter 6X
Xt is very small. Nevertheless it proves necessary to
take into account spatial dispersion in treating cases in
which several types of waves can propagate simultane-
ously in the metal, e.g., transverse and longitudinal.24

Moreover, the role of spatial dispersion increases
near absorption lines (resonances), since here the re-
fractive index ej /2 of the metal increases, and this
means that the parameter 6/\ does likewise. The
stated effects must affect the optical characteristics of
the separation boundaries. Consequently one must con-
struct a theory that would allow one to take into account
simultaneously both the dispersion of the dielectric
permittivity in the metal and the microscopic effects at
its surfaces. A number of serious problems arise
here. These problems have been discussed in Refs. 17,
24, and 25. The general solution of the corresponding
problem using the method of the Riemann boundary
problem has been given in Ref. 17. As the results of
Refs. 17, 24, and 25 imply, as a rule one can neglect
spatial dispersion in the bulk of the metal far from its
boundaries when the frequency lies outside the interval
of bulk plasmons and far from absorption lines. Cor-
respondingly, we assume for simplicity everywhere be-
low, except for Sec. 6, that the bulk properties of the
metal are described by a diagonal dielectric-permittiv-
ity tensor without spatial dispersion ejco) 6jy. In this
case in (1.7) we can set

e?j(x-x',«>)=-e1((o)Sj J .6(x-x'), ^ g.

The general expressions for the observable quantities
that are obtained upon substituting (1.8) into the Max-
well equations are treated in Sec. 2. The formulas de-
rived in Sec. 2 are employed in Sec. 3 in analyzing the
results of modulation-spectroscopic studies. Here it
proves necessary to introduce a concrete expression
for e(x,x', co). Usually one employs the simplest ex-
pression for the nonlocal dielectric-permittivity ten-
sor, which is derived in the so-called random-phase
approximation (RPA)23'26 without allowance for relativ-
istic effects. This approximation allows one to obtain a
reasonable relationship between the features of the
spectrum of the system of electrons in the inhomogen-
eous medium and the behavior of the light reflection
coefficient with relatively simple intermediate formulas.3'
31 If we restrict the study to the behavior of various quantities

near the features of the electron spectrum, then the results
obtained upon using the RPA are to a certain degree model-
free. Here the RPA serves only as a convenient language for
presenting the accumulated information on the electron spec-
trum. Thus far in examining experiments on light reflection
from metal surfaces no account has actually been taken of
correlation effects beyond the framework of the RPA.
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Section 4 discusses the effect of adsorption on the
electrodynamics of metal surfaces. It turns out that
one can effectively determine from the experimentally
measurable optical quantities the most important elec-
tron characteristics of adsorption. This section also
points out the relation between the effect of adsorption
at the surface of metals on the reflection of light and
anomalously intense Raman scattering by adsorbed
molecules,

Real separation boundaries of media always have a
certain roughness, whose dimensions depend on the
concrete material, the method of preparing the sur-
face, and the presence on the surface of adsorbed par-
ticles. A large number of experimental and theoretical
studies has been devoted to studying the effect of rough-
ness on the optical properties of metal surfaces. In
Sec. 5 we shall discuss the effect of jnicroroughness of
the surface whose mean dimension (£2)I / 2 is much
smaller than the wavelength of light: (p)1/2«X1. In
Sec. 6 we analyze the dependence of the surface-plas-
mon spectrum on the microscopic characteristics of the
surface. In the Conclusion we list the as yet unsolved
problems which in our opinion merit the greatest atten-
tion at present.

2. BASIC RELATIONSHIPS

Starting with Eqs. (1.5), we shall discuss the reflec-
tion of light from a metal whose bulk characteristics
are described by the local dielectric permittivity of
(1.8). In the absence of roughness, we can assume that
averaging over the two-dimensional crystal lattice
takes place in the directions along the surface. Corre-
spondingly we have SEj/x.x', u) = 6E{J(x1,x[,xl, -<, u).
For simplicity, we shall assume below that
6e«(*i,*J»*,i -<» w) = 6e,(*i,*l,x,, -x,;, u)6ti. The gen-
eral case has been treated in Ref. 17. Under the as-
sumptions that we have made, the Eqs. (1,5) are equiv-
alent to the integral equations:

k, ( )=

„ k,:) = „ k,,)

z;, *;, k,,) £,<:*;,

Here we have

k||)=

6Ei k,,)=

In (2.1), ffJG^.k,,) and^°,Gcu*[,k,,) respectively denote
the solution and the Green's function of the Maxwell
equations with a sharp boundary, i.e., with 6e = 0,
which corresponds to the assigned value of the projec-
tion of the wave vector k,, = k° on the plane of the sur-
face. We shall often below omit the value of k,, in the
arguments of functions. The form of ̂ U^k,,) is deter-
mined by the choice of boundary conditions for the elec-
tromagnetic field. The expression for the Green's
function is given in the Appendix.

In solving the problem it proves necessary to rear-
range Eqs. (2.1) so that they contain only functions that
vary slowly at atomic distances near the surface. For
these functions we can choose

z[, ku).

(2.3)

Here we can derive from (2.1) (see the Appendix) the
following system of integral equations15-21:

(2.4)

(xt) :-•

i=2, 3

Here 2)°, denotes the elements of the rearranged
Green's function, whose explicit form is given in the
Appendix. An essential point is that all the matrix ele-
ments oiS>a

u are continuous functions of x± and x{ for
x1*x{. In addition to btfanxi), the equations of (2.4)
also contain the function

(2.5)l ,, . „ , _ ._ f

Here EiHxi.xO is determined by the equality

f e~' (x,,xl) e, (x\, x{) Ax\ = 6 (xt — x[). (2.6)

Just like Sefa.xi), the function te^ix^xl), which
depends on the microscopic structure of the surface,
differs from zero only for x-^ and x[ lying at atomic dis-
tances from the surface.

We can seek the solutions of the Eqs. (2.4) in the form
of an iterative series. Here the parameter of the ex-
pansion proves to be the quantity 6co/c«l, as is shown
by a simple estimate of the integrals. In order to ob-
tain the observable quantities (coefficient of light re-
flection, ellipsometric parameters, etc.), it suffices to
treat the asymptotic behavior of the fields far from the
metal as j^-00. In particular, in the case of incidence
of p-polarized light, we find from (2.4):

Here rf is the amplitude of the reflection coefficient for
p-polarized light. To the accuracy of first-order terms
in the parameter 6w/c, the latter is equal to

X [(.£ E,-fcf,) Ae2 (0))- e^Ae- (to)]} ; (2.8)

Here we have introduced the quantities A£, and AEj1,
which have the dimensions of distance, and which are
equal to

,, x[, to),

z,, x{, to).

(2.9)

(2.9')

Analogously we can write the amplitude of the reflection
coefficient for s-polarized light in the form

(2.10)

We note that, in deriving the formulas (2.8) and
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(2.10), we have essentially employed the circumstance
that the relative increments of all the fields that enter
into (2.4) as x± varies over atomic distances near the
surface are of the order of 6cu/c. At the accuracy at
which we are working, this allows us to consider them
constant within the limits of the surface layer and to
remove them from the integrals containing fct(jcltxi, co)
and SejH*!,*!, ">).

In the case of a surface layer having strictly defined
boundaries, expressions of the form of (2.8) and (2.10)
can be derived somewhat more simply by integrating
the differential Maxwell equations over the layer and
introducing corrections into the boundary conditions
for the fields i?2, &3, and ̂  according to the scheme of
Refs. 20, 24, and 34. However, the described method
of integral equations has a number of advantages, since
it enables one to treat surface layers having diffuse
boundaries and it can be directly generalized to the
case of media having spatial dispersion in the bulk17 and
to the case of rough surfaces (see Sec. 4). Moreover,
the use of this method allows one to calculate the terms
of higher order in 6co/c and to find the behavior of the
fields in the surface region. The latter is necessary,
for example, in analyzing photoemission from surface
states.13-14

One can carry out a formal analysis of the iterative
solution for ra(kn, co) and rv(kn, o>), just as is done in the
quantum-mechanical theory of potential scattering in
treating the properties of the S-matrix using an equa-
tion of the Lippmann-Schwinger type.27 Such an analy-
sis implies that the quantities *•„,„(&„, co) as functions of
the frequency in the complex plane can have only the
same branch points as rf(p(fen, co). Moreover, rf(ku, co)
can have poles corresponding to surface polaritons, as
treated below. The stated properties of ra>p enable one
(while taking account of the fact that they are response
functions and vanish as co- °°) to construct the obvious
dispersion relationships for them.

The reflection coefficients for s- and p-polarized
light Ra= \ra\* and Rt= |rp|2 are expressed in terms of
the quantities rB and rp, as are the ellipsometric pa-
rameters A and !/», which are defined by the equality

tagi|>eu = . (2.11)

In particular, the following expressions are obtained
from (2.8) and (2.10) for the relative changes in the
light reflection coefficients &Ra/Ra and &Rf/Rt, as
compared with the Fresnel formulas:

Aflp

(2.12)

cos9-Im{[(s, — e2sin26) Ae

+ e2e*Ae-' (co) sin2 9] [(e, — e2) (e,sin2 8—e,cos2 8)]-'}. (2.13)

The formulas that we have derived imply that the varia-
tion of the characteristics of light reflection and of the
behavior of the field near a homogeneous surface of a
metal on the structure of this surface is given by the
complex quantities AE{(W) and c^w), into which the
microscopic characteristics of the surface enter in an
averaged, integral form. Here the quantity Ae^oO has
a considerably more complicated structure than AE/OJ),

with possible sharp maxima at certain u>= ajL that cor-
respond to the eigenfrequencies of the system.

Dispersion law for surface plasmons

In certain cases special surface waves (surface po-
laritons) can arise at the surface of solids. In the case
of metals the best known are the so-called surface
plasmons. Surface polaritons are localized near the
separation boundary of the media, and propagate along
it with the wave vector ku = ka( co), which is related to the
frequency o> by the dispersion law co= <i>s(fen). Whenever
the thickness of the layer where the surface wave is lo-
calized considerably exceeds the lattice constant of the
metal, the conditions for the existence of such waves
can be found from equations of the form of (1.5). It was
first noted in Ref. 12 that the wave vectors of the sur-
face polaritons correspond to a pole of the amplitude of
the reflection coefficient of p-polarized light treated as
a function of the frequency. Actually, as we see from
(2.7), a solution of the Maxwell equations exists in this
case that does not contain the incident wave, and which
is proportional to exp[t((u>2/c2)e2 - fejj)1/2*J as xl -°°, and
to exp [-i(( wVc2)^ - jfe2)1' 2*J as Xl - -«. For this to be
so, it suffices to take one coefficient g?p in (2.7) propor-
tional to rl1. The sections of the functions (((jf/c2)f.l
-&2)1/2 and ((co2/c2)£2-fc2)1/2that enter into the argu-
ments of the exponentials given above were chosen such
that we have Im{((wVc2)e1-fe,2)l/2,((w2/c2)e2-fe2)1/2}sO
in the physical plane. The condition of conservation of
energy flux implies that the solution not containing the
incident wave must necessarily decay on moving away
from the surface (as \x± \ -°°). In order to satisfy the
decay condition, the wave vector of the surface wave
must satisfy the inequality fc2>(o>2/c2)e2. Taking this
circumstance into account yields the result that surface
polaritons cannot be excited on the smooth surface of a
metal by the field of an incident electromagnetic wave.28

As we can easily test by employing (A. 2), the poles of
the amplitude of the reflection coefficient r,(feu) are at
the same time poles of the Green's function of the Max-
well equations. As we know, the latter fix the spectrum
of eigenexcitations of the system. The amplitude of the
reflection coefficient rt treated as a function of the
complex variable q = (( ui2/c2)e2 - fe2

property:
has the following

r p ( g ) = r p (_g ) • (2.14)

This relationship does not depend on the model of the
boundary, and is derived in exactly the same way as the
corresponding condition for the matrix elements of the
T-matrix in the theory of potential scattering.27 In the
case of a sharp metal-outer medium boundary, the con-
dition rt(q) — °° (or rp(-q) = 0) leads to the well-known
relationship (1.3). In the presence of a surface layer
the spectrum of surface polaritons becomes more com-
plicated. A general expression for the dispersion law,
which holds for an arbitrary structure of the surface
layer, has been derived in Refs. 17 and 29. Here the
scheme for calculating the amplitudes of the reflection
coefficients that we have presented above was used. In
agreement with the results of the cited studies, substi-
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tution of the expression (2.8) into the equality4' rt(-q)
= 0 yields the following equation for finding the disper-
sion law for surface polar itons:

(2.15)

In the so-called three-layer model of the surface,
which is characterized by introduction of the dielectric
permittivity E,, which is independent of the coordinates
Xi and x{, of an intermediate layer having the finite
transverse dimension d, Eq. (2.15) transforms into the
equation derived in Refs. 25 and 30. We can employ the
smallness of the right-hand side of (2.15) with respect
to the parameter 6w/c5) to write the dispersion law for
the frequency of the surface plasmons as follows:

' (ei — e j l d f j d l n e , ((.)),dwJ + ( 2 ( E 1 - f 2 ) M ] j '

Here co^fe,,) is the frequency of a surface plasmon prop-
agating along the boundary of the two-phase system Et/
E2, which is a solution of Eq. (1.3). We see from (2.16)
that the presence of the surface layer gives rise to a
term linear in \ka \ in the dispersion law. Correspond-
ingly, the effect of the structure of the surface layer on
the dispersion law should be expecially substantial at
large \kn \, for which the quantity Re£1(ws) approaches
-E2. We note the nonanalyticity with respect to kn at the
zero in the dispersion law, which is characteristic of
surface waves. This nonanalyticity has been specially
discussed in Refs. 32-34.

3. OPTICAL MODULATION METHODS

An effect of changes occurring at atomic distances
from the surface on the parameters of light reflection
was discovered in the pioneer study of Feinleib,35 who
first studied the reflection of light from metals in elec-
trochemical systems. He did not measure directly the
light reflection coefficients, but their increments upon
changing the potential jump <p in the double layer at the
metal-electrolyte surface. This potential jump is con-
centrated at atomic distances and can reach several
volts.36 Feinleib applied a technique based on modulat-
ing this potential jump. This enabled him to improve
the accuracy of the measurements by more than two or-
ders of magnitude and to increase their resolution. A
similar method in which one measures (l/.R)dR/d<p has
been named electroreflection (ER). Somewhat earlier37

4)The expression (2. 8) amounts to the sum of the first two
terms of the expansion of the exact expression for rf(q) in
terms of the parameter bu>/c. Consequently the condition
[rs(q)Yl = 0 proves unsuitable for use in finding the dispersion
law.

51 If the eignefrequencies of the vibrations in the surface layer
u>, [poles of A£2(o>) and AEi'(o;)] fall in the surface polariton
band a>a(kn ), the right-hand side of Eq. (2.15) ceases to be
small, and correspondingly, Eq. (2. 6) loses force. In this
case, in solving (2.15) we must explicitly allow for the form
of the dependence of A£2 and AEj1 on w — u>,, and in this case
splitting can arise In the surface-plasmon spectrum.31

an analogous technique began to develop for studying
semiconductor-electrolyte boundaries, which subse-
quently has enabled one to obtain considerable informa-
tion on the electron structure of the surface layers of
a semiconductor. In addition to the potential jump, the
following can serve as the parameters to be modulated:
the magnetic field, the hydrostatic compression or uni-
axial strain, extra illumination, temperature variation,
or the parameters of the beam-wavelength, polariza-
tion state, angle of incidence, and also the orientation
of the surface. The fundamental principles of modula-
tion spectroscopy are presented in Refs. 3 and 38.

A large number of experimental studies on ER has
been performed in the years that have passed since
Feinleib's study. The results of these studies have
been summarized in a series of reviews.39"45 In em-
ploying the ER method, one experimentally determines
the derivatives of the reflection coefficients for s- and
p-polarized light (l/.Rs/dfls/d<p and (l/.Rp)dRp/d<p as
functions of the frequency and the potential. The infor-
mation on four other functions is lost in these experi-
ments: the dependences of the phases of the reflection
coefficients on the frequency and the potential. In prin-
ciple the phases can be connected with the reflection
coefficients by the dispersion relations.3'45 However,
the application of the dispersion relations requires one
to make further assumptions whose rigor is hard to es-
timate. In very recent years the method of modulation
interferometry (MI) has begun to be develped. It en-
ables one directly to measure the derivatives of the po-
tential from the phase shifts for the x- and p-compo-
nents separately. (The derivatives of the differences of
the phase shifts for the s- and p-components of a light
•wave are measured by using the rather well known
method of modulation ellipsometry.) This very promis-
ing experimental method was first realized in an exper-
imental study56 employing the Michelson interferometer.
Figures 3 and 4 show typical examples of ER curves
from metals.

Until recently, the experimental data on the effect of
the microscopic structure of the surface on light reflec-
tion were usually processed within the framework of the
so-called three-layer model, which Mclntyre and
Aspnes have used, in particular, to describe ER.46'47

In this model exact expressions are obtained48 for the
light reflection coefficients Ra and .ffp in the three-layer

flL

FIG. 3. ER spectra of an indium electrode in 0.1 N solution
of Na2SO4 for p-polarized light. The potentials of the electrode
(V) are: -0.1 (1), -1.2 (2), -1.4 (3), and -1.6 (4). The ar-
rows indicate the position of the photoemission threshold.
Here we have 9=70°.
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FIG. 4. ER spectra of a lead electrode in a 0.1 N solution of
Na2SO4 for s-polarized light for the potentials (V): -0.8 (1),
-1.0 (2), -1.2 (3), -1.4 (4), and -1.6 (5). Here we have
9 = 70°.

system (Drude formula). Usually one restricts the
treatment to an approximation linear in the parameter
du>/c, which is derived from the Drude formula under
the condition

^«l. (3.1)

When (3.1) is satisfied, the following expressions are
obtained for the relative changes in the reflection coef-
ficients for s- and p-polarized light as compared with
the Fresnel formulas:

Afls 0.2)

-6|)sinae ]\
. l ) 9 in»e J f "

One can also formally derive Eqs. (3.2) and (3.3) from
the general expressions (2.12) and (2.13) with the sub-
stitution

j —e2), i = 2, 3,
(3.4)

While the expressions (2.12) and (3.2) for the reflection
of s-polarized light are similar in structure, the ex-
pression (2.13) for p-polarized light sharply differs
from the expression (3.3) derived in the three-layer
model. This difference involves the fact that in real
systems the quantity AE^O)) that enters into (2.13) is
not expressed using (3.4) in terms of the mean over the
layer of the dielectric permittivity e,. The defects that
we have noted of the three-layer model lead to a set of
contradictions in processing optical experimental data
by Eqs. (3.2) and (3.3). First, for a particular system
the values of e, found from experiments in which only s-
polarized light has been used (the reflection and trans-
mission coefficients were measured) prove to differ
from the values of e, obtained in experiments employing
simultaneously s- and p-polarized light.49 Second, the
values of e, prove to depend on the angle of incidence of
the light.50

The relation of reflection to the microscopic
characteristics of the surface

In order to gain information on the microscopic prop-
erties of the phase boundary from light-reflection ex-
periments, one must relate the quantities AE/U) and

AEiHw) to the concrete characteristics of the system
under study and analyze the different mechanisms of
modulation of the optical properties of the surface re-
gion. We shall pay most attention to ER experiments,
for which the most extensive experimental information
exists.

1) Plasma mechanism of electrore flection. The
most physically grounded mechanisms of ER are
based on concepts of the modulation of the behavior of
the conduction electrons near the surface of the metal.
We can write the electronic component of the dielectric
permittivity E<y(x,x', u>) as the sum of two terms51:

) = ep(a;1, co)6u6(x — x') + e}J(x, x', CD), (3.5)

Here the first term amounts to the plasma component,
while the second corresponds to the optical transitions.
Mclntyre and Aspnes47 and a number of authors follow-
ing them have proposed that e$J is not modulated by the
electric field of the double layer, and hence the ER ef-
fect involves modulation of tr(xlt o>) owing to changes in
electron density near the boundary as the external elec-
tric field is applied. This hypothesis can be valid only
in a restricted interval of the parameters to and (p lying
far from the threshold for external photoemission and
from frequencies corresponding to optical transitions
in the surface layer. The authors of Ref. 47 employed
an expression for the plasma component ct(xlt w) of the
dielectric permittivity derived from the electron theory
of Drude52:

(3.6)

Here T is the relaxation time, m* and e are the effec-
tive mass and charge of the electrons of the metal, and
pdcj) is the electron density as a function of the distance
from the surface. Under the assumptions that we have
adopted, the change in the dielectric permittivity of the
surface layer averaged over the surface can be written
in the form

Aep(xl i a ,)-=(e,(«)-l)-^-. (3.7)

In Eq. (3.7), Ep(o>) and N are respectively the plasma
component of the dielectric permittivity and the elec-
tron concentration in the bulk of the metal, and ApCO
is the change in the electron concentration at the point
Xi near the surface produced by a change in the potential
jump by the amount A<p. For the case of normal inci-
dence of the light on the metal, the described model
yields the following expression for the relative change
in the light reflection coefficient:
Afl
R

Here we have

A < ? = — e f

(3.8)

(3.9)

Also, AQ is the change in the surface charge upon
changing the potential jump by A<p, and Cdl is the so-
called differential capacitance of the double layer.36
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According to (3.8), the integral ER signal depends
linearly on the surface-charge density. Corresponding-
ly, the differential ER signal is proportional to the dif-
ferential capacitance. These predictions have been
qualitatively confirmed for a number of systems.53"55 In
particular, it has been shown54'55 that a linear depen-
dence of A/J/jR on the charge A<? is observed for a lead
electrode placed in 0.1 and 0.25 M NaF solutions in the
region of negative potentials where there is no specific
adsorption.

It was shown in Ref. 56 that, although the results of
measuring (1/RS) dRa/d<p for indium are not described
by the formulas of (3.8), the derivative of the phase ra,
d5a/d<p, proves to be proportional to the differential
capacitance Cd;. We can understand this fact by taking
into account the following circumstance: Equations
(2.10) and (2.12) imply that, whenlme1« iReeJ (this
condition is satisfied for In when 1.5 eV<7zo)<3 eV),
the ER signal ( l / R a ) dRa/d<p is proportional to Im
Ae(w), while d6s/d<p~ReAe(w). Correspondingly, we
find upon taking (3.7) into account that modulation of the
plasma component €t(xl, w) gives a considerably greater
contribution to d&a/dtf> than to (1/RS) dRa/dcp. Conse-
quently the change in the phase is described well by the
plasma model, although the quantity (l/Ra)dR3/d<p may
be governed by the optical transitions.

In contrast to A£(u>), the quantity Ae'Hto) that enters
into the expression for the ER signal in p-polarized
light depends substantially not only on the surface
charge Q, but also on the form of the electron-density
distribution p(xl) near the surface. Let us restrict the
treatment here to a simple model for pOO in which we
have57-58

z(>0;
(3.10)

Here 0 is a variation parameter defined by the condition
of minimum energy of the ground state of the electron
gas when situated in the external field.58 For metals
such as In ,Ag, . . . , whose bulk properties are de-
scribed well by the plasma component of the dielectric
constant ep, we have

s~^ * ±_ •" ._i :— ( __i—:—

~ e,e2 e.V l P2 dip L £te

-J_ln ( —e,) — — lnE2 + ̂ l

- I n —

at I . (3.11)

We see from (3.11) that the main contribution to
Im (dAE'H w)/d<p) when Re c: < 0 and the bulk attenuation
is small conies from a region near the point Xi = x° de-
fined as the solution of the equation Re Cf(xi , 01) = 0. The
vanishing of Retv(x^, w) leads to the appearance in
(l/Rt)dR /dtp of a positive term proportional to
(l//32)d/3/d<p, which does not vanish even for purely real
values of e^6' A calculation of (l/Rt)dRt/d(p was per-
formed in Ref. 60 for In using pUx) in the form (3.10).
It turned out that (1/R )dR /dtp is negative when d@/dcp

6)This effect, which has been discussed previously in Refs.
15 and 59, and which involves the sharp increase in the nor-
mal component of the field at the point xt = *°, cannot in prin-
ciple be described by the three-layer model.

= 0. In accord with the results of the experiments of
Refs. 61 and 62, it becomes positive when dj3~Vd<p
< -0.02A/V. In the frequency region lying below the ex-
ternal-photoemission threshold (near the threshold the
ER signal is governed by another effect; see below),
the values of (l/RjdR9/A<p calculated60 for d/3'l/d<p
= -0.06 A/V agree with the experimentally determined
values,61'62 which are presented in Fig. 3.

As the experimental studies show, far from all the
effects observed in reflection of light from metals can
be explained by simple modulation of the surface
charge. It has been shown63-64 in measuring electrore-
flection and electrotransmission spectra for s-polar-
ized light for a silver electrode in a 1 N solution of
Na2SO4 that Re A£3(w) and Im AE3(o>) are of the same or-
der of magnitude and have the same signs over a broad
frequency range. The latter result qualitatively contra-
dicts the conclusions drawn from the plasma model, in
which these quantities must have opposite signs. A
positive value of the signal (l/Ra) dRa/d<p has been ob-
tained61'62 in ER in indium, in contradiction with the
plasma model. In order to explain the lack of agree-
ment with the plasma model that they had noted, the
authors of Ref. 64 proposed that not only the electron
concentration near the surface can change as the poten-
tial jump is altered, but also their relaxation time.7'

In order to describe the effect of the properties of the
surface on the relaxation time T, and thereby on the
conductivity of the surface layer, Refs. 64 and 65 have
applied the Fuchs-Boltzmann method.67-6B This consists
in using the classical kinetic Boltzmann equation with
the boundary condition of Fuchs to seek the distribution
function of the electrons. Varying the potential jump
alters the concentration of adsorbed ions, atoms, and
defects at the surface, which serve as additional scat-
tering centers for electrons. According to Refs. 64 and
65, this leads to modulation of the scattering, and cor-
respondingly, of the relaxation time of the electrons
near the surface.

We note that the use of the classical Fuchs-Boltzmann
method to describe the scattering of electrons at the
surface cannot be strictly justified on the quantum lev-
el. As has been shown in Ref. 68, one cannot take into
account the modulation of the scattering at the surface
simply by introducing a relaxation time that depends on
the external conditions, even within the framework of
the model of almost free electrons.

Other, as yet unexamined possibilities exist for ex-
plaining the positive sign of the ER signal in s-polar-
ized light in the frequency interval in which the contri-
bution from optical transitions is insignificant and the
plasma model must hold. They involve taking into ac-
count correlation effects in the response function and/
or taking into account the dependence of the effective
mass of an electron on x{ in the surface region of the
metal. Elucidation of the problems stated above is of
considerable general interest for metal physics.

"Apparently a possible effect of modulation of the relaxation
time in ER was first pointed out in Ref. 65.
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2) The effect of electron transitions. In the
models described above, which take into account
the modulation of the surface charge and the re-
laxation time, the optical characteristics of the surface
layer are smooth functions of the frequency w. Thus,
as we know, these models do not allow one to explain
the presence of maxima and minima in the functions
AE(W) and Ae^lw) obtained from the experimental data.
To describe these effects, we must take into account
the dependence of the component of the dielectric per-
mittivity etr associated with optical transitions on the
potential jump cp.

Hansen and Prostak65 proposed one of the first theo-
retical models for describing the modulation of inter-
band transitions. Upon analyzing the electroreflection
spectra of a gold film,35 Hansen and Prostak concluded69

that the observed effects can be explained by a fre-
quency shift of the optical constants of the thin surface
layer of the metal caused by a change in the charge of
this layer, so that AE(OJ) goes over into AE(CI> +

feature is revealed most sharply in them. Formulas of
the following form are obtained for (l/R)d2R/dcp2 near
the external photoemission threshold:

It was assumed65 in order to justify such a frequency
shift that the Fermi level of the surface layer is dis-
placed upon changing the surface electron concentra-
tion, but the boundaries of the bands remain fixed.
Here the threshold energies of transitions from the
filled bands into the free part of the conduction band are
also altered. The model desdribed here arouses objec-
tions, since the introduction of a dependence of the
Fermi level on the distance from the surface is not
physically justified. Attempts to apply the theory of
Hansen and Prostak to explain the ER spectra of other
metals besides gold also have been unsuccessful.4'70

Recently the problem of the modulation of electron
transitions has begun to be analyzed more thoroughly.
It has been shown81162-71"74 that in a number of cases the
main contribution to detr/dp comes from direct intra-
band transitions. These .transitions are made possible
by the breakdown of translational invariance in a semi-
bounded metal. Correspondingly they are very sensi-
tive to the state of the surface, which can be altered by
an external field localized near the surface. Here, al-
though the first term in (3.5) for metals in the frequen-
cy range of visible light and the near ultraviolet is
larger than the second, the screening effect causes the
first term to depend weakly on the potential jump cp.
Consequently the derivative of the second term in (3.5)
with respect to cp can prove larger than the derivative
of the first term, especially near the threshold for ex-
ternal photoemission. It is precisely the derivative of
the second term that must govern the features of the ER
curves near the photoemission threshold.

It proved possible in Refs. 62, 71-74 to obtain the
relationship between the expressions for the photoemis-
sion current and the ER signal. The parameters enter-
ing into this relationship contain information on the mi-
croscopic mechanism of photoemission and the struc-
ture of the metal surface. It turned out that it is most
convenient for comparison with experiment to deal with
the second derivatives (\/R)d?R/c\cp2, which also can be
measured directly.62 A smaller number of parameters
enters into the second derivatives, and the threshold

etp)-jj- -3^7- = .4 -r

+ C(h(a, + eif-H^)>/2Q(H^ + e<f — H(a); (3.12)

Here co0 denotes the threshold photoemission frequency
at the potential cp = 0 [the potential is referred to the so-
called zero-surface-charge potential,36 at which Q(<p)
= 0]. The functions of the frequency and angle of inci-
dence (A, B, and C) introduced into (3.12) do not depend
on cp, and are expressed in terms of the bulk dielectric
permittivities of the metal and electrolyte and in terms
of the matrix elements of the optical transitions, which
also enter into the expression for the photocurrent.
The explicit form of these functions has been given in
Ref. 72. The formulas that we have written out hold in
the neighborhood of the photoemission threshold to the
accuracy of terms of the order of

\ *(!><,

The appearance of a feature at Kii)=Kdo0 + ecp in
(\/R)dzR/dcp2 is qualitative in nature, and does not in-
volve the details of the calculation. The experimental
discovery of such a feature, both in the ER spectra and
in the dependence of the ER on cp confirms the validity
of the chosen physical mechanism of ER. Figures 5
and 6 compare the theoretical curves for
(-!/£„) d2flp(u>, cp)/dcp2 with the experimental ER data
for indium.62 Here the values of the matrix elements
were taken from independent photoemission experi-
ments.75 The adjustable parameter was the phase of
the matrix element of the optical transition excited by
the field 6t normal to the surface. It turned out that
tan61/2= -0.7. This value agrees qualitatively with the
model of photoemission developed in Refs. 76 and 77,
which corresponds to optical transitions in the ionic
cores, and it contradicts the results corresponding to
the surface mechanism of photoemission. As we see
from Figs. 5 and 6, the behaviors of the experimental
and the theoretical curves agree. We stress that anal-
ysis of the dependence of 6j on the state of the surface

/ 11%

FIG. 5. Comparison of the experimental and theoretical
frequency-dependences of (I/flp)d2/Jp/ d<o2. The solid curves
correspond to the experimental data on ER of indium in a 0. 01
N solution of Na2SO4.62 The dotted curves have been obtained
theoretically.72 Curves 1 and 1' correspond to the potential^
<p = -1.6 V, while curves 2 and 2' correspond to cp = -1.3 V.
The position of the maximum corresponds to the photoemission
threshold frequency H u = K 0)0 + etp.
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FIG. 6. Comparison of the experimental and theoretical po-
tential-dependences of (l/Rf)<pRs/d<p2. The solid curves cor-
respond to the experimental data on ER of indium in a 0. 01 N
solution of Na2SO4.

62 The dotted curves have been obtained
theoretically.72 Curves 1 and 1' correspond to the frequency
Ku> = 2. 2 eV. Curves 2 and 2' correspond to the frequency
Ku = 2 eV. The position of the maximum corresponds to the
threshold potential ecp = Kw — Kw0.

can yield information on its electron structure. It was
shown in Ref. 74 that a threshold feature should also
be manifested in modulation ellipsometry and inter-
ferometry.

Let us proceed to examine certain generalizations of
Eq. (3.12), which are necessary for explaining a num-
ber of the observed experimental facts. We have as-
sumed in writing (3.12) that the spectrum of the metal
possesses no features either near the photoemission
threshold at an energy E = EY+Ku0 + e<p, or near the
Fermi surface E = EF. In particular, surface electron
levels are absent. In this situation the only special
point to be taken into account remains the photoemis-
sion threshold. However, in some cases the ER spec-
tra contain additional features in the potential-depen-
dence of the ER, which can be associated with features
of the electron spectrum of the metal-electrolyte bound-
ary. In particular, an additional special point (a mini-
mum) has been observed in the ER spectrum of
lead.62'73 The qualitative hypothesis was advanced62 that
this minimum involves the existence of a surface elec-
tron level having an energy lying near the photoemis-
sion threshold. Another possible candidate for such a
level is a localized electron state in water—an electron
in a solvated or presolvated state.79

An important qualitative feature of the experimental
curves visible in Figs. 5 and 6 is the smoother decline
as compared with the developed theory in the quantity
(l/-Rp)d2#p (a), <p)/A<pz as a function of w or <p in moving
away from the maximum corresponding to the photo-
emission threshold. As the special analysis62 showed,
this contradiction is not fully eliminated by taking into
account the finite temperature of the electrons. We can
naturally assume that the phenomenon under study at
least partially involves collective effects whose influ-
ence is especially important immediately near the
threshold. The most substantial effect of this type
must be the influence of fluctuations in the polarization
(longitudinal optical phonons) in the polar medium into
which emission occurs, and also the influence of vari-
ous surface vibrations. Thus, in principle it proves
possible to determine directly the correlation function

for the polarization fluctuations near the surface of the
metal.80 In line with what we have said, it is highly es-
sential to single out and diminish the contribution to the
width of the peaks of (l/R)d2.R(a>, <f>)/d<p2 involving in-
strumental effects.

3) Electroreflection from single crystals. Until
very recently, ER spectra had been measured on
polycrystalline materials. This led to loss of a part
of the information (owing to averaging over the differ-
ent faces) and to a certain extent hindered the interpre-
tation of the experiments. Experimental studies have
now begun on ER of single crystals.43'81"84 It has been
shown that, in metals such as Ag, Au, and Cu, the
magnitude and form of the ER signal depend on the or-
ientation of the surface of the single crystal. The ef-
fect that we have noted can arise from the known fact
that the differential capacitance, the work function,
photoemission matrix elements, and the two-dimen-
sional cross-sections of the Brillouin zones differ for
different faces. With a fixed orientation of the surface,
an anisotropy of the ER spectra of pure Ag, Au, and
Cu has also been found,43'81"84 i.e., a dependence of the
ER on the direction of the electromagnetic field inten-
sity vector in the incident wave with respect to the
crystallographic axes of the metal. Moreover, it has
been shown that anisotropy of ER can arise from ad-
sorption.85

4. MICROSCOPIC DESCRIPTION OF THE EFFECT OF
ADSORPTION

When one measures the relative changes in the light
reflection coefficients caused by the appearance on the
surface of the metal of adsorbed atoms or ions
(adatoms), one observes a nonmonotonic behavior of the
light reflection coefficient as a function of the frequen-
cy, with characteristic maxima that are absent in re-
flection from pure metals.86"93 Whenever the measure-
ments are performed at a metal-electrolyte boundary,
the stated maxima are shifted and deformed upon
changing the potential jump in the double layer.

In describing these phenomena, it is known that one
must use microscopic models. The first to reject the
application of the macroscopic three-layer model in
studying light reflection from submonolayer films were
Strachan94 and Sivukhin.95 They described the surface
layer using the model of a two-dimensional lattice of
dipoles interacting with the light. We shall not discuss
here the results obtained in the models proposed by
Strachan and Sivukhin, which were developed further in
Refs. 96-98. This has been done in the reviews of Refs.
4,42, 99. We note only that, as the recent theoretical
and experimental studies show,100"103 the electron prop-
erties of adatoms that are manifested in the optical
range cannot be described in the dipole model.

A number of studies86"93 have associated the effects of
adsorption with the appearance of extra electron transi-
tions from the resonance levels of the adatoms into
which the levels of the isolated atoms are transformed
upon adsorption. If this assumption is justified, then
an analysis of the experiments should allow one to ob-
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tain important information on the microscopic proper-
ties of the adatoms. In order to do this, one must as-
sociate the quantities AE(O>) and AEjMw) that enter into
the expressions (2.12) and (2.13) for the relative
changes of the light reflection coefficients with the
electron characteristics of the metal + adatom system.
For this purpose, Refs. 104 and 105 have used the ran-
dom-phase approximation for calculating the nonlocal
dielectric-permittivity tensor E,/X,X', u>). Here we can
write the quantity ImAE(co), which characterizes the
change in the optical absorption upon introducing the
adatoms, in the form

Im Ae33(co) as Ae»(co) = ;̂ j d£9(-.E)[l — 9(-E — fceo)]

x{j cPx A*x'dV*('d*-*0 ' ' Im <x | G, (E) | x') dV*( l *r*°''

X Im <x' 1 1

(4.1)

Here Ga(£) is the one-particle Green's function of the
metal + adatom system, Va( |x-Xo|) is the self-consis-
tent potential of an adatom, and Wa is the surface con-
centration of adatoms. In writing (4.1) we have as-
sumed that the concentration of adatoms at the surface
is small enough that we can neglect their interaction.
The energy E is measured from the Fermi level, so
that at a temperature of absolute zero, the distribution
function has the form 29(-E). We should note that for-
mulas analogous to (4.1) have been employed also107 to
describe the optical properties of adatoms. However,
a number of objectionable approximations have been
made107 in calculating AE"(W), and the final results have
not been reduced to a form admitting comparison with
experiment.

In order to calculate the Green's function Ga(£) that
enters into (4.1), the authors of Refs. 104 and 105 de-
veloped a quantum-mechanical method of describing the
crystal + adatom system based on a pole approximation8'
for the scattering amplitudes at the adatom.108'109 Here
the fact has been taken into account that the electron
levels of the atoms are not only shifted by the amount A
owing to adsorption, but are also split and spread out
into resonance states with the width r, owing to the
possibility of tunneling of the electrons between an
adatom and a metal atom. The quantities A and T are
the fundamental microscopic characteristics of an
adatom. They depend on the electron state of the iso-
lated atom, on the band structure of the metal, and on
the potential jump <p. The determination of the shift in
the level and its width are highly essential in solving
many of the problems of the thermodynamics and kinet-
ics of surface phenomena.

The change in the optical properties of the surface
owing to adsorption, as desdribed by Eq. (4.1), also
can be related to the quantities A and r. In the simp-
lest case of an adatom having one s-level lying below
the Fermi level of the metal and far from the band
boundaries, the imaginary component of AE(W) can be

FIG. 7. Dependence of the maximum value of ((l/fi)(dR/d^))mat

on the density of electron states at the Fermi level of the metal
as obtained In Ref. Ill in studying adsorption of water on dif-
ferent transition metals.

written in the form104-105

(4.2)

Here EQ is the position of the level of the isolated atom
with respect to the Fermi level in the metal, and T,al is
the width that the level of the adatom with the orbital
angular momentum 1= 1 and E=0 would have. In the
case being discussed, the quantity AE"(O>) corresponds
to an optical transition from a filled (or partially filled)
level of the adatom into the conduction band of the met-
al.9' Analogous formulas have been derived in Refs.
104 and 105 for transitions from occupied states of the
metal to free levels of adatoms. We see from (4.2) that
the function A£"(o>) has a maximum in the neighborhood
of the frequency K^m= |£0 + A| and is nonsymmetrical
with respect to this frequency. The physical meaning
of Eq. (4.2) is rather simple: the imaginary part of the
dielectric permittivity is proportional to the number of
filled initial states (the factor in parentheses) and to
the number of final states (r,=l) to which a transition
can occur. According to Refs. 104 and 105, the width
function r/s>1 is proportional to the density of electron
states of the metal at the Fermi level pm(0). We can
easily derive from the fact that AE'(W) is connected to
A£"(o>) by the Kramers-Kronig transformation the in-
equality |AE'(wm) | « |AE"(com) | that holds near the max-
imum. Taking what we have said into account Eq. (4.2)
implies that &Ra/Ra has an extremum at w — wm. In the
case of adsorption of identical atoms on different met-
als, the value of &Ra/Ra(um) is proportional to pm(0).
This behavior of ^Rs/Ra(um) has been experimentally
observed111 in studying the adsorption of water on vari-
ous transition metals (Fig. 7). Moreover, measure-
ments of the ER spectra of iron in alkali solutions112

have shown that the position of the extremum of A#s/
Ra(wm) involving transfer of an electron from water to
iron depends on the electrode potential <p. This result
also agrees with the views developed in Refs. 100, 104,
and 105. In a number of studies86'87-89-90 of the effect of
adsorption on light reflection from metals, the change

8>The pole approximation is a development and refinement of
the well-known Anderson model, 100-101>110 which has recently
been widely applied in adsorption problems.

"it was assumed in deriving (4.2) that the frequency of the
incident light satisfies the inequality Ku>< |£0+A-Ra)0l.
That is, we have not considered transitions from a level of
the adatom to the external medium.
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in the dielectric permittivity &e(o)) in the surface re-
gion was represented in the form of a sum of Lorentz
oscillator functions, while the parameters of these
functions were associated with the electron character-
istics of the adatoms. We see from (4.2) that AE(O>)
does not have a Lorentz form. Hence the method of
data reduction used in the cited studies can yield incor-
rect positions, and especially, widths of the levels of
the adatoms.

In order to test the theory that had been developed,
the results of the experiments86 on reflection of s-po-
larized light from the (100) surface of tungsten covered
with CO molecules and placed in a vacuum were pro-
cessed104'105 by using the derived formulas (2.12) and
(4.2). For this system the parameters A and F are
known from independent photoemission measure-
ments113: £0 + A | = 3eV, F=0.6eV. As we see from
Fig. 8, the values of Ae"(u) calculated with (4.2) for the
given values of the parameters A and T agree well with
the values of A£"(u) obtained experimentally.86 Another
group of experiments that have been treated within the
framework of the theory under discussion involves
studies of adsorption of atomic oxygen on platinum.114

The theory developed in Refs. 104 and 105 is easily
generalized to the case in which several transitions can
occur in the frequency region being considered. Here
several maxima appear in the &R/R spectrum, possibly
not always resolved from one another. This effect has
been observed experimentally in Ref. 93 in studying op-
tical reflection from a platinum electrode covered with
copper atoms (the degree of covering was less than a
monolayer). Apparently one observes here transitions
from the 3d levels of Cu to the 4p level of Cu and to the
'free part of the conduction band of platinum, and also a
transition from the 4s levels of Cu to the 4p levels of
Cu. In the frequency region corresponding to each of
the stated transitions, the form of the function AC"(U)
qualitatively agrees with that predicted in Refs. 104 and
105. Unfortunately, the experimental data were pro-
cessed93 by using the three-layer model, which is inap-
plicable in this region. Therefore, in extracting quan-
titative information on the parameters of the Cu adat-
oms, one must not use the values of Ae'(w) and Ae"(o>)
determined in Ref. 93. The value of Ae(w) has been
calculated115 for the case in which an ordered, two-di-
mensional lattice of adatoms is formed on the surface
of the metal. By starting with the RPA for the dielec-

4 £'76/1
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FIG. 8. Spectral dependence of AE'lajJ/AE^ in the case of
adsorption of CO molecules on the (100) surface of tungsten.
The solid curve shows the values of AE'taJ/AE^ obtained86

from experimental data at a degree of filling of the surface of
~0.4. The dotted curve shows the values of A
calculated in Ref. 104.

trie-permittivity tensor, the qualitative features in the
reflection coefficients were shown that can arise from
van Hove singularities in the two-dimensional band
structure of .the -surface layer of adatoms.

It is of considerable interest that the optical transi-
tions in adatoms discussed in this section can be mani-
fested in surface Raman scattering by adsorbed mole-
cules. According to the views of Refs. 116-118, the
sharp increase in the Raman cross-section that arises
here is of a resonance type, and is due to an electron
transition between the level of a certain adatom and the
bulk of the metal. Simultaneously with this transition,
a change occurs in the state of the vibrational degrees
of freedom of adsorbed molecules associated with the
given adatom, and this shifts the frequency of the re-
flected light. By using in the matrix elements the rep-
resentation of wave functions in the form of a product
of the electron wave functions and the wave functions of
the motion of the nuclei it can be shown119 that the Ra-
man cross-section will be proportional to the absorp-
tion cross-section Im AE(W) for the electron transition.
Thus one can quantitatively explain the phenomenon of
anomalously intense Raman scattering by adsorbed
molecules by using formulas of the type of (4.2) taking
the considerations of Refs. 116 and 117 into account.
Here one must also take into account the amplification
of the field near the surface owing to creation of sur-
face plasmons caused either by roughness or by the
presence of surface vibrations,120"122 as is discussed in
Sec. 5. Only when one takes this amplification into ac-
count can one explain the absolute magnitude of the ef-
fect in the resonance region, and also the increase in
the background in the nonresonance region.

5. THE EFFECT OF MICROROUGHNESS ON THE
OPTICAL PROPERTIES

a) Different methods of taking roughness into
account

Microroughness of metal surfaces gives rise to a
number of qualitative effects. First, not only a specu-
larly reflected wave arises on reflection of light, as in
the case of an ideally smooth surface, but also diffuse-
ly reflected waves appear. Measurement of the flux of
diffusely scattered light allows one to estimate the de-
gree of roughness of the surface.123'124 Second, the
presence of roughness leads to the possible creation of
surface plasmons by the electromagnetic wave incident
on the metal, and also to scattering of plasmons,
whereby they transform into bulk excitations or into
other states of a surface plasmon. These effects lead
to experimentally observable considerable changes in
the form of the coefficients for specular reflection of
light125"127 and of the dispersion law for surface plas-
mons.128"130 Owing to the sharp amplification of the field
at the surface, the creation of surface plasmons can
lead to an increase by several orders of magnitude in
such observable surface effects as photoemission131"133

and the cross-section for Raman scattering by adsorbed
molecules.121'122

In addition to metal optics, the problem of scattering
of waves from a rough surface arises in a number of
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other fields of physics: in the theory of diffraction by
gratings,134 in acoustics,135-136 in interpreting radar sig-
nals,137 in the theory of scattering of atoms by a sur-
face,138 and in treating electron scattering from a metal
surface.68-139 The mathematical problems that arise
here are analogous in many ways. In particular, two
limiting cases arise. In the first case the roughness
has a scale much larger than the wavelength of the inci-
dent light. In this case one applied the quasiclassical
approximation or the ray-optic approximation using the
Hughens-Fresnel principle (usually retaining the first
Fresnel zone140'141). Such an approach has been devel-
oped by a number of authors (see Ref. 142, and also the
literature cited in Refs. 143-145). In the second limit-
ing case, the characteristic dimension of the roughness
is much smaller than the wavelength. Here one can
naturally use some variant of perturbation theory with
respect to the ratio of the mean dimension of the rough-
ness to the wavelength. We shall pay our major atten-
tion to this case, the theory of which has developed in-
tensively in recent years as applied to light scattering
from metals.120-146-163

A rather large number of studies has been devoted
also to a model treatment of roughness.164'167 These
studies take into account the roughness of the surface
within the framework of models with small particles
of spherical164 or any other simple shape165'167 arranged
in a certain way on the smooth surface of a metal.
Within the framework of some particular approxima-
tions, one calculates the cross-sections for scattering
by the given particles, and then expresses the change
in the reflection coefficients in terms of them. As a
rule, one does not take into account here the substan-
tial effects of multiple scattering. Another model ap-
proach168"170 consists of replacing the roughness with an
equivalent surface layer of small particles whose ef-
fective dielectric permittivity is calculated within the
framework of an effective-medium theory of the Max-
well-Garnett type.10'171 Thereupon one finds the reflec-
tion coefficients by the standard formulas derived in the
three-layer model. One can find a detailed discussion
of these studies in the review of Ref. 145. Here we
note only that in the stated approach one can attain
agreement with experiment only after introducing num-
ber of adjustable parameters having no direct physical
meaning.

b) Perturbation theory

In employing perturbation theory with respect to the
ratio of the mean dimension (|2)1/2 of the roughness to
c/w, one usually describes the surface of the metal by
introducing a local dielectric function of the following
form:

es — e2) f (x,,)). (5.1)

Here the coordinate *t lies along the normal to the
smoothed surface of the metal. The function/Uj),
which determines the law of variation of the dielectric
properties at microscopic distances on going from the

metal to the outside medium, vanishes when *1->°° and
becomes unity when Xi - -°°. In the limiting case of
Fresnel reflection we have /(x^ = &( -x^). The function
|(x,() that we have introduced into (5.1) describes the
roughness—the deviation of the coordinate of the posi-
tion of the surface xl = -£(x,,) from the mean value,
which we take as the origin, so that we have

f d2x E ('x, i — o d y\j U X i i 5 IX| , / — u. \V.£i)

The expansion of the electromagnetic field in terms of a
small roughness parameter has been carried out in the
literature by one of the following methods: (1) By using
a method proposed by Rayleigh135 and developed by
Fano.134 This method is based on employing the bound-
ary conditions for the tangential component of the elec-
tric and magnetic fields at the surface x^
= _|(Xi|).

150.151.158-160 n has been applied only to the
Fresnel case, in which f ( x l ) = #(-#i). (2) By using the
extinction theory of Ewald and Oseen.160-162 (3) By using
integral equations analogous to those treated in Sec.
2 120,148,149,152-155

If one employs in the calculations only functions |2,
£3, and ̂  continuous at the surface, all three methods
yield identical results. For unity of presentation, just
as in the case of smooth surfaces in considering rough-
ness, we shall adopt the third of the approaches cited
above. Let us introduce the functions 8e and fie'1,
where

(5.3)

,, t (x,,)) = e (x) - EO fa) »|(x,|) -g -̂ e0fa),

6e.-'fa, |(xM))=.
MX)

— e2) /

10)Originally171 the Maxwell-Garnett theory was proposed for
describing the properties of thin, inhomogeneous films.

In the final result after averaging, and taking into ac-
count the effect of roughness in the first nonvanishing
approximation, the observable quantities will contain
terms proportional to f2. The retention of terms of
only the first order in £(*„) on the right-hand side of
(5.3) is motivated by the idea that the addition of sec-
ond-order terms in £(x,,) to 6e and 6e"1 can be reduced
to introducing certain special surface currents and
charges. The additional effects that arise here prove
insubstantial in the most interesting frequency region
corresponding to the creation of surface plasmons.

The terms in the Maxwell equations including 6e and
Se"1 can be treated as perturbations. We can write the
equations (1.5) in integral form, and in such a way that
only the functions S?2, &3, £$,_ that vary slowly near the
surface enter into the derived equations. Here the
zero-order approximation corresponds to a smooth sur-
face, and the kernel of the equations contains |(x,,) to
the first power. We note that in Refs. 152-155, 163 the
corresponding integral equations were written not for
^2> &3, #3, and &lt but for the fields %2, &3, and ̂ .
Owing to the discontinuity of the normal component of
the field gplf indeterminacies arise in the integrals of
the form

j n, (x) 8e fa, I (x,,)) g, (x) d"x ~ j g, (x) 6 (*,) | (x,,) g,(x) d»x. (5.4)

This situation has compelled the authors of Refs. 152-
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155,163 to offer formally a special definition of the cor-
responding integrals. Here it turned out that the final
expressions for the observable quantities depend on the
way of making this special definition.155'160

We must average over the surface in order to con-
struct the observable quantities. In the case of a Gaus-
sian roughness distribution corresponding to a station-
ary stochastic process, all the means are expressed in
terms of a pairwise correlation function:

- ,ft2/4
(S (k)|) £ (k')} - - (2n)2 o2 ( k | i — k ) |2a2jie I' ,

In Eq. (5.5), the angle brackets denote averaging, f2 is
the rms value of the roughness, and a is the correlation
length. Similarly to what was done in Refs. 144 and
145, we can represent the equations for the averaged
Green's functions and other quantities by a graphic
technique analogous in many respects to that used in
quantum field theory.172 Upon writing the solution of the
equation for the Green's function ^^(jtr^Arijk,,,^) in the
form of an iterative series, and then averaging over the
surface, we obtain an equation that can be represented
graphically in the following form11':

"ii **ii n j i kl ( k,1, kn k]r k,, k|} k,; K( ) k() k|,

(5.6)
The meaning of the diagrams that enter into (5.6) arises
from the following equalities:

0 = ( M * v f fq d;ky d<dj.' V c / ^ I (2n)! (2n)2 i

X 62 (kn-kjf '-q) (2jt)2 e»(kf| -ktf1 -q) &„ (it, x\, k,,) d, (x\)

X #,„,«, x-, k jnd m «)^ m ,W, *;, k,',).jiiV2<!-'"«'/4}.

, *;, k[,) exp [- 4- (ku-kjf ')']}, (5.7)
Here we have

3 i \ d
-. d2 (xt) = d3 (5.8)

Also, ^jy is the Green's function for the case of a
smooth surface. Upon convoluting the series in (5.6),
we obtain the equation

~ (5.9)

u'The obtained analogy with the Feynman diagrams of field
theory arises because, in the Gaussian averaging, e. g., of
polynomials in^(x( | ) , !(*,'), etc., the means of all possible
pair combinations of | (x(|), £ (x,[) enter on an equal footing,
just in the same way as is required in satisfying Wick's
theorem in field theory."2 Here the pair correlation function
|2 exp [— (x(1- x')/a2] plays the role of the free propagator for
the "field "f <x(1).

The polarization operator 6.P that we have introduced
in (5.9) is represented in the form of an infinite series
in terms of only the irreducible diagrams, i.e., the
diagrams that have no internal sections containing only
one line. The operator f>Pu(Xi,x{; k,,,!*,',) is proportion-
al to 62(k,, -k^):

6Pt](Zl, x(; k,,, kn) = (2n)262(kl l-k;,)6/>j,( ; C ) , x'v k,,) . (5.10)

That is, translational invariance with respect to mo-
tions in the directions x,, is restored after averaging.
Moreover, 6P has no pole singularities for k,, = ks. Al-
lowing for the fact that &Pli(xl,x[,'ktl) differs from zero
only at microscopic distances \Xi , x[ \ < 6 from the
surface, in (5.9) we can take the slowly varying func-
tions of Xl and x'l^fjix^xi,^,) and C^UjXik,,,^))
outside the integrals with respect to x^ and x{. As a
result we obtain the algebraic equation

* 6" (k|,-

Here we have

Equation (5.11), when considered for x± =
to the equality

m;(0, x[; k,,, k,',)>. (5.11)

(5.12)

gives rise

k,,, fc')) < (0,0, k,,)

0, *;, k,,)},.,.. (5.13)

c) Finding the observable quantities

1) Reflection coefficients. The formulas given above
enable one to derive expressions for the observable
quantities in the presence of roughness — for the light
reflection coefficients, the dispersion law of surface
plasmons, and photoemission. When the bulk absorp-
tion in the metal is small (Im EJ « 1), the relative
changes in the specular reflection coefficients asso-
ciated with the existence of roughness can be written
in the form

(5.14)

The terms (l/Ra)dRa.e/d& ( a ,0=s ,p ) in (5.14) show
what part of the energy of the incident a -polarized
light is converted into (3-polarized light diffusely scat-
tered into the solid angle dn = sin20sd#sd<p. We consid-
er that the correct expressions for them are those giv-
en in Refs. 159,160,162. In the neighborhood of the in-
trinsic frequency of surface plasmons ws= w^fe,,) |en_.«,>
the main contribution to (5.14) comes from the terms
^RI'V7RS and &R%"/Rr, which show what fraction of the
incident light, respectively s- or p-polarized, is con-
verted into surface plasmons. The corresponding quan-
tities have the form

( M! |-e
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( I EI I —B2)5'2 8zsin'!6+ I Ei I c<>3' 6
Zr.

X J [(e2 sin"6— e,)1/2 cos cp - | e, |"2 eV2 sin 6]2

o

X exp [ —£ (k«k|, - kf,)*] d<p8 (- E, - EJ).

(5.16)
Here £° is the wave vector of a surface plasmon in the
smooth surface as defined by Eq. (1.3), k,° is the pro-
jection of the wave vector in the incident wave on the
plane of the surface, and £,, = (cosy, simp) is a unit vec-
tor in the plane of the surface.

We should note that, although the formula (5.15) for
A#B'P and the expressions for (l/JZ.)d#,_s/dfl,
(l/Rs) dfla_/dn, and (1/RJ dfl,_s/dn given in Refs. 159,
160, and 162 coincide with the corresponding results in
Ref. 152, the expressions (5.16) for AflJ-p and those for
(l/ApJdflj./dO from Refs. 159, 160, and 162 differ
from those derived in Ref. 152. This discrepancy in-
volves the existence in Ref. 152 of the indeterminacies
of the type of (5.4) that we have already noted above.
For the case of normal incidence of light, results coin-
ciding with those given in Refs. 159, 160, and 162 have
also been obtained in Refs. 148, 149, 158, and 161.

In order to explain the role of the individual terms in
(5.14), let us give the results of numerical calcula-
tions124 of the quantities

and A#|'P for the case of normal incidence of light from
a vacuum onto silver. These results are shown in Fig.
9. The calculations employed the known173 optical con-
stants of silver, while the mean dimension of the irreg-

FIG. 9. Illustration of the calculation of the reflection of light
from a rough silver surface, a) Form of the functions &Rra

and AR,-p describing the conversion of normally incident light
into s- and p-polarized light diffusely scattered from the
metal; b) form of the function ARj'p, which gives the fraction
of the energy of the incident light absorbed by surface plasmons;
c) specular reflection coefficients for a smooth silver surface
(curve 1), with only the terms AjRa.s and A.Ra_p taken into ac-
count (2), and with only the term ARJ'B taken into account (3),
taken from Ref. 124.

ularities (£2)1/ /2 and the correlation length a were taken
respectively as 85 A and 1000 A. We see from Fig. 9
that the term AS J1 ' describing the absorption of light by
surface plasmons has a sharp maximum and makes the
main contribution to &Rf/Ra near the frequency w° for
which Ej — -1. It was shown in Ref. 124 that, with a
reasonable choice of the parameters |2 and a, one can
gain good agreement between the experimentally mea-
sured and calculated values of the light reflection coef-
ficients. Moreover, the differential intensities of scat-
tered light (l/Ra)dRa.fi/da(a,0=s,p) were directly
measured124 for silver as a function of the scattering
angle Ba at five different frequencies. It was possible
to reconstruct from these relationships, using the for-
mulas derived in Ref. 15_9 for (l/Ra) dfl^/dft, the val-
ues of the parameters £2 and a. He£e they proved to be
practically the same in all cases [(£2)1/2=39 A, o
= 200 A]- This confirms the validity of the theory. We
should also note that, according to the results of Refs.
159 and 160, the quantities (l//J8)dR8_a/d« and
(1/RS) dRp.a/dSi are monotonic functions of the scattering
angle 8S, whereas (l/#8)dRs_p/d« and (l/flp)d#p_p/dn
have a maximum at the angle 9a that satisfies the equa-
tion tan &B = ct. WhenlmEj^O, this maximum is some-
what shifted and smoothed out. The noted behavior of
the differential intensities (l/Ra)dRa^/dto has been
found experimentally in Ref. 124.

2) Dispersion law of surface plasmons. Let us take
up in greater detail the effect of microscopic roughness
of metal surfaces on the dispersion law of surface plas-
mons o>= &>,(£„). This law is determined by the position
of the poles of the Green's function of (5.13), which are
fixed by the condition

Det{J-'(0, 0, k,,) —6P(kn)} = 0. (5.17)

We can rewrite the condition (5.17) as an equation de-
fining w8(fen) in the form

{exp [-
2 / »2 7-tW2!-t-ej(15-B1-fc|f) J

2!"1
J

'/2

(5.18)
If we assume the change in the dispersion law caused
by the existence of roughness to be small, we obtain
the following expression from (5.18) when \ak°\ <1 out-
side the frequency region for which ^ + £2~ 0:

(5.19)

Here u>°(fe,,) is the solution of Eq. (5.10) at I2'=0) which
gives the dispersion law for a smooth surface. Equa-
tions of the type of (5.18) for the dispersion law a)s(fen)
have been derived in Refs. 120, 151, 155, 160, and
163. Unfortunately, no measurements have been made
of the dispersion law for a surface with random irregu-
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larities with independent measurement12' of the auto-
correlation functions (iKx,,)^*,')). This hinders com-
parison of theory and experiment. For a surface with
a known sinusoidal profile, the theoretically calcu-
lated151 w8(fcn) relationship of the type of (5.18) has been
compared176 with the experimentally measured disper-
sion law of surface plasmons. In this case good agree-
ment was obtained between theory and experiment.

In the frequency region of special interest where ex

+ e2~0, the solution of (5.18) demands especial caution
as | ct + e21 — 0, owing to the singularity of the functions
on the right-hand side of (5.18). At these frequencies
we find that the wave vector of a surface plasmon satis-
fies ks»(w/c) |et |,(w/c) | E21. However, owing to the
presence of a term having a pole in the integrand in
(5.18), one cannot take the limit as c — °° [with e^w) +e2

~0 and finite [(fe°)2=(o)2/c2)e1e2/(e1 + e2)] in calculating
the right-hand side of (5.18) prior to integration, as was
actually done in Ref. 156. We also note that, if we take
the limit as c-°° in the integrals in Eq. (5.18) and drop
the terms having poles, then the dispersion law that we
obtain will exactly coincide with that found in Ref. 157,
where the nonrelativistic equations were used from the
outset. However, as we have already said, this drop-
ping of terms cannot be justified when EJ + e2~ 0.

In order to elucidate the problems that arise here, to
which, we think, due attention has not been paid hereto-
fore, let us rewrite Eq. (5.18) in the simplest case in
which the inequality \kn \ > |£j | w/c is satisfied, but ka

still remains smaller than a"1. Representing ws(fen) in
the form ws= u>° + A, where u>° is the solution of the
equation E: +£ 2 =0 , we obtain the following expression
from (5.18):

(5.20)

The right-hand side of Eq. (5.20) has a branch point at
A = 0. Correspondingly, we shall seek the solution in a
form nonanalytic in f2a2fe,,(a>/c)3:

Here a is a coefficient to be determined. Substitution
of (5.21) into (5.20) yields the value a=(3/7)f£2. Among
the seven roots of Eq. (5.21), which have different
phases, only two can correspond to surface plasmons
with decay, their imaginary component being negative
and small. The appearance of nonphysical solutions
having a positive imaginary component of cos, which
corresponds to unlimited growth of the field with time,
indicates the unsuitability of keeping a finite number of
terms in the perturbation-theory series with respect to
5P{J. The contribution of the earlier terms of the ser-
ies must become essential near o>= w° owing to the
presence in term of additional singular factors (et

+ e2)~". This complicated problem has not been dis-
cussed in the literature. We note that the splitting of

the surface-plasmon spectrum in the presence of
roughness was first treated in Refs. 156 and 157. In
the cited studies the splitting of the surface-plasmon
spectrum was twofold. As it seems to us, this is
physically justified in a not very clear fashion as a
consequence of the removal by the roughness of degen-
eracy among plasmons having different directions of
the vector k,,. According to (5.21), the magnitude of the
splitting is

l-A2) = (4 ej)"7[!W*,,£ln (p.'*,,-^)]^,

Im A, A? 0,

. n (5.22)

We note the deviation of (5.22) from the results of Ref.
156,_in which the splitting was found to be proportional
to (I2)1'2 w/c. We should also note that, according to
(5.22), the quantity ImA2 proves to be comparable with
the magnitude of the splitting Re(Ax - A2), which should
impede its experimental observation. Experimental ob-
servations of the splitting of the spectrum of surface
plasmons has been indicated in Refs. 129, 130, and 177.
We should stress here that the entire problem of split-
ting of the plasmon spectrum in the presence of rough-
ness is yet far from being explained, and it requires
further experimental and theoretical study.

Equation (5.18) can also be used to determine the de-
pendence of the wave vector kn = kB(u) of surface plas-
mons on the frequency o>. In Ref. 124Refes(<o) has been
calculated numerically, starting with an equation of the
type of (5.18), for a rough silver surface with various
values of the parameters £2 and a. It turned out that the
existence of roughness increases the wave vector Refcs

(at fixed w) as compared with a smooth surface. This
prediction of the theory agrees with the results of ex-
periments.178'179 One can also determine from (5.18)
the decay length of surface plasmons I

12)The autocorrelation functions of roughness have been de-
termined for a number of surfaces by using the interference
method.172'175

3) Frequency-dependence of photoemission. In dis-
cussing the angular, polarization, and frequency depen-
dences of photoemission by solid metals, in many cases
one must take into account the effect of microscopic
roughness of the surface. One can expect substantial
effects in the frequency-dependence of photoemission
from a rough surface in the frequency interval of gen-
eration of surface plasmons. Endriz and Spicer131 have
established that excitation of surface plasmons gives
rise to a maximum in the quantum yield of photoemis-
sion in the frequency region of w°, at which Re(e1 + e2)
= 0. They have observed this effect experimentally for
aluminum.131 Sass et aZ.132'133 have observed a consid-
erable enhancement of the photocurrent in the formation
of surface plasmons at a silber-electrolyte boundary.
A theoretical description of this phenomenon has been
purposed.120 As the calculation120 shows, the creation
of surface plasmons can increase the quantum yields of
photoemission by two orders of magnitude, owing to the
sharp enhancement of the field at the surface. We can
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interpret physically this result, which agrees with ex-
periment, as arising from the addition of the ampli-
tudes of the surface waves generated by the incident
light wave at different points of the metal surface. The
comparison120 of the results of calculation with experi-
ment132 on photoemission from silver in an 0.5 M solu-
tion of K2SO4 showed that not only does one obtain a
correct overall course of the frequency-dependence of
the photocurrent at values of the parameters (I2)1'2

= 30 A and a= 200 A, but also quantitative agreement.

This effect of enhancement of the field near the sur-
face in the presence of surface polaritons is also of in-
terest in treating other phenomena that occur upon il-
luminating an electrode. In particular, it must be taken
into account in analyzing the data on anomalously in-
tense Raman scattering.

6. SURFACE PLASMA WAVES

Up to now, the theory of surface plasma waves in
metals has been developed in detail predominantly on
the basis of simplified models of the electron-density
distribution near the boundary. The reviews of Refs.
32,33,180,181 have been devoted to presenting the re-
sults of these studies. In most cases the model expres-
sions for the response function are constructed by using
the wave functions of electrons treated as not interact-
ing with one another and existing in the field of a rec-
tangular well having an infinite potential barrier. This
model has been employed within the framework of the
random-phase approximation in Refs. 182 and 183. In
the simple limiting case of high density, the results of
these studies coincide with those of the theory of sur-
face waves in a plasma with a sharp boundary.18*'185

The further development of these models has been as-
sociated with taking into account the finite height of the
boundary barrier and its actual form. In particular,
Refs. 186 and 187 have been carried out along these
lines.

In addition to the calculations pointed out above, we
should also mention the calculations of the spectrum of
surface excitations associated with the intrinsic density
oscillations given by the equations of motion for matter
interacting with an electromagnetic field. Such calcu-
lations of the dispersion laws have been mainly per-
formed with models having a smooth boundary. In these
models the electron density in the region near the sur-
face is assumed to be a slowly varying function of the
coordinates, and its oscillation is described by equa-
tions of the hydrodynamic type34-188"192 having the form

*i)= — 4nep(a:1) =-Vif>),

j = pv),

(*,) = ep (x,) V,«P (*,) + .S VjGu {p (i,)}.

(6.1)

In (6.1) the functional Gu{p}, which has a different form
in different studies, takes concentration effects into ac-
count. In principle it includes the influence of correla-
tion and exchange effects. Additional types of surface
excitations (as compared with ordinary surface plas-
mons) have been obtained within the framework of the
hydrodynamic model. They amount to the intrinsic os-

cillations of the electron density of the surface layer
that have been modified by the electromagnetic interac-
tions. 189»191-192 in principle the frequencies o>8 of the
surface plasmons can be close to the frequencies of the
additional surface excitations that we have pointed out
above. Here specific resonance effects can arise, even
with weak coupling between the plasmons and these ex-
citations. Such effects have not been treated in the lit-
erature up to now. However, we should emphasize that
in metals the scale of the changes of electron density
in the surface layer is close in order of magnitude to
the characteristic wavelength of an electron. Under
these conditions the smooth-boundary model cannot be
justified at all rigorously. Therefore the conclusions of
Refs. 34, 188-192, which are based on (6.1), are only
qualitative in nature. With each complication of the
model, all the cited studies have treated anew the
microscopic Maxwell equations (or the equations for the
surface charge) that were used to study the dispersion
of the surface waves. Here it proved necessary to
make additional approximations and to resort to numer-
ical calculations. The equations of the type of (2.15) for
the dispersion law of surface plasmons (but not for the
extra excitations) that were formulated in Refs. 17,193,
and which do not depend on the structure of the surface
layer, enable one to avoid the unwieldy stage of calcu-
lations, and to find directly the coefficients AE(CO) and
AE'Hw) by the formulas (1.6), (2.5), and (2.9) using the
adopted approximation for the dielectric-permittivity
tensor. As has been shown in Refs. 17, 24, 25, and 28,
the presence of spatial dispersion leads to an additional
damping of the surface waves that depends on |fen |.
This effect is due to the interaction of the surface bands
with the bulk bands, which is made possible by the
overlap of their spectra upon taking account of spatial
dispersion. Moreover, this interaction gives rise to a
dependence of the position of the surface-plasmon level
on \kn |. Depending on the models used to describe the
bulk optical properties of the crystals, the coefficient
of the term linear in \ktt \ in ws(*,,) proves to be either
of the order of the Debye length, or of the mean free
path, or of the lattice constant, or of i>F/wp, where vT

is the Fermi velocity.

As we have shown in Sec. 2, the presence of a transi-
tion layer also gives rise to terms linear in \kn | in the
dispersion law oj.Ok,,). Whenever the effective thickness
of the transition layer is large in comparison with the
lengths listed above, which characterize the effects of
spatial dispersion in bulk, the term linear in |£n | that
appears in (2.16) must apparently be the major term,
and must exceed in absolute magnitude all the other
corrections to the dispersion law.

The simplest model that enables one to write explic-
itly the dependence of the dispersion law of surface
plasmons on the electron density is the plasma model
that has already been discussed above in Sec. 3. Here
the dependence of the dielectric permittivity on the co-
ordinates is determined by the electron-density profile
and is represented by Eq. (3.6). If we assume the
damping r'1 to be infinitesimal we obtain from (2.5),
(2.15), and (3.6) in the nonrelativistic limit (c-°°) the
following relationship17 between the coefficient A of the
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term linear in |fen | in the dispersion law u>a(ka) and the
electron-density profile:

>. = - . n r _ d l n p ( i i ) -1-1 -i
1 2 L d*, JIJ=so}

(6.2)
Here P denotes the integral in the sense of its princi-
pal value, and the point x° is defined as the solution of

the equation Re{e(x°, w)M=w ,^
=^- Tne imaginary com-

ponent of A arises from the possibility of transforming
surface waves into bulk waves. An expression of the
form of (6.2) can be derived by using the corresponding
approximations of the equation for the nonequilibrium
charge density in the random-phase approximation180

and from equations of the form of (6.1), as has been
done in Ref. 34. As a rule, the scale of the change in
electron density in the surface layer [dlnpGrJ/dxJ*1 is
close to the parameter vF/ios that characterizes the ef-
fects of spatial dispersion. Therefore, in studying the
effect of the electron-density distribution on the sur-
face-plasmon spectrum, one must take into account the
presence of spatial dispersion in the bulk of the metal.

The coefficient X, which determines the dependence of
the frequency of a surface plasmon on the wave vector
k,,, can be measured experimentally, e.g., by using the
ATRS method. The problem of the sign of X has
aroused discussion, both in analyzing the experimental
data,194'195 and in the theory of this phenomenon.24-196

The results of Refs. 17, 24, and 25 and the formulas
given above imply that the sign of the coefficient X de-
pends on the properties of the bulk dielectric permittiv-
ity e(w,k) of the metal and on the details of the elec-
tron-density distribution in the surface layer, and it
can be either positive or negative. In this regard it be-
comes especially important to measure X sufficiently
accurately under strictly controlled conditions.

Considerably more unequivocal and informative re-
sults are obtained from experimental and theoretical
studies of the changes in the dispersion laws that arise
from changing certain properties of the surface, rather
than studying the dispersion laws themselves. Studies
along this line have begun in recent years. The depen-
dence of the dispersion law of surface plasmons (og(&,,)
localized at the (111) boundary of an Ag single crystal
with an 0.5 M solution of NaClO4 solution on the poten-
tial jump <p has been studied in Refs. 197. The mea-
surements were made by the ATRS method at fixed k,,.
It was shown197 that the form of the dependence of ws on
<p varies sharply in the vicinity of the point of zero
charge. In the region of potentials more positive than
the point of zero charge, we have -d/zws/d<p=2 xlO"2

eV/V, while jd£ti>BAty | is much smaller than this
quantity for potentials more negative than the point of
zero charge. This effect has been explained17 within
the framework of the plasma model of the dielectric
permittivity of (3.6). It has been shown197-198-199 that the
dispersion law of surface plasmons is highly sensitive
to the state of the surface, and depends both on the con-
centration and on the type of atoms and ions adsorbed
on it. The interpretation of the experiments in Refs.
198 and 199 was carried out using the three-layer mod-
el, which, as we have already noted, is valid only for

thick adsorbed layers. What we have said above im-
plies that a detailed analysis of the data on the depen-
dence of the characteristics of the surface plasmons on
the microscopic structure of the metal surface still re-
mains a matter for the future. Evidently, such an
analysis can serve as an important source of informa-
tion on this structure.

7. CONCLUSION

We note in concluding the review that a number of in-
teresting problems involving the manifestation of mi-
croscopic characteristics of the surface in optical ex-
periments has remained untreated owing to restricted
space. In particular, the numerous studies on external
photoemission at the boundary of a metal with vacuum
or with other media have been merely mentioned. The
experimental and theoretical studies performed in re-
cent years7-8'13-14-200 have shown that the study of the de-
pendence of photoemission on the frequency, polariza-
tion, and angle of incidence of light, and also on the
orientation of the plane of incidence with respect to the
symmetry elements of the crystal enables one to get
substantial information on the mechanism of photoexci-
tation of electrons and on the state of the surface. Such
studies also enable one to extract the values of the ma-
trix elements proper of the optical transitions from the
overall expressions for the photocurrent, which also
contain substantially the optical parameters that deter-
mine the behavior of the field intensity near the surface
of the metal.

Experiments on the spectroscopy of surface plas-
mons,6'24 which have not been discussed in the review,
are also of considerable interest. In particular, it is
highly interesting to observe photons formed in the de-
cay of surface plasmons that are being excited by any
independent method, e.g., by interaction with an elec-
tron beam. It has been shown in these experi-
ments201-202 that the probability of creation of photons
formed in the decay of surface plasmons shows strong
angular and polarization dependences. In particular,
the photons were preferentially p-polarized. The pros-
pects of studying the structure of the surface using data
on the decay of surface plasmons pointed out in Ref.
203 are highly interesting.

Despite the well-known incompleteness that we have
pointed out above, we hope that the content of this re-
view makes it possible to support to a sufficient extent
the assertion made in the Introduction concerning the
dramatic development in recent years of theory and ex-
periment in the field of optics of metal surfaces. The
detailed information on the structure of surfaces and on
the processes that occur near them that can be obtained
in optical experiments will undoubtedly play a very im-
portant role in the near future in the development of the
physics and physical chemistry of metal surfaces.

In closing the review, we list some unsolved prob-
lems in the field under discussion that seem central to
us. We must point out as the first of these the funda-
mental problem of going beyond the framework of the
approximation based on writing the equations for the
Green's functions of the electromagnetic field in the
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medium with linear response functions calculated in the
random-phase approximation. This approximation does
not take into account correlation effects, the dynamics
of surface short-wavelength electron excitations, nor
the dynamics of interaction of such excitations or of
light directly with other surface and bulk collective
modes. Up to now, no complete analysis has even been
performed of the type of experiment in which one should
expect the effects mentioned above to be manifested in
a way amenable to quantitative description. Apparently
most of the experimental schemes that have been devel-
oped up to now are individually inadequate to attain such
a goal, and one must design special experiments with
additional independent methods of monitoring the state
of the surface excitations. Definite prospects are also
offered by analysis of results of optical measurements
of the surface properties of metals (in particular the
line shapes in ER and modulation interferometry) per-
formed at different temperatures in a range in which the
equilibrium concentration of collective excitations de-
pends strongly on the temperature.

A second important group of problems involves fur-
ther experimental and theoretical study of the effect of
microroughness on the characteristics of surface plas-
mons. Under conditions in which the correlation length
of the roughness is of stomic dimensions and/or the
damping in the metal is very small (as in ultrapure sil-
ver), the perturbation-theory series with respect to the
ratio of the characteristics length of the roughness to
the decay length of surface excitations begin to con-
verge poorly in the frequency region of the surface
plasmons. Here one should expect new effects that can
apparently be described only by using a more complex
field technique that is not based on perturbation theory.
The essential point is that the latter effects can be not
only of theoretical, but also applied importance, e.g.,
in connection with sharply increasing the quantum yield
of photoemission at rough surfaces, and also in connec-
tion with problems of catalysis on metals. Further,
there is as yet no final clarification, neither experi-
mentally nor theoretically, concerning the suggested
splitting of the spectrum of surface plasmons due to
roughness.

As a third problem we deem it necessary to cite the
problem of the analysis and systematics of the curves
obtained in optical measurements such as electrore-
flection and ellipsometry. In contrast to semiconduc-
tors, in metals the ER and ellipsometry spectra have
no sharp extrema as a rule, which hinders the inter-
pretation of experiments. In order to reveal the mech-
anism of the processes that occur, one must redesign
the experiment (e.g., measure the second derivatives of
the reflection coefficients) or bring in extra information
on the properties of the surface, including capacitive
and photoemission measurements. This review has
cited several successful examples (for indium and lead)
in which such an analysis facilitated important conclu-
sions to be made on the electron structure of surfaces,
and in particular, on the shift and broadening of the
electron levels of atoms when adsorbed on metals, and
on the values of the emission thresholds. However,
these examples are as yet solitary, and many observ-

able features of the curves and their shape have not yet
found even a firm qualitative explanation. It has not yet
been elucidated how substantially the band structure of
a metal is manifested in the optical characteristics of
surfaces. In this field we need further extensive work
which will undoubtedly lead to the development of an
entire new field of metal-surface spectroscopy. As we
see it, the most promising developments in the theory,
at least in the near future, will not be attempts at total
(ab initio) calculation, but semiphenomenological anal-
ysis based on treating the interaction of light and the
collective modes for fixed characteristic levels and
resonances. This approach is analogous to the method
of model Hamiltonians, which has been successfully
employed in solid-state physics, and especially, in the
theory of adsorption.204

Of course, we should mention the problem of inter--
preting experiments on anomalously intense Raman
scattering by adsorbed molecules.205'206 The prelimi-
nary arguments presented in Sec. 4, c3 and Sec. 5 show
that these experiments allow one to obtain important in-
formation on the electron and vibrational levels of mol-
ecules and on inhomogeneities of the surface. However,
as yet only the first steps have been taken in this di-
rection.

APPENDIX

Let us transform to the space of the wave vectors k
and select in it three orthogonal, unnormalized basis
vectors e"(k)( a= TE, TM, L):

(Al)

Here e(il is a fully antisymmetric tensor and k,, is the
wave vector of motion in a plane parallel to the surface
that is conserved in the absence of roughness. We
shall take the direction of the latter as that of the xz

axis, i.e., k,, = {0, k2, 0}. In this case the plane of inci-
dence of the light wave coincides with the plane {x^,x^f.
The directions of the vectors ef^k) and e{TM>(k) out-
side the metal coincide respectively with the directions
of the field in s-polarized and p-polarized waves. The
longitudinal wave in the metal lies along ej<L)(k).

In the case being discussed, we can write the
Green's function &°ii(k1,k[) that enters into (2.1) as fol-
lows:

*;)=es™ (jy .z<TE> (*„ *;

(A 2)-£-«." (*. -*!> (»«— (<TE) (*.) «STE) (*.)] •

In (A. 2) EO'^I) denotes the Fourier transform of the
function l/e0Ui), and we have introduced the scalar re-
tarded Green's functions ^<TE) and^1 cm), which re-
spectively obey the equations

•»=»<«,-«». (A3)

Here we have
:, TM) (£ ^j}_ f °fel dfo eife1»:1^:(TE, TM) jj ^ j/j e -ifci*, (A4)
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An important advantage of this way of writing (A2) is
that one can use the relatively simple apparatus of the
theory of ordinary differential equations in analyzing
the functions ^(TE) and & <TM) that enter into 3)^. In
particular, according to this theory the scalar Green's
functions^ ('IE'T>0(x1,x'i) can be represented in the
form

~ a (-£•.-*>)'
*;, * „>

«) a <*i-*

+#>(*;, *„)»<(*!, * „ ) eor;-*!)]. (A5)

The symbols #"<(#!,&„) in (A. 5) denote the solutions of
one-dimensional equation of the form of (A. 3) with the
right-hand side set to zero, which corresponds to the
boundary conditions of the outgoing or the damped
waves, respectively, as x ! — °° and xt — -°°. The sym-
bols fft(xi.,kn) denote the analogous solutions of (A3')
without the right-hand side. The normalization of the
solutions entering into (A. 5) has been chosen such that
the following equalities hold outside the metal for xt

n
"J (A 6)

In (A. 6) we have introduced the quantites rj(ktl) and
rj(fe,,). When fe*<(wVc2)e2, they have the meaning of
the amplitudes of the reflection coefficients, respec-
tively, of s- and p-polarized light from the surface of
the metal. Their values are given by the Fresnel for-
mulas (1.2).

Upon substituting the expression (A. 2) for the Green's
function into the integral equation (2.1) and simultane-
ously rewriting it so that it contains only the functions
in (2.3) that vary slowly near the surface, we obtain the
system of integral equations (2.4) in the text. The
symbol-S'lj in (2.4) denotes the quantities that are the
elements of the 3 x 3 matrix

(A7)
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