B. L Ivlev and N. B. Kopnin. Theory of resistive
states in narrvow superconducting channels. Consider a
narrow superconducting channel with transverse di-
mensions smaller than the depth of penetration of the
magnetic field and the coherence length £(T). The
Ginzburg -Landau theory predicts that when the current
density j through this channel exceeds a value j,, which
is called the critical Ginzburg-Landau current, super-
conductivity failure occurs in the channel and the chan-
nel transfers to the normal state. However, experi-
ment indicates that there is a range of currents above
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Jjo where superconductivity does not vanish totally but
continues to exist in spite of the fact that the specimen
offers nonzero resistance to direct current.!»? This
state of the superconductor is called the resistive state
(RS). An electric field that accelerates electrically
charged Cooper pairs exists in a superconductor in the
RS. The increase in the velocity v, = (%/2m)vx of the
Cooper pairs, where x is the phase of the order param-
eter, is related to the increase in the difference x, - X,
of the phases at the ends of the superconducting channel.
Since superconductivity does not fail in the RS, this im-
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plies the existence of a mechanism that offsets the in-
crease of the phase difference under the action of the
electric field. Phase slip is such a mechanism. It con-
sists essentially of the following. The absolute value of
the order parameter A begins to decrease at a certain

place in the specimen, and at a certain time it vanishes.

At this time, the difference between the phases to the
right and left of this point changes stepwise by 27, after
which superconductivity is restored at this point and the
order parameter begins to increase. The process is
repeated after a certain time. The point at which the
order parameter vanishes as it oscillates and its phase
experiences the 27 jump is called the phase-slip cen-
ter? (PSC). If the specimen is long enough, it may con-
tain several PSCs. In the limit of an infinitely long
specimen, PSCs occur periodically along its length with
a certain density that depends on the current,

The phase-reversal process desscribed above is con-
veniently analyzed in two-dimensional space-time
{x, ct}, where x is the coordinate along the specimen.
We introduce the two-dimensional vectors

p=lzict). q={(0\; — D), a={d4,: —q},
where
he 9y i dy
Qu=Ax— 5 5y and D=q 4+~ 2

are gradient-invariant vector and scalar potentials (4
and ¢ are the ordinary electromagnetic potentials).
The vectors q and a are related by q=a - (%ic/2e) ax/ap.
The phase-slip time is represented by a point {x; ¢t} in
space-~time. Let us surround this point with a closed
contour [ and consider the integral

;&qdp:ﬁ}adp—g—sl&%dp. (1)

The phase-reversal process is equivalent to the condi-
tion that the order-parameter phase change by 2my,
where » is an integer, as we move around this point.
Using the definition of the electric field

1 a1 o
=T —ar=trotas

we obtain a “quantization rule’” from (1):

VEdrcdrs g

where ¢,=7kc/e is the quantum of the flux, and the in-
tegration extends over the area occupied by a single
PSC in the space {x,cf}. This expression is a general-
ized Josephson relation.

It is necessary to resort to the dynamic equations of
superconductivity to determine the structure of the PSC
and to calculate the volt-ampere characteristic (VAC)
of the specimen. Another characteristic length appears
here: the penetration depth I of the electric field,*®
which is the relaxation length of the difference between
the chemical potential u,= —e¢ of the normal excita-
tions and the chemical potential of the Cooper pairs u,
=(n/2)ax/8t: &=(u, - p) e. The penetration depth I
was calculated in Refs. 5 and 6 for temperatures near
T,. It is considerably greater than &(T).
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The distance L between successive PSCs in the RS is
of the order of magnitude of the electric-field penetra-
tion depth: L~Ig. Analysis of the dynamic equations of
superconductivity indicates’ that three segments can be
distinguished on the interval —L/2<x < L/2 (the point x
=0 corresponds to the PSC):

1. |x|sx,~&*/1;—a range of oscillations of the or-
der parameter A. It is significantly suppressed in this
range as compared to the equilibrium value A.

2. £¥1g< |x|sx,~VElg The superconducting cur-
rent j, oscillates in this range. The order parameter
does not depend on time and takes the form A(x)
=a,tanh(x/V2E). The lengths of the dynamic regions
x, and x, are considerably smaller than L: x,,x,<L.

3. VEg< |x|<L/2~1;. None of the quantities de-
pends on time in this range. Here a voltage forms at
the PSC. Because of the narrowness of the dynamic
ranges x, and x,, the main contributions to the poten-
tial drop on the PSC comes from the static region, in
which the simple equations

=0F - g, ET——'JL. (2)

hr

e 1
PN FARY . (3)

hold and the superconducting current j, is related to A

by the Ginzburg-Landau equation: j,=j(a). Equations
(2) and (3) are easily integrated:
.6 i

N L L

2 d:
ddic L= A TR (4)

from which we determine the average electric field in
the specimen’®

2

E,:T; fg=1h (5)

The VAC (4),(5) was obtained for a long channel with a
large number of PSCs. At large currents j> j_, it runs
parallel to Ohm’s law, j=¢£E +j,,. With an excess cur-
rent j,..=0.68j.. The initial VAC segment is described
by the relation
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