B. L Ivlev and N. B. Kopnin. Theory of resistive states in narrow superconducting channels. Consider a narrow superconducting channel with transverse dimensions smaller than the depth of penetration of the magnetic field and the coherence length $\xi(T)$. The Ginzburg-Landau theory predicts that when the current density j through this channel exceeds a value j_c , which is called the critical Ginzburg-Landau current, superconductivity failure occurs in the channel and the channel transfers to the normal state. However, experiment indicates that there is a range of currents above

 $j_{\rm c}$ where superconductivity does not vanish totally but continues to exist in spite of the fact that the specimen offers nonzero resistance to direct current.^{1,2} This state of the superconductor is called the resistive state (RS). An electric field that accelerates electrically charged Cooper pairs exists in a superconductor in the RS. The increase in the velocity $v_{\rm g} = (\hbar/2m)\nabla\chi$ of the Cooper pairs, where χ is the phase of the order parameter, is related to the increase in the difference $\chi_2 - \chi_1$ of the phases at the ends of the superconducting channel. Since superconductivity does not fail in the RS, this im-

772 Sov. Phys. Usp. 25(10), Oct. 1982

Meetings and Conferences 772

plies the existence of a mechanism that offsets the increase of the phase difference under the action of the electric field. Phase slip is such a mechanism. It consists essentially of the following. The absolute value of the order parameter Δ begins to decrease at a certain place in the specimen, and at a certain time it vanishes. At this time, the difference between the phases to the right and left of this point changes stepwise by 2π , after which superconductivity is restored at this point and the order parameter begins to increase. The process is repeated after a certain time. The point at which the order parameter vanishes as it oscillates and its phase experiences the 2π jump is called the phase-slip center³ (PSC). If the specimen is long enough, it may contain several PSCs. In the limit of an infinitely long specimen, PSCs occur periodically along its length with a certain density that depends on the current,

The phase-reversal process desscribed above is conveniently analyzed in two-dimensional space-time $\{x, ct\}$, where x is the coordinate along the specimen. We introduce the two-dimensional vectors

$$\boldsymbol{\rho} = \{\boldsymbol{x}; ct\}, \quad \mathbf{q} = \{\boldsymbol{Q}_{\boldsymbol{x}}; -\boldsymbol{\Phi}\}, \quad \mathbf{a} = \{\boldsymbol{A}_{\boldsymbol{x}}; -\boldsymbol{q}\},$$

where

$$Q_x = A_x - \frac{\hbar c}{2e} \frac{\partial \chi}{\partial x}$$
 and $\Phi = q + \frac{\hbar}{2e} \frac{\partial \chi}{\partial t}$

are gradient-invariant vector and scalar potentials (A and φ are the ordinary electromagnetic potentials). The vectors **q** and **a** are related by $\mathbf{q} = \mathbf{a} - (\hbar c/2e) \partial \chi / \partial \rho$. The phase-slip time is represented by a point $\{x; ct\}$ in space-time. Let us surround this point with a closed contour *l* and consider the integral

$$\oint_{I} q \, d\rho = \oint_{I} a \, d\rho - \frac{\hbar c}{2e} \oint_{I} \frac{\partial \chi}{\partial \rho} \, d\rho. \tag{1}$$

The phase-reversal process is equivalent to the condition that the order-parameter phase change by $2\pi_n$, where *n* is an integer, as we move around this point. Using the definition of the electric field

$$E = -\frac{1}{c} \frac{\partial A}{\partial t} - \frac{\partial \varphi}{\partial x} = (\text{rot } a)$$

we obtain a "quantization rule"⁴ from (1):

 $\int E \, \mathrm{d}x \, \mathbf{c} \, \mathrm{d}t = q_0 n.$

where $\varphi_0 = \pi \hbar c/e$ is the quantum of the flux, and the integration extends over the area occupied by a single PSC in the space $\{x, ct\}$. This expression is a generalized Josephson relation.

It is necessary to resort to the dynamic equations of superconductivity to determine the structure of the PSC and to calculate the volt-ampere characteristic (VAC) of the specimen. Another characteristic length appears here: the penetration depth l_E of the electric field,^{5,6} which is the relaxation length of the difference between the chemical potential $\mu_e = -e\varphi$ of the normal excitations and the chemical potential of the Cooper pairs $\mu_r = (\hbar/2) \partial \chi/\partial t$: $\Phi = (\mu_r - \mu_e)/e$. The penetration depth l_E was calculated in Refs. 5 and 6 for temperatures near T_e . It is considerably greater than $\xi(T)$.

The distance L between successive PSCs in the RS is of the order of magnitude of the electric-field penetration depth: $L \sim l_E$. Analysis of the dynamic equations of superconductivity indicates⁷ that three segments can be distinguished on the interval $-L/2 \leq x \leq L/2$ (the point x= 0 corresponds to the PSC):

1. $|x| \le x_1 \le \xi^2 / l_E$ —a range of oscillations of the order parameter Δ . It is significantly suppressed in this range as compared to the equilibrium value Δ_0 .

2. $\xi^2/l_E \leq |x| \leq x_2 \sim \sqrt{\xi l_E}$. The superconducting current j_s oscillates in this range. The order parameter does not depend on time and takes the form $\Delta(x) = \Delta_0 \tanh(x/\sqrt{2\xi})$. The lengths of the dynamic regions x_1 and x_2 are considerably smaller than L: $x_1, x_2 \ll L$.

3. $\sqrt{\xi l_E} \leq |x| \leq L/2 \sim l_E$. None of the quantities depends on time in this range. Here a voltage forms at the PSC. Because of the narrowness of the dynamic ranges x_1 and x_2 , the main contributions to the potential drop on the PSC comes from the static region, in which the simple equations

$$\sigma = \sigma E \cdots , \quad E = -\frac{\partial \Phi}{\partial x} . \tag{2}$$

$$\frac{e^{2}(1)}{e^{\frac{1}{2}}} \approx \frac{1}{I_{E}^{\frac{1}{2}}(\Delta)} \, \Phi. \tag{3}$$

hold and the superconducting current j_s is related to Δ by the Ginzburg-Landau equation: $j_s = j_s(\Delta)$. Equations (2) and (3) are easily integrated:

$$\Phi^{2}(\varepsilon_{s}) = \frac{2}{\sigma^{2}} \int_{0}^{t_{s}} l_{s}^{2}(\Delta) (\varepsilon_{s} - \varepsilon_{s}) d\delta_{s}, \ L = \frac{2}{\sigma} \int_{0}^{0} l_{s}^{2}(\Delta) \frac{d\varepsilon_{s}}{\Phi(i_{s})},$$
 (4)

from which we determine the average electric field in the specimen $^{7\,\,8}$

$$E = \frac{2\Phi}{L}; \ \beta = 0.$$
⁽⁵⁾

The VAC (4), (5) was obtained for a long channel with a large number of PSCs. At large currents $j \gg j_c$, it runs parallel to Ohm's law, $j = \sigma E + j_{exc}$ with an excess current $j_{exc} = 0.68 j_c$. The initial VAC segment is described by the relation

$$|j-j_{c}| = |c| \exp\left(-0.91 \frac{|c|}{\sigma E}\right),$$

- - - p

- ¹J. Meyer and G. V. Minnigerode, Phys. Lett. Ser. A 38, 529 (1972).
- ²W. J. Skocpol, M. R. Beasley, and M. Tinkham, J. Low Temp Phys. 76, 145 (1974).
- ³J. S. Langer and V. Ambegaokar, Phys. Rev. 164, 498 (1967).
- ⁴B. I. Ivlev and N. B. Kopnin, Pis'ma Zh. Eksp. Teor. Fiz. **28**, 640 (1978) [JETP Lett. **28**, 592 (1978)].
- ⁵A. Schmid and G. Schön, J. Low Temp. Phys. 20, 207 (1975).
- ⁶S. N. Artemenko, A. F. Volkov, and A. V. Zaitsev, *ibid.* **30**, 487 (1978).
- ⁷B. I. Ivlev and N. B. Kopnin, *ibid.* 44, 453 (1981).
- ⁸B. I. Ivlev, N. B. Kopnin, and L. A. Maslova, Zh. Eksp. Teor. Fiz. 78, 1963 (1980) [Sov. Phys. JETP 51, 986 (1980)].