
they are taken into account, and this stabilizes states
with IV.

When, in addition to the f-s interaction, interaction
with homogeneous deformation is taken into account,
the first-order transition criterion takes the form7

where Β is the elastic modulus, υ is the specific vol-
ume, and ρ is the density of states. It is found that a
stepwise transition is possible here only at the expense
of the lattice (dEt/dv*0).

Allowance for local (polaron) correlations in the elec-
tron-phonon interaction also results in smearing of the
transition and stabilization of the IV.8 Further, by
causing effective repulsion of f-electrons, interaction
with shortwave phonons also stabilizes an IV phase
with spatial correlations (of the Wigner-crystal type);2

Coulomb repulsion of electrons by various centers also
produces the same result. There would be two succes-
sive transitions in this situation: from a phase with n{

* 1 to an IV phase with nt~ 1/2 with superstructure, and
then to phase with nt* 0. However, true long-range or-
der is improbable in the intermediate phase. Esti-
mates indicate that the zero-point oscillations are
large at realistic parameter values, and that the sys-
tem is more reminiscent of a liquid with short-range
order. Only if r/Uint~ 10"4 could a "crystalline" phase
result.

The most interesting unsolved problems relate to the
structure and properties of the IV state itself. A sim-
ple picture of the type in Fig. 1 (virtual level or peak in
density of states ρ(ε) near eF) describes a number of the
experimental results in a qualitative fashion: the high-
compressibility anomaly in the IV phase, the enormous
linear electronic heat capacity c = yT (γ ranges up to 103

mJ/mole-K2 the approach of the susceptibility χ(Γ) to a
constant value as Γ - 0 , etc. However, this picture
cannot explain many details of the experiment. This ap-
plies in particular to the kinetic properties (conductiv-
ity, Hall effect, thermal emf, etc.). Conductivity data
appear to indicate that all substances with IV can be
broken down into two classes: compounds in which the
ground state is purely metallic and is described by a
Fermi-liquid picture, and substances of the semicon-
ductor type. The former group includes intermetallic

compounds (CePd3, YbAl3 and others), and the latter,
apparently, those substances (SmS,SmB6, TmSe) that
would be semiconductors in a phase with integer va-
lence and in which all conduction electrons are elec-
trons that have arrived from the f-level. The nature of
the gap in these substances has not yet been precisely
established. It may simply be of hybridization nature;
however, it is much more probable that the gap is col-
lective. For example, it might also be related to ex-
citon effects (a state of the exciton-insulator type9).

We note in conclusion that systems with IV model, in
a sense, common condensed matter consisting of elec-
trons and ions: here f-holes play the role of heavy pos-
itively charged ions. As in ordinary systems, it is pos-
sible in principle here for a gaseous or plasma phase
(integer valence, nthole — 0) and a condensed phase with
equilibrium density nthole*0 to exist; in principle, the
latter could be "liquid" (short-range ordering) or
"crystalline," and from the standpoint of its electron
properties it may be a "metal" or a "dielectric."
There is, of course, also a significant difference:
here the f-electrons or f-holes and s-electrons are
identical particles that are capable of turning into each
other. This may result in several important conse-
quences and greatly complicates theoretical description
of these systems.
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B. L Mev and Ν. Β. Kopnin. Theory of resistive
states in narrow superconducting channels. Consider a
narrow superconducting channel with transverse di-
mensions smaller than the depth of penetration of the
magnetic field and the coherence length ξ(Γ). The
Ginzburg-Landau theory predicts that when the current
density j through this channel exceeds a value ; c , which
is called the critical Ginzburg-Landau current, super-
conductivity failure occurs in the channel and the chan-
nel transfers to the normal state. However, experi-
ment indicates that there is a range of currents above

j c where superconductivity does not vanish totally but
continues to exist in spite of the fact that the specimen
offers nonzero resistance to direct current.1·2 This
state of the superconductor is called the resistive state
(RS). An electric field that accelerates electrically
charged Cooper pairs exists in a superconductor in the
RS. The increase in the velocity va = (H/2m)vx of the
Cooper pairs, where χ is the phase of the order param-
eter, is related to the increase in the difference X2-Xi
of the phases at the ends of the superconducting channel.
Since superconductivity does not fail in the RS, this im-
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plies the existence of a mechanism that offsets the in-
crease of the phase difference under the action of the
electric field. Phase slip is such a mechanism. It con-
sists essentially of the following. The absolute value of
the order parameter A begins to decrease at a certain
place in the specimen, and at a certain time it vanishes.
At this time, the difference between the phases to the
right and left of this point changes stepwise by 2ir, after
which superconductivity is restored at this point and the
order parameter begins to increase. The process is
repeated after a certain time. The point at which the
order parameter vanishes as it oscillates and its phase
experiences the 2ir jump is called the phase-slip cen-
ter3 (PSC). If the specimen is long enough, it may con-
tain several PSCs. In the limit of an infinitely long
specimen, PSCs occur periodically along its length with
a certain density that depends on the current.

The phase -reversal process desscribed above is con-
veniently analyzed in two-dimensional space-time
{x, ct}, where x is the coordinate along the specimen.
We introduce the two-dimensional vectors

p = {r.cl}. q

where

i ; —ill) , a = {.4.v: -if),

are gradient-invariant vector and scalar potentials (A
and (^ are the ordinary electromagnetic potentials).
The vectors q and a are related by q = a -(Kc/2e) 3x/3P-
The phase-slip time is represented by a point {r;c<} in
space-time. Let us surround this point with a closed
contour / and consider the integral

i i i
The phase-reversal process is equivalent to the condi-
tion that the order-parameter phase change by 2iin,
where n is an integer, as we move around this point.
Using the definition of the electric field

we obtain a "quantization rule"4 from (1):

where <f>0=irKc/e is the quantum of the flux, and the in-
tegration extends over the area occupied by a single
PSC in the space {x,ct}. This expression is a general-
ized Josephson relation.

It is necessary to resort to the dynamic equations of
superconductivity to determine the structure of the PSC
and to calculate the volt-ampere characteristic (VAC)
of the specimen. Another characteristic length appears
here: the penetration depth Z£ of the electric field,5-6

which is the relaxation length of the difference between
the chemical potential y.t= —etf> of the normal excita-
tions and the chemical potential of the Cooper pairs jur

= (K/2) dx/dt: * = (Mr - H,)/e. The penetration depth 1E
was calculated in Refs. 5 and 6 for temperatures near
Tc. It is considerably greater than £(T).

The distance L between successive PSCs in the RS is
of the order of magnitude of the electric-field penetra-
tion depth: L~1E. Analysis of the dynamic equations of
superconductivity indicates7 that three segments can be
distinguished on the interval -Z./2 «* « L/2 (the point x
= 0 corresponds to the PSC):

1. x Sx!~52/Z£—a range of oscillations of the or-
der parameter A. It is significantly suppressed in this
range as compared to the equilibrium value AO.

2. £2/;£s x ^x2~ V (,1E. The superconducting cur-
rent;', oscillates in this range. The order parameter
does not depend on time and takes the form A(X)
= A0tanhO«;//2|). The lengths of the dynamic regions
Xi and x2 are considerably smaller than L: xi,x2«L.

3. V| / £< x «L /2~Z £ . None of the quantities de-
pends on time in this range. Here a voltage forms at
the PSC. Because of the narrowness of the dynamic
ranges x± and x2, the main contributions to the poten-
tial drop on the PSC comes from the static region, in
which the simple equations

r- "''' / O\
. < = - 0 £ - - ;, E "= -— . (.2)

^7^<". ' (3)

hold and the superconducting current jf is related to A
by the Ginzburg-Landau equation: JS = JS(A). Equations
(2) and (3) are easily integrated:

d .

* ( / < )
(4)

from which we determine the average electric field in
the specimen7-8

E-^, A-". (5)

The VAC (4),(5) was obtained for a long channel with a
large number of PSCs. At large currents j»je, it runs
parallel to Ohm's law, j = oE+jm with an excess cur-
rent jeic=0.68;c.
by the relation

The initial VAC segment is described

"II ——'I
oE I '
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