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This review discusses the properties of highly excited vibrational states of polyatomic molecules and
molecular crystals. As we know, one can describe small vibrations of molecules with the concept of normal
modes. In molecules having several identical valence bonds (CsH,, H,0, etc.) the normal modes that describe
the vibrational excitations of these bonds amount to vibrations whose energy is more or less uniformly
distributed over all the bonds, with a degree of delocalization of the energy over the bonds that increases with
increasing level of excitation. On the other hand, an extensive set of physical phenomena exists (e.g.,
dissociation of molecules) in which local excitations, a considerable fraction of which are spatially localized,
play an important role. A localized state corresponds to a complicated superposition of normal modes. Hence
the concept of normal vibrations is inadequate for describing vibrations (or, better expressed, movements) of a
highly excited molecule. One can conveniently describe such movements of the molecule in the representation
of local modes (LM). As a rule, one takes an LM to mean simply the coordinate of a valence bond of the
molecule, e. g., O-H, C-H, etc. A large number of papers has been published recently on the experimental
study of LM and infrared spectra, relaxation experiments, selective photochemistry, etc. This review casts

light on these experimental data on the basis of the theory of LM.
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INTRODUCTION parently give them another name [e.g., vibrational

The past decade has been marked by a qualitative
jump in the study of anharmonicity of dynamic systems.
The preceding period had been mainly associated with
seeking and creating rigorous and effective computation~
al methods for taking into account nonlinearity of
almost-linear systems.!) However, recently physic-
ists and mathematicians have concentrated their atten-
tion on effects in which anharmonicity plays the deter-
mining role. Without fully reviewing the literature,
we shall point out only the highly interesting book
Theory of Solitons,' which notes the existence of such
effects in plasma physics, hydrodynamics, aerodynam-
ics, quantum field theory, etc.

The aim of this review is to call attention to one of
such effects in molecular physics. We shall show that
highly excited localized vibrational states can exist in
large molecules and in crystals that differ so much
from the states of linear systems that one should ap-

' These methods originate in celestial mechanics and are associ-
ated with the names of Lagrange, Poincaré, Kolmogorov
and Arnol’d, Bogolyubov, Krylov, etc.
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excitons, in contrast to phonons in a solid, and in poly-
atomic molecules—local modes (LM}, in contrast to
normal modes (NM)].

We believe that the publication of a review on the
localization of vibrational energy at high levels of exci-
tation will be timely, since considerable experimental
material in the spectroscopy of the corresponding states
has been already accumulated (see, e.g., Refs, 2-5)
and requires a theoretical clarification from a unitary
standpoint.

1 FUNDAMENTAL CONCEPTS AND FORMULATION
OF THE THEORY OF LOCAL MODES

Let us adopt the following definition: local modes are
the vibrational states of a molecular system in which
all or almost all the energy of excitation is localized in
one of the valence bonds of the molecule.

If we treat a molecule as a system of classical non-
linear interacting oscillators, each of which corresponds
to the vibration of a valence bond or valence angle, then
in a local vibration the amplitude of one of the oscilla-
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tors is much larger than those of all the rest. In quan-
tum language this means that the wave function of the
excited molecule has the form

B (G- Ex) = 0 (B Do G By B - E) 1)

Here ,(£,) is the eigenfunction of the ith oscillator
having a high level of excitation n>>1, &, describes the
weakly excited states of the (N ~ 1) remaining oscilla-
tors. In many cases, in particular in describing an LM
in the H,O molecule (see below), we can take the wave
function (1) with good accuracy in the form

Yo (8.0, 8) = ¥ (B) ¥y (1) 4, (B): 2)

Here ¢; and ¢, are Morse functions describing the vi-
bration of the O-H bond and of the valence angle,

We note that in most cases the LMs are not stationary
states. However, they decay time of an LM can prove
to exceed the characteristic time of a physical process
(e.g., in dissociation of a molecule). Evidently, in this
case the LMs can substantially affect the kinetic char-
acteristics of the process,

Let us discuss the physical reasons for localization
of vibrations. First we shall carry out a classical,
and then a quantum treatment of the problem.

a) Classical theory of localization of vibrations

We can conveniently trace the physical reason for the
localization of vibrational excitation with the example of
two weakly interacting anharmonic oscillators.® Let
the first oscillator be excited at the initial instant of
time, while the second is at rest. If the amplitude of
excitation is small, then the frequencies of the two os-
cillators are close. Consequently all the energy of the
first ocillator will be transferred in the course of time
to the second oscillator. Yet if the amplitude of exci-
tation of the first oscillator is high enough, then the
frequencies of the two oscillators differ strongly, since
the eigenfrequency of an anharmonic oscillator depends
on its amplitude. This leads to breakdown of resonance
and to the impossibility of transfer of all the energy
from one oscillator to the other.?’ Mathematically this
situation is described by the equations

{ X+ wix, - eATd = ef,.

Ty - 0}z, — eAX) - efix,.

3)

Here x, and x, are the coordinates of the first and
second oscillators; w, is their zero-point frequency; ¢
is a small parameter; x and 8 are parameters that
respectively characterize the anharmonicity and the
strength of coupling of the two oscillators. The follow-
ing expression was derived in Ref. 6 by the averaging
method” for the time T within which all the energy is
transferred from the one to the other oscillator:

arz

A Ty )

eff § 1 —{a?y. 4)® sint y

D This phenomenon is often demonstrated with the example of
two identical pendulums suspended from one filament, One
of the authors (A.0O.) has repeated this school experiment by
imparting a large amplitude to one of the pendulums, and
convinced himself that there is no complete transfer of ener-
gy.
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FIG. 1. Phase diagram of two nonlinear oscillators. The re-

gion of stable oscillations is ¢ross-hatched.

Here a is the initial amplitude of the oscillations of the
first oscillator at the initial instant of time, and we have
¥ =3)2/8. We see from (4) that complete energy trans-
fer is possible only under the condition

aty

7 < 1. (5)

That is, the initial excitation of the first oscillator must
be sufficiently small.>’ Whenever (5) is not satisfied,
the energy of the first oscillator is always larger than
that of the second oscillator. This means that the
energy is localized in the first oscillator, with the de-
gree of localization increasing as the parameter @*x/B)
increases. Figure 1 shows the phase diagram of the
system, where the stability regions of local vibrations
are indicated. The variables # and ¢ of the phase dia-
gram are related to the complex amplitudes of the vi-
brations of the first and second oscillators A, and A, by
the relationships

Ay=acosfe=Vi|  A,=asinBeils, §=1,— {5 (6)
The phase diagram pertains to the case (3/4)a’y = 1,
with the hatched region corresponding to stable local
vibrations, in which the energy of the one oscillator
cannot be completely transferred to the other oscilla-
tor.

We should note that, although the expression for the
transfer time T in (4) holds only for a time ¢<1/w,e®
the exact solution differs only slightly from (4);

(~ 0(e~'"€)).® The stability of local vibration for an
infinite time interval in the case of two weakly coupled
anharmonic oscillators stems from the general proof
of the stability of weakly coupled systems with respect
to small perturbations under the condition of incom-
mensurability of the frequencies of the subsystems (the
frequencies of the oscillators differ when one of them is
strongly excited) that has been given by A. N. Kolmo-
gorov and V. M. Arnol’d.®

»

One of the present authors® has examined the problem
of the stability of local vibrations in a system of non-
linear, weakly coupled oscillators described by the
Hamiltonian

BipD=350i+d+e(+ 3 di=p Souna). M
i i i
Here € is a small parameter. This Hamiltonian has a
direct physical meaning and describes, e.g., simple

31n the case of harmonic oscillators, all the energy is period-
ically transferred from one oscillator to the other with a
period T=mwy/2e8.

A. A, Ovchinnikov and N. S. Erikhman 739



molecular crystals such as H,, O,, NO, N,, etc. It
turns out that the phase space of (7) contains regions of
stability of local vibrations, at least over a time inter-
val that satisfies the condition

T << oyfel/Me, (8)

Here M is a constant that does not depend on the small
parameter €.° The restriction (8) involves the method
of proof (method of averaging”) that was used in Ref. 9.
The problem of the stability of local vibrations over an
infinite interval of time for the system of (7) with n>2
remains open. Numerical experiments performed for
the system of (7) confirm the existence of local vibra-
tions for a prolonged period of time.!® We should say
that grounds exist at present for thinking that there is
no “eternal” stability for autonomous sytems if n>2. At
any values of the anharmonicity parameters, however
small, “mixing” occurs, owing to the so-called Arnol’d®
diffusion. But quantum effects (tunnel mixing) come into
play even earlier.

The “mixing” case corresponds to randomization of
the motion of the dynamic system, in which its energy
is uniformly distributed among all the degrees of free-
dom. In this case the motion of the system can be des-
cribed statistically. A vast number of studies has been
devoted to the problem of statistical description of dy-
namic systems. Werefer theinterested reader to the
monograph of Ref. 11 and the reviews, of Refs. 12,
13-15 which clearly demonstrate the physical essence
of the problem with examples from various fields of
physics.

We should note that randomization and localization of
motion are opposite limiting cases of the motion of dy-
namic systems. The question arises in this regard of
the criteria for localization and randomization. Al-
ready the first studies of this problem (see Ref. 10)
noted that the character of the motion depends strongly
on the initial conditions. Depending on the latter,
either localization of motion or “mixing” can occur at
the very same energy. However, apart from simple
model systems (see, e.g., Refs. 11, 13), no clear
criterion of randomness has yet been worked out for
such complex dynamic systems as a polyatomic mole-
cule. There is a qualitative criterion that randomiza-
tionoccurs when a large number of resonances overlap.'®
We can add to this that, since any system of nonlinear
interacting oscillators with N>2 is apparently random-
ized, in studying molecular vibrations it is important
to know how to estimate the randomization time, i.e,
the decay time of the local modes. Taking into account
what we have said above, we can formulate the follow-
ing rule: The more the frequency of a local mode dif-
fers from the frequencies of the other vibrations and
the higher the order of the resonace’ that couples
the local mode with the other vibrations of the mole-
cule, the greater is the lifetime of the local mode. Be-
low, in discussing the experimental data, we shall re-
peatedly take the opportunity to convince ourselves of
the validity of this rule.

D 35ee below for the definition of the order of the resonance
[Egs. (34) and (35)].
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In closing this section we note the interesting study
of Jaffe and Brumer,® who defined LMs and NMs on the
basis of classical mechanics. According to the defini-
tion, an LM is described by regions of phase space con-
nected by a continuous sequence of infinitesimal can-
onical transformations with the regions of local'm'cdes
of zero-order with respect to the interaction hetween
the modes, For example, for an XY, molecule the
zero-order local modes are described by the Hamilton-
ian H,=H, (¢) +H,(n) +Hd,(6), where ¢ and n are the
valence coordinates, and 9 is the angle between them.
The normal modes (NMs) are defined by canonical
transformations in a similar manner with the quadratic
Hamiltonian of the normal vibrations being taken in this
case as the zero-order Hamiltonian. In particular, in
this approach the high-frequency normal mode in the
XY, molecule results from resonance of the identically
excited LMs corresponding to the valence vibrations.
From this standpoint it is equivalent to a combination
LM with the same level of excitation of the equivalent
modes. The authors of this study show with the example
of a numerical calculation for the H,O molecular that
the region of phase space corresponding to an LM in-
creases with increasing excitation energy. In the lan-
guage of quasiclassical quantization this implies an
increase in the number of local vibrational levels of the
molecule with increasing excitation number ». Random-
ization sets in upon further increase in excitation. One
can find the criterion for randomness and numerical
calculations illustrating the onset of randomization in a
system of two anharmonic oscillators in Refs, 63-71.

We now turn to the study of the local modes in the
quantum case,

b) Quantum theory of local modes in polyatomic
molecules

In order to explain the physical reason for the forma-
tion of LMs in quantum language, we first treat a model
of two weakly interacting anharmonic oscillators. Let
one of them occupy the nth level and the other the zero
level. As we know, the levels of an anharmonic oscilla-
tor are not equidistant, That is, we have

Ey —Eny 5+ Ey—Eg (9)

Therefore, in view of the law of conservation of energy,
the first oscillator cannot yield a single quantum to the
second oscillator, and thus transfer part of its energy
(for harmonic oscillators this can always be done).

Thus for anharmonic oscillators energy can be trans-
ferred from one oscillator to the other only as a whole
without fractionation. Of course, the probability of such
a process is small, and it can be estimated as follows.
The Hamiltonian of a system of two weakly coupled os-
cillators has the form

= 3 [F4+v@E)]+ne, (10)

The time for transfer of all the energy (as we pointed
out above, it cannot be divided) from the first to the
second oscillator is

T = fihe Fou= {0 (@) 70 (2) (1) dz. (11)
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The matrix element £, is very small for large » and it
depends strongly on the type of anharmonicity. For a
harmonic oscillator only the element f,, differs from
zero. Let us estimate it for a Morse potential.

-In this case we have
U (z) = D. (1 —exp [—B. (z—re)]}2. (12)

Here D, is the dissociation energy, and 7 is the equi-
librium distance in the diatomic molecule, The energy
spectrum has the form

SRR
Ao — V 2D.Bek I = hive

i e ¢ -
1 4De

u hof (- 4) o (147
(13)

The parameter x, characterizes the anharmonicity of
the molecule. For the strongly anharmonic molecule
H, the magnitude of x, is 0.027, while for the weakly
anharmonic N, we find x,=0.0061. The intramolecular
frequencies w, are of the order ~1000-4000 cm~}. The
matrix elements f,, for the Morse potential have been
calculated in Ref. 16. In the case nx.,« 1 we have

. kn! 237!
Hon!* = —samat (14)
Hence the transition time 7., is
Quwen?
Tn = o (15)

Upon substituting into (15) the characteristic values

for diatomic molecules pw?/8~10, w,~1000 cm™, and
x.~0.015, we obtain 1y, ~10 8 for o ~10. At the same
time, for an excitation with n=1, we have 7, ~107% s,
That is, the transition time of the energy as a whole,
without fractionation from one oscillator to the other,
is increased by several orders of magnitude for the
highly excited levels as compared with the transition
time 7, for one-quantum excitations.

We see already from the estimates given here that,
for a quantum system having the Hamiltonian of (10),
the wave functions of the form §,(x;}¢,(x) (n> 1) des-
cribe quasistationary states of extremely small width I.
That is, they are local modes in the sense of the de-
finition (1). We stress that the existence of the LMs
leads to a substantial reorganization of the eigenfunc-
tions of the molecule as compared with the functions
of the normal vibrations. In turn, this leads to far-
reaching physical consequences.

Let us illustrate this with the example of the H,O
molecule. This molecule is convenient owing to the
large anharmonicity of its stretching vibrations and
the possibility of revealing the essence of the problem
without superfluous mathematical complications.

As we know, the vibrational spectrum of the water
molecule in the normal-mode representation has the
form?'’

3

Bnm B ol = 3)+ T oan(vrd) (k). (6)

i==] ioj=1

Here v, is the vibrational quantum number. The param-
eters in (16) are’®
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©, = 3835 eml ayy = —4h et oz, =
@, = 1648 cu7t,
0y = 3938 em~1,

— 15 9,
Ly, = —47 et xyy = —20 emt, } 17
Ty m —Ah e rg = —185 enl

Here w, is the frequency of the A,-type normal vibra-
tion, which corresponds to the symmetric vibration of
the OH bonds with a small admixture of bending vibra-
tion; w, 1s the frequency of the B,-type normal vibra-
tion, which corresponds to the antisymmetric vibration
of the OH bonds, and finally, w, is the A,-type vibra-
tion pertaining to the bending vibration with a small ad-
mixture of the symmetric vibration of the OH bonds.
Attention is called to the rather large value of the param-
eter x,, =—165 cm ™' as compared with the rest of the
anharmonic constants. This situation indicates that the
harmonic wave function is not a good zero-order approx-
imation for the highly excited vibrational levels (v~ 10),
since a strong mixing of the normal modes having the
frequencies w, and w, occurs at large values of v,.

Let us determine the form of the wave function des-
cribing the strongly excited vibrations of the valence
bonds in the water molecule. The stretching vibrations
of the H,0 molecule are described by a Hamiltonian of
the following form?*®=°;

Aol 3 +0@— 357 + UM |- B . (18)

2 ant

Here we have w =3900 cm™, g=50 cm™. U(t) is taken
to be the Morse potential of (12) with the anharmonicity
parameter (x./w)=0.026. One can show that one can
neglect the rest of the degrees of freedom and restrict
the treatment to the Hamiltonian of (18) in describing
highly excited, strongly anharmonic stretching vibra-
tions (O-H,C-H, etc.).?*™® In discussing the problem
of LMs in isolated polyatomic molecules?* Sage and
Jortner have shown that a Hamiltonian of the type of
(18) taken as the zero-order approximation enables
one, e.g., to explain theoretically the experiments on
laser excitation of high overtones in the benzene mole-
cule and its deuterated analogs that correspond to vi-
brations of CH bonds.

The result of Ref. 24 also clearly favor the choice
of the Hamiltonian of an XY, molecule in the form (18).
Here the frequencies of transitions in the H,0 molecule
were calculated, The potential energy U(r, 7, §) was
taken in the form of a 4th-order polynomial (» and 7
are the change in the bond lengths, and 6 is the angle
between them). The constants in the potential ‘energy
were chosen from known spectroscopic data for the
H,0 molecule. It turned out that the errors in the
frequencies calculated without taking into account the
anharmonic terms in U(r,7, 8) are considerably larger
than in the case in which all the cross terms relating
different stretching vibrations have been omitted
(Table I).

The authors of this study conclude that this situation
exists for a wider class of molecules when one is treat-
ing the vibration of hydride bonds (C~H, O~H, etc.).

1n (17) we employ the units adopted in molecular spectro-
scopy, B=1, w in em™",
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TABLE I. Frequencies of transitions
in the H;O molecule.

K Only quadratic cross term:
f\u terms up to r* terms retained ’Arlxlumd nlU #
nye o) nvere) (e

©y = 3747.1 em’! i 3854 3793.9
@y=1156.5 cm 1242 1165.6
3= 3868 cm'! 3957.4 3849.2

Using the terminology employed in the revies of Ref.
25 one can say that the high-frequency vibrations of
O-H, N-H, C-H, etc., valence bonds amount to “es-
sential modes,” whose potential can be represented in
zero-order approximation as the sum of the potential
energies of the individual valence bonds and angles.
‘Here one can take into account the cross terms between
the stretching modes by perturbation theory. This con-
clusion agrees well with the experimental fact of the
weak dependence, e.g., of the vibration frequency of
the C—H bond on the type of molecule (benzene, naphtha-
lene; see below).

Let us examine how the vibrational energy is distribu-
ted among the oscillators in the course of time when the
energy is localized in a single bond at the initial instant
of time. First let us treat the harmonic case: U(¢)
=£2/2, U(n) =7%/2. In this case the energy spectrum and
the wave functions of the Hamiltonian (18) have the form

Epn=n(@+ B tmo—p), im=#, (EL 1, (). (g9

The solution of the Schrddinger equation corresponding
to the initial condition |¥(0)) = |N, 0)® is

¥ (8)) =

e—{Nth l/n‘( ¥y [V . nyemiv-zmie, (20)

Equations (20) and (19) imply that the probabilities
Py(t) and Q,(t) of finding the system at the instant of
time f in the states |N, 0)® and |0, N)® are respectively

Py ()= AN, O]¥ ()2 = cos?™ (fu),

On (8) = |0, N|¥ (1)) |2 = sin?X (B). (21)

According to (21), the vibrational energy is completely
transferred from the one bond to the other in the time
T=7/28~7/100.3x 10~ 1072  i.e., in a time typical

of vibrational relaxation of weakly excited molecules
for which the harmonic approximation holds. Moreover,
we have

cos2¥ (Bt) +sin®y (Bt) 1 forall {t [zﬁl]>6} and N» 1. (22)

Hence we can conclude that the system exists for an
overwhelming fraction of the time in a state in which the
vibrations of both valence bonds are excited to a varying
degree, this state being reached in a time ~107% 5, The
delocalization of the vibrational energy over all the
valence bonds in the benzene molecule C,H, will pro-
ceed in a similar manner in the case in which the
harmonic approximation holds.

A totally different picture is observed for strongly
excited stretching vibrations for which we cannot neglect
anharmonicity. In this case the state of the system is
described by a time. vector |¥(t)) of the following form:
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TERCIN, 00, N) eyt
]/5 ]/2

(X, 00, ¥) ieytr2
TR @)

Here |m,n) corresponds to m-quantum and n-quantum

|‘]:'(t‘,=

" excitation of valence bonds described by anharmonic

wave functions. Below we shall assume them to be
Morse functions, so that the energy spectrum of the
stretching vibration will be described by the formula
(13). The quantity €, in (23) is the energy splitting
between the symmetric and antisymmetric stretching vi-
brations. In the zero-order approximation in g [see
(18)], the states |m,n) are described by the product of
the Morse functions §,(£)y,(n), while the energy €, in
(23) is the sum of the expressions (13) with m =N and

n =0, Equation (23) implies that the excitation energy is
transferred from the one bond to the other as a whole
without fractionation in a time 7 =7/€,. Let us stress
again that in the harmonic case Eq. (23) contains a lin-
ear combination of all the states of the form |N,0),
IN-1,1),...,]0,N) [see (20)], which leads to simul-
taneous excitation of both stretching vibrations. We
note that the corrections to the Morse wave functions in
(23) are quantities ~8/2x,(N-1)~1/10 for N~10. Hence
we can neglect them when N> 1.

In the case of weakly coupled anharmonic oscillators,
the splitting €, proves to be several orders of magni-
tude smaller than the coupling constant §~100 cm ™.
This gives rise to an extremely long lifetime of the ex-
citation in one valence bond (in the harmonic case we
have 7~1/B). That is, an effect arises of localization
of the vibrational energy in one bond. The reason for
the smallness of the splitting £, is that the corrections
to the energies of the symmetric and antisymmetric
states begin to differ only in the (N ~ 1)th order of per-
turbation theory in terms of the small parameters
(8/2x)~1/4 and (x,/w)~1/40. Hence the time of local-
ization of the excitation in a valence bond (or the split-
ting £,) increases (or declines) sharply with increasing
number N of vibrational quanta. The energy splitting €,
for XY,-type molecules that are described by the
Hamf{ltonian of (18) is given by the relationships

ey =25 ()t when g and W51,

ex =2ﬁ (-:)—‘)N—
The quantities €, and 7, have been calculated by these
formulas for a number of molecules.” Table II pre-
sents the results of the calculation.

1 24)
*N! when z,>pB and Nzo < 1.

Equation (24) shows that the smallness of the splitting
gy arises from the high powers of the small parameters
(8/Nx.)" and (Nx,/w)¥. Sincé we have s x,s 100 cm™
and w ~3000 cm ™ for hydride valence bonds (O-H,
C-H, N-H, etc.), the stated powers in these cases will
always be extremely small. Therefore, long-lived

local modes (LMS) can exist in such molecules. For
TABLE II

Mole- | o, | B, Zeo | ey cmTt Ty, 8§ Mole-| | 8, | feniemt| Ty, 8
cule fem™lemlem-! [ (N=10) [ (N =10){ cule |em™'|em™ |cm-1|(N = 10) (¥ = 10)

H,0 (3900} 50 [ 100 {0.2.10~7
D,

3.107% | H,Se | 2500
0 |3000] 50 | 50{ 40-3

0.5-10-| H,S |2727

42 | 10-10 10-2
10-10 10-2

iR o)
g
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example, molecules of the hydrocarbons C,H,, CH,,
etc. (see below) possess LMs. We note that Wallace®®
has calculated numerically the vibration frequencies of
the water molecule with the model Hamiltonian of (18)
up.to levels with N =5. The results of the calculation
show a tendency for levels to merge with increasing N.
Thus at N =5 there are two levels of energy identical
within the limits of accuracy of machine calculation.®)

A comparison of Eqs. (20), (23), and (24) leads to
the conclusion of the inadequacy of the description of
the highly excited vibrations of O-H bonds in the H,O
molecule in the language of normal vibrations. Actually,
in the harmonic representation (20) the time-dependent
wave function is a complicated superposition on a large
number of normal excitations, whereas actually in the
zero-order approximation the time-dependent wave
function is a linear combination of the two Morse func-
tions Py(E)Pm) and p,(&)¢x(n), each of which is evi-
dently an LM in the sense of the definition (1).

We can easily convince ourselves that, under the
condition w> x> g and N> 1, a fraction of the eigen-
functions (but not all) in the Hamiltonian of (18) has the

form

W (& ) = 7 [ (8) Yo () = %o (8) v ()] + small additions.

(24")
Here y,(£) and y,(n) are Morse functions, while the
“small additions” give an asymptotically small contri-
bution (~(8/Nx.)?, (Nx.,/w)* to the norm of the wave func-
tion. The states in (24) describe a situation in which
almost all the excitation energy is localized with equal
probability ~1,/2 in either the one or the other bond.
However, cases of a more uniform energy distribution
have low probability (~(Nx./w)?, (8/Nx), (8/w)f). Of
course, the states in (24) are not LMs in the sense of
the definition (1), but the circumstance is essential
that the time evolution of the LM y,(£)$,(n) is almost
completely described by the functions of (24’). The
latter implies that the wave function of the molecule at
any instant of time is a superposition of LMs with a
level of excitation ~Nw if the wave function at the initial
instant of time was an LM of the same level of excita-
tion. That is, we have ¥ =y, (£),(n).

The question arises of what the existence of an LM in
a polyatomic molecule means. What we have said
above allows us to answer as follows: if a local excita-
tion of a certain type in a molecule (e.g., of C—H bonds)
having a given energy (E ~Nw) remains a superposition
of excited states of the same type in the process of
evolution, then an LM exists in this molecule. If we
introduce the energy operator of the LM F?O(E), then in
the case of existence of an LM corresponding to £-vibra-
tion, the mean (¢ |H,|®) of this operator declines con-
siderably more slowly with time than in the case of
pure harmonic vibrations. In the language of wave func-
tions, what we have said implies that if, e.g., a vibra-
tion of a certain C-H bond is excited in the C;H; mole-
cule at the initial instant of time with the wave function
Iu(x)@,(%, ..., %, ), then the time-dependent wave
function can contain terms of the form y(x,)®,(x;, %,,

& Analogous results have been obtained in Ref. 95.
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cees X6 ¥, Iy (2)@(x,, X5, .0, %, V), and finally,
Py-n ()@ (%, ..., %, y) under the condition N> n. How-
ever, the terms &, ,(x,)dy, (%) X &,(x,, x5, ¥), Py (x;)
Sypl%, ..., %,Y), etc,, therein will always be small
(~WNx/wl, (B/Nx.F). We can say that the states of
local modes of a certain type and excitation level ap-
proximately form an irreducible representation of the
time-dependent displacement operators e H'  The
latter means that the multitude of states describing
the local modes is divided into classes, each of which
transforms among itself in the course of time.

Actually, owing to quantum tunneling effects, these
classes will mix, and moreover, the LMs will decay
into nonlocalized states, We recall that a system of
two classical nonlinear oscillators can exhibit eternal
stability (see above). The latter situation indicates the
need for a rigorous quantum treatment in analyzing LMs
in molecules. In classical language the situation that we
have described means that the phase space of the mole-
cule on the energy surface E =const contains regions of
nonzero measure from which the classical trajectory
emerges in a time 7,, far longer than the characteris-
tic periods of the system ~1/w, 1/8, 1/x.. That is, the
randomization time in the presence of LMs satisfies
the condition 7 ,,,>max {1/w, 1/x,1/8}

The local excitations described by the wave functions
of (1) can be either long-lived or have an ordinary life-
time ~1071'=10""2 s, In the former case the states of (1)
are quasistationary with an anomalously small width,
which sometimes reaches a value of ~107° em =%, In
the latter case it is not the individual excitation of (1)
that is long-lived, but a class of excitations of a single
type and pumping level, as was explained above. Long-
lived local excitations are characteristic of the simple
molecular crystals N,, H,, etc.? and have been ob-
served in many relaxation experiments with liquid and
solid nitrogen.2¢™?° Here the lifetime of the vibrational
excitation of the N, molecule attains a value 7~1s.
Situations in which an LM state of (1) rapidly mixes
(107! 5) with the LM states of the same type have
been observed in infrared absorption spectra of gaseous
benzene.’* Here the lifetime of an individual state of
(1) found from the width of the infrared spectra proves
to be ~1072 s (I'~100 cm~!). The following sections
will give a detailed discussion of the cited experiments.
We proceed to present the methods for estimating and
calculating the lifetime of LMs.

c) Lifetime of local modes in polyatomic molecules and
molecular crystals. Vibrational excitons

Calculation of the lifetime of an LM is a very com-
plicated mathematical problem. The difficulties that
one faces here can be either fundamental in nature
owing to the complexity of a system such as a polyatom-
ic molecule, or can arise from the insufficient value of
the potential energy for the vibrational motion of the
molecule. Therefore, following the studies of the pres-
ent authors,®*°+3! we shall present here a model ap-
proach to this problem. In our opinion, it enables one
to estimate correctly the lifetime of an LM in order of
magnitude.

A. A. Ovchinnikov and N. S. Erikhman 743



First let us discuss the case of a molecular crystal
consisting of diatomic molecules.

Let us list certain processes that can lead to a redis-
tribution of energy, i.e., to a change in the quantum
number n. First of all these processes include radia-
tive transitions. For molecules having a small dipole
moment (CQ, NO, etc.), the radiative lifetime for the
transition n - (n - 1) amounts to about 1 s, and is pro-
portional to ™. For molecules lacking a dipole mo-
ment (N, H,, O,, etc.), only quadrupole transitions
can occur, and their lifetimes are proportional to n™
(108-107) s,%,

The most important processes that facilitate a change
in n are thermal transitions, which occur with absorp-
‘tion of several phonons corresponding to translational
vibrations of the molecules.

Let us estimate the probability of transfer of one vi-
brational quantum of a strongly excited molecule to an
adjacent molecule with simultaneous absorption of sev-
eral phonons from the lattice. Here we shall assume
that optical phonons of the highest frequency are being
absorbed. It has been shown in the theory of radiation-
less transitions®+** that these are precisely the most
probable processes. Accordingly we shall restrict the
treatment to two diatomic molecules treated in isola-
tion,”

Let the cell contain two molecules, the distance be-
tween which is described by the coordinate g, which in
the zero-order approximation performs harmonic vibra-
tions with the Debye frequency . The interaction of
this vibration with the intramolecular vibrations can be
described by a Hamiltonian of the following form:

H= 3 H )+~ o+ 0) +4U (20, 20),

i=1,2

(25)

Here m is the reduced mass of the molecules, and q is
a certain relative coordinate. We can represent the
interaction operator qU(x;, x,) in the form

(25")

Here a,, a,, and §;, are the interaction constants. The
frequencies of the intramolecular vibrations are much
larger than those of the intermolecular vibrations (w

> Q). Consequently we can treat the motion of the mo-
lecular oscillators as being adiabatic. Here their wave
functions y,(x,, x,) are eigenfrequencies E (q) will depend
on q as a parameter. In first-order perturbation

theory in U(x,, x,) we have

qU (24, 72) = 4 (842 + @aZz + B1y 2} + Boazy 1 Pr2%47a).

E ()= E® + U, (26)
Yo (21 2219) =9 (T4, )+ ¢ Z Egnfj"i_yEw PP (24, Z2)-
Here ${°) and E{” are the wave functions and eigen-
values of the Hamiltonian },H,(x,), and
U= 5 Sd-'"'i dz, $FU (24, 75) HIF'™ 27)

The complete wave function in the adiabatic approxi-
mation is the product of the wave functions of the intra-

DThis actually implies taking into account the interaction
with phonons having k= and neglecting the long~wavelength
portion of the phonon spectrum.

744 Sov. Phys. Usp. 25(10), Oct. 1982

and intermolecular motions

CD.w (Ilv T2} 9)=‘~Ps (Ih T3 Q) CP’fe (Q)' (28)

The function ¢%(q) is the solution of the oscillator Ham-
iltonian with the addition to the potential energy of the
function Eg). The nonadiabaticity operator that gives
rise to the transitions in the system has the matrix
elements

K

- U i .
My = — 5 gz ( [ 91 (@ 2 9% () da) . (29)
The transition probability depend on them as follows33*34;
wy =% |MYe |2 e=Blh TS (E, — E,...), Z— Sle-Eunr, (30)
Calculation of this summation®s gives the following
result:
o __ ap[n(I)}r -
W! = —‘:7"—"—17,—?517 1,
Here we have
_ gy __ Msi?
P————'—-hg ’ Y-m_Q(_Eg“’——E_‘,‘)’)” (31)

p=Wen Ul () — (107 — 1),

Here p is the number of phonons that must be absorbed
from the crystal in order to make the transition from s
to s’ energetically possible. In the general case the
quality p is not an integer. Therefore, in order to
satisfy the conservation law, one acoustic phonon must
be absorbed. Taking this situation into account cannot
change the transition probability W:' in order of magni-
tude. Hence, following Ref. 36, we can consider that

p adopts any values whatever according to (31).

In the initial state let the first oscillator occupy the
nth level, and the second the zero level; in the final
state the first oscillator will occupy the (z — 1)th level,
and the second one the first level. Then, employing
(13), we obtain

_ 276w (n—1) _ B (Baa—Bea)®
pup,=erch o Euohar, 2
0 gt
Y= 25mOe, pog *

We give the numerical estimates for the transition
probabilities W?' in the case of the nitrogen crystal N,,
for which

Q=70 cut, 6~ (TZT)Z (A Ay ~ 10

) (33)
_gn _ @ n (@)
Y - zp?l A W,\ - 2pnl

For example, whenn =7 and T=30 K, we have W,~107?
s7!, while at liquid-helium temperatures 7~4 K we
have W,~107% s™}; the corresponding lifetimes prove

to be 10 and 10°* s. We should note that processes with
an entire high-frequency quantum bheing replaced by
phonons are extremely improbable. Actually, one can
estimate the corresponding probability by using Eq.

(33), in which one should set n(T)=1and p,=w /Q
~2500/70~26, This yields W~1072% s~} The estimates
that we have given show that long-lived local excitations
(LMs) can exist at low temperatures T ~30 K in the N,
crystal, and their lifetime at liquid-helium temperatures
is limited by radiative transitions (r,~10% s). An ana-
logous situation exists also for the crystal of O,, CO,
and NO.
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The existence of long-lived local excitations in simple
molecular crystals (N,, H,, etc.) leads to the interest-
ing phenomenon of aggregation of single-quantum exci-
tations at low temperatures and creation of an inverted
population.®” Actually, it is energetically favorable
for single-quantum excitations to aggregate [see Eq.
(13)]. On the other hand, at low temperatures processes
with absorption of phonons that lead to their decay are
extremely improbable [see (31)]. Owing to the influence
of these two factors, an inverted population of vibration-
ally excited molecules is established in the system at
low enough temperatures,

We proceed to investigate polyatomic molecules. In
estimating the lifetime of highly excited stretching vi-
brations in such molecules the following facts prove es-
sential. First, the multitude of vibrational states breaks
down into two classes: the class of LMs in the sense of
the definition (1) and states of the quasicontinuum.?3 25
The interaction between these two types of states broad-
ens the LM level. And second, the oscillator strength
as functions of the transition frequencies have clearly
marked maxima in the frequency region of the LMs with
a width of ~100 cm™.?® The latter statement agrees
with the results of experiments on IR absorption spec-
tra in the benzene molecule?+® where precisely such a
spectrum has been observed. What we have said implies
that the resonance defect AE, responsible for the
broadening of the LM level satisfies the condition

AE, = | By — By — 2 mev [<Q < 100 cm™ . (34)
Here E, and E,. are the initial and final energies of the
high-frequency LM; the v, are the frequencies of the
weakly excited modes corresponding to other degrees of
freedom; Q is the spectral width of the region of the
quasicontinuum interaction with which makes the major
contribution to the broadening of the LM levels. In the
case of a crystal, one can take the Debye frequency of
the acoustic phonons as @ (see below).

The relationship (34) expresses the law of conserva-
tion of energy when part of the energy of the high-fre-
quency mode (E, - E,,) is redistributed over the other
modes, with the excess energy being transferred to the
quasicontinuum. Thus the decay of an LM amounts to
a chain of successive transitions v— v’ — v”~... until
the energy of the LM equals the energy transferred into
other modes (E, - E,, ~E,,k) and thus complete mixing
(randomization) sets in.?’ Below, it will be important
to distinguish the lifetime of an LM, i.e., the random-
ization time, and the lifetime of an individual level of
an LM, which is determined by the decay in (34). As
we shall show below, the lifetime of a level of an LM
depends in a highly irregular fashion onthe excitation

¥ general, the condition E,— En~ E,, does not necessarily
imply the decay of an LM. For example, if an excited mole-
cule in the N, crystal goes from the level » =15 tow =5,
then evidently, localization of energy still exists. It is also
easy to picture an analogous situation in a polyatomic mole-
cule having sufficiently many degrees of freedom (s > v).
As a result, the energy transferred from the LM goes into
weak excitation of a large number of low-frequency modes
[ef. the definition (1)].
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number v. We can conclude from this that the ran-
domization time (time for decay of the LM) strongly
depends on the level of excitation of the LM.

Let us estimate the order of the resonance I by using
the relationship

l=|v—0 |4 Dm. (35)

The quantity / characterizes the number of quanta that
participate in the fractionation of the energy of the LM
[see (34)].

In estimating the width of the LM level, we shall re-
place the quasicontinuum with an effective phonon field.
We can do this since the width of the region of the quasi-
continuum that interacts with the LM is of the same
order of magnitude as the Debye frequency of the acous-
tic phonons @ ~100 cm™. Thus the problem reduces to
determining the width of the LM level of the molecule
interacting with the intermolecular vibrations (phonons).
The Hamiltonian of this interaction can be written in the
form

3

Hoe=3 3 o0 (®) (av+a3) (cr+cb).

ki ¥

(36)

Here g, is the annihilation operator describing the vth
vibration; ¢, is the annihilation operator for a phonon
with the momentum k&, and the g,(k) are quantities that
characterize the interaction of phonons with the intra-
molecular modes (for typical molecular crystals we
have g, ~10-30 cm ™),

Evidently the value of the transition matrix element
(v|Hiy | 9", m,) is determined by the corrections to the
harmonic wave function arising from the anharmonic
terms of the Hamiltonian. The greater the number of
intramolecular modes participating in the process,
the higher with respect to anharmonicity are the terms
that determine the value of this matrix element. There-
fore, in going to resonances of higher order, the width
of the vibrational levels must decline. This is quite
analogous to the decrease in intensity of lines in going
to higher overtones in infrared and Raman spectra of
molecules.

The question arises of how rapidly does the width
of the level decline with increasing order I of the reson-
ance. A study of ours®® has shown that for molecular
crystals of the type of methane (frequencies of C-H
vibrations ~3000 ecm™, anharmonicity x.~50 em™, in-
teraction between the modes g~10-50 cm™) the increase
in the order of the resonance caused by changing the
type of resonance diminishes the width T’ by about two
orders of magnitude.

One can derive this result by choosing the Hamilton-

ian of the system in the form
ﬁ=f1,,+ﬁm+fio- (37)

Here H, describes the phonons, H,, is given by Eq.
(36), and H, is the Hamiltonian of the molecule written
in valence coordinates. Here we have chosen the po-
tential energy of the stretching vibrations in the form
of a Morse potential, while the interaction between the
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TABLE III.

° gn‘;;).‘ Type of resonance Acfn ° ! Tioem™
1 4540 | Ey—Eg=vp,?) 0 — —
2 7400 | EymEymvp ¥t Ly g 2t 15 3 1
3 015 | Ey—Ey=2vp, a5 3 1

4 12690 | E,—Ey=2vg —45 3 1

5 15125 E,—E=2vp —185 3 1
8 17 420 Es—Ea=2VF.+"p; —4 6 2. g
7 19575 E;—Ey=vp +vp —100 4 3.
8 21390 E,—E,=VF=—;—\'F; 20 5 2, g3
9 23 465 Ey—Eg=vgp +-2vp —35 8 a.qoe
10 25200 | En—Ey=vp, 2vp —15 6 2.1072
1 26793 E—E=vg 65 2 22

*vp,=3020 cm™ is the frequency of the 10 transition of the
C—H stretching vibration.

*xpE=1530 cm™! is the frequency of the 1— 0 transition of the

type E (symmetry type) bending vibration.

+*xvp =1310 cm™ is the frequency of the 1—0 transition of the

F, ty[?e bending vibrations.

stretching modes had the form J,,.8,, %, x,..>) This
choise of Hamiltonian allows us to determine all the
parameters that enter into it from experimental data
(we, X, B, @). Then we constructed perturbation
theory diagrams to describe the processes of emission
and absorption of a phonon, and estimated the change
in the amplitude of the process upon changing the type
of resonance, The structure of the diagram, i.e., the
number of different vertices contained in it, depends
on the type of resonance. Therefore, if we know the
contribution of each of the vertices (the number of
different vertices is finite), we can estimate how the
contribution of the diagram varies with some particular
change in its structure, i.e., in the type of resonance.
Since the interaction parameters at each vertex are
known, we can obtain the corresponding estimates.

Let us give as an example the widths I(v) of the
stretching vibrations of the C—H bond in the methane
crystal as calculated by the present authors by the
above-described method®' (Table III).

What we have said above implies that the type of
resonance varies on going to higher vibrational levels
owing to anharmonicity. Consequently the width I'(v) of
the level will be an extremely irregular function of the
vibration number v. The calculation given in Table III
confirms this conclusion. Owing to the sharp variation
of I'(v), the molecule possesses levels whose lifetimes
exceed by several orders of magnitude the lifetime of
the low-lying vibrational levels. Let us call these the
critical levels. As we see from Table III, the critical
level is the one with v=6, and its lifetime is v =T"!
~107% s> 10" s. We should note that the existence
of critical levels in molecules can substantially affect
the kinetics of physicochemical processes involving
these molecules.*®

PCf. Eq. (18) and the discussion of it. We should note that
the statement has recently appeared in the literature® that
the time of vibrational relaxation is determined by the an-
harmonieity of the intermolecular vibrations. As we see it,
the problem requires further study.
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A calculation of the LMs of methane confirms the
conclusion that the width of the level varies by approxi-
mately two orders of magnitude upon varying the type
of resonance responsible for the decay of this level.
We can clarify this conclusion with the following esti-
mate. In fact, the Hamiltonian corresponding to the
valence-force approximation has the form

Ii: ; pe-l-U (gv)+ u—§¥0 ﬂuvquq\.. (38)

Here Ulq,) is a Morse potential, and the g, are the
coupling constants between the stretching modes.

The matrix element of the transition corresponding
to the resonance of (34) is determined by the additions
to the Morse wave function that arise from the cross
terms in the Hamiltonian of (38), as we noted above.
Upon taking into account the form of (38), we can easily
derive that the addition to the vth wave function has
the following order of magnitude?®!:

Ay~ (2)907H (257, (39)
Here 1 is the order of corresponding resonance; I is
the number of different modes participating in the
resonance; w is a certain averaged frequency; 8 is a
characteristic magnitude of the interaction between the
modes; and x is the anharmonicity parameter. For
typical molecules with hydride bonds, the parameters
w, x, and 8 are equal in order of magnitude to w~ 1000
em™, ¥x~50 cm™, and ~50 em™, Upon changing the
type of resonance, the order ! of the resonance and the
number I of modes participating in it generally change
by unity. According to (39), this diminishes the quantity
Ay, by two orders of magnitude (v5071000 (50,/1000)
~107%), and consequently reduces the matrix element
of the transition by the same amount.

We should say that the incompleteness of the experi-
mental data and the analytical difficulties of calculating
all the resonances that contribute to the broadening of
LM levels, cause the accuracy of the given calculation
of widths of levels in the methane molecule and of ana-
logous calculations for other molecules to differ by one
or two orders of magnitude from the obtained values.

We can draw the following conclusion from what we
have presented above: the width of LM levels as a func-
tion of the excitation number varies over an extremely
broad range (the difference can amount to several orders
of magnitude), with the upper bound of this variation
amounting to ~100 cm™ (r ~ 1072 s),

The question arises of how the LM level differs from
the weakly excited normal vibrations, which also lead
to a delocalization of vibrational energy in a time ~1/8
~1072 5, The answer consists of the following: if the
vibrations of the molecule were purely harmonic in
character, the delocalization of the vibrational excita-
tion of a valence bond would occur in times ~1/Bv
~10~2/y, as is implied by Eqs. (21) and (22), whereas
anharmonicity of the vibrations sets a lower bound for
the time of delocalization of excitation 7,~ 107'?, while
in a number of cases the delocalization time can be ex-
tremely large, 7> 10" s, and can reach several sec-
onds (e.g., in the N, crystal).
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The analysis given above allows us to give a lower
estimate for the randomization time 7,,, i.e., the time
for total decay of the LM as a function of the excitation
level v. If we assume that the LM Ssuccessively passes
through the levels v~ (v—-1)~..., etc, we obtain

Tran(v) > 10-12p s, (40)

But if the LM arrives at a long-lived critical level, the
randomization time increases sharply. In contrast,
when the vibrations are harmonic in character, as Eqs.
(21) and (22) imply, the time of decay of a local excita-
tion will be 7,,,~ 107 v~, That is, it declines with
increasing excitation level (for levels with v~10 the
difference in 7 ,, for the harmonic and anharmonic cases
amounts to two orders of magnitude).

We proceed to analyze the experimental data relevant
to the theory presented here.

2. INFRARED SPECTROSCOPY OF POLYATOMIC
MOLECULES AT HIGH LEVELS OF EXCITATION.
REVIEW OF THE EXPERIMENTAL RESULTS ON
INFRARED SPECTRA OF POLYATOMIC MOLECULES

. In recent years the usefulness of the concept of LMs
has been acknowledged, and a great number of studies
analyze the IR spectra of polyatomic molecules having
hydride bonds (C~H, O-H, D-H, C-D, etc.) on the
basis of LM theory.?”%:¥*"% The invention of highly
sensitive recording apparatus!®’ and of high-power
laser sources now enables us to obtain IR spectra cor-
responding to vibrational overtones with an excitation
level v="7.2 Thus, the review of Ref. 3 has given the
absorption spectra of liguid benzene C;H, and C;H,D for
the overtones corresponding to-the vibrations of the C~H
bond. Figure 2 shows the absorption band for the over-
tines 0~ 7 in the molecules C{H, and C;H,D. We see
from the diagram that the shape and position of the
band do not depend on the degree of deuteration. The
absorption spectra for the overtones are shown in Fig.
3.® The position of the bands is well described by a
formula corresponding to the Morse potential

E = (A 4 Bv)v. (41)

Here we have A=3095 cm™, B=-~59 cm™, and w=A
- B=3046 cm™',

100+

a.75]

a.50

a25

4
75800 77000 cm

76409

FIG. 2. Absorption spectra of kg benzene and hds benzene in
the red region of the spectrum. The intensities of the spectra
are normalized to unity at the absorption peak.

19 At present, lines of infrared spectra can be recorded
whose intensity amounts to ~107% of the intensity of the funda-
mental 0— 1 transition.
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FIG. 3. Overtones of the absorption spectra in liquid benzene.

Further, the oscillator strengths of the C~H bond have
been calculated® from the experimental data for the
overtones v <7 in the molecules CjH,, C.H.D, and
C.HD, (Fig. 4). There are no differences within the
limits of experimental error.

Burberry and Albrecht have calculated the oscillator
strengths of C-H and C-D bonds on the basis of an LM
model, choosing a Morse potential and a fourth-degree
polynomial as the potential energy of the C—-H vibra-
tions.*® They chose the dipole-moment operator in the
form M =M, +M,x+M,x*. They showed that one can
satisfactorily (~1%) describe the position and intensity
of the overtones with v <6 in the benzene molecule at
different degrees of deuteration by selecting the param-
eters of the potential and dipole moment. The authors
express the thought that one can describe the IR spec-
tra of C-H vibrations in different molecules by appro-
priate selection of the parameters (identical for all
molecules) of the potential energy of stretching vibra-
tions and taking into account higher-order terms in the
dipole moment. '

The independence of the position and shape of the IR
bands of benzene of the degree of deuteration can be
explained naturally on the basis of the LM concept.

The absorption spectra and lifetimes of vibrational
levels in benzene have also been studied in Refs. 50-54.
The results obtained there also favor existence of LMs.

Detailed experiments on absorption spectra in the
vibrational overtone region of gaseous benzene with
varying degrees of deuteration have been performed by
Bray and Berry (see Ref. 2). They took the absorption

log7y
o -y
- X—hydy
i - ds
§
_6‘ - é
&
-sl E
°
_’a -
a
-12 l a1 1
2 4 o

FIG. 4. QOscillator strengths of one C—H bond in the benzene
molecule as a function of the excitation number » for different
degrees of deuteration.
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TABLE IV. The v are the transi-
tion frequencies at the maximum of
the absorption bands.

0~ hy hy hy he E(1)

v(O~1) | 3081| 3075} 3070] 3047{ 3047
v(0~5) 114079]14079]14085) 14089 {14 081
v{0~»8 |18559]16551 16550116550 16550
v ({0~ 18903 |18 905

The v are the sition frequencies at the

of the absorption bands.

spectra of the hy, h,, h,, and h,'') deuterated analogs
in the overtone region of C-H bond vibrations corres-
ponding to quantum numbers v=5, 6, and 7. They es-
tablished from the experimental results an empirical
formula for the absorption cross-section ¢ at the
maximum of the absorption band

6 % 3,Tn- 1000 (cm?), (42)

Here n is the number of hydrogen atoms; and v is the
vibrational quantum. Equation (42) clearly indicates
that the photon is absorbed by one of the C—H bonds.

The spectra taken in this study with an accuracy of
down to 1 cm ™ showed that the position of the maximum
of the absorption band does not depend on the degree of
deuteration (Table IV).

The energy E(v) of the transitions is well described
by Eq. (41) with A=3104.6 cm™ and B=-57.7 cm™,
The author of Ref. 20 conclude from this that LMs exist
in the benzene molecule corresponding to highly excited
vibrations of the valence bonds.

We present the spectra of the absorption bands ob-
tained in Ref. 2 (Figs. 5-8). We note easily that the
shape of the overtone bands depends weakly on the de-
gree of deuteration, whereas the shape of the band of the
fundamental transition varies considerably as a function
of the degree of deuteration. This can be explained nat-
urally within the framework of the concept of local
modes. In fact, the LMs corresponding to highly ex-

Benzene iy

0.
w558 em™

V- 200em™ T, B, + 200w

FIG. 5. Absorption spectra of benzene h; for v =1, 5, and 6.
The intensity of the spectra is in arbitrary units.

Whe subscript of the symbol & denotes the number of hydro-
gen atoms in the benzene molecule (the rest being substituted
with deuterium atoms).
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FIG. 6. Absorption spectra of benzene h, for v=1, 5, and 6.
The intensity of the spectra is in arbitrary units.

cited vibrations of different valence bonds effectively
interact weakly among themselves, and also with the
other degrees of freedom [smallness of the energy
splitting €, according to Eq. (24)]. This implies that the
highly excited vibrations of the valence bonds are inde-
pendent. Hence the shapes of the overtone absorption
bands depend weakly on the degree of deuteration. In
contrast, the vibrational states with v =1 interact much
more strongly (the energy splitting €, in this case is
~8~100 cm™), Therefore a considerable mixing of the
modes corresponding to the different degrees of free-
dom takes place. Evidently the character of the mixing
and the energy shifts in this case depend strongly on the
degree of deuteration, and this leads to a change in
shape of the bands.

Let us also recall Refs. 55 and 56, where the vibra-
tional spectra of the C—H modes in the molecules of
naphthalene and ethanol were taken for transitions with
v=2, 3, 4, 5, and 6. These spectra are described by
Eq. (41), and the values of the parameters A and B
coincide to an accuracy of 5% with the parameters of
benzene. The latter fact clearly favors the LM con-
cept. Analogous results have been obtained in Ref. 57,
where the vibrational spectrum of the C-O mode in the
benzophenone molecule was taken. The relationship
that was found is also described in Eq. (41).

The described experiments show that the vibrations
of the C—H and D-H valence bonds occur independently

Benzene hg
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FIG. 7. Absorption spectra of benzene h; forv=1, 5, and 6.
The intensity of the spectra is in arbitrary units.
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FIG. 8. Absorption spectra of benzene kg for v=1, 5, 6, and
7. The intensity of the spectra is in arbitrary units.

of one another, Therefore we can expect that combina-
tions of LMs will exist among the vibrational states

that correspond to excitation simultaneously of several
valence bonds (LMs) of the type |v, "), v, ¢, v"), etc.
Actually, the IR spectrumof2, 2, 4-trimethylpentane con-
tains weakly marked peaks that couldbe assignedtothe
bination local mode [2,2).% The IR spectrum of di-
chloromethane also contains weakly marked peaks,
which are interpreted as combination LMs.*® In view

of the weak intensity of the lines corresponding to the
combination modes and of its sharp decline with in-
creasing excitation level v, it is extremely difficult to
observe the transitions |0)~ |v, v"). In this connection
the study by Burberry and Albrecht* is of interest.
They analyzed the IR spectra of benzene and tetramethy-
lsilane (TMS, [CH,],8i) corresponding to the excitation
levels v=2, 3, 4, 5, and 6. It turned out that the IR
spectrum of the TMS molecule exhibits combination LMs
corresponding to the transitions |0)~ |1,1), |0)~ |2, 1),
|0)~|2,2), and |0)~]5,1), which describe the simul-
taneous excitation of two C—H valence bonds. The posi-
tion of the absorption bands is described by the LM
model to an accuracy of s1%, while the parameters A
B in Eq. (41) are respectively 3000 and —59 cm ™. The
spectrum of benzene exhibits combination modes only
for the transitions |0)~ |1,1) and |0)- |2, 1).

The authors of this study calculated the IR spectra
on the basis of the LM model. They chose the Hamil-
tonian describing the vibration of the C-H bonds in the
form (18) with three valence modes for the TMS mole-
cule and six modes for the benzene molecule. The in-
teraction constants between the LMs were chosen so as
to describe the spectrum of the fundamental frequencies.
As a result the position of the absorption bands was
described with an accuracy of <19. In calculating the
intensities of the spectra, the dipole moment was chosen
in the linear approximation. Here the accuracy of des-
cription amounts to ~100%, although the trend toward
decreasing intensity in going to higher overtones and to
combination LMs is rendered correctly. The authors
explain the low accuracy in predicting the intensities of
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the IR spectra by the need to take into account the higher
powers in the expansion of the dipole moment.

Remarkably, the vibrational levels calculated by the
method described above are grouped about an energy
corresponding to local modes not interacting with one
another. Here the splitting between the levels of differ-
ing symmetry declines rapidly with increasing excita-
tion level v, in full agreement with Eq. (24). The ad-
mixture of states |v, v~ 1) in the state |v, 0) also de-
clines rapidly with increasing v. This explains the
sharp decline in the intensities of the combination
modes with increasing excitation level.

The overtones and combination LMs in the IR spec-
tra in halogenated ethane and methane have been analy-
zed in Refs. 73 and 74. Thus, Ref. 75 treats the transi-
tions 0-3,4,5 in the region 7000-1200 ¢m ™ for liquid
1,1,2,2-tetrachloroethane, 1,1,2,2-tetrabromoethane,
and pentachloroethane, and the spectra of gaseous pen-
tachloroethane and pentabromoethane, The frequencies
and anharmonicity parameters of the C-H vibrations
were calculated on the basis of the LM model. These
quantities prove to be independent of the type of mole-
cule and are identical for the liquid and gaseous phases
to an accuracy of ~5%. An increase in the interaction
of the stretching vibrations with the bending vibrations
was found with increasing excitation level v. One can
explain the latter with the decrease in the frequency of
the transition v~ (v = 1) of the stretching vibration with
increasing v, whereby the frequency difference between
the bending and stretching vibrations decreases, and
resonances of lower order can appear.

The experimental data and theoretical arguments that
we have presented show that the vibrational levels of a
molecule are divided into two classes: levels corres-
ponding to LMs and their combinations, and levels of
the quasicontinuum. The interaction between these two
classes of states broadens the LMs and ultimately cau-
ses them to break down. All that we have presented
above indicates the inadequacy of the description of
vibrations in terms of normal modes at high levels of
excitation.’?) This can be seen well in the example of
the highly excited O~H bond in the water molecule,
which is well described in zero-order approximation by
a Morse function, whereas in the normal modes it is a
complicated superposition of Hermite functions [see
Eqs.](20) and (23), and also Eq. (18) and the comments
on it].

We would stress that the LM concept is not only con-
venient mathematically, but also it apparently corres-
ponds to physical reality. In this regard we note the
interesting review of Bloembergen and Yablonovitch,?s
which pointed out the extensive possibilities of laser
chemistry associated with the existence of LMs in
polyatomic molecules. In particular, they advanced the
hypothesis that one can achieve a change in the course
of chemical reactions, accelerating them in one direc-
tion and suppressing them in the other, by exciting cer-

D This can be easily seen with the example of a numerical cal-
culation of the phase trajectories in the H,O molecule based
on a classical model. %
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tain LMs of the molecule. For example, it seems very
attractive to bring about the dissociation of a molecule
at a previously chosen valence bond by exciting the
appropriate LMs. The experiments existing at present
on selective absorption of laser radiation to enhance
the rate of dissociation of one of the components of a
molecular mixture and explained by the rapid passage
through the low-lying vibrational levels, transition into
the quasicontinuum, and subsequent rupture at the
weakest bond of the molecule.®® We refer those inter-
ested in problems of laser chemistry that arise in con-
nection with the possibility of localizing the vibrational
energy in certain parts of the molecule (LMs) to the
reviews of Refs. 60 and 72.

We note in closing this section that the existence of
LMs can be manifested also in electron transitions in
molecules. Thus, for example, the probabilities of the
radiationless transitions |S,, v=1)~ |S,, contin.) and
|S,, v =0y~ |S,,»=0)** in the benzene molecule have
been measured in Ref. 61. It was found that the transi-
tion probability in the former case is three orders of
magnitude greater than in the latter. In the transition
I8,,v=1)~ [S,, contin.), this indicates that all the vi-
brational energy in the ground electronic state is local-
ized in a valence bond. And then, since this energy
exceeds the dissociation threshold of the C-H bond, and
the time of delocalization of the vibrational energy
over the other degrees of freedom is greater than the
dissociation time v, ~107"® s, bond breaking occurs,
i.e., a transition to the continuous spectrum takes
place. If the time for redistribution of the vibrational
energy of the C~H bond were ~1071% g, the probabilities
of dissociation and of the transition |S,, v =0)~ |S,, v,)
would be quantities of the same order of magnitude.

Lawetz and Siebrand have calculated the Franck-
Condon factors for the stated transitions by using the
LM hypothesis.®* They obtained the curve in Fig. 9 for
the ratios of these factors as a function of the energy E.
The sharp increase (by an order of magnitude) of this
ratio in the region of the dissociation threshold (E
=44 000 cm ') qualitatively agrees with experiment.
However, there is no quantitative agreement (there are
two orders of magnitude lacking in the transition prob-
abilities). A detailed discussion of the role of LMs
in radiationless transitions and calculations of the oscil-
lator strengths in molecules of conjugated hydrocar-
bons can be found in the review of Ref. 93.

73
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F(8,7)/Fle,0)
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42000 93000 #4000 cm™

FIG. 9. Ratio of the Franck-Condon factors for predissocia-
tion from the level »(S;) =1 and for internal conversion from
the level »(Sy)) =0 in benzene.

19 Here S, and S, are the ground and excited single states.
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3. LOCAL MODES AND RELAXATION OF
VIBRATIONAL ENERGY

As we have already said in Sec. 1, anharmonicity of
vibrations leads to the existence of LMs in molecules,
their lifetimes being considerably elevated as compared
with pure harmonic vibrations described by normal
modes. In this regard, experiments are of great inter-
est in which one directly measures the decay time of
vibrational levels. The cause of vibrational relaxation
is the intramolecular and intermolecular interaction.
We first treat intramolecular relaxation, which plays
the major role in polyatomic molecules.

a) Intramolecular relaxation of vibrational energy
in polyatomic molecules

As we know, two relaxation times of vibrational ex-
citations T, and T, are distinguished in spectroscopy:
the former describes the relaxation of occupancies of
vibrational levels, and the latter describes phase relax-
ation, with T,< T,. In relaxation of occupancies, the
energy of excitation of a given type of vibrations is
transferred to the quasicontinuum (thermostat). Math-
ematically this is expressed in the vanishing of the co-
efficient of the wave function describing the given type
of vibrations (damping). Phase relaxation involves
dephasing of the phases of the wave functions describing
the given type of vibrations (e.g., C-H vibration). This
has the result that, if at the initial instant the wave
functions had phases such that the excitation energy was
localized in one of the C-H bonds, then after the time
T, the phase disagree, and the excitation is delocalized
over all the C—H bonds [see Eq. (20)]. From the stand-
point of the LM concept, in this case an LM level as
decayed, since the energy of excitation of the one bond
has been spread over all the bonds.

These arguments show that both phase relaxation of
occupancies lead to decay of a local vibration. There-
fore one can obtain the lifetime of an LM level by start-
ing with the width of the IR spectrum, which we shall
repeatedly employ below. For the levels corresponding
to the stretching vibrations of C~H bonds in the ben-
zene molecule,? we thus obtain the lifetime 7 ~1072 s
(r~100 cm™; see Figs. 5-8). One also obtains the
same estimate for the lifetime of C—H modes based on
IR spectra for the molecules of ethanol and naphtha-
lene,%*”%¢ and also for the combination modes in the
molecules CH, and [CH,]Si.® We note that the width of
the resonance IR lines, and hence the lifetime of the
LMs corresponding to stretching vibrations of C-H
bonds, proves to be the same for the solid, liquid and
gas phases.?:3'®755 This fact definitely indicates that the
fundamental contribution to the broadening of LMs
comes from the intramolecular interaction. This state-
ment is general in character. Actually, the frequencies
of the stretching vibrations of hydride bonds are
~3000 cm ™!, the interaction between the different modes
is ~100 cm ™!, whereas the Debye frequency of acoustic
phonons is ~100-200 cm ™, and the intermolecular in-
teraction constant is ~10-50 em ™. Therefore the
intramolecular fractionation of the energy will corres-
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pond to resonances of lower order. Consequently the
intramolecular interaction will make the major contribu-
tion to the broadening of the LMs. What we have said
above agrees with the existence in molecules in LMs

and of the quasicontinuum responsible for their broaden-
ing, as has been shown in the review of Ref. 25,

The lifetime of the vibrational levels corresponding to
vibration of C~H bonds in the molecules C,H,0OH and
CH,CCl, were measured directly in Ref. 63. It proved
to be 10°''~10"2? s, Results also exist that indicate
the existence of long-lived vibrational levels in poly-
atomic molecules. Thus, the relaxation time of the
level at frequency 1385 cm ™ in naphthalene at the tem-
perature 7=1,6 K is ~1071° s.% The authors explain
such a long lifetime of the vibrational level as compared
with the lifetimes of levels with v =1 in the molecules
studied in Ref. 63, where 1 ~1072 s, by lack of a reson-
ance of sufficiently low order [here I, the order of the
resonance, is defined analogously to Egs. (34) and (35)].
Analogous results for the relaxation time of the vibra-
tion of the C~H bond with v =1 in coumarin 6 and in
ethanol (1 ~ 10711 -107® s) have been obtained in Refs.
65-67. And it has been established®” that the frequency
2920 cm™! of the C-H vibration is exchanged for two
frequencies of 1450 cm ™ of the bending vibration. The
existence of this resonance (order of the resonance is
1=2) is the reason for such a short lifetime,

We note the interesting fact of narrowing of the bands
of the IR spectra, and hence an increase in the lifetime,
on going tothe higher overtones inthe naphthalene mole-
cule.’® An analogous narrowing of the shape of a band in
benzene vapor was noted in Ref. 75. This fact stems
from the anharmonicity of the vibrations. As we have
explained in Sec. la, this can lead to a diminished
coupling of the LM with the other vibrations in going to
higher levels of excitation. On the basis of a classical
treatment, Heller and his associates have studied inter-
mode energy transport in a polyatomic molecule.” They
showed that in individual cases the anharmonicity of
vibrations substantially lowers the probability of energy
transfer among resonating modes. The widths of over-
tones in IR spectra have been calculated” by using clas-
sical trajectories in phase space,

The experimental data that we have presented show
that the lifetime of vibrational excitations of the C-H
bond corresponding to levels with v <7 amounts to
721072 5, This agrees with the estimate of (40) for
the randomization time (time for breakdown of a local
mode) 7.,, We stress that for harmonic vibrations the
lifetime of a local excitation with v =7 would be ~(1072/
7) s, and correspondingly the width of the level would be
~7.100="1700 cm ™.

The currently existing experimental material enables
us to obtain the lifetime of a highly excited LM level
in a polyatomic molecule only by estimating the width of
IR spectral bands. Hence there is no opportunity to
say anything on the time pattern of the decay of a local
excitation. At the same time, it would be hightly inter-
esting to observe by direct experiment the dynamics
of transitions of a molecule involving LM levels by
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measuring the occupancies »,(t) of levels during decay
of a local excitation,’* Such measurements will enable
one to establish the sequence of transitions in the decay
of an LM, to find the dependence of the lifetime of a
level on its number 7(v), and to determine the decay
time of the LM, i.e., the randomization time 7 ,, A
knowledge of the function 7(v) will make it possible to
test whether the molecule has long-lived (critical)
levels that can arise from anharmonicity of vibra-
tions.®3°31.7% We note that, although the t(v) relation-
ship can be obtained from an estimate of the width of
IR spectra,“" one cannot obtain the randomization time
T.anin this way. This is because one cannot establish
from experiments with IR spectra whether all the
energy of the local excitation has been mixed as a
whole over the vibrational modes of the molecule, or
only part of it in transitions of the type v—(v-1),
v=(v~2), etc.'s

Randomization of vibrations has been studied with the
example of the molecules SF; and CF,I in Refs. 78-80.
The §F, and CF,I molecules were excited with a CQ,
laser tuned to a frequency near the v, mode of the CF,I
molecule and the v; mode of the SF, molecule (~1000
cm™), Then, using a probe pulse retarded with respect
to the exciting pulse, Raman spectra were obtained at
the frequency of the v, mode of the CF,I molecule and
the v, mode of the SF; molecule. It turned out that the
intensity of the spectra does not vary in the time inter-
val between 107 and 107® s, nor does it depend on the
pressure of the gas, while the pressure reached values
at which collisional V-V relaxation becomes substan-
tial. Since the intensity of the anti-Stokes lines is pro-
portional to the vibrational energy stored in the combin-
ation mode J~ ¢, the independence of the energy on the
times and pressure implies the absence of intermode
energy exchange., That is, the energy distribution over
the vibrational modes in an equilibrium distribution,
which is established within the time of action of the
exciting pulse (107° s). It was established that the ener-
gy absorbed by the molecule at which the equilibrium
distribution sets in must be larger than 4000 ¢cm ™ in
the case of §F, and larger than 6000 cm™ for CF,L
These experiments show that the randomization time of
vibrations at energies of excitation larger than 4000
cm™ in §F, and 6000 cm™ in CF,I is smaller than
107° s.!” Correspondingly the lifetime of the v, mode
in SF4 and the v; mode in CF,I at the corresponding
levels of excitation are shorter than 107° s,

The wave function of the vibrational motion of the
SF, molecule has been obtained® from a model calcula-
tion. It was shown that, when E>E_,, 4000 cm ™!, the
wave function is a linear superposition of a large num-
ber of states, each of which enters with a small weight.

10 Experiments exist for diatomic molecules where the n,(t)
relationships were obtained (see below),

15) Evidently an exact definition of 7(v) is obtained from the
time-dependent function of the level occupancies n,(t).

19 The measurement of the occupancies n4(f) in the molecules
C,H;OH and CH;CCl; performed in Ref. 63 pertain to one-
quantum excitations @ =1).

"We assume that an equilibrium of the distribution is equi-

valent to randomness of the vibrations.
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In quantum language, functions of this type imply ran-
domness of mation. In contrast, the wave function of
an LM, according to the definition (1), has the form
$,(x)d,(y). If the difference in the energy levels of an
LM is much larger than their broadening: E -E _,

> I'(v), this implies the existence of an LM. The data
given above from studying vibrations of the C~H bond
give E,— E,_,~3000 cm™, while I'(v)~100 cm ™. This
implies a local character of these vibrations.

b) Relaxation of vibrational energy in simple molecular
crystals and liquids

As the estimates obtained in Sec. 1lc show, the life-
time of highly excited vibrational levels in simple
molecular crystals of the type of N,, H,, and O, can
reach values ~1 s, It is precisely in simple molecular
crystals and liquids that the effect of nonlinearity of
vibrations is most clearly manifested, while consider-
ably increasing the time of localization of excitation in
one molecule at levels of excitation v>2, In the case
of harmonic vibrations, vibrational states with y>2
would relax to states with ¥=1 in a time ~ (1072-10"!5)
owing to equidistance of the levels.

At present a considerable amount of data exists on
measuring the lifetimes of vibrational excitations in
diatomic molecules that show that 7,> 107 s, For
example, the radiative lifetime for the transition
AT}~ X*%} in N, molecules situated in a matrix of in-
ert gases (Ne, Ar, Kr, Xe) at temperatures of 1.7 K
and 4.2 K proves to be ~1 5.® This means that vibra-
tional deactivation takes a time 7,~1 s. In the CO mole-
cule, which has a dipole moment, the vibrational re-
laxation time is 7,~107%=107* 5.®

Dressler and his associates®” have performed an in-
teresting experiment to measure the lifetime of vibra-
tional excitations in the nitrogen molecule. They ir-
radiated solid nitrogen at temperatures from 7=4.2 K to
T =18 K with an electron beam. As a result, triplet N,
molecules [A*Z(y» =0)] and nitrogen atoms in the ground
state of N (*S) are formed. Then the following reaction
occurs:

Ny (A2 (0 = 0) + N (8) > N, (X'E (v<C 14) + X (D). (43)

As a result of nitrogen atom in the electronically exci-
ted state of N D) is formed. After this a reaction
occurs with emission of a photon:

NED) + Ny X @) > N(S) + N (X@—1) +hv.  (44)

The spectral composition of the radiation and the time-
dependence [, (#) were determined with a spectrometer,
From this the fluorescence quenching time was ob-
tained. The results of the measurements are shown in
Figs. 10-12. The time of the radiative transition N
(D) -N(*8) is ~20 s. Therefore the time-dependence
I(#) implies that the vibrational relaxation time is
Ty~18.

The causes for long-lived LMs in crystals (intra-
molecular anharmonicity and the large frequency dif-
ference between intramolecular and intermolecular
vibrations) hold also for liquids at low enough tempera-
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FIG. 10. Decay curves J,{) of vibrationally excited levels at

a temperature T=4.2 K.

tures. It has been found in experiments with liquid ni-
trogen at 7 =77 K and also with liquid nitrogen with ad-
mixtures of Q,, CO, and CH, that the decay time of

one-quantum excitations in these molecules is 7,~1
28 29
s.

We note that an increase in the decay time of one-
quantum excitations with respect to the characteristic
time ~1072 s has been observed also in polar liquids,
where the difference between the intramolecular and
intermolecular frequencies is smaller and the rotation
of molecules, which accelerates relaxation, plays a
larger role. For example, in HC1 molecules in the
liquid state the decay time is 7,~107° s.®

c) The effect of aggregation of quanta. Vibrational
excitons

As we noted in Sec. 1lc, it is favorable in a diatomic
molecular crystal for one-quantum excitations to ag-
gregate at low temperatures into two-quantum excita-
tions, since this lowers the total energy of the anhar-
monic oscillators. Consequently an inverted population
can arise in such a crystal. This phenomenon has been
analyzed theoretically and the appropriate expressions

/
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FIG. 11. Decay curves J,(t) of vibrationally excited levels at
a temperature T=18 K.
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Flg. 12, Relative intensities of lines in solid nitrogen J,
=) a2, )de.

have been derived®” for the distribution of the molecules
over the vibrational levels in a regime of steady-state
pumping. Since many-quantum excitations have a
lifetime much larger than the time of passage of an
acoustic phonon through the zone 7 ~Q~'=10"2_10"" s,
one can call such excitations vibrational excitons.
These vibrational excitons diffuse through the crystal,
with a diffusion coefficient decreasing with increasing
energy of the exciton.

The phenomenon of aggregation and formation of an
inverted population has been observed in Ref. 83, where
the IR fluorescence spectrum of the CO molecule ex-
isting in solid Ne and Ar was taken together with its
time-dependence. The decay time of the excitations into
phonons proved to be ~107 s, It was found that the
intensity of fluorescence from the level v =2 initially
rises from zero to a certain value, and then begins to
decline (Fig. 13). This implies that the following
reaction occurs:

COw = 1) —COr~ 1)~ CO (v = 2) + phonon. (45)

Consequently an excitation with v =2 is formed. From
the ratio of fluorescence intensities (I,(¢)/I,(t)) the ex-
istence of an inverted population as compared with
thermal equilibrium was established. The described

7
< 2=, T0=2097 1
gy =2 —y=1)

as
1 L Il A __‘
g 28 16 2.4 32 tms
FIG. 13. Typical fluorescence signal of carbon monoxide

12¢180 for the transition v =2— v =1 in an argon matrix at T
=9 K.
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experiment also showed an inverted population of the
level with v=1 in the molecules *C'®0 and *C'®Q with
respect to one another. The effect of aggregation of
quanta in the gas phase was apparently first discussed
in Ref. 84 (see also Refs. 85 and 86). In connection
with this effect we can point out the effect of hot centers
on chemical reactions at low temperatures.®

We should note that, along with the appearance of
highly excited local levels, anharmonicity of vibrations
can also lead to disappearance of a local state arising
from vibrations of an impurity.®”:®® The essence of
this phenomenon is the following. The energy differ-
ence between the first excited vibrational levels of
the dominant and the impurity molecules can prove suf-
ficient for formation of a local level, whereas this
difference is small for levels with v =2, and a local
level is not formed.

In closing this section we note that vibrational relaxa-
tion plays an important role is processes of interaction
of high-power laser radiation with matter, in particular,
in phenomena of collisionless dissociation, selective
absorption of radiation, etc. A large number of studies
on these problems has been published recently; one can
find the details in the books of Refs. 83-90) and the
reviews of Refs. 91-92; a detailed discussion of this
material lies outside our topic.

CONCLUSION

The theory presented above and the analysis of the
existing experiments show that the description of the
vibrations of a molecule in terms of normal modes can
prove inadequate at high levels of vibrational excita-~
tion, and one must employ the LM model. As we have
explained above, the reason for this consists of the non-
linearity of the vibrations, the effects of which increase
with increasing. level of excitation. The currently
existing experiments pertain mainly to LMs involving
vibrations of hydride bonds C-H, O-H, etc. In this
regard it is interesting to elucidate how valid is the
LM theory presented here for the vibrations of other
valence bonds, as well as the vibrations of valence
angles. The key point is the description and classifica-
tion of the spectrum of highly excited vibrational states
by analogy with how this is done in using normal modes
for the weakly excited vibrations. Elucidation of these
problems opens the path for inventing methods of ex-
citing individual local modes, or parts of polyatomic
molecules, to high vibrational states, which is of great
significance for laser chemistry, In view of the high
complexity of the spectrum at high levels of excitation,
experiments in this field require application of high-
power laser sources with tunable frequency and employ-
ment of picosecond technology.

In studying intramolecular relaxation, it appears to
be important to elucidate the sequence of transitions in
the decay of a highly excited LM level. This will en-
able one to determine the dependence of the lifetime of
the level on its number 7(v) and to find the randomiza-
tion time 7,,,. Moreover, a knowledge of 7(v) will en-
able one to establish whether critical levels exist in the
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system, i.e., levels with a considerably greater life-
time than all the rest. The existence of critical levels
can substantially affect the rate of chemical reactions,
in particular, its temperature-dependence, when the
energy E in the Arrhenius factor exp(-E/kT) refers to
the critical level, rather than to the transition state.

The possibility of pumping considerable energy into a
molecule noted in Ref. 3 involves vibrational relaxa-
tion in polyatomic molecules. This possibility is
based on the fact that the time for redistribution of the
energy to other degrees of freedom (transfer to the
quasicontinuum) at high levels of excitation of an LM
can prove small, ~107"% s, in view of the high density
of levels for v> 1. Therefore, by pumping these levels
with light pulses having a period of repetition 7 ,,>107*
s, one can store much energy in a polyatomic molecule.
This method of pumping can prove effective for mole-
cules in the gas phase, where the interaction of the vi-
brations with the rotation accelerates the process of
freeing the level excited at resonance by the laser
pulse.

Another method of pumping much energy into mole-
cules, which can prove effective in simple molecular
crystals and liquids at low temperatures, is based on
the effect of aggregation of quanta, in which one-quan-
tum excitations aggregate into two-quantum excitations
and thus create an inverted population.’” The density
of these excitations con prove to be high, and hence, in
principle, this effect can be employed to create a solid~
state laser. In this regard it seems important to study
experimentally the effect of aggregation in order to find
out in which molecular crystals and under which condi-
tions can one gain the greatest inverted population of
vibrational levels.

To speak of the theoretical problems arising in this
tield, we must first of all mention the problem of quan-
titatively calculating the regions of randomness of intra-
molecular motion in phase space.

In closing, we deem it our pleasant duty to thank
S. A. Akhmanov and M. Ya. Ovchinnikova for numerous
comments that have facilitated the improvement of the
presentation of this material.
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