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non-Heisenberg exchange and non-Heisenberg Hamiltonians; 2) quadrupole ordering and order—proper

disorder phase transitions; 3) order—order and order-improper disorder phase transitions; 4) metamagnetism
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INTRODUCTION have properties similar to those of isotropic non-

This review is devoted mainly to isotropic magnetic
materials with localized magnetic moments between
which the exchange interaction is more complex than in
the usual Heisenberg model. Consequently, the mag-
netic properties of such materials differ strongly from
those expected in the Heisenberg case. They can fre-
quently be described by models in which the biquad-
ratic, three- or four-spin exchange mechanisms are
allowed for in addition to the Heisenberg bilinear ex-
change. However, in the case of conducting non-Hei-~
senberg magnetic materials it is possible to interpret
some of their properties without invoking these models.

We shall consider the theory of non-Heisenberg iso-
tropic magnetic materials and analyze in detail the ex-
perimental data on some substances which are de-
scribed satisfactorily by this theory. They include in-
sulators (EuSe, MnO, UQ,, etc.), metals (GdMg, etc.),
and a nuclear magnetic material (solid *He). More-
over, a description will be given of such magnetic ma-
terials which exhibit a strong magnetic anisotropy but
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Heisenberg materials, so that one can postulate similar
origin of these properties (for example, the behavior of
CeSb resembles that of EuSe). For reasons of space we
shall consider only some of the anomalous properties of
non-Heisenberg magnetic materials which have either
been ignored completely by the existing monographs and
reviews on magnetism or for which obsolete results
have been reported. We shall not deal at all with cer-
tain important topics, such as, for example, helical
ordering and the problem of phase transitions between
commensurable and incommensurable structures.

In speaking of the anomalous properties we must be-
gin by mentioning that in the case of magnetic materials
with a very weak magnetic anisotropy and a very simple
crystal structure one sometimes encounters complex
magnetic structures that do not fit the Heisenberg mod-
el. For example, the compound EuSe has the NaCl
structure and it exhibits not only the usual two-sub-
lattice ordering, but also collinear four-sublattice
antiferromagnetic and three-sublattice ferrimagnetic
structures. A similar four-sublattice antiferromag-
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netic structure occurs in He (Sec..4). There are strong
arguments for assuming that in the case of UQO, the
structure is again four-sublattice antiferromagnetic,
but the moments of alternate sublattices are oriented
at right-angles to one another (Sec. 5).

Reliable experimental data are now available on the
existence of a canted antiferromagnetic structure in
some intermetallic alloys. Usually the canted (two-
sublattice) structures with noncollinear sublattice mo-
ments are explained by the relavistic Dzyaloshinskii'—
Moria interaction, which can occur in crystals with a
special symmetry. However, such crystals as GdMg
with the CsCl structure do not have the symmetry
necessary for the Dzyaloshinskii~Moria interaction.
Nevertheless, the canted antiferromagnetic structure
of high-symmetry materials can be explained fully with-
in the framework of the model of an isotropic non-
Heisenberg magnetic material as due to competition
between the isotropic Heisenberg and non-Heisenberg
exchange interactions (Sec. 5).

The model with the biquadratic and bilinear exchange
mechanisms predicts the existence of a specific one-
sublattice phase which does not exhibit a spontaneous
magnetization (quantum quadrupole case, see Sec. 2).
However, this phase has not yet been detected experi-
mentally and even its theory is still incomplete.

Order-~disorder and order—order phase transitions in
non-Heisenberg magnetic materials are also very spe-
cial. Some time ago attention has been drawn to the
fact that the non-Heisenberg exchange may modify a
second-order order—disorder phase transition to a
first-order transition. It is also known that a magnetic
material with a strong volume dependence of the Hei-
senberg exchange integral can be described in terms
of an incompressible non-Heisenberg magnetic ma-
terial with the biquadratic or multispin exchange (Sec.
1). Therefore, a first-order phase transition in a mag-
netic material with a compressible lattice represents
essentially a special case of a first-order transition
in a non-Heisenberg material (Chap. 2). In fact, modi-
fication of a second-order phase transition into a first-
order transition because of the non-Heisenberg ex-
change follows from the fluctuation theory of phase
transitions in which fluctuations are taken into account
by the renormalization group methods more correctly
than in the self-consistent field approximation. This
theory postulates that for certain types of magnetic
ordering an order—disorder phase transition should be
of the first order even in the Heisenberg exchange case.
Experimental data on first-order phase transitions in
several materials are discussed in Sec. 2 in order to
determine the extent to which they agree with these two
theories,

Many magnetic materials exhibit order—order phase
transitions or even whole sequences of these transi-
tions; this is true, for example, of EuSe. An excep-
tionally large number of such phase transitions has
been observed in the case of CeSb and hence it has been
suggested that this compound exhibits a “devil’s ladder”
of such transitions between structures commensurable
with the lattice constant. A devil’s ladder is charac-
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terized by the fact that some structures are stable only
in extremely narrow temperature intervals. Therefore,
phase transitions between them are of the first order
but occur practically continuously and such a sequence
of first-order phase transitions simulates a second-
order transition. However, there is an important dif-
ference between a second-order phase transition and a
devil’s ladder of first-order transitions: in the former
case there should be no hysteresis, whereas in the
latter case it should appear (Sec. 4).

It is quite clear that low-temperature order—order
phase transitions, and particularly their sequences in-
cluding non-Heisenberg structures, cannot be explained
by the exchange inversion theory of Kittel based on a
change in the sign of the exchange integral as a result
of thermal expansion of the lattice, However, allowance
for the non-Heisenberg exchange makes it possible to
predict the whole sequence of phase transitions ob-
served in EuSe (Sec. 4). Moreover, this theory pre-
dicts also a new type of order—disorder phase transi-
tion (Sec. 3).

It is usual to assume that the short-range order in
the paramagnetic phase represents a residue of the
long-range order existing below the phase transition
point. Since the nature of the short-range order
governs the paramagnetic Curie temperature O, it is
self-evident that in the case of ferromagnets the value
of © is positive, whereas for isotropic antiferromag-
nets it is negative. The theoretical results given in
Sec. 3 and an analysis of the experimental data on EuSe
demonstrate that we have a situation when after the dis-
ruption of the antiferromagnetic order in an isotropic
crystal the value of © is positive. Therefore, a phase
transition produces a short-range order of a different
type than the long-range order before the phase transi-
tion. Such phase transitions have been designated as
“order-improper disorder,” in contrast to the usual
transitions in which the nature of the short-range order
at temperatures T >© corresponds to the long-range
order below the transition point (“order-proper dis-
order” phase transitions). In general, order-improper
disorder phase transitions are characterized by dif-
ferent vectors of the long- and short-range orders be-
low and above the transition point, respectively, but
this is not always manifested by an anomalous sign of ©.
This difference between the vectors has been observed
experimentally for UAs. The nature of the short-range
order in the paramagnetic phase has a considerable in-
fluence on many properties of crystals, for example, on
the optical and electrical properties.

Both order-order and order—-improper disorder phase
transitions are due to different temperature depen-
dences of the competing Heisenberg and non-Heisen-~
berg exchange interactions, so that the high-tempera-
ture properties may be governed by the former and the
low-temperature properties by the latter.

Finally, we must mention another important property
of the investigated materials: some of them (for exam-
ple, EuSe) are isotropic metamagnets (Sec. 4). Usually
the metamagnetic properties of materials are explained
by a strong anisotropy of the interaction between the
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spins and the majority of the known metamagnets can
indeed be explained by this model. The existence of
isotropic magnetic materials has made it necessary to
reconsider whether this concept is universally valid.
Metamagnetism of isotropic materials can be explained
in a natural manner by the models with the isotropic
non-Heisenberg exchange described below (Sec. 3).

1. NON-HEISENBERG ISOTROPIC EXCHANGE

For many decades the Heisenberg model has been the
basis of the theory of magnetism. However, the number
of magnetic materials close to the ideal Heisenberg
model is not very large and for the majority of such
materials this model describes only the principal
properties. In some cases the model is totally inappli-
cable. In this section we shall discuss the isotropic ex-
change interaction which does not fit the Heisenberg
model. We shall consider separately insulators and
metals described by the s-d (or s—f) Vonsovskii model.

a) Insulators

We shall consider first the exchange interaction be-
tween two atoms with arbitrary spins S, located at a
fixed distance from one another. We shall assume that
the exchange interaction energy is small compared with
the excitation energy of an atom and that the atoms do
not have an orbital angular momentum. Since space is
isotropic, the Hamiltonian H,, of the exchange interac-
tion can be constructed only as a function of the scalar’
product of the atomic spin operators S, and S,. This
Hamiltonian can be represented in the following form
after allowance for the properties of the spin opera-
tors:

(1.1)

The summation with respect to n is limited because the
power exponent of the i-th component (S!)" in the n> 2§
case can be expressed in terms of linear combinations

of (§4)™ with m <2S. If $>1/2, the Heisenberg Hamil-

tonian differs from Eq. (1.1) by restriction of the sum-

mation with respect to n to the terms n=0 and 1. This

restriction requires special justification.

In the case of crystals we also have to allow for the
fact that in addition to the two-spin exchange, there is
also the multispin mechanism. In general, the isotropic
exchange Hamiltonian is

H:—Ell,‘mf,,..
B

n

"f") (Sfls.f:) .- ~(S'M_lsj”)~ (102)

Bogolyubov! was the first to draw attention to the
existence of the multispin exchange in the course of an
analysis of the quasipolar model of metals, but the
ideas put forward by him were based essentially on the
symmetry properties of the exchange interaction. At-
tempts have also been made to use the symmetry prop-
erties alone in the derivation of the relationships be-
tween the coefficients of the two-spin exchange in Eq.
(1.1). They were based on the fact that if S=1/2, then
Eq. (1) is identical with the Heisenberg Hamiltonian,
Dirac? derived originally this Hamiltonian with the aid
of the permutation operator P, of two S= 1/2 spins.

33 Sov. Phys. Usp. 25(1), Jan, 1982

This enabled Joseph® and Allan and Betts* to associate
Eq. (1) with the permutation operator of spins of arbi-
trary magnitude introduced by Schrédinger.® This op-
erator determines the ratio of the coefficients in Eq.
(1.1) because they all should be of the same order of
magnitude (for example, if S=1, thenl,=~1I,=-1,).

In fact, there is no reason to regard the exchange ener-
gy operator H,, as proportional to the spin permutation
operator P ,, although the latter should be given by an
expression of the (1.1) type. The proportionality be-
tween these two operators in the S=1/2 case is a con-
sequence of the fact that one can form a single scalar
(8, 8,) for two spins and this scalar occurs both in P,
and H,,, with the energy of the system being deter-
mined to within a constant,

Reliable estimates of the non-Heisenberg exchange
integrals can be obtained only from the experimental
data. Calculations based on various microscopic models
can at best give only the order of magnitude of these in-
tegrals, (It should be mentioned that even reliable cal-
culations of the usual exchange integrals for real mag-
netic materials are not possible on the basis of the
available theories. Frequently, even the correct signs
of the integrals cannot be deduced, since the d and f
orbital wave functions are oscillatory, Calculations
relating to the exchange of higher orders in respect of
the spin are much more complex than those in the Hei-
senberg case.) Microscopic models can also be used
to establish the properties of a crystal that determine
the ratio of the energies of the non-Heisenberg and
Heisenberg exchange.

In this respect it is useful to analyze the Hubbard
model for a simple cubic lattice

(1.3)

~ 3
H=UY ag, oag, g, —oag,-++ B E_ 4§, o0g+Ac»

where the number of electrons is equal to the number of
atoms in the semiconductor limit B« U (A is a vector
linking an atom g with a neighbor and ¢ is the component
of the electron spin). The exchange interaction appears
as a result of virtual electron transitions to neighboring
atoms. Such transitions are possible if the electron
spins at neighboring atoms are antiparallel. Since
transitions reduce the degree of localization of electrons
and atoms, it follows from the indeterminacy principle
that the electron energy decreases. It follows that the
energy of an antiferromagnetic state is lower than that
of a ferromagnetic state.

The Heisenberg exchange is obtained as a correction
to the ground-state energy in the second order with re-
spect to B/U. The contribution to the energy made by
a virtual electron transition from an atom 1 to an atom
2 (i.e., 1~-2,2~1) is (B2/U)F,. The spin-dependent
factor F, is equal to O for parallel spins and to 1 for
antiparallel spins. The invariance of the system under
spin rotations in space means that F,, can depend only
on (S,*8,). On the other hand, if S=1/2, any function
of (S, S,) reduces to the linear form. Therefore, F,,
is given uniquely by F,=1/4- (8, +8,), i.e., in the
main order with respect to B/U the exchange integral
in Eq. (1.2) is I,= - 2B2/U.
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The four-spin exchange appears because of cyclic
transitions of electrons between four atoms forming a
square: 1-2,3—~4,2~3,4—-1. Such transitions should
not affect the original spin configuration. The corre-
sponding correction to the energy is of the fourth order
in B/U and it amounts to — 2B*F,,F,,/U* (the factor 4
appears because of the permutation of transitions in
this cycle). Therefore, I,(1,2,3,4) in Eq. (1.2) is
- 8B*/U%, i.e., we have I,/I,= 4B*/U% If B/U<0.1,
this ratio does not exceed a few percent, i.e., in the
case of systems described well by this simple model
the role of the multipsin exchange is slight. However,
the results obtained within the framework of this model
allow us to draw an important qualitative conclusion:
since the band gap E, is U - 12| B}, the role of the non-
Heisenberg exchange increases on reduction in E,.
This is supported by calculations based on other
models.

The relative role of the non-Heisenberg exchange in-
creases if we go outside the confines of the Hubbard
model and allow for the Coulomb repulsion at neighbor-
ing atoms. This gives rise to an exchange interaction
between electrons at neighboring atoms, tending to
establish a ferromagnetic order. Since the contribu-
tions to the total exchange integral I, made by virtual
transitions and by the direct Coulomb interaction are
both of the second order with respect to the overlap
of the orbits of the neighboring atoms and have opposite
signs, it follows that they can largely compensate one
another, In the case of the exchange of higher orders
in respect of the spin, these two mechanisms need not
compensate each other and may even exhibit mutual
enhancement.

A similar exchange mechanism occurs in solid *He,
which is a nuclear antiferromagnet of spin 1/2, except
that now the exchange is due to virtual quantum tun-
neling of He atoms from one unit cell to another. Four-
spin terms in the Hamiltonian are also related to four-
atom cyclic transitions and are magnitude-comparable
with the Heisenberg terms.®™®

Attempts have also been made to estimate the biquad-~
ratic terms on the assumption that the exchange inter-
action between atoms is direct.}®"!* It has been shown
in these treatments that when one electron from each
atom participates in the exchange, the Heisenberg term
~(8,* 8,) is obtained, whereas for two electrons from
each atom the term is biquadratic ~ (8, 8,)?, etc. Nu-
merical estimates obtained in Ref. 11 for the N, mole-
cule with S=3/2 indicate that the ratio of the biquad-
ratic and bilinear exchange integrals a=1,/I, of this
molecule is very small (~0.0025), A more favorable
situation occurs in the case of superexchange via non-
magnetic atoms: in this case the ratio may amount to
a few percent.!®!® Since the relative contribution of the
biquadratic exchange to the magnetic ordering energy is
of the order of aS2, in the case of large spins it may
amount to tens of percent.!5-®

Kittel'® was the first to draw attention to the fact that
the biquadratic exchange may be a consequence of the
lattice deformability. A more rigorous approach shows
that the interaction with the lattice gives rise not only
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to the biguadratic exchange, but also to the three- and
four-spin contributions in those cases when for fixed
ion positions the exchange can be regarded as bilinear
(see, for example, Ref. 20). Expanding the integrals
of the exchange between atoms gandf, IR, - Ry+u, — uy),
in powers of the displacements u, and u, from the
equilibrium positions, we obtain the exchange Hamil-
tonian for a deformable lattice:

1
= —5 21 (gD (SeS) + 1 Y 0q;bfbq

1 / h
—3 2V Taguw bar—blap) (A8—eldt) 1,91, (g, D] (S,Sp),

(1.4)
where wg; and 1, are the frequency and polarization
vector of a phonon with a quasimomentum q and a
polarization j(l,,= - 1), M is the mass of a unit cell,

N is the number of unit cells, and I,(g, f)=1,(R, - R,)..

If we assume that the spins are classical or if the

Curie temperature T is considerably less than the
Debye temperature 6,, the terms in Eq. (1.4) linear

in respect of the phonon operators &* and & can be re-
moved by canonical transformation of the displacements.
Dropping terms of higher orders, we obtain the mag-
netic part of the Hamiltonian

Hy=— 23 1(g.1)(8.:8) — - DL (88820 (S8 1) (S8t
L figt) = g 3 03} osV1 1 (g1 101 DayV1, (g, 1))
x [exp (i4g;) —exp (iaf,)] (exp ( — iqg,) —exp (~ iqf)l.
' (1.5)

Equation (1.5) yields directly the following estimate
for the biguadratic exchange integral: I,(gfgf)
~#2%(M6y)(dl,/da). If we assume that M ~1022 g, 6,
~102 eV, dI,/da~(1-3 eV)/a (for S~1), and a=3 x 10-8
cm, we obtain I,(gfgf) ~102-10"2 <V, the bigquadratic
term can be quite large for the nearest neighbors with
[Rg—Ryl=a.

It is worth considering particularly the case when the
orbital angular momentum does not vanish for magnetic
atoms but is not frozen by the crystal field. In the case
of rare-earth ions the strong spin-orbit interaction
combines the orbital and spin angular momenta into the
total angular momentum J. The crystal field splits a
(27 + 1)-fold degenerate state with a given value of J
into components. Those which are degenerate corre-
spond to the magnetic state of an ion. For example, an
ion of U in UQ, is in the SH, state. The lowest state in
the crystal field is a triplet. We can describe it con-
veniently?®* by introducing an effective spin $=1. States
with different values of $* can be expressed in terms of
states | J* with different values of J* using the relation-
ships

F=x=1 Tixn-) 1170,

155 =0=1 Tz — -2

The use of these states as the basis in the Anderson
super-exchange theory's !¢ yields an effective Hamil-
tonian of the type

A = —1 (Stsz)—lz(sisz)z~13 X 2:! (S}bz’f

i=x, I

with I,/I, =0.27 and I,/I, = 0.0024. Therefore, in spite of
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the strong magnetic anisotropy of a UQ, crystal, the
effective Hamiltonian H is practically isotropic and the
biquadratic exchange is comparable with the bilinear
contribution (apparently, the smallness of 13/11 is acci-
dental).

In the case of transition-metal ions one must first
allow for the crystal field and only then for the spin—
orbit interaction. This was the method used in Ref. 22
to construct an effective Hamiltonian in the bilinear ap-
proximation. The method of Ref. 22 can be generalized
to higher approximations in respect of the effective
angular momentum,

Finally, we must point out that the problem of the ex-
change interaction in a system of ions with an orbitally
degenerate ground state (Jahn-Teller ions)'*”'"? can
sometimes be reduced to a Hamiltonian with the non-
Heisenberg exchange. In fact, a system of this kind
can be described by the Hamiltonian!™

=5 S 8:8es )+ 1o (Teleya) + 15 SgSuiy) (TeTean)l,  (L.6)

where T are the pseudospin operators describing the
occupancy of the orbitals. If the inequality [I,|> |I,|
is obeyed, we can use the adiabatic approximation and
regard the spins as a fast subsystem. Then, the usual
method yields the following expression for the Hamil-
tonian of the slow subsystem (pseudospins)

2 1 g
H, = - N LTuTag ) E, {TuTgqn ),

where E, is the energy of the spins described by Eq.
(1.6) with I,=0 and n is the index describing their
states. In general, the dependence of E, on the set of
parameters (T‘T‘. 4) is nonlinear. Therefore, the
Hamiltonian H, has the structure of Eq. (1.2). A simi-
lar Hamiltonian but now for spins and not for pseudo-
spins is obtained if |I,|<«<|L]|.

The ratio I,/I, was first determined experimentally in
an investigation of ESR of Mn®" ions in MgO containing
1% Mn (Ref. 17). In the case of the Mn®* ions which
are the nearest neighbors it was found that I,/I, ~0.05.
Bearing in mind that S=5/2, the exponent of the rela-
tive contribution of the biquadratic exchange 1,5%/1, is
now considerable: ~25%. This is an order of magni-
tude greater than that expected for the biquadratic ex-
change resulting from the lattice deformation. A nu-
merical calculation of the superexchange between the
Mn?* ions in MnO gave results!® which were in an
order-of-magnitude agreement with the results of Ref.
17. This made it possible to assume that the anoma-
lous properties of the Mn compounds such as MnO can
be explained by a considerable difference of the ex-
change from the Heisenberg form.

The non-Heisenberg exchange has a particularly
strong influence on the properties of those materials
in which the Heisenberg exchange is for some reason
weak. One possible reason for this situation has been
mentioned earlier: the contributions due to the various
exchange mechanisms balance out. However, even
when one particular exchange mechanism predominates,
the exchange integral for two atoms can still be small:
the oscillatory nature of the d and f functions may re-
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sult in a change in the sign when the distance a between
the atoms is varied. If the distance is close to that
corresponding to I(a) =0, the non-Heisenberg exchange
becomes important. We can expect that this is exactly
the situation in, for example, EuSe whose anomalous
properties will be discussed in later sections.

Europium selenide belongs to a family of Eu mono-
chalcogenides, all of which have the NaCl structure.
As the lattice constant increases in this family, a tran-
sition takes place from a ferromagnetic ordering in
EuO (T, =67K) and EuS (T, =16.3°K) to an antiferro-
magnetic ordering in EuSe (Ty =4.6°K) and EuTe (Ty
=9.6°K). (These and later data are collected in Ref.
23.) It is important to note that both EuO and EuS be-
have as almost ideal Heisenberg ferromagnets, where-
as the properties of EuTe are close to those of an ideal
Heisenberg antiferromagnet with the MnO structure,

It is worth noting the anomalously low ordering tem-
perature of EuSe compared with the other members of
the family: this demonstrates weakness of the Heisen-
berg exchange in EuSe. In view of the similarity of the
properties of chalcogenides, the anomalously weak ex-
change in EuSe can be explained by the fact that the
lattice constant a is close to that value a, at which the
integral I, representing the exchange between the
neighboring Eu®' ions vanishes. The strength of the
dependence of I, on a in the case of EuSe is indicated
by the fact that a pressure of 1 kbar lowers Ty by 2
whole degree Kelvin., This substance is easily trans-
formed from an antiferromagnetic to a ferromagnetic
state by the application of pressure.

It is natural to expect that the vanishing of I,(a) at the
point a, is not accompanied by the vanishing of the other
exchange parameters. Therefore, the non-Heisenberg
exchange in Eu chalcogenides should be compared with
the Heisenberg exchange at distances a quite different
from a,. An estimate of the strength of the latter is
given by the value of T, which is close to 70°K for EuO,
If the non-Heisenberg exchange is an order of magnitude
weaker than the Heisenberg interaction, it follows that
in the case of EuSe it should represent a few degrees
Kelvin, i.e., it may fully compete with the Heisenberg
contribution. An additional factor tending to increase
the importance of the non-Heisenberg terms in the case
of EuSe is that the band gap is narrow compared with
that of “classical” antiferromagnetic insulators, such
as NiO, etc.: E, amounts to just 1.7 eV. The relative
contribution of the non-Heisenberg terms increases on
reduction in the band gap, In the case of magnetic in-
sulators the non-Heisenberg terms usually represent
5% of the Heisenberg contributions.

It should be noted that the smallness of the exchange
integral I, for the nearest neighbors makes it necessary
to include the integral I;, between the second-nearest
neighbors. It is shown in Sec. 4 that allowance for I,
and for the non-Heisenberg exchange between the near-
est neighbors is sufficient to explain the main magnetic
properties of EuSe.

The above theoretical estimate of the relative impor-
tance of the biquadratic exchange in UQ, seems to be
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supported also by the Néel temperature Ty =31°K (Ref.
24), which is low compared with T of a similar com-
pound UTe, (78°K—Ref. 25).

b) Conductors

The number of insulators exhibiting a strong exchange
of higher orders in respect of the spin is not very large,
whereas the number of conductors with similar proper-
ties is much greater. Naturally, in metals containing
collective-state electrons the exchange is strongly non-
Heisenberg, but in view of the absence of localized mag-
netic moments the effective magnetic Hamiltonian of
the (1.2) type cannot be derived for metals. However,
in principle, this Hamiltonian provides a satisfactory
description of the properties of conductors in which the
conduction electrons (s electrons) mediate an indirect
exchange betwgen the localized f and d moments (the
s—f Vonsovskii model®®). The initial Hamiltonian in the
s—f model is

H= 2 Eka;aaku—% 2 (Sgs)au'ei(k"k')gal‘mak'a’q (197)
where a}, and ay,are the s-electron operators. It is
usual to assume that the Fermi energy of electrons E,
is large compared with AS. The effective Hamiltonian
of the RKKY theory?™® is a correction of the second
order in respect of »=AS/E, to the conduction electron
energy and it is expressed in terms of the spin opera~
tors. We must bear in mind that in the zeroth order ap-
proximation there is no spin polarization of the elec-
trons so that the first-order correction vanishes. It is
quite clear that in the second order the spins §; occur
in the form of a bilinear term in the magnetic Hamil-
tonian, i.e., the RKKY Hamiltonian should have the
same structure as the Heisenberg expression.

Attempts have been made to obtain terms of higher
orders in respect of the spins §; as successive approxi-
mations of perturbation theory with respect to AS/Ep,
but this approach has yielded diverging expressions.?**
The reason for this becomes clear when we consider
the results reported in Refs. 33 and 34: the energy of
the system under consideration is nonanalytic in re-
spect of AS/E, and the nonanalyticity increases on in-
crease of deviation of the Fermi surface from the
spherical form. Singular terms ~1ln» may play a defi-
nite role when the magnetic structure period is close to
the extremal radius of the Fermi surface.” For exam-
ple, in the case of a one-dimensional chain with a sim-
ple cosinusoidal dispersion law for the conduction elec-
trons, whose number is equal to the number of atoms,
a rigorous calculation of the energy of an antiferromag-
netic state within the framework of the model of Eq.
(1.7) has the effect that the main term is ~»*1n» and
not 2, which should be obtained from the RKKY
theory.?® In the three-dimensional isotropic case the
main term is indeed ~? and this justifies application
of the RKKY theory. However, the correction to this
term is ~n*lnx and it is nonanalytic in respect of %.

It therefore follows that the non-Heisenberg exchange
should be described by the Hamiltonian (1.2) with an in-
finitely large number of terms. Additional complica-
tions in its structure may appear because of the scat-
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tering of the conduction electrons by magnons and pho-
nons, giving rise to smearing of the Fermi surface. In
the RKKY approximation this implies truncation of the
long-range part of the exchange (attention to the tem-
perature dependence of the RKKY interaction was first
drawn in Ref. 35).

The situation is even more complex when instead of
the strong inequality E,>>AS, we find that only the in-
equality W > AS is obeyed, where W is the conduction
band width. The latter corresponds to degenerate mag-
netic semiconductors of the EuO type and to metals with
relatively few electrons per atom. In this case the re-
sults of the RKKY theory are valid only if there is no
magnetization in a crystal. This theory cannot be ap-
plied in the case of a finite average magnetization or in
the case of slow spatial variation of the direction of
local magnetization.? For example, if Ep<AS and the
ordering is ferromagnetic, the electron gas is com-
pletely spin-polarized, i.e., the magnetic ordering
energy is proportional to 4 and not to A% as in the
RKKY theory. However, the antiferromagnetic ordering
energy and the paramagnetic Curie temperature are de-
scribed by the same expressions as in the RKKY theory.

In principle, even in this case we can construct an
equivalent magnetic Hamiltonian but its structure is
extremely complex and its coefficients should depend
on the temperature and field. In order to obtain some
idea on its structure we shall consider the simpler case
of indirect exchange mediated by a single donor elec-
tron between localized spins in a magnetic semiconduc-
tor.%? Clearly, the moment of this conduction electron
is aligned parallel or antiparallel to the total moment
M of a group of n atoms in the vicinity of a defect (these
are the atoms at which the probability of finding the
conduction electron in question is highest) and the ener-
gy of its s—f exchange is +AM/2n. The transition from
this case to the magnetic Hamiltonian is pex:formed by
replacing M with the operator v{[Z, where M=7; S, is
the moment operator of this group of atoms. A rigorous
derivation yields the following expression for the mag-
netic Hamiltonian:

He g4V D),

where H, contains expressions proportional to A% and
having the structure of the RKKY Hamiltonian,

(1.8)

It is clear from Eq. (1.8) that in this special case of
indirect exchange via spin-polarized electrons the
multispin terms appear already in the first order of A
as a result of expansion of the square-root operator in
terms of (S,* 8,):

1 — 2
VWit VR( =gt ) L.9)
1,
R=nS(S+1++, 0= (S0,

r-g

and in the case of strongly magnetized states it is
necessary to sum the whole series, i.e., we have to
allow for the multispin interaction in which all n spins
participate (a more general expression is obtained also
in Ref. 36 without assuming that an electron is equally
likely to appear at all n atoms).
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Finally, when not even the inequality W > AS is satis-
field, the magnetic properties of such systems can be
investigated only in the limit W <«<AS (Refs. 37, 38, and
23). The limit T —-0 is meaningful only for semiconduc-
tors and not for metals. In semiconductors the s elec-
trons of magnetic cations are transferred to neighbor-
ing anions and complete their external shells. For ex-
ample, in the case of NiO two s electrons are trans-
ferred from Ni to the neighboring oxygen atom. The in-
direct exchange between the Ni** ions is via holes which
appear as a result of doping of a crystal with impurities.
The appearance of a hole at an Ni®* ion corresponds to
its transfer to the Ni** state. A hole energy band ap-
pears as a result of hole transitions from one Ni ion
to another. Clearly, this band should consist of
atomic d-type small-radius orbitals, and, moreover,
the distance between magnetic ions in semiconductors
is greater than in metals, because they are separated
by nonmagnetic ions. Therefore, this band is relative-
ly narrow (W< 1 eV, whereas the value of AS which is
now the exchange integral within the 4 shell of the
atoms can represent a few electron volts).

In the case of metals the s electrons are in the collec-
tive state and their energy band is fairly wide. There-
fore, the condition W << AS is in this case nonrealistic.
However, the condition W ~AS may be satisfied by
metals. The conditions for this to happen are particu-
larly favorable in the case of metallic alloys: the equal
probability of finding the conduction electrons at atoms
of different components of an alloy reduces the conduc-
tion band width (some metal alloys even behave as in-
sulators). In the case of metal alloys one can expect
particularly strong deviations of the properties from
the Heisenberg type. By way of example, we can quote
here ferromagnetism of PuP. In this compound the con-
duction electrons are strongly spin-polarized, in con-
trast to metals characterized by W > AS; neutron-dif-
fraction investigations show that the magnetic moment
of these electrons reaches 0.35u 5 per electron,®

In contrast to an insulator, in the case of metals the
non-Heisenberg exchange may be important even if the
ordering temperature is not low. In view of the extreme
difficulty and sometimes impossibility of constructing
the effective Hamiltonian for magnetic conducting ma-
terials exhibiting the non-Heisenberg exchange, we can
analyze these materials only in two ways: 1) by de-
riving whenever possible reliable results directly from
the Hamiltonian (1.7); 2) by applying the Hamiltonian
(1.2) with a finite number of terms by way of a model
representation.

2. QUADRUPOLE ORDERING AND ORDER-PROPER
DISORDER PHASE TRANSITIONS

In this section we shall consider the quadrupole
ordering and the influence of the biquadratic and multi-
spin exchange mechanisms on order-disorder phase
transitions. The term “proper disorder” means that
after the disappearance of the long-range order in a
crystal the remaining short-range order is of the same
type as the long-range order that has just disappeared.
Therefore, the short-range order can be regarded as
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the trace residue of the long-range order. As usual,
the long-range order parameter is

2.1

. 1 e
Lo (4 = g7 2 (3B exp (—iqg).
g N

where q is the wave vector of the corresponding mag-
netic structure and (sosg) is the correlation function of
the spins 0 and g.

The required information on the short-range order in
the paramagnetic range can be obtained from the sus-
ceptibility x(q, 7) which is related to the spin correla-
tion functions by the Kubo formula:

7. T,‘=—BLT—E(S{\Sﬂ}e,\'p(~iqg). (2.2)

To within the normalization factor, the short-range
order parameter is

mso 4-==Ty(q, Ty—1lim |Tyq. T3,

which—according to Eq. (2.2)—has the same structure
as 7z, in Eq. (2.1) but it is not asymptotically small in
the paramagnetic range. We then obtain that value of
the short-range order vector q for which n5,(q) and
x(q) are maximal.

A less accurate characteristic of the short-range
order is the paramagnetic Curie temperature ©. It
follows from Eq. (2.2) that in the case of a simple cubic
lattice considered in the nearest-neighbor approxima-
tion the expression for this temperature is

O= gy 1 [T (S8 ). (2.2

If the Hamiltonian includes the biquadratic terms
~(8,8,)%, then in the case of positive sign of the biquad-
ratic exchange integral I,(1, 2, 1, 2) =K, this exchange
tends to ensure a parallel or antiparallel orientation
of spins 1 and 2. In the classical spin case the biquad-
ratic exchange energy is the same for the parallel and
antiparallel spin orientations, It follows that the biquad-
ratic exchange performs in a sense the function of the
easy-axis magnetic anisotropy except that the easy axis
is no longer associated with any crystallographic direc-
tion and can have any orientation in space,

We shall assume that K is the largest parameter of the
system. Then, if T << K, the loss of the long-range
order of the spin directions may result in their disori-
entation. However, some degree of order is retained
because they still remain collinear with one another
[ordering in respect of (S)? rather than in respect of
S*]. This is known as the quadrupole ordering, If K
< 0, the spins of the neighboring atoms should be ortho-
gonal to one another. This state can be called ortho-
gonal quadrupole.

We can introduce the quadrupole order parameteri® %

g=((s9n — 0 (2.3)

in addition to the dipole order parameter, which can
conveniently be the average magnetization m =(S*)

=S VN o(0) in the ferromagnetic case and the sublattice
magnetization in the case of antiferromagnets. (One
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can also introduce the order parameters for higher
multiple ordering,* but we shall not consider them in
the present review.) The quadrupole ordering is char-
acterized by the fact that the parameter g differs from
zero, but m =0 (in the ferromagnetic state both m and
q differ from zero). Under certain conditions the quad-
rupole-ordering state may be the ground state.*>*

The problem of the ordering of spins in the case of an
arbitrary isotropic exchange can be solved only for a
one-dimensional chain of classical spins,*! when the
spin correlation functions can be obtained at finite tem-
peratures. (A one-dimensional chain with the biquad-
ratic exchange was also investigated in Ref. 45.)

We shall now report the results obtained by various
authors in the analysis of the Hamiltonians with the bi-
quadratic exchange

= — 4 DI (E—1) (S¢S0 —5 3 K (g—1) (S¢50* (2.4)

and with the four-spin exchange

H=—4 D (g1 (SeS)—+ X K (ghhk) (S8 (SuSy).  (2.5)

All the indices in Eq. {2.5) are assumed to be different.

a) Quadrupole states

Clearly, for certain ratios of their parameters the
Hamiltonians of Eqs. (2.4) and (2.5) describe the usual
ferromagnetic and antiferromagnetic states. The en-
ergies of these states and the magnon spectrum are
given in Refs. 42 and 46 for the Hamiltonian of Eq.
(2.5). These parameters may describe also magnetic
structures of the non-Heisenberg type, for example
canted antiferromagnets (Sec. 5). However, it is found
that the permissible ground states in the case of the
Hamiltonian of Eq. (2.4) include those in which the
dipole ordering does not occur at all but the quadrupole
ordering does. These states cannot be derived in the
classical spin limit, i.e., their existence is a definite
quantum effect. 43

The origin of these states can be found by considering
the Hamiltonian of Eq. {2.4) in the nearest-neighbor ap-
proximation and assuming that I> 0 and K>0. In the
classical spin case (S —«) the biquadratic exchange en-
ergy is not affected by a change from the ferromagnetic
to the antiferromagnetic ordering. However, in the
case of finite spins this energy decreases. In fact, if
we consider two atoms, their total spin S, is 2S for the
parallel orientation and O for the antiparallel case.
Squaring S,=8, + 8, and expressing (S, *S,) in terms of
S% and $2, S2, we find that (8,° §,)? is equal to §* in the
ferromagnetic case and to S%(S+1)? for antiferromag-
nets. This treatment cannot be applied automatically to
a crystal in which each atom interacts not with just one
but with the z nearest neighbors. However, it shows
that the quantum quadrupole structure may appear be-
cause of the competition between the bilinear and bi-
quadratic exchange mechanisms that tend to establish
opposite types of structure: for K =0 the ordering
should be ferromagnetic whereas for I=0 it should be
antiferromagnetic.
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The calculation reported in Ref. 42 was carried out
for S=1. In a quadrupole state we have m =0. There-
fore, the vacuum state is selected to be such that S§
=0 applies to all the atoms. Operators representing
deviation of the spin from the value S§=0 are introduced
and these operators are of two types. The operators
b}, and by describe transitions between the states
5(S% - 1) and 6(S}) with the spin components 1 and 0, re-
spectively: b} 6(S9)=06(S%-1), b,,0(S§ - 1)=6(S{). The
operators b, and b,, describe transitions between the
states with $*=0 and S*=~ 1: b%,6(5%)=6(S$)=6(S§+ 1),
and b,,6(S§+1)=0(S9). These operators are related to
the spins by

Si=VZ(bh+br)y Si=V2(by b0, (2.6)
85 == bl by, — bl,br,.
Fairly complex commutation relationships apply between
the operators by, and by, If we ignore the kinematic
interaction between spins, the operators can be re-
garded as of the Bose type. Substituting Eq. (2.6) into
Eq. (2.4) and diagonalizing in the usual way the magnon
Hamiltonian, it is found® that the energy of the ground
state and the magnon spectrum are described by the
following expressions:
Eq=—KNz[1+4 (1—% )],
0l=K2’2(1—Yk)(1+Yk—'2;—1’k)y YL-=1L2 e,
A
Comparison of Eg given by the first expression in Eq.
(2.7) with the energies of the ferromagnetic and anti-
ferromagnetic states shows that if K> 1> 0, then the
energy Eq is lower. The stability of the quadrupole
state for this relationship between I and K indicates
that the magnon frequencies of Eq. (2.7) are real. If
I=0, the energy Eq and the frequencies w, are identical
with those given by the corresponding expressions for
antiferromagnets, whereas for I =K they reduce to
those for ferromagnets. Therefore, the quadrupole
ordering is intermediate between antiferromagnetism
and ferromagnetism. However, it neither shows partial
magnetization nor two lattices. The first conclusion
follows from the fact that according to Eq. (2.7) at low
values of & we have w, >k, whereas the phenomenologi-
cal theory predicts that for any crystal with a spon-
taneous magnetization we should have w, <%°. The
second conclusion follows from the inequality w(nr/a,
a/a, n/a)# 0.

2.1

It is natural to expect the development of the ferro-
magnetic and antiferromagnetic short-range order at
the points I=K and I=0, respectively, representing the
limits of the quadrupole phase. Evidence is given in
Ref. 42 in support of the conclusion that the quantum
quadrupole ordering may occur also for S=2 although
the actual conditions are much more stringent.

If K< 0 and S=1, more complex structures are ex-
pected: a canted antiferromagnetic structure (Sec. 5)
and an orthogonal quadrupole structure.”® The latter is
characterized by the fact that the quantization axes of
the nearest-neighbor spins are orthogonal, but for each
atom the average value of S* considered in a local co-
ordinate system vanishes with the accuracy to within
the zero-point vibrations. A calculation demonstrating
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this behavior represents a generalization of that de-
scribed above. An orthogonal quadrupole state may be
realized if in addition to the inequality K< I< 0 in Eq.
(2.4) for the exchange constants of the nearest neigh-
bors, the inequality O0< I, < K, is also satisfied for the
constants of the second-nearest neighbors. If this is
not true, then we can expect canted antiferromagnetic
ordering.

Other types of quadrupole ordering are considered in
Ref. 47 on the assumption that the law governing
changes in the directions of the quantization axes in

" space is more complex. A calculation carried out by a
variational method confirms in particular the results of
Refs. 42 and 43. The spectrum of coupled magnon
states in a ferromagnet with the Hamiltonian of Eq.
(2.4) subject to the conditions I>0 and K > 0 is con-
sidered in Ref. 166. It is shown there that if K> I, the
ground ferromagnetic state is unstable in the presence
of such elementary excitations. This can be understood
in the light of the results given in Ref. 42.

In addition to the quantum quadrupole states discussed
above, we can expect also quadrupole states of statisti-
cal origin. In the limit 7 —~0 they are less likely than
dipole ferromagnetic or antiferromagnetic states, but
they may appear at finite temperatures because their
entropy is higher than that of the dipole states. In con-
trast to the quantum states, such statistical quadrupole
states are possible also in the limit S —~=, In the case
of these statistical states all the spins are parallel or
antiparallel to one another. Therefore, the parameter
q of Eq. (2.3) is then positive, whereas for a one-sub-
lattice quantum state it is negative. The quantum states
are truly ordered, whereas the statistical states are
only partly ordered. Phase transitions transform quad-
rupole structures into dipole configurations or they de-
stroy them altogether.

b) Phase transitions

The main results on phase transitions considered with-
in the framework of the model represented by Egs.
(2.4) and (2.5) have been obtained mainly in the molecu-
lar field approximation and by the method of high-tem-
perature expansions. The first attempt to consider a
Hamiltonian with the biquadratic exchange was made in
Ref. 48, However, the self-consistent field variant
used there was incorrect: separation of {(SfS%)% into
{(SFN?((S5)* was clearly wrong. A correct analysis of
the problem was carried out in Refs. 42 and 49-51
allowing for the biquadratic exchange and also in Ref.
52 allowing for the four-spin exchange. For example,
in the latter case the molecular field 4 acting on a
ferromagnetic spin subject to Eq. (2.5) is found from
an equation which is cubic in respect of the Brillouin
function Bg(x) (Ref. 52):

# =578 (52 ) +250 RBY( 5L ), (2.8)

J=X1(g b, R=3K (gihk).
1 thk
An analysis of Eq. (2.8) demonstrates that the nature of

the ferromagnetic—paramagnetic transition depends on
the ratio x=J/282R. If A>)s, where Ag varies from 3
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for S=1/2 to 1.66 for S—<, the transition is of the
second order, in the opposite case it is of the first
order. Therefore, the multispin exchange gives rise
to an abrupt ferromagnetic—paramagnetic phase tran-

‘sition. Similar results are reported also in Ref. 52

for antiferromagnets,

One should stress an important feature which applies
not only to the results of Ref. 52 but also to the results
of many other papers cited in the present review. The
self-consistent field method which exaggerates the
role of fluctuations cannot be accurate in the vicinity
of a second-order phase transition, Moreover, some
authors are of the opinion that this method can even
give qualitatively wrong results predicting, for some
magnetic structures, a continuous instead of an abrupt
transition obtained from the fluctuation theory (see the
following subsection). However, if the self-consistent
field method predicts that a phafse transition is abrupt,
then this qualitative result can be regarded as reliable:
a more correct allowance for fluctuations can only en-
hance the discontinuity at the phase transition. It
should be noted that the fluctuation theory of phase
transitions predicts second-order transitions for ferro-
magnets.

Analyses of the biquadratic exchange reported in Refs,
42 and 49-51 are made using not only the conventional
self-consistent field acting on S§ (“dipole” field), but
also a “quadrupole” field acting on (Sf)%.. Then, the
Hamiltonian (2.4) for a ferromagnet can be represented

in the form
H=H,+H,,
Ho= —Jm 3 85— Qg 3 (537,
J:z([-—-__—[f), ¢=2:K, (2.9)

where z is the number of nearest neighbors. The order
parameters m and g in Eq. (2.3) act as variational quan-
tities. They can be found by minimizing the model en-
ergy of the system F, with respect to these param-
eters:

F<Fy=Fy 4 (Hy,,
5

Fy=—NTWnZ Z= 3 expiLjTLO—qi,

1==85

where the symbol {...), denotes the thermal average
with the Hamiltonian H,.

We shall now consider the case of ferromagnetic
ordering with J>0 and @ >0. At low values of ®=Q/J
the biquadratic exchange does not alter the nature of the
phase transition, but simply lowers T.. This lowering
of the Curie point is due to the tendency of the biquad-
ratic exchange to establish antiferromagnetic ordering.
A ferromagnetic—-paramagnetic phase transition is
transformed from continuous to abrupt for »= »,(S)
ranging from 1.5 for S=1 to 1.258 "2 for S~ (Refs.

42 and 49-51); a similar result was obtained by a dif-
ferent method in Refs. 53 and 54. The range of exis-
tence of a first-order ferromagnetic—paramagnetic
phase transition has an upper limit of %= %,(S)
~(3-4)S2 (Ref. 42). A further increase in » results in
a considerable difference in the behavior of magnetic
materials with S=1 and S>1. The special nature of the
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tase S=1 is due to the fact that this is the limiting value
of the spin from which the biquadratic exchange be-
comes possible.

If $> 1 and « is not very much greater than »,, an
increase in temperature results in a first-order phase
transition from a ferromagnetic to a statistical quad-
rupole state with m =0 but g> 0. Then, a first-order
transition from the quadrupole to a paramagnetic state
takes place. Its abruptness is a consequence of the
symmetry properties of the system®®: the parameter ¢
transforms in accordance with the representation D, of
the complete group of rotations because a quadrupole
is a tensor. A symmetric cube of this representation
contains a unit representation,®®

Finally, if »> ®,, where »,/%, varies from 1,74 for
§=2 to 1.91 for S ~=, a phase transition from a ferro-
magnetic to a statistical quadrupole state becomes of
the second order (but a transition from a quadrupole to
a paramagnetic state is still of the first order),* as
shown in Fig. 1. Physically, this change in the nature
of the phase transition from the first to the second
order can be explained by the fact that in the limit
K/I - the system becomes an analog of an Ising ma-
terial, However, in the Ising model an order-disorder
phase transition is always of the second order.

If S=1 and the exchange mechanism is isotropic bi-
quadratic, a phase transition from a ferromagnetic to
a statistical quadrupole state is impossible, contrary
to the conclusion reached in Ref. 40. The real situation
is as follows*™ % 5: if n< n,=3, the ground state is
ferromagnetic. When temperature is increased, a
paramagnetic state is reached by a second-order phase
transition if < %, =1.5 and by a first-order transition
if < n<m,=8. If >3 (i.e., if K> 1), then the self-
consistent field approximation predicts, in full agree-
ment with the results of the spin-wave approximation,*?
that a ferromagnetic state is unstable even in the limit
T —~0. Cooling gives rise to a phase transition from a
paramagnetic state to a state withm =0 and ¢< 0, i.e.,
to a quantum quadrupole state (Fig. 2). It is possible
that more rigorous calculations would reveal also a
quantum quadrupole state in the phase diagrams of mag-
netic materials with §=2,3,....

An attempt to construct a phase diagram for the K< 0
case is made in Ref, 51 but it is not fully justified be-
cause of lack of allowance for the possibility of canted
antiferromagnetic ordering. The properties of mag-

Quadrupole
2l

P .

F ) NS

T

FIG. 1, Phase diagram of a ferromagnet with biquadratie
exchange in the S >1 case. The continuous curves correspond
to first-order transitions and the dashed curves correspond
to second-order transitions.
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FIG. 2. Phase diagram of a ferromagnet with biquadratic ex-
change in the case when S = 1. The notation is the same as in
Fig. 1.

netic materials with a strongly anisotropic exchange
are also analyzed in Refs. 49, 51, and 56~59 in the
self-consistent field approximation.

The properties of the systems described by the Hamil-
tonians (2.4) and (2.5) have also been studied by other
methods but they are usually less reliable than the self-
consistent field approximation. This applies to the
constant coupling method’5* in which a change in the
nature of the ferromagnetic—paramagnetic phase tran-
gition is observed on enhancement of the biquadratic
exchange, but a quadrupole phase is not obtained. De-
coupling of higher Green’s functions in different vari-
ants of the Green’s function method is used in Refs.
60-66 but the correctness of this procedure is difficult
to establish in the absence of a small parameter.

The sign of the paramagnetic Curie temperature ©
for systems exhibiting an order-disorder phase transi-
tion of the first order is important from the conceptual
point of view. A direct calculation carried out using
Eq. (2.2’) shows that
(2.10)

68, (1 — X e=208(s+1).

Since the relative strength of the biquadratic exchange
is governed by KS?/1, it follows from Eq. (2.10) that in
the limit of the classical spin when S ~* and K -0, and
for comparable values of I and KS? the biquadratic ex-
change does not influence the paramagnetic Curie tem-
perature of a magnetic material. The expression (2.10)
agrees with the results of Refs. 67-69. If S=1, this
expression reduces to that for T, obtained in Ref, 50,

1t should be stressed that in contrast to T, the value of
© retains its meaning even in the case when a second-
order phase transition changes to a first-order transi-
tion or ferromagnetic ordering is altogether impossible.

It follows from Eq. (2.10) that throughout the range of
stability of paramagnetic ordering the paramagnetic
Curie temperature is positive and the function x{(gq) of
Eq. (2.2) is maximal when ¢=0. Therefore, irrespec-
tive of whether a ferromagnetic—paramagnetic phase
transition is of the first or second order, it should be
classified as an order—proper disorder phase transi-
tion. If S=1, the positive nature of © in the range I
< K < 2I demonstrates the existence of a short-range
ferromagnetic order in a quantum quadrupole phase,
whereas the negative sign of this temperature in the
K> 2I case is evidence of a short-range antiferromag-
netic order,

Attempts have been made to investigate the properties
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of magnetic materials with the biquadratic exchange by
the method of high-temperature expansions,® ™"
This approach can give important information on
second-order phase transitions but in systems with the
biquadratic exchange they frequently reduce to first-
order transitions and, therefore, the usual formula-
tion of the problems—determination of the critical
point and critical indices—is now meaningful only for
some values of K/I. Moreover, the corresponding
series have not been always analyzed correctly. For
example, three terms of the series for x and T, are
calculated in Ref. 3 from the condition x' =0, i.e., the
critical index of x is automatically assumed to be 1.
However, even when an analysis is self-consistent the
presence of biquadratic terms gives rise to serious
mathematical difficulties which prevent obtaining reli-
able conclusions from the calculations. Therefore,
work on high-temperature expansions has not resulted
in significant progress in studies of non-Heisenberg
magnetic materials.

A new feature (compared with the Heisenberg case)
has been a study of the quadrupole susceptibility Xg
investigated for S=1 and defined as the change in the
quadrupole moment in a virtual quadrupole field applied
to a system."™™

c) Experimental results

We must begin by noting the absence of reliable ex-
perimental data that would confirm the existence of
quadrupole phases. It was suggested in Ref. 72 that
they appear in rare-earth pnictides with the NaCl
structure. The existence of the second phase transition
several degrees higher than the magnetic ordering
point is typical of these compounds. For example,
DySb exhibits an abrupt tetragonal distortion of the
lattice at 7* =11.5°K and then at T, =9.5°K an antiferro-
magnetic order is established (Ref. 73).!’ In the case
of CeSb, whose unique properties below T, =16°K will
be discussed in Sec. 4, the value of T* is 19.5°K. Ac-
cording to Ref. 72, the lattice distortion may be due to
the appearance of a quadrupole order. However, the
absence of such distortion in the lattice of GdSb, where
the Gd®* ions (in contrast to Dy** and Ce**) have no
orbital momentum, suggests that the cooperative Jahn—
Teller effect is observed in DySb and CeSb. We have
mentioned above also the suggestions of the existence
of a quadrupole phase transition in DyVO, (Ref. 51).

It is possible that the quadrupole phase transition and
the cooperative Jahn—-Teller effect, although not neces-
sarily equivalent, always seem to occur together.

Order-—disorder phase transitions of the first order
are observed quite frequently in magnetic materials
(see, for example, Ref. 26) and the problem is to de-
termine their true origin., Frequently, a first-order
phase transition is explained by a finite compressi-
bility of the lattice.™ ™ As shown in Sec. 1, this mech-
anism is essentially equivalent to the special case of

D According to G. A. and K. A. Gehring, 1%’ the compound DySb
undergoes not two but one phase {ransition.
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the biquadratic and multispin exchange mechanisms,

so that no special analysis is needed. A real alterna-
tive to the non-Heisenberg mechanism of first-order
phase transitions discussed in Sec. 1 is the fluctuation
mechanism.”™®° According to Refs. 77-80, the Landau~
Ginzburg-Wilson Hamiltonian of some magnetic struc-
tures does not have a fixed point, which is interpreted
as the transformation of a first-order into a second-
order phase transition because of the growth of critical
fluctuations. However, it has recently been suggested'®
that the absence of a fixed point need not be manifested
by an abruptness of a phase transition: other singulari-
ties are also possible. This conclusion has been drawn
from an analysis of the experimental data on antiferro-
magnetic NdSn, whose order parameter varies con-
tinuously at the phase transition but the residue of the °
short-range order can be detected well above Ty.

The conclusion that the absence of a fixed point does
not always result in a first-order transition is in agree-
ment with the continuity of the phase transitions in CeSe
and CeTe established in Ref. 162, This can be also ex-
plained!®! by assuming that the fixed point is almost
stable in the case of cubic crystals. The experimental
results reported below demonstrate that, in some cases
when there is no fixed point and a first-order phase
transition is observed experimentally, this transition
can be explained not only by fluctuations but also by a
non-Heisenberg mechanism.

In fact, according to Refs. 77-80 a first-order phase
transition should be exhibited by antiferromagnets with
ordering of the MnO type. However, so far the only
material in which this has been found in MnO itself®®
and weakening of the magnetic scattering of neutrons
is accompanied by weakening of the nuclear scattering,
indicating major changes in the lattice state.?? The
theory of Refs. 77-80 is in good agreement with the
fact that a weak uniaxial stress applied to a MnO crystal
makes its phase transition continuous.®® However,
other antiferromagnets with the MnO symmetry do not
exhibit a first-order phase transition. Therefore, we
cannot exclude the possibility that the first-order phase
transition in MnO is at least partly due to a strong bi-
quadratic exchange between the Mn ions whose existence
has been proved in Ref. 17 (see Sec. 1). This is sup-
ported by the first-order phase transition observed in
Mn§, which is a material of such symmetry that the
first-order phase transition cannot be due to critical
fluctuations.®

Another example is UQ, in which the postulated four
sublattice antiferromagnetic structure (Sec. 5) should,
according to Refs. 77-80, result in a first-order phase
transition. On the other hand, it was shown in Ref. 85
and confirmed by an investigation of the magnon spec-
trum in Ref. 86 that this structure is possible only in
the case of a strong non-Heisenberg exchange. Its
existence is supported also by calculations® (Sec. 1),
so that once again we have some doubt about the origin
of the first-order phase transition. The situation is
complicated further by possible displacements of the
oxygen ions at the phase transition occurring without
2 change in the crystal volume.?”8® This displacement
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can also give rise to a first-order phase transition,
Finally, we must bear also in mind the possibility®® that
UQ, is a singlet magnetic material with a low-lying
triplet (it is assumed in Ref. 21 that, conversely, the
triplet is below the singlet). According to Ref. 89, the
Heisenberg exchange splits a triplet so that its lower
component is below a singlet. Therefore, a magnetic
triplet state is then preferred for energy reasons to a
nonmagnetic singlet state. However, as the tempera-
ture is increased the sublattice magnetization decreases
and the lower component of the triplet rises above the
singlet. This gives rise to a first-order phase transi-
tion to a nonmagnetic state.

The theory of Ref, 52 predicting a first-order phase
transition for magnetic materials with the four-spin
interaction of the (2.5) type is in good a greement with
the results on *He, in which the bigquadratic or three-
spin exchange are impossible because the nuclear spin
is 1/2. It is interesting to note that according to the
data of Sec. 4, an order—disorder phase transition of
the first order has been observed for many materials
with structures that cannot be described by the Heisen-
berg model (*He, EuSe, CeSb, CeBi, UAs, etc.) indi-
cating a connection between the abrupt nature of a phase
transition and the non-Heisenberg exchange. At least
some of these materials (for example, UAs) exhibit an
order—improper disorder phase transition.

3. ORDER-ORDER AND ORDER-IMPROPER DISORDER
PHASE TRANSITIONS AND METAMAGNETISM.
GENERAL ANALYSIS

This and the subsequent two sections are devoted to
various aspects of order—order phase transitions. The
present section will deal with the general aspects of
this phenomenon and also with order—improper dis-
order phase transitions which appear instead of order—
order phase transitions if the temperature is sufficient-
ly high.

A phase transition accompanied by a change in the
magnetic order occurs in very many materials (see,
for example, Ref. 26). The simplest phase transition
of this kind is from an antiferromagnetic to a ferro-
magnetic state. It was explained by Kittel on the basis
of the exchange inversion concept according to which
the thermal expansion of the lattice alters the sign of
the exchange integral.’® This explanation, if valid at
all, applies to a very limited class of magnetic ma-
terials with high-temperature phase transitions. In
fact, the linear expansion coefficient a=dlna/dT of
metals is ~(1-2) X 10™° °K™!, whereas for ionic crystals
it is ~(1-5)x 10™° °K™, However, typical values of
=dInl/d lna are ~5-6, which is true, for example, of
EuO and EuS (Ref. 90). Record values of this quantity,
amounting to ~50-100, are exhibited by DyGd alloys,
which therefore have a giant magnetostriction.®® Even
if we consider the highest values of a, in the case of
ionic crystals such inversion of the sign of the exchange
integral can occur only at 7, ~10°~10* °K. For the
record value of =100 this inversion can occur at T,
~102-10° °K, but so far such values of A and of giant
magnetostriction have not yet been observed for other
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materials exhibiting order—order phase transitions.
Moreover, in many of these materials this phase tran-
sition occurs at very low temperatures, for example,

in the case of EuSe there is a whole series of phase
transitions at temperatures below 4.6 °K (Sec. 4).
Therefore, it is clear that purely magnetic mechanisms
of order—order phase transitions are more realistic
and these are not related to the thermal expansion of
the lattice. An example of such a mechanism in the
case of phase transitions from canted to collinear
structures is given in Ref. 92: the evidence is a com~
plex temperature dependence of the magnetic anisotropy
which is very strong in the case of rare-~earth metals.

Isotropic systems with an exchange mechanism which
is very different from the Heisenberg type may exhibit
order-order phase transitions because of the difference
between the temperature dependences of the Heisen-
berg and non-Heisenberg exchange. Consequently, the
high-temperature properties may be governed by the
former and the low-temperature properties by the
latter. For example, in the case of the four-spin ex-
change of Eq. (2.5), when the inequality K__> 0 is
obeyed, a crystal may be ferromagnetic in the ground
state if the effective exchange integral is I_+ 2K, S*
=]1(0)> 0 and antiferromagnetic for the opposite sign®;
here,

I.=X1I(—g), K _=XK( g h k), K..=2K(, g h, k).
" ghk #hk
(3.1)

In the expression for I_ the summation is over atoms g
from the sublattice other than that containing an atom f,
and in the expressions for K__ and K,_ the f and g atoms
belong to different sublattices, whereas the h and k
atoms belong to the different and the same sublattices,
respectively.

_ At finite temperatures the spin S in the expression for
I is replaced by its average value S(T). We shall as-
sume that |I.|< 28?|K,_| and that I_ and X,_ have the op-
posite signs. Then, when temperature is increased the
quantity I{(T)=I_+ 2K,_S?(T) should experience reversal
of its sign, i.e.,, an antiferromagnetic—-ferromagnetic
phase transition should take place.

This “non-Heisenberg” phase transition mechanism
was first investigated in detail using the model with the
Heisenberg and three-spin exchange ~ (S,S,)(S,S,) (Refs.
93 and 94) and a model with the four-spin exchange.'™
Moreover, this mechanism makes it possible to explain
low-temperature phase transitions and it has that ad-
vantage over the exchange inversion theory of Kittel
that it can explain a phase transition between complex
structures which are impossible in the Heisenberg
model (Secs. 4 and 5).

The possibility of occurrence of an antiferromagnetic~
ferromagnetic phase transition is proved in Refs. 93,
94, and 174, together with the possibility of a phase
transition from an antiferromagnetic state directly to
a paramagnetic state characterized by a short-range
ferromagnetic order (the definition of the short-range
order is given in Sec. 2). As a generalization of this
result Nagaev and Kovalenko introduced in Refs. 93,

94, and 174 the concept of an order-improper disorder
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phase transition applicable not only to magnetic but
also to other materials. Its origin in the case of non-
Heisenberg magnetic materials can be explained physi-
cally as follows: for certain ratios of the parameters
of the bilinear and three- or four-spin exchange the
temperature of an antiferromagnetic—ferromagnetic
transition becomes so high that a long-range ferro-
magnetic order cannot exist at this temperature and
only the short-range ferromagnetic order remains.

It is usual to assume as self-evident that heating of
an isotropic antiferromagnet results in a transition to
a paramagnetic state with a negative paramagnetic
Curie temperature ©, whereas heating of a ferromagnet
produces a transition to a state with a positive 8. Ac-
cording to Eq. (2.2’) the sign of © is the same as that of
binary correlation functions of the neighboring atoms
describing the short-range magnetic order. There-
fore, the negative sign means that the destruction of
the long-range antiferromagnetic order still leaves a
residue of the short-range antiferromagnetic order,
whereas the positive sign of © implies that the re-
maining short-range order is ferromagnetic. Similar-
ly, in other cases when order—disorder phase transi-
tions are discussed, it is understood that above the
transition point the short-range order is of the same
type as the long-range order below the transition point
(this is known as proper disorder; see Sec. 2).

The existence of order—improper disorder phase
transitions makes it necessary to review these con-
clusions. For example, if such a transition occurs in
an isotropic antiferromagnet, its paramagnetic Curie
temperature may not be negative but positive; 2) in the
case of a ferromagnet it may be negative. In general,
an order—improper disorder phase transition is charac-
terized by noncoincidence of the long- and short-range
order vectors [see Eq. (2.1)] below and above the tran-
sition point, respectively. It does not always result in
an anomaly of the sign of O, for example, in the case of
UAs. Such phase transitions are necessarily of the
first order, whereas order—proper disorder phase
transitions may be of the first or second order.

The question of the nature of the short-range order
above the point of disappearance of the long-range order
is very important since many properties of crystals are
not determined by the long-range order but by the
short-range one. One example has already been given:
it is the paramagnetic susceptibility of strong magnetic
materials. Other properties which are governed by
the short-range order include the electrical and optical.
In particular, the position of the optical absorption edge
of magnetic semiconductors and insulators depends very
strongly on the short-range order.

3 To avoid misunderstanding, it must be stressed that this
effect has nothing in common with the positive nature of ® in
the case of layer antiferromagnets characterized by a strong
ferromagnetic exchange within the layers. In the latter case
the sign of ® reflects the short-range ferromagnetic order
inside the layers. It is also of the type that ensures a long-
range order within the layers below the Néel point.
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Nearest-neighbor approximation

We shall consider an antiferromagnet in which only the
interaction between the nearest neighbors is important.
We shall show that we can have an order—improper dis-
order transition in this case and that the short-range
order vector qg, above Ty has the components (0,0, 0),
whereas the long-range order vector q ,below Ty is
(n/a, n/a,n/a) (order~commensurate disorder transi-
tion). According to the results given in Sec. 4, if al-
lowance is made also for the interaction of the second-
nearest neighbors, the vector q5, may have an arbi-
trary value (order-incommensurate disorder phase
transition). We shall use the nearest-neighbor approxi-
mation to show that metamagnetism may appear in iso-
tropic antiferromagnets.

We shall assume that a magnetic material consists of
equivalent magnetic atoms with the spin § forming a
simple cubic lattice with the constant a. The Hamil-
tonian of the system is selected in the form (¥ is the
magnetic field)

H= —& 3 8t=1 3 (SeSera)

—5 D (5:Sea) (SeraSeran + SeSerarar))-
A* = £A
(3.2)

The three-spin term in Eq. (3.2) must satisfy not only
the self-evident requirement that all the three atoms
should be as close to one another as possible, but also
another requirement which is of fundamental impor-
tance in our case: like the Heisenberg term, its sign
changes when ferromagnetic order becomes modified
to chessboard antiferromagnetic. The three-spin terms
of the (8,8, a) X (S;.25;. ava-) type which do not have this
property are not included in the Hamiltonian (3.2). We
shall consider the case when the Heisenberg and three-
spin exchange in Eq. (3.2) have opposite signs with /
>0 and K < 0, and the latter exchange is stronger than
the former. For these relationships between the pa-
rameters the energy of an anti-ferromagnetic state
E,r is less than the energy of a ferromagnetic state
Epy.

High-temperature expansions allow us to determine
the nature of the short-range order at high tempera-
tures. Applying the Kubo formula (2.2), we find that
in the limit of classically large spins

P {0 F (80 B (-3 + 5]
(3.3)

LI

k=15 J=2I82, E=2z(z -2)KS*.

Nl

B =7

1t follows from Egs. (3.3) and (2.2) that even at T=0
an antiferromagnetic state is stable and at high tem-
peratures the correlation functions for the nearest
neighbors may be positive, i.e., the short-range order
is ferromagnetic. The paramagnetic Curie tempera-
ture (2.2") deduced from Eq. (3.3) is

92%(1__1). (3.4)

The condition for a crystal to be antiferromagnetic at
T =0 and for its paramagnetic Curie temperature to be

E. L. Nagaev 43



positive at high temperatures is 1< k< 3. For compari-
son, we should mention that in the case of the four-spin
exchange the value of © is governed only by the Heisen-
berg part of the Hamiltonian (2.5) and in a similar sit-
uation when I_>0 and K_, < O the value of © is always
positive.

In principle, the transition from the antiferromagnetic
long-range order to the ferromagnetic short-range
order can occur in two ways: 1) by a phase transition
from an antiferromagnetic to a ferromagnetic state
followed by a transition to a paramagnetic state; 2) by
a direct antiferromagnetic—paramagnetic state.

The fact that, in principle, a direct antiferromag-
netic—paramagnetic phase transition with ©>0 is pos-
sible can be demonstrated simply by estimating the
Curie temperature of a ferromagnetic state and showing
that for certain relationships between the parameters it
is so low that the free energy of the antiferromagnetic
state F, z(T¢) is close to E,, and much lower than the
free energy of the ferromagnetic state Fp,, which
varies between T=0 and T=T from E, to a value
~(=T¢). According to Eq. {3.4), this is also true for
values of k close to 3. In fact, if a ferromagnetic state
does exist at all for such values of & that © -0, then its
Curie temperature even if not equal to © should also ap-
proach zero. Therefore, we have F (T )< Fpy, i.e.,
when & ~3 a ferromagnetic state cannot indeed form.

In those cases when a second-order ferromagnetic—
paramagnetic phase transition takes place, we can use
the expansion of Eq. (3.3) and the method of ratios or of
the Padé approximants® to find the critical index
¥[x=<(T= T)~7. It is found that the three-spin exchange
increases y. For example, if k=1.2, the value of 7 is
2.2 times greater than for a Heisenberg ferromagnet.

More detailed information on the properties of such a
system can be obtained using the self-consistent field
approximation and introducing, as in Eq. (2.9), the di-
pole and quadrupole fields, The general relationships
can be deduced from Fig. 3, which shows the results of
numerical calculations for the cases 2=1.5 (continuous
curves) and k= 1.8 (dashed curves) in the S=7/2 case.
The upper of the two lines corresponding to a given
value of 2 represents the temperature dependence of
the antiferromagnetic order parameter S,,, whereas
the lower curve represents the same dependence for the
ferromagnetic order parameter Sg, (T=T/zIS?). The
free energy of the ferromagnetic order Fp, is negative
at all temperatures, T< T, whereas the free energy
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FIG, 3. Temperature dependences of the order parameters of
a magnetic material with three-spin exchange
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FIG. 4. Qualitative phase diagram of 2 magnetic material
with three-spin exchange.

of the antiferromagnetic order F,. is negative only in
that part of the S, (1) curve which lies to the left of the
arrow, To the right of the arrow the antiferromagnetic
state is known to be unstable (at a temperature 7, cor-
responding to the arrow the free energies of the anti-
ferromagnetic and paramagnetic states become equal).
For k=1.5 (1,=0.123 < 7,), a first-order antiferromag-
netic—ferromagnetic phase transition occurs first for 7,
=0.12 and then when T-=0.153 a second-order transition
takes place to the paramagnetic state.

However, if k=1.8 (7,=0.198>7,=0.1), there is no
stability region of the ferromagnetic state and the first-
order phase transition takes place directly from the
antiferromagnetic to the paramagnetic state. In the in-
terval between 1.5 and 1.8 there is a value of k¢ corre-
sponding to the triple point: 7,=7.. In order to show
that the ferromagnetic state is characterized by a short-
range ferromagnetic order also in the &>k, case, when
a traunsition from the antiferromagnetic to the paramag-
netic states takes place, it is sufficient to calculate the
paramagnetic Curie temperature ©. In the case of ©
we obtain an expression which is identical with Eq. (3.4)
and positive if k< 3. If k> 3, a first-order antiferro-
magnetic—paramagnetic phase transition takes place
and it results in an antiferromagnetic short-range
order, We can summarize these results by plotting a
qualitative £—~7 phase diagram (Fig. 4).

Materials exhibiting a first-order phase transition
from an antiferromagnetic long-range order to a ferro-
magnetic short-range order have another interesting
property: they are isotropic metamagnets. This is in-
dicated by the results of numerical calculations for the
same value k= 1.8 as before but at a temperature 7
=0.19, which lies below the transition point (Fig. 5).
Right up to a field ¥}, =0.082/z5> the magnetization in-
creases continuously with the field because of a reduc-
tion in the angle 2¢ between the sublattice moments.
However, in the field #, there is an abrupt phase tran-
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FIG. 5. Magnetization of an isotropic metamagnet with three-
spin exchange plotted as a function of the field.
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sition from the two-sublattice to the one-sublattice
order. At the same time the magnetization increases
approximately fivefold.

Expressions for the susceptibility x of an antiferro-
magnet with the four-spin and biquadratic exchanges
are obtained in Refs. 52 and 43. It follows from them
that an increase in the field should make x larger and
at some value of the field the susceptibility should be-
its critical value the two-sublattice structure changes
abruptly to the one-sublattice form, i.e., a metamag-
netic transition takes place. In the biquadratic exchange
case the condition for this to happen at T =0 is found
from the relationship

7~ 61 —2(2 + 3cos ¢) 25 — 1)2 K]?

withI< 0 and K > 0; ¢ is the angle between the field and
the sublattice moment. These results are interesting
because they are in conflict with the generally accepted
idea that metamagnets are materials with a very strong
magnetic anisotropy. It should be pointed out that if a
ferromagnet undergoes a first-order transition to a
paramagnetic state, the magnetic field above the tran-
sition point may cause its magnetization to rise abrupt-
ly.*? Isotropic metamagnetism is possible also in the
model with the double Heisenberg Hamiltonian de-
scribing Jahn-Teller systems.!™

An example of an isotropic metamagnet is EuSe (Sec.
4). Its magnetic properties are more complex than
those derived on the basis of the model used in Sec. 4
(the existence of two critical fields with two magnetiza-
tion jumps instead of one is demonstrated above). How-
ever, the important fact is that allowance for the non-
Heisenberg exchange is sufficient to explain the meta-
magnetism of isotropic materials.

4. COLLINEAR MULTISUBLATTICE STRUCTURES.
SEQUENCES AND DEVIL'S LADDERS OF PHASE
TRANSITIONS

a) Sequences of order-order and order-improper disorder
phase transitions (experimental results)

Experimental results show that many magnetic ma-
terials with a very simple crystal structure (of the
NaCl or CsCl type) have at the same time very complex
and unusual magnetic properties: their magnetic struc-
tures cannot be explained by the Heisenberg model and
when temperature or an external magnetic field is
varied, they undergo phase transitions or sequences of
transitions between various commensurable structures.
Such anomalous properties are exhibited not only by
crystals with a strong magnetic anisotropy but also by
crystals with a very weak anisotropy. In this respect
the magnetic semi-conductor EuSe with the NaCl struc-
ture is characteristic. The Eu® ions in this compound
do not have an orbital angular momentum and the aniso-
tropy field is only 100 Oe (Ref. 90).

Magnetic ordering of EuSe has been investigated®t-19°
using various experimental methods, including neutron
diffraction and NMR. The results are summarized by
the phase diagram in Fig. 6: all the magnetic struc-
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FIG. 6. Phase diagram of EuSe (Ref. 97).

tures occurfing in EuSe can be represented by a set of
ferromagnetic (111) planes whose angular momenta are
parallel or antiparallel to one another.

If the field is #°=0, the transition from the paramag-
netic to the antiferromagnetic state at the Néel point
4,6°K produces an unusual structure: the ferromag-
netic planes form four equivalent sublattices with the
(++—-=) order. Cooling to 2.8°K alters this order
abruptly to a “ferrimagnetic” (FIM) state with a finite
but unsaturated magnetic moment. This state is as-
sumed to consist of two phases: one phase is the usual
two-sublattice antiferromagnetic of the MnO type, i.e.,
(+ =), whereas the other phase is a magnetized three-
sublattice ferrimagnet (+ + —). The phases are present
in the ratio 5:13. Therefore, the resultant moment
per each Eu®' ion is not 7 ug but only 1.68 uz. The re-
sults of magnetic and dilatometric investigations'® in-
dicate that at 1.8 °K there is a phase transition to a '
completely antiferromagnetic state with ordering dif-
ferent from (++ - =), According to the neutron-diffrac-
tion data,®® the ferrimagnetic (+ +—) state coexists near
the transition point at 1.9°K with the antiferromagnetic
(+ =) state and it is that state that should occur below
the transition point. Additional confirmation that below
1.8°K the antiferromagnetic order is of the MnO type
is reported in Ref. 107: cooling below 1,8°K makes the
Faraday rotation spectra of EuSe of the same type as
those of EuTe, which has the magnetic structure of
MnO.

In the range of stability of the antiferromagnetic states
a weak magnetic field transforms a crystal first to the
ferrimagnetic and then to the ferromagnetic state. A
study of the Mossbauer effect®® has shown that the
order—disorder phase transition at 4.6°K is of the first
order, in agreement with the experimental NMR data,!%

It should be pointed out that the phase diagram of Fig.
6 may oversimplify the behavior of EuSe in magnetic
fields. According to Ref. 108, the temperature deriva-
tives of the anisotropy constants exhibit anomalies be-
low Ty in a field 4 kOe and these anomalies are not
compatible with a complete ferromagnetic ordering. At
1.3°K the magnetization does not reach saturation even
in a field #°= 19 kOe (Ref. 108). According to Ref. 106,
if the field or temperature is varied cyclically, mag-
netic phase transitions exhibit a hysteresis. There is
some intermediate phase between the ferrimagnetic
and ferromagnetic states.

Data from an unpublished thesis!®* which do not agree
fully with the phase diagram of Fig. 6 are quoted in
Refs, 110 and 111. However, we must bear in mind
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that these data were obtained for samples containing
1-5% Sn, i.e., for crystals which were strongly defec-
tive. It is known that defects have a very strong in- -
fluence on the properties of EuSe. For example, the
presence of defects may destroy completely the mag-
netic polymorphism of EuSe crystals.''®> Therefore, the
results quoted in Refs. 110 and 111 are not sufficiently
reliable to regard them as applicable to pure EuSe.

A comparison of the experimental results reported
by different authors shows that EuSe exhibits an order-
improper disorder phase transition. In fact, according
to Ref. 96, the long-range magnetic order in EuSe dis-
appears abruptly, in contrast to other Eu chalcogenides.
In the paramagnetic state the value of © of EuSe is posi-
tive (©=9°K according to Refs. 90 and 97), whereas for
the isomorphous antiferromagnet EuTe this tempera-
ture is negative. It is suggested in Ref. 96 that the
positive paramagnetic Curie temperature of © of EuSe
is due to donor defects near which the indirect ex-
change via a donor electron gives rise to a ferromag- .
netic order (localized ferrons whose existence is
demonstrated in Ref..175). Bearing in mind this possi-
bility, we shall quote additional evidence in support of
the conclusion that the ferromagnetic short-range order
in the paramagnetic temperature range is not due to
defects but is an intrinsic property of the perfect EuSe
crystal. Firstly, the Miissbgluer spectra show that
above the antiferromagnetic—paramagnetic transition
point there is a ferromagnetic short-range order.®® If
this order had been associated with localized ferrons,
as assumed in Ref. 96, it would have existed at all tem-
peratures below Ty.

Secondly, in the paramagnetic region the result of
cooling is a very strong red shift of the optical absorp-
tion edge E, which disappears below Ty (Fig. 7 taken
from Ref. 97). A giant red shift of E, is typical of
ferromagnetic semiconductors: it occurs both above
and below T and it is due to the establishment of a
ferromagnetic order, first of the short-range type and
then of the long-range form.2® On the other hand, in
the case of isotropic antiferromagnetic semiconductors
there is no red shift above or below Ty. Such antiferro-
magnets exhibit a weak blue shift. In particular, the
red shift is not exhibited by the antiferromagnet EuTe,
whereas the ferromagnets EuO and EuS are charac-
terized by a very strong red shift. The attribution of
the red shift of EuSe above Ty to the ferromagnetic
short-range order is supported also by the following

EuSe

H=14.5 kOe

FIG. 7. Temperature dependences of the optical absorption
edge (E;) of EuSe (Ref. 97).
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observation: a magnetic field which establishes the
ferromagnetic order enhances the red shift (Fig. 7).
These data are insufficient to find the short-range
order vector gg, above Ty: it is not necessarily egual
to (0, 0, 0) because even for an arbitrary qg, there is
some degree of local ferromagnetic order in a distance
equal to the correlation length. However, the disap-
pearance of the red shift below Ty can apparently be
explained only by the difference between the long-range
order vector q;, from qgy, i.e., by an order-improper
disorder phase transition. It would be desirable to re-
solve this question by neutron diffraction.

A collinear four-sublattice antiferromagnetic struc-
ture apparently occurs also in another. isotropic magnet
which is solid 3He with the bcc structure. The results
of an investigation of nuclear antiferromagnetic reso-
nance''® are in agreement with an antiferromagnetic
order representing ferromagnetic (111) planes whose
moments are arranged in the sequence (+ + - —}, but
these resonance data do not exclude the possibility of
even more exotic structures, At T, =0.002°K a first-
order phase transition takes place from an antiferro-
magnetic to a paramagnetic state. Helium also exhibits
phase transitions in a magnetic field whose nature is
not yet clear,!'#115

Many-sublattice collinear structures are observed
also in some metals. For example, in the case of
CeBi with the NaCl structure a two-sublattice anti-
ferromagnetic structure of the (+ —=) type with ferro-
magnetic (001) layers is established below 25.2°K and
at 12.5°K this structure changes abruptly to a four-
sublattice sequence of the (+ + - —) type.'!®

Antiferromagnet UAs isostructural with CeBi is par-
ticularly interesting; its Néel point Ty occurs at
123.5°K. At 63.5°K it undergoes another transition
from a high-temperature two-sublattice antiferromag-
netic order to a low-temperature four-sublattice con-
figuration.!!”™!1® The most important point is that UAs
is the first material for which the existence of an
order—improper disorder phase transition has been
established reliably. In fact, as Ty is approached
from the high-temperature side, the intensity of diffuse
scattering of neutrons corresponding to the short-range
order vector qg,=(27/a)(0;0; 0, 7) first rises. However,
below Ty such a modulated state is not observed but
there is an abrupt transition to an antiferromagnetic
order with the long-range order parameter q;o = (27/
a)(0; 0; 1), which is evident from Fig. 8 showing the

Number of neutrons

\
| 7= 057

S =3510,0,0)

L . ) 1
12z Ty 124 126 128T,°K

FIG. 8. Temperature dependence of the number of neutrons
scattered by UAs (Ref. 120),
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temperature dependence of the neutron scattering in-
tensity for the above values of qg, and q,, (Ref. 120).
According to Refs. 163 and 164 the value of © for UAs
is positive, exactly as for antiferromagnets UP and
USb, in which below T, only the two-sublattice struc-
ture is observed. However, the very large difference
between the values of © obtained in these two investiga-
tions suggests that the positive sign of © is at least
partly due to crystal defects. It may also be due to a
strong anisotropy of the exchange interaction because
of which the exchange between atoms in the (0,0, 1)
planes is ferromagnetic.'®® In any case, in view of the
moderately large difference between qg, and q;,, it is
unlikely that the sign of © for UAs is related to an
order—improper disorder phase transition.

The most complex properties among materials of this
type are exhibited by CeSb, which is isomorphous with
CeBi. Of the numerous investigations of this material
we shall mention the latest neutron-diffraction studies.
It is reported in Ref. 121 that below T =16.2°K there
are three magnetic structures. A much greater num-
ber of structures is reported in Ref. 122. All these
structures are composed of four blocks of ferromag-
netic planes with spins parallel to the [001] axis and
to spin-free paramagnetic planes (the exact mag-
netic structure is unknown): F,=(++), D,=(+0-) and
F_, D, whose moments are directed opposite to those
of F, and D,. The number of planes N in a unit cell
varies in an irregular manner depending on tempera-
ture: D_has N=3 at 16.1-15.9°K; F,D_D_F_D, has N
=13 at 15.9-15.3°K; F,D_F_has N=17 at 13.7-11.3°K;
F,DF F,FD,F,F_has N=18 at 13.7-11.0°K;

F,F F,D.F_has N=11 at 11.0-8.9°K. Below 8.9°K
and at least down to 2.2°K we have the same F F_
structure with N=4as for the other materials discussed
in the present section. Thus, CeSb exhibits—like
EuSe—a sequence of phase transitions between com-
mensurate structures.

The phase transition at Ty and all the other first-
order phase transitions exhibit a strong hysteresis.
The application of a magnetic field transforms para-
magnetic planes to a magnetized state. According to
Ref. 123, an increase in the field first induces a transi-
tion to a ferrimagnetic state of the (+ + =) type, where-
as in still stronger fields (~40 kOe) there is a transi-
tion to a ferromagnetic state [ according to Ref. 121,
in weak magnetic fields we can also have a ferrimag-
netic state of the (+ +— — + — ~) type]. Partly ordered
layers are observed in the field also at temperatures
T> Ty, but this effect is strongly anisotropic.'?® It
has been suggested that near 7 there is a triple point
in sufficiently strong fields, but neutron investigations
reported in Ref. 124 have failed to reveal it.

b) Theory of normal sequences of phase transitions

The first attempt to explain the special magnetic
ordering of EuSe was made in Refs. 110 and 111, It
was assumed that the spins in the (111) planes are
coupled by a strong ferromagnetic interaction. The
coupling between the individual planes is weak, because
the exchange integral I, of an atom with its nearest
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neighbor in the nearest plane is almost equal (and
opposite in sign) to the integral I, of the exchange of

an atom with its nearest neighbor in the second-nearest
plane. Therefore, the interplanar coupling is governed
by the dipole~dipole interaction which stabilizes, in a
narrow range of the values of I,=-1I,, structures of
the antiferromagnet-2(+ -), ferrimagnet (++-), and
antiferromagnet-4 (++~ —) type. However, it does

not ensure a first-order phase transition between them
and to the paramagnetic state.!'® A first-order phase
transition is obtained in Ref. 111 when an allowance is
made for the fact that a change in the type of order
alters the distance between the ferromagnetic layers:
in the (++) configuration it is less than for (+ =). In
fact, only the sublattice magnetization 0 was calculated
as a function of T for a structure of the (+ +— =) type
using the self-consistent field approximation. In view
of the deformability of the lattice the expression for
the self-consistent field should contain not only the
term ~ o but also the term ~d3, as in the case of the
four-spin interaction [see Eq. (2.8)]. However, it is
clear from Eq. (1.5) that the dependence of the ex-
change integral on the distance between atoms gives
rise also to the biquadratic and three-spin terms, i.e.,
an unjustified replacement of averages of the ((8,S,)?)
type with those of the ((Sf))*((S§))* type is made in Ref.
111. For the parameters employed in Ref. 111 it is
not possible to predict an order—disorder phase tran-
sition of the first order.

We shall describe a model which makes it possible to
reproduce the phase transitions observed in EuSe
(Refs. 94 and 125). It is assumed that a magnetic
material with S>> 1 can be divided into planes in which
the exchange between atoms is ferromagnetic and that
it is sufficient to allow only for the Heisenberg ex-
change between the nearest neighbors (the integral P
has its normal value). Only the integral of the Heisen-
berg exchange I between the nearest neighbors in ad-
jacent planes is anomalously small so that we have to
allow also for the Heisenberg exchange of atoms in the
second-nearest planes (its integral is denoted by V)
and for the three-spin exchange when two spins are
the nearest neighbors in the same plane and the third
belongs to the neighboring plane (it is denoted by the
integral K). Finally, we introduce the biquadratic ex-
change between nearest neighbors in adjacent planes,
which ensures stability of collinear structures. The
complete Hamiltonian of the model is
H=—1I2 (SeuSgir.0)—P 2 (8nSgnss) =V 2 (SenSyun,n)

R Z (sgnsgﬂ. n)z"’K Z [(S,,.S,,H.e) (spn+osg+|. n)
+ (Sgﬂ. nSgH. n+B) (Sgﬂ. n+eszn)] »

where g is the number of a plane and n is the number of
an atom in a plane g; § labels z, nearest neighbors of
an atoms (g, n) in the same plane.

Different collinear structures, which are the only
ones admitted by this model, differ in respect of ori-
entations of the moments of the ferromagnetic planes.
The parameters in the Hamiltonian (4.1) are selected
so that the following structures are preferred for
thermodynamic reasons: two Heisenberg structures
(one ferromagnet and the other antiferromagnet-2) and
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two non-Heisenberg structures (one ferromagnet and
the other antiferromagnet-2) and two non-Heisenberg
structures (ferrimagnet and antiferromagnet-4). This
is done by selecting the following signs of the exchange
integrals in Eq. (4.1): I>0,R>0,V<0,K< 0. This
model simplifies somewhat the situation in real EuSe
in which the ferromagnetic planes exist for geometric
reasons.

Depending on the values of the parameters k = 2z,|K|S?/
JTandv=|V|/I at T=0 we may find that one of the fol~
lowing structures: antiferromagnet-2, antiferromag-
net-4, or ferromagnet is preferred for thermodynamic
reasons. In particular, antiferromagnet-2 isthe ground
state for £>2v+1, whereas the ferrimagnetic state
cannot be found: if k# 2v+1 its energy exceeds the
energy of at least one of the other states (for k=2v+1
the energy of the antiferromagnet-2, antiferromagnet-4,
and ferrimagnet states are all equal).

Phase transitions between structures are due to, as
in Sec. 3, the temperature dependence of the effective
integral of the exchange between the nearest neighbors
I, which allows for the bilinear and three-spin mecha-
nisms; when the temperature rises, the ratio between
I(t) and V and, even the sign of J(t), all change (=T /
I).

The calculations are made in the self-consistent field
approximation in exactly the same way as described in
Secs. 2 and 3. The results of these calculations are as
follows: the system in question can exhibit a whole
sequence of first-order phase transitions. For ex-
ample, if p=Pz,/I=0.5, r=RS?/I=0.5, v=0.5, and
=2.1, the following sequence of first-order transitions
is obtained for EuSe (Fig. 7): at the temperature T
=0,216, there is a transition from the antiferromagnet-
2 to the ferrimagnetic state; at 7=0.378, there is a
transition from the ferrimagnetic state to the anti-
ferromagnet-4; at 7=0.43 the transition is to the para-
magnetic state. The first two transitions are of the
order—order type and they occur in accordance with
the mechanism described in detail in Sec. 3. We shall
show that the transition from the antiferromagnet-4 to
the paramagnetic state is of the order—improper dis-
order type. The nature of the short-range order can
be determined by calculating only the correlation func-
tions of the {8,,S,,) type, because the correlation func-
tions in a ferromagnetic plane are known to be positive
(it is worth recalling that the model is somewhat sim-
plified compared with the situation in an isotropic crys-
tal of EuSe). Using Eq. (4.1) and the definition of the
short-range order vector qg, given after Eq. (2.2), we
obtain the expression gso= (@, 0, 0) for this vector,
where Q@ =0 for 1-(&/3)>4v or

Q=cos™t _1_—4%/3)_ (4.2)

when the sign of this inequality is reversed. Below Ty
we have q;,=(7/2,0,0), i.e., the long- and short-range
order vectors below and above the transition point, re-
spectively, are different and are generally incommen-
surate. Thus, the model corresponding to Eq. (4.1)
allows us to predict not only the whole sequence of
order—order phase transitions in EuSe but also to de-

48 Sov. Phys. Usp. 25(1), Jan. 1982

scribe correctly the nature of the order—-disorder
phase transition. We recall that a similar but simpler
model used in Sec. 3 accounts qualitatively for the
metamagnetism of isotropic EuSe, i.e., allowance

for the non-Heisenberg exchange makes it possible to
explain practically all the anomalous properties of
EuSe.

For other values of the parameters v, p, 7, and k
we can obtain also a different sequence of phase transi-
tions. For example, for v=0.1, »p=0,5, »=0.4, and &
=1.3, we obtain the following sequence of first-order
phase transitions: antiferromagnet-2 to ferrimagnet
at 7=0,201; ferrimagnet to antiferromagnet-4 at 7
=0.205; antiferromagnet-4 to ferromagnet at 7
=0.2055. At 7=0.35 a second-order phase transition
takes place to the paramagnetic state. Similar se-
quencies of phase transitions can be predicted also for
anisotropic crystals if the biquadratic terms in Eq. (4.1)
are replaced with anisotropic terms of the (S£,)* type,
etc. We can set the parameters so that the ferrimag-
netic phase is generally unstable and only antiferro-
magnet-2—-antiferromagnet-4 phase transitions occur,
as in UAs or CeBi.

Next, instead of the three-spin exchange we can allow
for the four-spin exchange in Eq. {4.1) and this gives
qualitatively similar results to those obtained in the
three-spin case, but it can also be applied to describe
the properties of magnetic materials with S=1/2. This
is exactly the approach used in Ref. 126: the Hamil-
tonian with the Heisenberg and four-spin exchange
mechanisms is used to demonstrate the stability of the
antiferromagnet-4 state and its abrupt transition to the
paramagnetic state. A similar result (a first-order
antiferromagnetic-paramagnetic phase transition) was
obtained earlier in Ref. 52.

¢} Theory of devil's ladders of phase transitions

The above model provides a fully satisfactory descrip-
tion of a sequence of phase transitions if their number
is not too large (normal sequences). However, the
large number of experimentally detected phase transi-
tions in CeSb, which suggests that an increase in the
resolution would reveal even more traasitions, has led
the authors of Refs. 127 and 128 to the idea that CeSb
possibly exhibits a “devil’s ladder” of phase transi-
tions.

The theory of a devil’s ladder originates from the
theory of discontinuous quantities (fractals).'?® It deals
with Cantor’s discontinuum obtained as follows. In the
first stage the central one-third {1/3,2/3] is taken from
a segment [0,1]. The process is repeated and the
central third ([1/9, 2/9] from [0, 1/3] and [7/9, 8/9]
from [2/3,1]) is taken from the remaining segments,
and this goes on ad infinitum. A devil’s ladder de-
scribes a quantity M(x) which is a mass concentrated
in an interval [0, x] on condition that in the regions
removed from the interval [0, 1] there is no mass (these
regions are represented by the horizontal parts of the
steps). A characteristic feature of a devil’s ladder is
an alternation of steps of a great variety of lengths
from 1/3 to infinitesimally narrow, and the lengths of
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the steps vary nonmonotonically, even at first sight
quite randomly (Fig. 9).

The concept of a devil’s ladder of phase transitions
was first introduced in Ref. 130 in considering these
transitions on the basis of a2 one~-dimensional model
due to Frenkel and Kontorova; they occur at 7=0 when
pressure is varied. Although in a devil’s ladder of
phase transitions the discontinuities of the order pa-
rameter may be so small that a phase transition ap-
pears as practically continuous, in contrast to a
second-order transition, hysteresis should be observed.
The question of stability of a devil’s ladder of phase
transitions in the presence of thermal and quantum fluc-
tuations has not yet been resolved. In contrast to Ref.
130, a convincing proof of the existence of devil’s lad-
ders in magnetic materials is not given in Refs. 127
and 128, but only arguments and results of numerical
calculations confirming this hypothesis are provided.
The analysis is based on the Ising Hamiltonian with the
interaction between the first- and second-nearest
neighbors; the calculation is carried out in the self-
consistent field approximation. It is assumed'?® that a
magnetic material consists of ferromagnetic layers of
atoms with the spin 1/2, and an allowance is made for
the exchange between the nearest and second-nearest
ferromagnetic layers, exactly as in the isotropic model
of EuSe discussed above; it is assumed that I, > 0 and
I,< 0. If the magnetic structure near the critical point
T can be represented by a sinusoidal wave with the
wave vector q = (27/a)(0, 0, q), then the structure formed
below T, should have such a value of g, that the para-
magnetic susceptibility x(q) first diverges at ¢=¢, as
T is approached from the high-temperature side, i.e.,

1

2ngc=cos™! (— 4']'1 ) 4.3)

On the other hand, the exact state of the system is
known at T=0. If —2I,>1,, this is the antiferromagnet-
4 corresponding to q,= 1/4. The question arises how
does the dependence q(T) behave in this case. This can
be answered by representing a crystal as a set of
periodically repeated groups of N layers in each of
which the average spin has its own value. The actual
distribution of spins in the layers is found by an itera-
tion procedure in which the initial stage is either a
sinusoidal structure or a self-consistent solution at
the adjacent temperature. The free energy F(N) for a
given value of N is minimal when self-consistency is
achieved. At each temperature that value of N is se-
lected for which F(N) obtained as above is minimal.
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Figure 10 shows the dependerice ¢(7) obtained in this
way for the case when —1I,/I, =0.6 More than 95% of
the phase diagram is occupied by simple commensurate
values ¢=1/4, 1/5, and 1/6. However, other wave
vectors are also stable although this is true only in
very narrow temperature intervals AT: ¢=2/9 and ¢
=3/14 are stable in an interval AT =0.0004T, and ¢q
=(3/16) inan interval AT =0.037.. We can see that some
rational values of ¢ are unstable at all temperatures.
This is characteristic of a devil’s ladder but it does
not agree with a continuous variation of g(T). It is
worth noting that ¢(7") is nonmonotonic. A similar ap-
proach in the geometry corresponding to CeSb with S
=5/2, as that for Ce, makes it possible to obtain for
certain parameters the sequence N=4, 11, 8, 7, and
3 in the same order as found for CeSb (Ref. 127). How-
ever, in addition to those quoted above, there are sev-
eral other stable values of N, although they occur in
very narrow intervals,

In order to understand the nature of the commensu-
rate phases at relatively high temperatures, the Ginz-
burg- Landau functional F., is obtained in Ref. 128 for
the special case when ¢ is close to 1/4. It is assumed
that the order parameter depends on the coordinate in
accordance with the law S,,,,(z) = A exp{t &(2)}, so that
F ., should be minimized with respect to the phase
®(z). The Lagrange equation for ®(z) is simply the
well-known sine-Gordon equation. Its soliton-type
solution describes a domain wall separating two al-
most commensurate phases. Cooling results in such
a value of this quantity that the creation of solitons
reduces the free energy of the system. In terms of
solitons the commensurate phases with a narrow range
of existence AT can be interpreted as phases in which
solitons form a superlattice. For example, the phase
with ¢ =4/17 is formed by including one domain wall in
each four periods of the structure with g=1/4.

The question arises to what extent the results of the
theory of Refs. 127 and 128 are dependent on the use
of the Ising model. Within the framework of the usual
Heisenberg model we can neither obtain a devil’s lad- .
der of phase transitions nor even order—order transi-
tions. In fact, it follows from the condition for the
energy minimum of a Heisenberg magnetic material
with the same values of I, and I, as in Eq. (4.3) that
at 7=0 a helical (canted) structure should appear in
this material and its vector ¢ should be identical with
qc of Eq. (4.3). On the other hand, the considerations
leading to the expression for g, near T for Ising mag-
netic material apply equally to a Heisenberg material,
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Therefore, cooling does not alter the canted structure
period in a Heisenberg magnetic material.

The position may be quite different in the case of a
strong non-Heisenberg exchange. In particular, if the
magnetic Hamiltonian is dominated by the biquadratic
terms ensuring collinearity of the structure, we may
expect the results of Refs. 127 and 128 to be applicable
also to an isotropic system. However, if the biquad-
ratic terms are comparable with the others, the situa-
tion requires further study.

One should point out that a numerical calculation
carried out in the molecular field approximation does
not of itself guarantee that a devil’s ladder does occur
even in the Ising model. It is quite likely that the dif-
ference between the free energies of successive phases
becomes less than the accuracy of this approximation
and, therefore, it is not possible to draw a definite
conclusion whether a phase transition does indeed occur
between such phases. The same model as in Ref. 128 is
used in Ref. 131 to obtain results that do not confirm
the existence of a devil’s ladder of phase transitions.
The self-consistent field approximation is also used
there but in a different variant: the free energy is as-
sumed to be a sum of the bilinear magnetization func-
tion of the sublattices and of a function which is quad-
ratic in respect of the magnetization of each of them
separately. An analysis of this expression shows that
the interaction between solitons does not have to be
negative, in contrast to what was achieved in Ref. 128.
This circumstance converts a devil’s ladder of phase
transitions into a sequence of well-defined first-order
transitions. However, such expressions for the free
energy are normally used only in the vicinity of 7'
and, as shown in Ref. 131, their application far from
T¢ requires justification.

A numerical calculation of ¢(T) was carried out in
Ref. 132 using a similar model and the Monte Carlo
method. It was found there that ¢(T) corresponding to
I,/1,= - 0,8 varies rapidly in the range (0.8-0.9)7'c but
the accuracy of the calculations was insufficient to
determine whether a devil’s ladder of phase transi-
tions does appear. The same authors considered
analytically the problem in Ref. 133 using the method
“of low-temperature expansions with the aim of ac-
counting for the magnetic structure of erbium.

6. CANTED ANTIFERROMAGNETISM OF HIGH-
SYMMETRY CRYSTALS

a) Experimental results

In this section we shall consider mainly canted anti-
ferromagnetic ordering when the moments M, and M,
of two magnetic sublattices of an antiferromagnet are
not directed opposite to one another but at a certain
angle 2¢ # 1. Consequently, the system has a spon-
taneous magnetic moment M =M, + M, directed at right-
angles to the antiferromagnetic vector L=M, -~ M, (Fig.
11). Such ordering was tirst observed in insulator
crystals, such as MnCQ,, CoCQ,, NiF,, a-Fe,0,, etc.
(see Refs. 176 and 26). As shown in Ref. 134, this
canted configuration is a consequence of the special
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FIG. 11. Canted antiferromagnetic structure.

symmetry of these crystals admitting, in their thermo-
dynamic potential, invariants of the type L M, or terms
of higher order in L but linear in M. These invariants
are of relativistic origin and this accounts for the
smallness of the moments of such crystals. High-
symmetry crystals, for example those in which all the
magnetic sites belong to the same Bravais sublattice or
a magnetic unit cell is obtained by n-fold repetition of
a chemical unit cell (» > 2), should be collinear anti-
ferromagnets according to the Dzyaloshinskii theory.!®

However, experimental investigations of magnetic
ordering in conducting crystals have led to the impres-
sion that canted antiferromagnetism is also possible in

- these materials and that the conditions for its appear-

ance are not related to the crystal symmetry. The idea
was first put forward in Ref. 135 before the studies!®*
of the magnetic properties of the semi-conductor
LaMnO, doped with Ca, Sr, or excess oxygen. The
undoped compound behaved as an antiferromagnet with
the Neel point at 7y > 100°K, but a magnetic moment
appeared on increase in the degree of doping and ini-
tially this moment was much less than the saturation
value. At the same time the neutron scattering spectra
acquired at 4,2°K not only the reflections corresponding
to the antiferromagnetic order but also reflections
representing the ferromagnetic order.

The authors of Ref. 135 did not conclude that this is
always due to canted antiferromagnetism because some
of their results (behavior of the reflections in a mag-
netic field discussed below) did not agree with this hy-
pothesis. As an alternative, they suggested the exis-
tence of a mixture of the ferromagnetic and antiferro-
magnetic phases. This hypothesis is in agreement
with the experimental results, but the authors could not
see why homogeneous crystals should consist of two
phases. It is now known that such a situation is possible
in the case of heavily doped magnetic semiconductors.?
It is usual to assume the results of Ref. 135 as a proof
of the existence of canted antiferromagnetism in doped
LaMnQ,. Although this is incorrect, the error has been
found useful because it has stimulated the development
of a theory of canted antiferromagnetic ordering dif-
ferent from Ref. 134, as well as experimental investi-
gations of other magnetic semiconductors in the search
for canted antiferromagnetic ordering.

Extensive experimental data currently available on
magnetic materials demonstrate the existence of canted
antiferromagnetic ordering, even although this is im-
possible to predict by the theory of Ref. 134. The most
convincing proof of the existence of canted antiferro-
magnetic ordering is available for the intermetallic
compound GdMg (Ref. 136). This material has an ex-
tremely simple crystal structure of the CsCl type and

E.L Nagaev 50




an analysis of its magnetic properties is simplified by
the fact that the Gd®* ions from which it is composed do
not have an orbital angular momentum. Therefore, its
magnetic anisotropy is weak. The interest in GdMg has
resulted from its spontaneous magnetization!”: the ma-
terial becomes ordered at 110°K but the magnetization
per Gd atom at 4.2°K is only 4.54 pp, i.e., itis con-
siderably less than the magnetic moment of the Gd**
ions amounting to 7 pp. In an external magnetic field
the moment rises but does not reach the saturation
value even for 150 kOe. Since Gd absorbs strongly
thermal neutrons, the reflection spectra of hot neu-
trons of the A~0.5 A wavelength were investigated in
Ref. 136,

At 130°K only the coherent nuclear scattering was ob-
served and it corresponded to the CsCl-type structure.
At 12°K the scattering lines become enhanced and at the
same time new (i, k, 1/2) reflections were observed.
This is compatible with the existence of the ferromag-
netic and antiferromagnetic contributions to the scat-
tering with moments per atom of Gd amounting to ypy
=4.92+0.3 ppand p,,=51x0.3 pp, respectively. The
directions of the antiferromagnetic components are per-
pendicular to the vector q={0,0,1/2), The values of
K ,r and pp, indicate that the vectors M and L are
mutually perpendicular in any single-phase system:
in the opposite case the moment per Gd atom should be
greater than for free Gd®*'. In other words, if the sys-
tem consists of a single phase, the ordering should be
of the canted antiferromagnetic type.

However, there is still another possibility to which
attention was drawn in a similar situation already in
Ref. 135: the superposition of the antiferromagnetic
and ferromagnetic reflections may be due to a non-
coherent mixture of the antiferromagnetic and ferro-
magnetic phases. A method was suggested in Ref. 135
for distinguishing a single-phase system from a two-
phase one by the behavior of reflections in a weak field
Z applied parallel to the neutron scattering vector k.
The intensities of the ferromagnetic and antiferromag-
netic scattering lines are proportionalto [1 — (kM)%.™2M2]
and [1 - (kL)?%22L"?], respectively. In the case of two
phases the field # is less than the field for the spin
flipping of the antiferromagnetic sublattices and it af-
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FIG. 12. Angular dependences of the intensity of neutron scat-
tering in LaMnO, with 18% Mn'* at 4.2°K. The sample of
LaMnO,; was homogeneous in the x-ray sense; it consisted of
ferromagnetic (72%) and antiferromagnetic (28%) phases.

The shaded peaks are antiferromagnetic and the unshaded are
the ferromagnetic contributions; the chain curve is the spec-
trum recorded in a field of 4.5 kOe (Ref. 135).
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FIG. 13. Magnetic-field dependences of the intensity of the
scattering of neutrons in GdMg (Ref. 136).

fects only the vector M weakening the ferromagnetic
scattering, The antiferromagnetic scattering should
remain unchanged. In the case of single-phase ordering
the vectors M and L are related to one another and,
therefore, a change in the ferromagnetic scattering
involves also a change in the antiferromagnetic scat-
tering.

It is clear from Fig. 12 that in the case of LaMnOQ, a
field of 4.5 kOe reduces strongly the intensity of the
ferromagnetic reflections with practically no influence
on the antiferromagnetic reflections.!’®* Hence, it is
clear that the material consists of two phases. Figure
13 shows the dependences of the intensities of the
various reflections of GdMg on the field when the latter
is directed along the scattering vector. The ferromag-
netic reflection [111] disappears already in fields of
~400 Oe. This is due to the fact that [111] is the easy-
magnetization axis and that a domain with M ||k grows
in a field at the expense of the other seven domains.
The intensity of the [100] reflection decreases only as
a result of reorientation of the magnetic vector which
occurs when the field ¥ reaches the anisotropy value
#,, which is found from Fig. 12 to be 2 kOe. As far
as the antiferromagnetic reflections are councerned,
the (1,0, 1/2] reflection becomes enhanced in a field
reaching saturation for #,, as expected in the case
when the rotation of the vector M results in rotation of
the perpendicular vector L. The fact that the intensity
of the [0,0,1/2] line is independent of % is a conse-
quence of the fact that L is perpendicular to this direc-
tion with #°= 0.

The value of the moment of the canted antiferromag-
netic state is even higher than in the materials where
the canted antiferromagnetism is due to the relativistic
interactions. On increase in temperature, the angle be-
tween the sublattice moments decreases and at 85°K a
phase transition from the canted antiferromagnetic to
the ferromagnetic state takes place.

Apparently canted antiferromagnetic ordering occurs
in TbMg which has the same structure as CsCl (Refs.
137 and 138). However, its magnetic properties are
much more complex!3"138 than those of GdMg, because
the Tb®* ions have an orbital angular momentum. In
particular, the magnetization in a field of 4.2 °K re-
veals a hysteresis, because the magnetization depends
on whether the cooling treatment was carried out in or
out of the field.!*® Neutron-diffraction investigations
have revealed the coexistence of the antiferromagnetic
and ferromagnetic reflections with pgy=4.5 py and p, »
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=5.1 pg, both of which disappear simultaneously at

81°K (Ref. 138). However, it was found to be impossible

to carry out such an investigation in a field described
above and this was due to the strong anisotropy field.

There is also convincing evidence that a canted anti-
ferromagnetic structure appears when a ferromagnet
FePd, is alloyed to an antiferromagnet FePt, (Ref. 139).
Alloys of this kind have the CuzAu structure with Pd and
Pt distributed at random between the Cu sites. For
some compositions, for example FePd, (Pt, ,, the
ferromagnetic and antiferromagnetic reflections are
superimposed in the neutron scattering spectra. The
ferromagnetic reflections appear below 270°K and u g,
rises to 140°K, where it reaches 1.7 uz, and further
cooling to 4.2°K decreases it to 1.2 up (Fig. 14). At
140°K the antiferromagnetic reflections (1/2,1/2,0),
(1/2,1/2,1), and (3/2, 1/2, 0) appear simultaneously
and their relative intensities correspond to those of
the antiferromagnetic ordering in pure FePt, [the mo-
ments of Fe in (110) layers are parallel to one another .
and the overall moments of neighboring layers are anti-

parallel]. At 4.2°K, we have j,p=2.7 pp. Since among
all the atoms only Fe has a nonzero spin and its moment

cannot exceed 3 up, the above values of i, and p gy
indicate that in the single-phase state the vectors M
and L are mutually orthogonal. Results in many re-
spects similar to those given in Ref. 139 were also ob-
tained by neutron-diffraction investigation!'4® of alloys
formed by ferromagnetic MnSb with antiferromagnetic
CrSb, and by ferromagnetic CrTe with antiferromag-
netic Crsb.

These results obtained for alloys of ferromagnetic
and antiferromagnetic metals are unexpected on the
basis of the current ideas: according to these ideas,
such alloys should have the properties of spin glasses,

One might also assume that the alloys are mictomag-
netic, i.e., that spatial fluctvations of the distributions
of the Pd and Pt atoms (or Mn and Cr atoms) produce
predominantly ferromagnetic and also predominantly
antiferromagnetic regions. This is not true of

FePd, Pt, , as indicated by the observation that at
140°K the antiferromagnetic reflections split off from
the ferromagnetic reflections so that the intensity of
the latter decreases as a result of further cooling.
This can only be explained by assuming that at 140°K
a phase transition takes place from the ferromagnetic
to the canted antiferromagnetic state accompanied by
rotation of the sublattice moments relative to one
another. Had the crystal consisted of separate ferro-

Sy
T

Avin units of up
N

0w AT dm
FIG. 14. Temperature dependences of the ferromagnetic and

antiferromagnetic components of the moment of the Fe atoms
(upy and p,g) in FePd; Pty 4 (Ref. 139).

52 Sov, Phys, Usp. 25(1), Jan. 1982

magnetic and antiferromagnetic regions, its magnetiza-
tion would have increased monotonically as a result of
cooling, Moreover, it is unlikely that for some ratios
of the concentrations of Pt and Pd and after certain
treatments of the alloys they could behave as spin
glasses.

An even more complex canted antiferromagnetic
structure is the one not with two but with four sub-
lattices with a combined net zero magnetic moment,
as observed in FeGe, with the tetragonal lattice and
with Ty = 286°K (Refs, 141 and 142). This compound
was investigated not only by neutron diffraction but also
using the Mossbauer effect, which made it possible to
determine very accurately the directions of the mo-
ments. The magnetic structure of FeGe, can be de-

‘scribed as consisting of antiferromagnetic (001) planes

with the antiferromagnetic vectors lying in these
planes. The angle between these vectors in the neigh-
boring planes at 243°K is 71° (Fig. 15); this structure
is represented also in Fig. 10, except that the moments
M, and M, of the two sublattices should be replaced with
the antiferromagnetic vectors in the neighboring planes.

It is interesting to note the similarity of the structure
of FeGe, to one of the structures proposed for the in-
sulator UQ, having the fluorite structure.!*® It also con-
sists of four sublattices with noncollinear moments,
the sum of which is zero. In the case of UQ, the mo-
ments lie in the (001) ferromagnetic planes. Atoms in
each such plane split into two sublattices, whose mo-
ments are directed at an angle relative to one another
(i.e., each such plane is a noncollinear antiferromag-
net). The moments of the neighboring planes are di-
rected opposite to one another. However, the results
of neutron-diffraction investigations are not yet suffi-
ciently reliable to reject the alternative explanation
postulating a collinear antiferromagnetic structure
which in the presence of domains gives the same spec-
tra,141%% 1t jg possible that a study of the Mossbauer
spectrum of UQ, would help to resolve this question.

b) Theory

P. G. de Gennes!'*s assumed that LaMnO, does indeed
have a canted antiferromagnetic structure®® and he at-
tempted to develop a theory of such structures in de-
generate antiferromagnetic semiconductors on the
basis of the s—d model. He began by postulating that
introduction of carriers into a Heisenberg antiferro-
magnet has a tendency to establish an antiferromag-
netic order. A theory of the indirect RKKY exchange
does not predict a canted antiferromagnetic structure
because the conduction electrons only change the co-

FIG. 15. Magnetic structure of FeGe, (Refs. 141 and 142).

E. L. Nagaev 52




efficients of the Heisenberg Hamiltonian but not its
form. This Hamiltonian does not admit at all a two-
sublattice canted antiferromagnetic structure. There-
fore, de Gennes considered the case when the width W
of an energy band of charge carriers (in this case
holes) is small compared with the energy AS of the
s-d exchange irrespective of the spin configuration.
In this situation the RKKY theory is known to be invalid
because the Fermi energy of carriers E, is low com-
pared with AS. The carrier energy in the W <<AS case
was described by de Gennes by postulating that the ef-
fective integral B(¢) of a transition of a hole from one
atom to another depends on the angle 2¢ betweenthe
spins of the atoms and varies as B cos¢, where B is
the true integral of the transition. This last expres-
sion represents simply the energy of two equivalent
atoms between which an electron is moving (“double
exchange”) in the case when | B << AS and the atomic
spin approaches the limit S — < (Ref. 146). Bearing in
mind that the antiferromagnetic order in LaMnQ;, is of
the layer type, we find that the part of the energy of
the crystal which depends on the angle between the
sublattices 2¢ can be written in the form

E(g9) = —NIS?cos 2¢ — 2 | B | n cos g, (5.1)

where N and n are the concentration of the magnetic
atoms and the density of carriers, respectively; I is
the integral of the exchange between the nearest mag-
netic atoms belonging to different layers. All the
carriers in Eq. (5.1) should be attributed to the lowest
energy in accordance with the condition n < N. Minimi-
zation of Eq. (5.1) with respect to ¢ leads to the con-
clusion that a canted antiferromagnetic structure may
occur irrespective of how small is the value of n. The
moment should rise linearly with n until the ferromag-
netic order is established at n=np.

A more rigorous analysis of this problem of a quan-
tum mechanical description of the d spins!*™ *® showed
that canted antiferromagnetic ordering becomes ener-
getically preferred to collinear ordering only beginning
from a certain limiting value n;. If the magnetic atoms
form a simple cubic lattice and the antiferromagnetic
order is of the chessboard type, then n; is described
by the following expression:

_n\_[_( f2’_1(2q+17/2] (5.2)

and a similar result should apply also to a layer anti-
ferromagnet. Although, according to Eq. {5.2), for a
given value of Ty «IS? the limiting carrier density n;
decreases on increase in the spin as $-*/2, for realistic
values of the parameters it may amount to 101°~102°
cm™. These are, in fact, typical carrier densities in
degenerate semiconductors and it follows from Eq.
(5.2) that the doping of antiferromagnetic semiconduc-
tors need not give rise to a canted antiferromagnetic
ordering. According to Refs. 147 and 148, if suchan
ordering does appear at all, the dependence of the mo-
ment M =S cos® on n is generally nonlinear.

An attempt to generalize the analysis to finite tem-
peratures was made in Ref. 145 but the results obtained
should be treated with great caution even in the limit S
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— = because the expression for the carrier energy-oc-
curring in Eq. (5.1) ceases to be valid at temperatures
T # 0 (Ref. 23).

It is also possible to show that, in a certain range of
carrier densities, canted antiferromagnetic ordering is
preferred to antiferromagnetic or ferromagnetic for
energy reasons also in the opposite case of degenerate
semiconductors with wide energy bands characterized
by W > AS (Ref. 148). Because of the relative smallness
of n, the inequality E>> AS is again disobeyed. For
this reason the indirect exchange between localized d
moments cannot be described by the Heisenberg Hamil-
tonian (this result was obtained again in Ref. 149, where
the temperature dependence of canted antiferromagnetic
ordering is also considered). The tendency for the con-
duction electrons to establish a ferromagnetic order in
this case is due to the fact that because of the s-d ex-
change the energy of an electron with a spin ¢ is in-
creased by ASo cosy, i.e., spontaneous Zeeman
splitting of the conduction band takes place and the
bottom of the lowest subband is lowered by an amount
which increases as the moment of a crystal increases.

Minimization of the energy of a crystal shows that if
W > AS, the magnetization in a canted antiferromag-
netic state can be found by equating to zero the effec-
tive exchange integral j, which allows both for the
direct antiferromagnetic exchange and also for the
indirect ferromagnetic exchange via the conduction
electrons.'*® The solution exists for AS< Ep(n;) be-
ginning from the threshold carrier density »n;:

[32 (3n;):::A|'I | ] — 3211 Ep(nL) . (5.3)
where m* is the effective mass of an electron. On the
high density side the limiting value ny obtained for the
case E,(nn) < AS is given by the expression

n 348 (3m3n)2/3
L = Groor Er="—7pi. (5.4)

According to Eq. (5.4) the carrier density range [n;,ng]
in which a canted antiferromagnetic order is preferred
for energy reasons to antiferromagnetic and ferromag-
netic orders increases in width on reduction in Eg(n;)/
AS, i.e., the width of this interval increases on in-
crease in the deviation of the indirect exchange from
the Heisenberg form,

However, the results reported in Refs. 147-149 do not
guarantee the stability of a canted antiferromagnetic
structure. It has been shown later!'s® that if W> AS > Ep,
then magnon frequencies for canted antiferromagnetic
ordering are positive only in the carrier density inter-
val ny <m<4n;. Outside this interval the frequencies
of short-wavelength magnons are imaginary. Since
under typical conditions (AS~0.5 eV, Ex> 0,01 eV),
the carrier density ngy of Eq. (5.4) may be one or two
orders of magnitude higher than n;, we can expect sta-
bility of canted antiferromagnetic ordering only in a
much narrower range of carrier densities than that pre-
dicted by Egs. (5.3) and (5.4). However, even when
the magnon frequencies are positive, it does not auto-
matically follow that canted antiferromagnetic ordering
is stable: it may be unstable in the presence of fluc-
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tuations of the electron density, i.e., when a transition
takes place from a spatially homogeneous state to one
which is inhomogeneous. The reason for this transi-
tion is that a local increase in the electron density en-
hances the local magnetization in the region of a fluc-
tuation and this in turn lowers the bottom of the conduc-
tion band and favors the growth of fluctuations. This is
prevented by the increase in the Fermi and electro-
static energies in the inhomogeneous state. The condi-
tions for stability of a homogeneous canted antiferro-
magnetic state in the presence of relatively small den-
sity fluctuations are given in Ref. 23.

However, a typical situation is the one in which a de-
generate antiferromagnetic semiconductor is in a homo-
geneous state even if it is stable in the presence of
relatively small density fluctuations but unstable in
the presence of large fluctuations. As a result of this
instability a homogeneous crystal splits into alternate
ferromagnetic and antiferromagnetic regions and car-
riers are concentrated in the former. At lower carrier
densities the ferromagnetic regions are spheres of
radius ~20-50 A inside an antiferromagnetic matrix,
but these regions are not in contact with one another.
Carriers are locked within these regions in the form of
drops, and the crystal remains in an insulating state.
A homogeneous state can be induced by the application
of a magnetic field which makes the whole crystal
ferromagnetic or by increasing the temperature which
makes it completely paramagnetic. This destroys the
tendency for electrons to become localized in isolated
regions so that the crystal becomes conducting. Asn
increases, the ferromagnetic regions grow in size and
when they come in contact with one another, the whole
crystal becomes conducting at all temperatures,!5!*15%23

The above inhomogeneous antiferromagnetic-ferro-
magnetic state of a crystal corresponds exactly to the
observations made on LaMnQ, (Ref. 135), This conclu-
sion is confirmed by an analysis of the measured con-
ductivity's® of samples with a dopant concentration in
the range corresponding to the superposition of the
antiferromagnetic and ferromagnetic reflections. A
sample with 10% Sr, i.e., with the Mn**/Mn3* ratio
~0.1, is indeed conducting and behaves as a degenerate
semiconductor at 300 °K. However, cooling causes the
conductivity to decrease exponentially and already in
the region of 100 °K when magnetic ordering appears,

_the conductivity is less than 1072 ™ -cm™, i.e., itis
the same as for a nondegenerate semiconductor. Con-
sequently, in the limit T~0 we have n<<n;. There-
fore, the theory of Refs. 147-149 is clearly inappli-
cable. If we assume the existence of a mixture of anti-
ferromagnetic and ferromagnetic phases, then—judging
by the results of Ref. 135—the ferromagnetic part of a
sample with this concentration of Mn** represents the
smaller proportion of the crystal and its transition to
an insulating state is in agreement with the theory of
Refs. 151 and 152. This theory is also supported by the
observation that a sample with 20% Mn?®*, much of it
ferromagnetic, behaves as a degenerate semiconductor
also at low temperatures.!®®

Some authors (for example, Umehara and Kasuya'*?)

54 Sov. Phys. Usp. 25(1), Jan. 1982

have suggested that canted antiferromagnetic ordering
occurs in the degenerate antiferromagnetic semiconduc-
tor EuTe which exhibits an unsaturated ferromagnetism
according to Refs. 154 and 155. The fact that this ma-
terial is indeed in a mixed ferromagnetic—antiferro-
magnetic state is supported by the behavior of the con-
ductivity of those samples which exhibited unsaturated
ferromagnetism. For example, cooling of one sample
from 77 to 4°K decreased the conductivity by two orders
of magnitude but the field of 84 kOe inducing a homo-
geneous ferromagnetic state restored the conductivity.!%
The temperature and field had an even greater influence
on doped Eufe which is also in a two-phase ferromag-~
netic—antiferromagnetic state.''?

In contrast to degenerate semiconductors, homo-
geneous metals cannot go over to an inhomogeneous
ferromagnetic—antiferromagnetic state because the
Fermi and Coulomb interaction energies are high and
because, in contrast to semiconductors, the latter
energy does not decrease due to the permittivity of
the medium (in contrast to semiconductors). There-
fore, even in those cases when it is not possible to
carry out such comprehensive experimental investiga-
tions as in Ref. 136, one can conclude with a very high
degree of probability that the superposition of the anti-
ferromagnetic and ferromagnetic neutron-diffraction
reflections indicates the presence of a single-phase in-
termediate antiferromagnetic—-ferromagnetic state of a
metal if it is crystallographically homogeneous. How-
ever, we cannot a priori say that the magnetic vector
is always perpendicular to the antiferromagnetic vec-
tor. In principle, we can expect structures also in
which MI| L, whereas in the case of strongly anisot-
ropic crystals one can, of course, have other variants.

Important information on the properties of canted
antiferromagnetic ordering can be obtained by a model.
approach utilizing the simplest non- Heisenberg Hamil-
tonians: Egs. (2.4) or (2.5) (Refs. 52 and 43). Subse-
quently, similar results have been obtained by a num-
ber of authors (see, for example, Refs. 156-158). A
very similar approach is used in Ref. 159, where an
attempt is also made to relate the phenomenological
coefficients in the expression for the free energy with
the properties of the collective-state electrons. In Ref.
142 the method of Refs. 52 and 43 was generalized to
the case of four-sublattice ordering in FeGe,.

The simplest case of the four-spin Hamiltonian is
discussed in Ref, 52. If we assume that the lattice is
simple cubic and the ordering is of the chessboard
type, we find from Eq. (2.5) that, in addition to the
condition of extremality of the collinear structure ener-
gy sing =0, we also have to satisfy the condition of ex-

_tremality of the energy of a canted antiferromagnetic

structure E g,y [in the notation of Eq. (3.1)]:

I_-|-282K, _

6.5)

The energy E .,y is minimal if the inequality K_.< 0
is obeyed. In order to determine whether a canted anti-
ferromagnet is stable, we have to find its magnon spec-
trum, In the range of small quasimomenta the magnon
spectrum is of the same type as for a ferromagnet,

co8 2¢p = —
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whereas near the point 1= (n/a, n/a, 1/a) it is of the
same type as in an antiferromagnet. If the ferromag-
netic coupling between the atoms in the same sublattice
is sufficiently strong, the magnon frequencies are found
to be positive.

The temperature dependence of the magnetic ordering

has been investigated in the self-consisted field approxi-

mation. In this approximation the spin in Eq. (5.5)
should be modified by replacing it by its average value
S(T). Since the denominator of Eq. (5.5) decreases
when temperature is increased, it follows that at some
temperature a canted antiferromagnetic structure is
transformed by a second-order phase transition to a
ferromagnetic or an antiferromagnetic state, How-
ever, we may find that an increase in the temperature
T results in violation of the condition of stability of a
canted antiferromagnetic state formulated in Ref. 52.
Then, a first-order phase transition should take place
to one of the collinear states or to a paramagnetic
state. If the quantities I_ and K,_ have opposite signs
and if |I.| < 28*|K,.|, a whole sequence of phase tran-
sitions may take place. On increase in temperature T
the quantity 1.+ 2S*(T)K,. changes its sign. Ina cer-
tain range of temperatures T the condition (5.5) for the
existence of a canted antiferromagnetic structure be-
comes satisfied and on further increase in T the struc-
ture becomes again collinear and of the type opposite
to that observed at low temperatures (i.e., a sequence
of phase transitions takes place from a ferromagnetic,
to a canted antiferromagnetic, to an antiferromagnetic,
and to a paramagnetic state or from an antiferromag-
netic, to a canted antiferromagnetic, to a ferromag-
netic, and to a paramagnetic state).

In the case of the Hamiltonian with the biquadratic ex-
change given by Eq. (2.4), we can expect in addition to
the above also a possibility for a continuous phase
transition from a canted antiferromagnetic to a sta-
tistical quadrupole orthogonal state (see Sec. 2). The
experiments reported above revealed so far only con-
tinuous transitions from a canted antiferromagnetic
to a collinear state.

The susceptibility x in a canted antiferromagnetic
state was calculated in Refs. 52 and 42. This sus-
ceptibility depends strongly on the field and decrease
as the field rises. The initial susceptibility for 2¢
tending to 7 diverges as cos™2¢.

One should stress the difference between the mecha-
nisms of canted antiferromagnetic ordering considered
here for an isotropic crystal and the Dzyaloshinskif
mechanism associated with the magnetic anisotropy.
According to Ref. 134, even an infinitesimally small
addition of the required symmetry to the Heisenberg
Hamiltonian is sufficient to give rise to a spontaneous
moment. However, the effect discussed in the present
review has a threshold: a magnetic moment appears
only if the non-Heisenberg exchange is of sufficient
strength. In the case of models with indirect exchange
via carriers this would be manifested by the presence
of the limiting density n, (Refs. 147 and 148). In the
model with the four-spin exchange the condition cos2¢
<1 imposes restrictions on the smallest possible value
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of the quantity |K__| in Eq. (5.5) and exactly the same
applies to the biquadratic exchange,
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