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INTRODUCTION

One of the most interesting recent discoveries in nu-
clear physics has been the observation of parity break-
ing in the fission of nuclei by polarized neutrons.1"4 It
has been found that the probabilities for the emission of
the light fragment are different in the directions along
and opposite the spin direction of the initial neutron.
The magnitude of this asymmetry is ~10~4. This dis-
covery was so surprising that the original experiment
remained under doubt until it was confirmed.5"12 The
significance of the effect in fission is that, in contrast
with the P-odd effects which had been observed pre-
viously, the parity breaking in the fission case is mani-
fested in the motion of a nearly macroscopic object: a
fragment consisting of 102 nucleons. Section 2 of this
paper will deal with the theory of this effect. It turns
out that the effect arises because the fission process
occurs in an extremely unusual manner: Although many
degrees of freedom are excited at both (he beginning
and the end of the fission process, it goes through only
a small number of intermediate collective states (fis-
sion channels). The P-odd angular correlations, like
the ordinary P-even correlations, arise in this "cold"
intermediate step of the fission. In this step the nu-
cleus is a pear-shaped top (in other words, the highly
deformed nucleus consists of two clusters with different
masses, which are approximately equal to the masses
of nuclei with filled shells). The asymmetry in the

fragment emission direction results from a mixing of
rotational levels of opposite parity in this system. In
turn, this mixing results from a weak interaction during
the compound-nucleus step. The transfer of the P-odd
mixing from one step to another is related to the slight
uncertainty in the energy of the excited nucleus; the
time dependence can thus be separated out from the
total wave function, so that the "forgetting" of the initial
step can be prevented. The asymmetry predicted on the
basis of this mechanism, with the dynamic enhancement
in the compound nucleus taken into account, agrees with
experiment.

The P-even correlation between the momentum of the
fission fragment and the normal to the plane defined by
the spin and momentum of the incident neutron was mea-
sured in some recent experiments.10-11 It will be shown
in Sec. 3 of the present review that the mechanism re-
sponsible for this correlation has much in common with
that for the occurrence of the P-odd asymmetry. The
estimated magnitude of this correlation (~10"4) agrees
with experiment.

Yet another effect in which parity breaking is of a
coherent macroscopic nature is seen in neutron optics.
It will be shown in Sec. 4 that the corresponding effects
are significantly enhanced near />-wave compound reso-
nances. The relative difference between the absorption
cross sections for right-hand- and left-hand-polarized
neutrons may be more than 10"2. As transverse-
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polarized neutrons pass through a medium, their spin
is rotated around their momentum direction. The rota-
tion angle over a mean free path is lO^-lO"3 rad near
a p-wave resonance and 10"4-10~5 rad for thermal neu-
trons. As unpolarized neutrons pass through a med-
ium, they acquire a longitudinal polarization; the degree
of polarization over a mean free path is lO^-lO"3 near
a />-wave resonance. Rotation of the spin of thermal
neutrons in 117Sn has already been observed experi-
mentally.13 The results agree with the theoretical pre-
dictions.

Also enhanced near p-wave resonances are parity-
breaking effects in the (n,y) reaction. In this case the
effects are a circular polarization of the y rays [(«rpr)
(pyPt,) and (• ypr) correlations] and an asymmetry in the
y angular distribution. These effects will be discussed
in Sec. 5.

We should point out that at present it would hardly
be possible to extract any accurate quantitative infor-
mation about the weak interaction between neutrons
from a study of these parity-breaking effects in heavy
nuclei, because of the complexity of these systems. In
such cases the weak interaction is not so much itself
the object of the study as a tool for studying various
physical effects in a nucleus: the fission-process, dy-
namic enhancement, etc. For example, the experi-
ments in neutron optics which we will be discussing
might yield some extremely comprehensive information
about the structure of compound states.

1. MAGNITUDE OF THE PARITY BREAKING IN
NUCLEAR FORCES. DYNAMIC ENHANCEMENT

The parity-breaking weak interaction of a nucleon in a
nucleus can be described approximately by the effective
Hamiltonian

If /-I Op *- - v
w ~ "2m~pl (1-1)

where G = 10~5/w2 is the Fermi constant; a, p, and m
are the spin, momentum, and mass of the nucleon; and
p is the nuclear density. A measure of the mixing of
single-particle levels of opposite parity by the weak
interaction is the ratio #w/u>, where w~f?/2m is the
characteristic energy of the nucleon. In a nucleus we
have p~m, and p~\/m\, so that

2-10-'. (L2)

Strictly speaking, we would identify w in this expres-
sion as the distance between single-particle levels of
opposite parity, which is smaller than p2/2m on the
average. Usually, however, the matrix element (ffw) is
also slightly smaller than the rough estimate because of
the incomplete overlap of wave functions. The net result
is that the approximation F ~ Gm\ = 2 • 10~7 seems rea-
sonable.

Parity breaking in nuclei was first observed in the
113Cd(n, y) reaction (see the review by Abov and Krup-
chitskii14). The magnitude of the observed asymmetry in
the angular distribution of y rays was -(4.1 ±0.8)' 10~4,
or much larger than F. This enhancement is due pri-

marily to the high level density in the compound nu-
cleus.15"17 Following Shapiro,17 we will refer to this
effect as "dynamic enhancement." Let us review its
origins. The wave function of any state in a compound
nucleus may be expanded in products of single-particle
wave functions,

*-j;.,*,. d.3)
where <p{ are products of the wave functions of excited
particles and holes. The typical number of terms in
the sum is determined by the intensity of the residual
internucleon interaction. If A£ is the scale of this
interaction, and D is the distance between levels of the
compound nucleus, then the number of terms is N-&E/D.
We recall that D falls off exponentially with increasing
number of excited particles. In heavy fissile nuclei
(A« 240) we have D~ 1 eV. In intermediate nuclei (Cd,
Sn, etc.), we have D~ 10-100 eV. A typical value is
A £ ~ w ~ l MeV (w is the distance between single-particle
levels), so that we have N~ 104-108. Clearly, this
strong mixing will make the coefficients at comparable
in magnitude. By virtue of the normalization condition
we can thus write | a{ \ ~ 1/VjV.

We turn now to the matrix element of the single-par-
ticle operator #w between two states of a compound nu-
cleus :

= i_ °i°k (i|«wi«>- (14)

For each fixed value of i, the matrix element (i\H^\k)
is nonzero for only a few values of k, for which cpt dif-
fers from q>k by the state of a single particle. It is
natural to assume that the signs of the individual terms
in the sum in (1.4) occur at random. We thus have in
(1.4) an incoherent sum of ~U terms each of the order of
(Hm)/N. We can thus write

1
y~tf' (1.5)

where (//w) is a typical matrix element between single-
particle states. Since the matrix elements of the mixing
between different levels of the compound nucleus are of
the same order of magnitude, the mixing will be at a
maximum between nearest levels. The mixing ratio is
given in magnitude by

(1.6)

The typical mixing of single-particle levels is ~F; in
other words, the enhancement factor is VN-103 in fis-
sile nuclei and -10" in Cd, Sn, etc.

We wish to emphasize that a circumstance of impor-
tance to dynamic enhancement is that the intensity of the
residual internucleon interaction, which mixes the
single-particle levels, is comparable to the distance
between single-particle levels of opposite parity. In,
for example, the case of a gas of particles which are
moving in a common potential but which are not inter-
acting with each other, the spacing of the levels which
are mixed will remain equal to the single-particle
spacing even at a high level density of the system, and
there will be no dynamic enhancement.
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TABLE I. The asymmetry parameter in the angular dis-
tribution of fission fragments, <z(xl04) . The asterisks
mark values obtained by recalculating the asymmetry
coefficient for the emission of fission neutrons.
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2. PARITY BREAKING IN NUCLEAR FISSION

Vladimirskii and Andreev" may be credited with the
first suggestion regarding a search for parity breaking
in nuclear fission. Specifically, they discussed spon-
taneous fission. No direct experiment on spontaneous
fission has been carried out but experiments on the
fission of nuclei by thermal neutrons have proved
feasible. In these experiments one measures the asym-
metry in the emission directed of the light fragment with
respect to the spin of the initial neutron [W(8) = l +a
cos 0], The results which have been obtained are listed
in Table I.

To explain the mechanism for parity breaking in fis-
sion, we must first discuss how the two-particle weak
interaction affects the collective (actually macroscopic)
motion of the system of heavy fragments. Yet another
problem—the problem which was primarily responsible
for the cloud of doubt which hung over the first experi-
ment—stems from the large number of final states of
the fragments (ff> 10JO). If the sign of the effect depen-
ded in a random way on the final state of the system [as
it does, for example, in the (n,y) reaction], then there
would be a pronounced suppression of the asymmetry in
a real experiment, in which all the final states are de-
tected essentially at once. We must therefore deter-
mine why the observed effect does not disappear when
an average is taken over the final states of the frag-
ments.

This section of this review is based primarily on the
material in Ref. 19. To the best of our knowledge,
Danilyan20 was the first to suggest that parity breaking
in a compound nucleus would affect the magnitude of
the effect in fission (see also Ref. 21). The relationship
between the asymmetry in the fragment emission direc-
tion and the mixing of rotational states of the cold nu-
cleus was discussed in Ref. 22.

a) Fission channels

If the energy is not too high, the fission of a nucleus
goes through the following steps: the capture of the
neutron and the formation of a hot compound nucleus;
the existence of a cold pear-shaped nucleus; and the
rupture of the neck connecting the fragments. The
entire multitude of final states is formed in this last

step. Let us see how the intermediate cold step arises.
If we were dealing with the fission of a classical charged
drop with an energy just slightly above the fission bar-
rier, then the shape of the drop as it passed the saddle
point would essentially be fixed, regardless of the initial
conditions, since essentially all the excitation energy is
expended on the deformation. The initial conditions in
this case determine only the time at which the barrier
is reached. In the quantum-mechanical case, in con-
trast, the energy of the changes in shape is a discrete
quantity. During motion near the saddle point, there-
fore, the nucleus may be in only one or at most a few
internal states. Such states, which have definite quan-
tum numbers for all degrees of freedom except the mo-
tion across the barrier, are called "fission channels."23

Let us put this hypothesis of fission channels in more
formal terms. We denote by |in> the initial state of the
system formed by the neutron and the nucleus (with a
given asymptotic behavior in the limit t-~ -*>), while
(out | is a specific final state of the fragments (in this
case the asymptotic behavior is specified in the limit
t~ +«). The amplitude for fission is equal to the scalar
product (out | in). This amplitude may be written as a
sum over any complete set of intermediate states,

<out | in><=\ (out|a) < (2.1)

The existence of fission channels means that there is a
set | a) for which the sum is determined completely by
a few terms. It is clear on physical grounds that this
set contains the wave function of the unexcited elongated
nucleus and a few of the lowest-lying excited states.

b) Mixing of states of opposite parity

Let us examine the amplitude (ajin) for a transition
from an initial state to a cold intermediate state. Ex-
perimentally, the excitation energy of a nucleus is spec-
ified very accurately, within 6£~0.03 eV, which is the
thermal spread of the neutron energy. In this case it is
meaningless to speak in terms of a temporal resolution
of the fission process into sequential steps, since the
uncertainty relation 6t- 5E~K tells us that under the
condition 6£< T the uncertainty in the time satisfies
6t> T, where T is the lifetime of the nucleus. In this
situation the fission process can be described satisfac-
torily by a wave function #(£) corresponding to a fixed
energy. Such a wave function incorporates parts cor-
responding to both the initial compound nucleus and
the cold step.

Let us examine the capture of a neutron at an energy
E which is approximately equal to the energy of some
s-wave compound resonance. In the resonance approxi-
mation, the wave function of the nucleus after the cap-
ture is the same as the wave function of the given com-
pound state [$r(E)ac#(£,)]. It is convenient to single
out from the wave function \fr as a separate term the
part (|a)) which corresponds to the cold nucleus. This
can be done by expanding * in a complete set of states
which includes |a) as one of the basis states. We might
choose this set to be the products of single-quasiparticle
wave functions (where "quasiparticles" are to be under-
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stood as excited nucleons, holes, and core vibrations).
In these terms the cold step corresponds to the state
with maximum deformation, in which only a single
degree of freedom—the vibrational degree of freedom—
is excited.1' We can thus write

JV

^1= 2 a,<pJ + A,\a)\ (2.2)

where 77 =±1 is the parity. The wave function * includes
states <j», in which one, two, etc., quasiparticles are
excited. For simplicity we are restricting the discus-
sion at this point to the case of a single fission channel,
i.e., to the case in which only a single state la)71 goes
into the continuum. The amplitude for a transition to the
cold state is (alin)^^, and the fission probability is pro-
portional to |A|2. As shown in Sec. 1, the number of
terms in *„ in a system with strong mixing is N~&E/
D~108, so that |A|~|a,|~I/V^. The wave function of
opposite parity is of a form similar to that of *„:

•\bk\~- (2.3)

The mixing of the nearest * and *jf levels is dynamical-
ly enhanced. The total wave function is

|a>" + a^~|a>ii)' (2.4)

where

E — B-4-(ir_/2)
1 1

(2.5)

We wish to emphasize that *„ and *^- correspond to
quasistationary states in the continuum. It is for this
reason that the energy denominator in (2.5) is of the
form E- E;j-+(tT-jj/2) (E is the energy at which the
capture occurs) rather than E^-E^.

Let us examine the cold step of the fission. In this
step the nucleus is a pear-shaped top. The spectrum of
such a system may be described as follows in the adia-
batic approximation.23 For a fixed internal state |oK)
(jK is the projection of the total angular momentum J
onto the axis of the top), there is a band of rotational
states. If K* 0, then there are two rotational levels
of opposite parity (77 =±l) for each value of J—an effect
analogous to the A-doubling effect in heteronuclear
molecules.2' (In the case of a quadrupole deformation,
as in homonuclear molecules, one of the doublet levels
would be forbidden by the requirements of the statis-
tics.) For K = 0 the parity is related to J unambiguously:
ij =(-iy x (the internal parity), so that for each J there
is only a single level. In the adiabatic approximation
the wave function of the rotating nucleus may be written

-=- [\aKJM) + r\\aKJM)},

'MK(<t, 6, 0)|aJO,

\aKJM)=(-i)J+K\a, —KJM).

(2.6)

appearance of the cold step as a separate term In the
total wave function of the nucleus is especially graphic In an
analysis of nuclear fission by perturbation theory in which
the interaction of the excited nucleons with core vibrations Is
treated as a perturbation (see the Appendix).

2)Thls is precisely the rotational structure which has been
observed in the fission of 230Th by neutrons.24

We have chosen the phase of the wave function such
that at K =0 the angular part is equal to 7fll(6,<p).
This definition differs from that adopted in Ref. 23 by
the absence of a factor j'1"7*'2.

For simplicity we consider the case in which the
neutron is captured into a resonance with a fixed
value of J, and the fission goes through a single
channel with K * 0. The part of the wave function in
(2.4) corresponding to the cold step is

(2.7a)
= -4=- [(1 + P) \aKJM) +T) (1 - P ) \ a K J M ) \ ,

P=2>v-^-. (2.7b)

Equations (2.7) differ from (2.4) in that several ad-
mixe<|4evels, rather than a single one, are taken
into account

c) Angular distribution of fragments

Comparing (2.7) with (2.1), we see that we have
actually calculated the wave function £Ja) (a|in).
Now we need to project this wave function onto the
final state,

(2.8)

The main and admixed wave functions in (2.7a) cor-
respond to the same internal state of the nucleus
and differ only in the macroscopic rotational motion;
specifically, angular momenta of different parity
appear in the expansion of this state in terms of the
orbital angular momenta in the states 77 and 77. The
amplitudes for fission from the states |oK)" and
loft}71 to any specific internal state of the fragments
are therefore equal, and the wave function in terms
of angular variables is also of the form in (2.7) in
the limit r - °°. Specifically,

, + i \ \ f K J M ) ( f K J M \ a K J M ) ( i — $ a |/tf)3M ; Pl /#>JM- (2.9)

Here we have used conservation of the quantum num-
ber K in the course of rupture and the equality of
amplitudes (fKJM \aKJM> =(fKJM \dKJM) which
follows from parity conservation in rupture. Squar-
ing (2.9), and substituting |/JOJjf. we find from

(2.8) and (2.6) the angular distribution of the frag-
ments :

Ti.-*l'(l-T). (2.10)

° I- (2.11)

Here we have used A, ocVTe'"1 and A^(v) <xJrve
l«'»,

where r, r,,, q>, and <pv are the fission widths and
the phase shifts of the transition to the cold state
from the corresponding levels of the compound nu-
cleus. The question of phase shifts will be discussed
in more detail in the Appendix. For the above-
barrier fission with which we are concerned here,
we evidently have Tv~ T; this result has been con-
firmed experimentally. We thus have
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I/A' (2.12)

For fission by tunneling, there may be situations
in which Tv is larger than T; the corresponding en-
hancement of the effect has been discussed else-
where.18'25

In the experiments of Refs. 1-12, polarized neu-
trons caused the fission of unpolarized nuclei. The
angular distribution for this case is

iv (HI <i y r ( 8 ) ' 1 + a c u s O .

,r(-l)J (2.13)

where / is the spin of the target nucleus, and
' lU-l/2,1/2 1/2 is the Clebsch-Gordan coefficient.

We wish to emphasize that the effect is a conse-
quence of the orientation of the nucleus before rup-
ture. In the state (2.7) there is an average orienta-
tion of the nucleus along J. The Jn correlation (n
is the direction of the axis of the nucleus) is not
only P-odd but also T-odd. This correlation can
therefore arise only as a result of a finite lifetime
of the nucleus. In this case the spectrum of the sys-
tem is continuous, rather than discrete, and thus de-
generate: A state with a given energy may corres-
pond to both an outgoing wave and an incoming wave.
The outgoing wave, in which we are interested, is
not an eigenfunction of the time-reversal operator (T
reversal transforms this wave into an incoming
wave), so that T-odd correlations are not forbidden.

There is another way to explain the origin of the
Jn correlation. In an unstable nucleus, the average
value of the momentum of the fragment along the di-
rection of the axis, n is not zero (p«: rn). The Jp
correlation, on the other hand, is T-even.

Since the effect stems from the finite lifetime of
the nucleus, it must vanish in the limit r — 0. That
this is in fact the case can be seen easily and direct-
ly. For our choice of wave-function phases, the
weak-interaction matrix element is purely imaginary,
so that there is no Jn correlation in the state (2.7)
with r,, =0 and cos(<p - q>v) =±1, and the effect
vanishes3' (y =a = 0). A question which naturally
arises is whether a phase shift between states of
opposite parity might appear in the free motion of the
fragments away from the rupture point to infinity.
There is such a phase shift, of course, but it is a
consequence of the violation of the adiabatic approxi-
mation, and it is negligibly small. Indeed, the rea-
son for the appearance of a phase shift during the
free motion is the difference between the centrifugal
potential energies for the radial motion. The adia-
batic approximation with respect to rotation, however,
means precisely that the centrifugal energy is ig-
nored. If the justification for the use of the adiaba-

3)In the problem under consideration here, this circumstance
does not lead to any significant decrease in the effect, if
only because we have E -Ev ~ rv. Furthermore, there is
no reason to assume that the difference between the non-
resonant phase shifts, <p — <pv, is small.

tic approximation for a deformed nucleus is a rota-
tional energy which is small in comparison with the
energy of the internal excitation, then in the free
motion the rotational energy (Em ~K2/MR2 £ 10
keV) is small in comparison with the kinetic energy
of the fragments (E^ > 10 MeV). The phase shift
of the free motion is thus A<p ~ -JEnt /£&> ~ 10"2. To
avoid confusion we emphasize that we are here talk-
ing about motion of particles of finite size. In the
motion of a point particle away from the origin of
coordinates, the phase shift of the free motion in
states of opposite parity (with orbital angular mo-
menta I and l + l) is always ir/2, because of a sin-
gularity of the centrifugal energy 1(1 + 1)/2m r2 in the
limit r - 0.

As we mentioned earlier, if a parity-breaking ef-
fect is to occur, it is important that the energy
spread of the neutrons be smaller than the distance
between the levels of the compound nucleus and also
smaller than the width of these levels (6E<D, T).
It is in this case that it is sufficient to deal with the
wave function of a quasistationary state with a given
energy, rather than the time evolution of the fission.
In the opposite case 6E » D z r a temporal descrip-
tion is possible. In that case, however, the initial
hot step is "forgotten" upon the transition to the cold
state, and the effect caused by the weak interaction
in the hot step is suppressed by a factor J6E/D.

d) Overlap of neutron resonances. Dependence of
the effect on the final state of the fragments

In a real situation there may be an interference
among several incoming neutron resonances. If all
have the same J, then Eq. (2.10) is again applicable,
while expression (2.11) for y will be modified in an
obvious manner. A more interesting effect arises if
resonances with different J overlap. We denote by
T(+) the amplitude for capture to a resonance with
</+=/ + (!) and by T(-) the amplitude for capture to a
resonance with J_=/-(|). The wave function in the
cold state is then

T (±) A,, (±)
i'-£± + (ir±/2) •

(2.14)

The asymmetry coefficient for the fission of unpolar-
ized nuclei by polarized neutrons is

(2.15)

If w+ or M_ is zero, the result is naturally the same
as (2.13). We note that, in contrast with the first
two terms, the interference term does not fall off
with increasing spin (J) of the initial nucleus.

If K =0 , the cold nucleus has no rotational levels
of different parity and identical J. Because of the
interference of neutron resonances with different J,
however, the effect does not vanish even at K =0.
To demonstrate this assertion, we consider the par-
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ticular case of the reaction 239Pu(«,/) (/ = i). The
thermal neutrons are captured into the |0+) and |1*>
resonances. With K = 0, the parity of the cold nu-
cleus is TJ =(-1)', so that fission is allowed from the
|0*> resonance, while fission from the |1+) reson-
ance through a channel with K = 0 is forbidden. The
weak interaction, however, mixes the |1~) compound
state (from which fission is possible) with the 1 1+)
resonance. The wave function Y1M(d, <p) is therefore
mixed with the angular wave function of the nucleus
in the cold step, YM(9,(p). It is not difficult to see
that in this case the angular asymmetry is

-4(0*) £-

(2.16)
Let us examine a possible dependence of the effect

on the final states of the fragments. We should dis-
tinguish between two possibilities: rapid fluctuations
of the effect (the effect changes noticeably from one
specific final state of the system, |/), to another4')
and a slow change, i.e., a smooth dependence on
total (macroscopic) characteristics, e.g., on £ ~(A\
- A,)/(Ai +Az), where At and A^ are the fragment
masses. Up to this point we have been discussing
the case of a single fission channel. As we saw in
the preceding subsection, there is no dependence of
the asymmetry on the final state. This assertion,
of course, holds only within the range of applicabil-
ity of the adiabatic approximation for the wave func-
tion of the cold nucleus [Eq. (2.6)]. The adiabatic
approximation is obviously violated in the limits
£ - 1 and ? - 0. In the limit £ t* 1 the mass of one
of the fragments is small, and the characteristic
rotational energy becomes comparable to the energy
of the internal excitations. In me limit £ - 0, on the
other hand, a small excess of nucleons may tunnel
from one fragment to another, and this event would
also cause pronounced separations of rotational
levels of opposite parity.

We turn now to the more realistic case in which the
fission goes through several channels. If these chan-
nels have different values of K, they do not inter-
fere with each other (we are assuming that K is
conserved during rupture), and we can write a(f)
=35,W{(f)ai, where W ( ( f ) is the relative prob-
ability for fission through the |t> channel to the state
!/>(£ iwt(f) =1)- We see that rapid fluctuations
have appeared in the asymmetry because of W t ( f ) .
In actual experiment, an average is always taken
over some interval of final states; in other words,
one actually measures

Finally, if mere are several channels with identi-
cal K, they may interfere, causing a complicated
dependence on )/}. It seems natural, however, that
the interference would disappear after an average is

4)We wish to thank V. M. Struttnskii and Yu. V. Petrov for
calling our attention to the question of fluctuations of the
effect.

taken over a certain interval of final states, and we
would again have a(£) =Si^j( /)a< =SiW|U)ai for
the observable quantity. We see that the effect may
depend on | even in the adiabatic region if the
fragment mass distributions are different for differ-
ent channels. We must add that it would be very
difficult to imagine this difference to be large, so
that the experimental absence of a dependence of the
asymmetry on the fragment masses11 seems quite
plausible.

We wish to emphasize again that the angular asym-
metry arises in the cold step, before the nucleus
ruptures to form the fragments (see Subsec. 2c). It
is for this reason that the effect is not suppressed
when an average is taken over the final states of the
fragments.

3. P-EVEN ANGULAR CORRELATIONS IN THE
FISSION OF UNPOLARIZED NUCLEI BY SLOW
NEUTRONS

From both the experimental and theoretical stand-
points, the P-even angular correlations are intimately
related to parity breaking in fission.10-11'29 Further-
more, it is fair to say that the observation of these
correlations have served as a strong argument in
favor of the parity-breaking mechanism discussed
above. We therefore believe it is necessary to take
up the question of P-even correlations here. The
correlations involved are the pk and p[ka] correla-
tions (a and k are the spin and momentum of the
neutron, and p is the momentum of the light frag-
ment). From the standpoint of the formation mech-
anism, these correlations differ from the P-odd ef-
fect only in that in the even case the mixing of the
compound-nucleus levels results not from the weak
interaction but from an overlap of s-wave and /»-wave
neutron resonances.

We expand the wave function of the incident neu-
tron in terms of states with a definite angular mo-
mentum, \ljjj):

») Ylm (n) A'a = 1 0, \ , a)

(3.1)

where Xa is the spin wave function with spin projec-
tion a, jt(kr) is the spherical Bessel function, n»
= k/fc, and n = r/r. For slow neutrons, the terms
with l> 1 are inconsequential. Neutrons from s and
p waves are captured into compound-nucleus states
of opposite parity. The wave function of the nucleus
after capture of a neutron from the state (3.1) may
be written as

2 j-

22 f i- ,. /„ /p,); (3.2)

where TJ is the parity of the target nucleus, and TJ
S-TJ. The Clebsch-Gordan coefficient Cjf«w arises
when the spin of the target nucleus, /, is combined
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with the angular momentum of the neutron. The am-
plitudes Ts and Tp(j) correspond to the capture of a
neutron from the states |/ = 0,j = f,a) and |/ = l,j,j^
into the compound-nucleus states |TJ, J, Jt) with a
given total angular momentum J, Obviously, we have
T,/TS~ kR where R is the nuclear radius. Using
expressions (2.2) and (2.3) for the states \r\, </,,«/«)
and ft,Jt,Jp,), we ca« single out from the wave func-
tion in (3.2) a part which corresponds to the cold
nucleus:

TABLE II. The factor Q(Js,Jp,j,K,/)/(2Js +-1).

2 2 »,
P j. ra

(3.3)

where

""Pu, 1 = 1/2

2"U, 7 = 5/2

23SU, 7 = 7/2

J,

0
1
1
1

2
2
2
3
3
3

3
3
3
4
4
4

JP

1
0
1
2

1
2
3
1
3
4

2
3
4
3
4
5

K = 0

j= 1/2

3.46
1.15
0

—

0
2.37
1.69
0

_

0
2.27
1.76
0

j-3/2

4. ,90

—0
3.65

—1.70
0
2.12

—0.90
0
2.97

—1.92
0
1.92

—1.02
0
2.85

K = 1

i = 1/2

——2.00

—

0.67
2.23
1.59

—0.67

_
0.50
2.20
1.71

—0.50

j -3 /2

—1.41
3,16

—1,47
1.25
2,00

—0,85
0.75
2.87

—1.81
0.87
1.86

—0.99
0.59
2. SO

K = 2

i = l/2

—
—
—

1.33
1.76
1.26

-1.33
—

1.00
1.96
1.53

-1.00

i = 3/2

—
—
—

—2.49
1.58

—0.67
1.49
2.57

-1.43
1.73
1.66

-0.88
1.18
2.62

and A, and ̂  are the corresponding amplitudes for
a transition to the cold step. As we mentioned
earlier, the angular part of the wave function will
also have the form of (3.3), with the wave functions
\<*,K)fft

 fro11* (2/6), in the limit r - <*> . To find the
angular distribution it is thus sufficient to average
the square modulus of wave function (3.-S) over the
spin projections of the target nucleus, It. After
some straightforward but lengthy calculations, we
find the following expression for the angular distribu-
tion:

I Q ( J . , -V /'- K,
«. P. j

(3.4)
where n#=p/p is the emission direction of the light
fragment, |a| = l, and

l,

Q ( J S , Jp, j, K, 7) =

p / JJ \K -K
(3.5)

Let us consider the simplest case, in which there
is only a single s-wave resonance and a single p-
wave resonance near the thermal region. It is con-
venient to express the ratio of capture amplitudes,
T'p/Ta, and the ratio of fission amplitudes, Ap/A,, in
terms of the ratios of the corresponding widths:

~T~= V ~lire xPi '(f1^ — < fn ) ) I =

AP i /'~Wr
~A—= I/ ~i7y~exP i* (?( —f}1')!-

/ r<")

(3.6)

Here we have used <p^ - <p(
n
s'1 -mn, where m is an inte-

ger, as the difference between the capture phase shifts
for slow neutrons (fe/J« 1). [The phase shift of the free
motion of a p wave, e'W2 =z , is not incorporated in the
definition of Tp and is singled out explicitly in (3.2) and
(3.3).] The angular distribution is

V'(np) = l+ V 6(nknpcos(p.—n,
i--— —

rt(/ / ; A" 7i A HPJ'r(P> r rV U « - •'r- A ft- -1! -i / 'n ' f E-,b 2T7~i Y ri..)rw | T=i (3.7)

T " •— ~

The reason why the n,!^ correlation is proportional to
cos^j, while the [̂11 (̂7] correlation is proportional to
sin<p, lies in the different T parities of these correla-
tions (the n,[ii»a] correlation is r-odd). Table n lists
numerical values of the coefficient Q/(2Js + l ) for angular
momenta of 239Pu, 233U, and 235U. We see that 97(2,7,
+ 1)~1. The phase shift (p in the fissile nuclei is not
small (|cos <p |~|sinip|~l), if only because E-E,~r.
The factor \E-E, + (iT,/2) ||£ - Et + (iTt/2)} -1, like the
phase shifts, does not have any important effect on the
parity-breaking effect for thermal neutrons, since
\E - E31 - \E - Ep I. A possible exception to this asser-
tion is 239Pu, for which the distance from the thermal
region to the s-wave resonance is nearly an order of
magnitude smaller than the average distance between
resonances. Since the probabilities for above-barrier
fission from compound levels of different parities are
of the same order of magnitude (r^' ~r^s)), we find the
following estimate of the asymmetry for thermal neu-
trons :

• I /
V

r(p)

" (3.8)

This value is consistent with the experimental data
available:

10*

-3.24 ±0.33:
-6.43 ±0.51

1.65±0.11'»,
1.25 ±0.29",

235 (J,

239Pu.

(3.9)

Unfortunately, it is not possible to make a more ac-
curate comparison with experiment because the param-
eters of the p-wave resonances and the phase shifts
are not known. Even order-of-magnitude estimates,
however, show that the model is valid. In the first
place, the hot step is not "forgotten" in the system; in
other words, the mixing of levels of different parity
is in fact faithfully transferred from the hot step to the
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cold step. Second, there is no averaging of the effect
because of the very large number of final states of the
fragments; in other words, the mass and angular asym-
metries are shaped before the rupture of the nucleus
and the formation of the fragments. Since the P-odd
effect in fission arises in a corresponding way, accord-
ing to our arguments, we may assert that the observa-
tion of P-even or P-odd correlations at the predicted
level would be evidence for the validity of our model for
the shaping of the angular distributions during fission.

4. PARITY BREAKING IN NEUTRON OPTICS

In this section we will discuss some new possibilities
for studying parity breaking in interactions of neutrons
with nuclei; the effects involved here are analogous to
effects which have been observed in ordinary optics
(Ref. 27; see also the review in Ref. 28). The first sug-
gestions regarding the observation of parity breaking in
neutron optics can be credited to Michel29 and (later)
Stodolsky.30 The idea was to measure the rotation of the
spin of a neutron around its momentum direction in a
medium. Another effect was also discussed: the ap-
pearance of a longitudinal polarization of originally
unpolarized neutrons. The rotation angle ip and the
degree of longitudinal polarization, a, over a neutron
mean free path were predicted to be il>~ 10~6-10~8 rad
and a~10~"/E, where E is in electron volts. In 1976,
Forte31 noted that the effect was enhanced near a single-
particle />-wave resonance. A specific suggestion was
to measure the neutron-spin rotation angle in B4Sn,
where there is a />-wave resonance at 62 eV with a rela-
tively large single-particle component. According to
Forte,32 there would be a rotation angle tp~ 10~3-10~4

rad at the optimum neutron energy, and there would be
a longitudinal polarization a~10~5-10~8 (over a mean
free path). For thermal neutrons, the prediction was
ip,s5-10'8 rad/cm (Ref. 32).

In Refs. 29-32, as in subsequent papers by other
authors,33"39 the spin rotation in question was a rotation
caused by the scattering of the neutron by the P-odd
potential of the nucleus; in other words, the nucleus was
treated as a particle having no internal degrees of
freedom. As we will see below, in heavy and inter-
mediate nuclei there is also a substantial rotation caused
by another mechanism, involving virtual excitation of the
nucleus to a compound state (Ref. 40; see also Ref. 41).

a) Resonance effects

Let us examine the capture of a neutron of energy E
into a p-wave resonance. After the capture, the nu-
cleus goes to some compound state with angular mo-
mentum .7 and parity ij. Actually, because of the weak
interaction between nucleons this state is a superposi-
tion of states of different parities:

(4.1)
(A
£-£v-r(irv/2)

We have singled out an "t" (=V^T) in the expression for
the mixing ratio, since the ordinary definition of the
angular wave functions would make the matrix element

Hm purely imaginary. Because of the dynamic enhance-
ment, the mixing of nearest levels is e-fVJy-lO'^-lO"5

[see (1.6)].

The capture into the state (4.1) comes from both the
p and s states of the neutron. Let us expand the wave
function of a slow neutron with momentum k and helicity

in terms of states with a definite angular momentum
(the z axis is along *):

(1 + Oat) X± = I/IS [y

'

where \t ig the spin wave function. The amplitude for
neutron capture from state (4.2) into compound -nucleus
state (4.1) is

[± TP (/ = 4 C"'±
z 2 •

(4.3)

where / and J are the angular momenta of the nucleus
before and after the capture, and T, and Tp(j) are the
scalar amplitudes for capture from the s and p waves.
The "i" in (4.1) cancels out with the difference between
the free-motion phase shifts of the s and p waves.
Working from (4.3), we easily find that the capture
amplitudes for different values of j do not interfere if
the target is unpolarized. The interference of amplitudes
of different parity with j = |, on the other hand, leads
to a difference between the cross sections for the ab-
sorption of neutrons with helicities ±|,

/>(*)=- , (*•) Tn

(4.4)

/ fpN
'I/ -TTlI/ ^PT)

f rn

cos (q>('v) — <

where r<"(fe) = r<»l/2)(fe) + r**""̂ ) and r£">(*) are the
neutron widths of the states (j11} and |<7,' v), corrected
to the energy of the incident neutron:

--3, it" (*) _ ri," * . (4.5)

Here kp and fe, are the momenta corresponding to the
resonances, and <p(*' and <p(>) are the capture phase
shifts. For slow neutrons (kR« 1, where R is the nu-
clear radius), we of course have cos(q>M- (/*>) = ±1.
The case in which we are interested is that in which the
distance to the p-wave resonance is much smaller than
that to the nearest s-wave resonances. In this case we
can easily single out the explicit functional form of P(k)
and P0(k):

P(K)=P-!^-, PO(*)=PO-TT. (4.6)
For low-lying resonances (with Bf = 1—10 eV) we have
Viy(M/r«"(V~ l/fe,#~102-103and PsPo-lO^-lO"2.

Noting that <T" in (4.4) has the standard Breit-Wigner
form, we can easily convert from the absorption cross
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section to a refractive index:

P k ) E—

2/ • '
(4.7)

2(2/-rl) '

where N is the density of target atoms, n0 is the non-
resonant part of the refractive index, and r is the total
width of the £-wave resonance. We have ignored the
Doppler broadening of the line, A~2Vw/MffT£, at room
temperature, A-0.03/E, where £ is in electron volts.
At A> r~0.03-0.1 eV the effect is suppressed by a fac-
tor of about A/T.

Let us examine the rotation of the spin of the neutron
around its momentum direction. We assume that the
neutron is moving along the z axis and that at z = 0 the
spin is directed along the x axis. After a distance I is
traversed, the components of the spinor acquire differ-
ent phase shifts:

I cxp (itn+i) \

(4.8)
• Pl-

The resulting spinor corresponds to a spin which has
rotated by an angle -ip around the z axis. It is also
simple to see that an unpolarized beam acquires a lon-
gitudinal polarization:

a = — kl Im (H+ — n_) = — -Pi- (4.9)

Although </i and a are proportional to the distance tra-
versed, I, it is clear that I cannot be much larger than
the mean free path IQ =[jfeIm(^++n.)]"1~l-5 cm.

Suitable nuclei for such experiments are those which
on the one hand have an isolated low-lying />-wave res-
onance but on the other hand a rather closely spaced
spectrum of compound resonances. Examples are 113In,
117Sn, 119Sn, 139La, 232Th, and 23eU. Let us examine the
order of magnitude expected for these effects near p-
wave resonances.

1) The relative difference between the capture cross
sections for right-hand- and left-hand-polarized neu-
trons is

/>=•

2) The rotation of the neutron spin is

(4.10)

_ .,(10-*-lO-'i— rad. (4-1l)

3) The longitudinal polarization of the neutrons (or the
relative difference between the transmission probabil-
ities for right-hand- and left-hand-polarized neutrons)
is

P)~(10--lo-3)_. (4 12j

The values of ij> and a are several times smaller than P,
because of the elastic scattering of neutrons (a0~5-10 b),1

which reduces the mean free path. For the resonances
under discussion here, we would have aa/(aa +cr0)~0.2-
0.5.

These resonance effects are sharply dependent on the
neutron energy. The scale dimension along the energy
scale is ~T~0.03-0.1 eV, and this energy determines
the permissible energy spread of the neutron beam. For
a beam with an energy spread, ip and a are inversely
proportional to the spread.

We wish to emphasize that there are two factors which
are responsible for the large magnitude of these effects.
First, there is the kinematic enhancement, which oc-
curs because the s-wave admixture amplitude is larger
by a factor of 1/kR than the primary £-wave amplitude.
Second, there is the dynamic enhancement of P-odd
mixing in a compound nucleus.

b) Magnitude of the effects for thermal neutrons.
Comparison with experiment

We note at the outset that the />-wave and s-wave
resonance generally make comparable contributions to
the spin rotation angle in the thermal region, tpt. If
there is an s-wave resonance close to the thermal re-
gion, however, the mean free path is small, reducing
the observable effect. We will therefore consider the
case in which there is a single />-wave resonance near
the thermal region.

Working from (4.8) and (4.9), we can easily find an
estimate of the effect in the thermal region (E = 0). With
r~0.1-0.03 and £,-1-10 eV we find i/i,~10-4-10"5J/Zo
rad and a, ~10"e-l(rV4).

The first measurements of ip, and a, in tin have re-
cently been published by Forte et al.13 They were seek-
ing an effect of a single-particle £-wave resonance in
124Sn. As a control, they also carried out measure-
ments in a natural mixture of tin isotopes. As it turned
out, however, they failed to find an effect5' in B4Sn,

<pt (
mSn) = (0.48 ± 1,49).10-" rad/cm, (4.13)

while for the control sample the angle turned out to
be nonzero:

<ft (natural Sn) = (4.95 ± 0,93)-10-' rad/cm. (4.14)

A detailed study revealed that the effect was attribut-
able to 117Sn:

t("7Sn)= (36.7 ± 2.7)-10-6 rad/cm, (4.15)

where there is ap-wave compound resonance at an
energy of 1.32 eV. The measured value of <p,(117Sn)
agrees well with the above estimates.40 Stodolsky41

has also suggested that the large magnitude of the effect
in 117Sn might be attributed to the proximity to the ther-
mal region of a £-wave compound resonance.

It should be noted that an effect slightly smaller than
that in 117Sn can be expected in 119Sn (provided, of
course, that its spin is J< 2), where there is also a
/>-wave resonance at 6.2 eV. We do not rule out the
possibility that this isotope is responsible for the "ex-

5)In (4.13)-(4.15) we have used the notation <pt instead of $,
because of an ambiguity in the definition of the <pt (as dis-
cussed further on in the text proper). We wish to thank V. E.
Bunakov and V. P. Gudkov for a discussion of this question
of the sign of <pt.
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cess" effect observed in the natural mixture of iso-
topes.

Forte et al.13 also measured the quantity
ot (

u'Sn) = (-1,63 ± 0,67). 10-« cm-',
a, (null test) = (—0.50 ± 0,89)-10-' cm-'. (4.16)

The relationship between the signs of 4>, and a, tells
us which resonance (one with a positive or negative
energy) is primarily responsible for the effect (1>t/at

= -2Ep/r). Unfortunately, there is some ambiguity
regarding the determination of the sign of <p, in the ex-
perimental paper by Forte et al.13 [in Eq. (3) of that
paper, the angle <p was defined with a sign different
from that in the text immediately preceding (3)]. If the
definition of (f>, differs from that of tp, in sign, then the
effect is due primarily to a resonance which lies below
the neutron threshold. Working from the average value
of the total width of the above-threshold resonance
(r = 0.08 eV) and from the ratio 4>t/at, we find Epa -1
eV. The existence of a second />-wave resonance so
close to the thermal point (the first is at Ep = 1.32 eV)
seems unlikely (although, of course, we cannot rule out
tills possibility), since the typical distance between
resonance in U7Sn is more than 20 eV. Under the cir-
cumstances we will assume that it is nevertheless the
1.32-eV resonance which makes the major contribution
to the effect; i.e., we assume #,(U7Sn) = (p,.

Working from the value of </>, we can generate more
accurate estimates of these effects in the vicinity of the
resonance. For the resonance £, = 1.32 eV, the neutron
width is gT*^ = (1 ± 0.5) - 10'7 eV, according to Mughab-
ghab and Garber.43 From (4.4) and (4.8) we then find

-1U • (4.17)

Unfortunately, the total width r is not known for the
1.32-eV resonance. On the basis of the widths of higher
resonances,42 we will set r = 0.08 eV. The elastic cross
section in U7Sn is <70«5 b. The total cross sections atat

in the thermal region and in the p-wave resonance turn
out to be approximately equal at 7-8 b. Hence the mean
free path is ̂  4 cm. Finally, for the quantities in
which we are interested we find the values

— I.I.IQ-* cm'1 or - ,

= 1-2 -10-" rad/cm or 5-10-3 - rad

o(£p)= — 1.2-10-" cnr' or — 5-10-3 —

(4.18)

In these calculations we have used only the single as-
sumption that ij>t is dominated by the 1.32-eV resonance.
If we adopt the further assumption that the s-wave res-
onance nearest the thermal region has the same angular
momentum Jas the 1.32-eV />-wave resonance, then
we can determine the extent to which these states are
mixed. In 117Sn, the cross section for the (ji,y) reaction
for thermal neutrons is 2.6 b. It is not difficult to see
that known positive-energy resonances contribute sO.2
b to this cross section. The cross section at the ther-
mal point is therefore determined by a resonance with
a negative energy. Working from the average widths
of the resonances, we find

0.5-10-3 eV,

(4.19)

5. ENHANCEMENT OF PARITY-BREAKING EFFECTS
IN THE (n, 7) REACTION

We will begin with an effect which was actually al-
ready discussed in the preceding section: the difference
between the cross sections for the capture of right-
hand- and left-hand-polarized neutrons into a />-wave
resonance. It would apparently be convenient to mea-
sure the difference in the (n,y) reaction from the differ-
ence in the y count rates, since there would be no sup-
pression by elastic scattering here. According to
(4.10) the relative magnitude of the effect is -10^.

We now consider the circular polarization of y rays
in the <fi, y) reaction in the capture of unpolarized neu-
trons into a />-wave compound resonance. Because of
the difference between the cross sections cr* and al, the
intermediate compound nucleus is longitudinally polar-
ized. Upon decay, this polarization is transferred to
the y ray. We are thus dealing with an (srpy)(pTpn) cor-
relation; i.e., the degree of circular polarization is
Py<xcos0, where 9 is the angle between the momenta of
the y ray and the neutron. In order of magnitude, the
circular polarization is Py-P-lO"2. If we assume, for
example, that the 1.32-eV resonance in ll7Sn has Jp=l~,
then for a transition from this resonance to the Jp = 0+

ground state of 118Sn we have

Pv~ P cos 8 = (1.3 ± 0.7) • 10-2 cos 6. (5.D

We turn now to the "classical" parity-breaking effects
in the (n, y) reaction: the angular asymmetry in the y
emission direction [the (fl,,pr) correlation] and the cir-
cular polarization of the y rays [the (srpr) correlation].
These correlations may also be enhanced near a />-wave
resonance. To avoid writing out the lengthy equations
for the arbitrary case, we consider a specific example
for which experimental data are available43-44: the
reaction 117Sn(n,y), with a transition to the 0* ground
state of "8Sn. The y transition can come from the 1*
and 1~ compound levels. When the weak interaction is
taken into account, the overall reaction amplitude can
be written

(0*1 Ml 1 1+ (C--|K,l|l-)(l-|71y
E-E. (iF_;2)

_.'2)] [£•-£* r(i l 'V2)] ' ( 5 2 )

The fourth term in this equation is always smaller than
the third and thus inconsequential. The interference of
the second term with the third leads to the correlation
(s

rPr) (PyPn). which we have already discussed. An in-
terference of the first term with the third is respon-
sible for the P-odd correlations (sypy) and (s,py).
Unless we are very close to the p-wave resonance,
we may ignore the second term. For the degree of
circular polarization and the asymmetry parameter in
the y angular distribution W(9) = 1 +acos6 we find

(5.3)
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We wish to call attention to the fact that the energy de-
nominator in this expression is of the form E — E_,
rather than E+-E_. Therefore, under the condition
\E- £_(« \E+-E.\, there will be an additional reso-
nant enhancement by a factor (E+-E_)/(E - E.) in com-
parison with the usual estimate for the mixing ratio.

An asymmetry in the angular distribution of y rays in
the reaction 117Sn(n,r)U8Sn for thermal neutrons has
been found experimentally: a = (8.9± 1.5)- 10~4 according
to Ref. 43 and (4.4 ±0.6)- 10~4 according to Ref. 44. Let
us attempt to compare this value with the results from
neutron optics. Unfortunately, the spin of the 1.32-eV
resonance is not known. We have essentially eliminated
the possibility J = 2 already, when we assumed that this
resonance contributed to the rotation of the neutron
spin. If J = 0, then this resonance does not contribute to
the angular asymmetry of the y rays, and there is no
direct relationship between the effects. All we can do is
use the value of e from (4.19) and write the standard
estimate |a|~|2eEl/Ml|~ KT" |E1/M1 . If J=l , on the
other hand, then the effects are related. Using (5.3) and
(4.19), we find

—M I (5.4)

In the derivation of this expression it was implicitly
assumed that the amplitudes for electromagnetic transi-
tions to the 118Sn ground state are determined at the
thermal point by the nearest s-wave and the nearest
/>-wave resonances (|s0> = |1+, E,~- 10 eV), \pa)= |1~,
Ep = 1.32 eV». Taking all these resonances into account,
we would write

(5.5)

We could cite arguments according to the sum which in the
numerator is actually saturated by the nearest reson-
ances. For the denominator, on the other hand, a large
number of terms are important (up to |ES|~1 MeV).
Taking these circumstances into account, we easily see
that we again find Eq. (5.4), but now the amplitude Ml
= (0+ [Ml |s0) in this equation should be replaced by a cer-
tain effective overall amplitude for the Ml transition at
the thermal point:

M=' (0+ |Ml | s 0 )+ £ -gp-< (5.6)

According to rough estimates, the sum in this expres-
sion is of the same order of magnitude as the first
term, or perhaps even larger by a factor of two or
three.8' For the same reason, the ratio |E1/M1|~1
which follows from a comparison of (5.4) with the ex-
perimental asymmetry seems quite reasonable.

To avoid any possible confusion, we stress the fact
that the comparatively large contribution of the remote
resonances to the Ml amplitude is a consequence of
our consideration of the y transition to the ll8Sn ground

6>By way of comparison we note that in the reaction
U3Cd(«,y)114Cd(O+) the sum Is apparently much smaller than
the first term.

state. The total cross section for the react
in contrast, is determined primarily by the nearest
s-wave resonance.

We wish to thank I. B. Khriplovich for a discussion
which extended to essentially all the questions covered
in this review and which we found exceedingly impor-
tant.

APPENDIX. PERTURBATION-THEORY DESCRIPTION
OF THE NUCLEUS FROM THE COMPOUND STATE TO
THE COLD STEP

For a better understanding of how the part of the
compound-nucleus wave function corresponding to the
cold step arises [see (2.2) and (2.3)], it is useful to
consider a simple but quite realistic model: fission in
perturbation theory. This model will also cast some
light on the origin of the phase shifts in the amplitude
for the transition to the cold step [see (2.11)].

Upon capture into a compound state, a neutron excites
some of the nucleons of the nucleus. The excited nu-
cleons and holes move in a certain average core poten-
tial and interact strongly with each other. Their inter-
action with the core vibrations, on the other hand, will
be assumed small here and will be dealt with by per-
turbation theory. From the formal standpoint, this
problem is analogous to that of the interaction of a gas
of quasiparticles with a heavy particle which is moving
in a potential well. Fission corresponds to the emission
of the particle from the well. We assume that fission
occurs just above the barrier; i.e., fission occurs only
if the gas "cools off" completely and transfers energy
to the core vibrations. Figure 1 shows a diagram cor-
responding to this process. We are interested in the
lowest order of perturbation theory in terms of the in-
teraction of the quasiparticles with the core vibrations.
Since there are no excited nucleons in the final state,
a nucleon must annihilate with a hole each time there
is an interaction with vibrations. In other words, if n
nucleons are initially excited, then fission occurs in
perturbation theory of order «. The amplitude corres-
ponding to Fig. l(a) is

£-£,-t-(iIV2) '
Q, fl)

(Al)

Here |0 ,n>= |0)|n) is the initial state; |0) is the core
wave function; \n) represents a gas of n nucleons and
wholes; |fe,, aj) = |ife,) |a,), |a,) is the wave function of i

FIG. 1. Heavy line—Gas of nucleons and holes; solid line—
core; wavy line—interaction of a nucleon with core vibrations;
cross—weak interaction.
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nucleons and « holes; )*,} is the core state; |a) is the
final state, a fixed fission channel; £ is the initial
energy; and E, and r, are the energies and widths of
the intermediate states. The sum runs over all the
intermediate states, of which there are many. It is not
difficult to see, however, that the predominant terms
are those which correspond to the minimum possible
"energy nonconservation" in the intermediate states,
since the transitions which are dynamically enhanced
are those which have the smallest energy denominators
in Eq. (Al).

The parity-breaking weak interaction can be incor-
porated in any step of the process in Fig. l(a), but a
weak interaction in the initial step will obviously make
the predominant contribution [Fig. l(b)]. In the initial
step, the number of excited nucleons is at a maximum,
so that the level spectrum is at its densest, and the
dynamic-enhancement factor is at its highest. The ad-
mixture amplitude corresponding to Fig. I(b) is

(A2)

where Hw is the operator representing the parity-
breaking weak interaction, and A^(v,E) is the ampli-
tude for fission from the admixture level; this ampli-
tude is of the same form as A^E) in Eq. (Al). The sum
runs over all the levels of opposite parity of the system
of n nucleons. Only the nearest levels, however, make
a dynamically enhanced contribution. Since the ad-
mixture amplitude has the same structure as the pri-
mary amplitude, it is clear that there is no further sup-
pression of any sort of the admixture amplitude because
of the transition from the hot step to the cold step. We
thus again find Eqs. (2.5) and (2.7). In perturbation-
theory terms, the phase shifts in the transition ampli-
tudes [A-VTe1'; see (2.11)] arise when the widths of the
intermediate states are incorporated in the diagrams in
Fig. 1. Since the spectrum is less dense in these
states than in the initial compound nucleus, the energy
dependence of the phase shifts is smooth in comparison
with the dependence [E-Ev + (iTv/2)]~l associated with
the initial compound nucleus.

In connection with the discussion of the T invariance
in Subsec. 2b, we note that it is completely obvious in
perturbation theory that if all the r and r,, vanish then
we have cos(<p- ^,,)=±1.
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