
A difficulty of the problem is that turbulence results
in two competing processes: amplification of the
field ("tangling of force lines") and a decrease in the
scale of the field. The rates of these processes
are of the same order of magnitude. Consequently,
the problem must be solved exactly, since only then
will it be possible to establish whether or not an FF
turbulent dynamo exists. Batchelor's analysis,3

which was based on the similarity of the equations for
the field H and curl v (v is the velocity) met with
lively discussion and criticism because the physical
conditions are fundamentally different for H and curl
v."

The small parameter c = Tv/l, where i is the cor-
relation time, I is the turbulence scale, and v is the
rms velocity, has been used up to this time to establish
the dynamics of the field in the highly conductive cos-
mic plasma. At very small T(T— 0), the v field is a
random white-noise process (the v field "remembers"
nothing concerning its past value), while the field H is
a Markoff process. The field-dynamics problem can
be solved rigorously for this model. For the large-
scale field, the diffusion and generation coefficients
can be determined with accuracy sufficient for astro-
physics in the Markoff model. It is possible in principle
to derive an FF dynamic equation for the Markoff
model and to establish whether or not a dynamo exists.
But this would not by any means imply that the answer
has a bearing on real turbulence. This is because e «1
in actuality (for Kolmogorov turbulence, the turbulence
of interstellar clouds, turbulent convection on the sun,
etc).

The situation changed radically after the appearance
of Ref. 5, which establishes the behavior of the large-
scale field without the assumption that e «1 • This
made it possible to construct an exact theory of the
FF.6 We set forth the essentials of this approach.

The exact solution of ideal magnetohydrodynamics
is taken as a base:

(D

where x is the coordinate of a fluid parcel that depar-
ted point a at time t = 0. An expression for the cor-
relation tensor Bij = (Hl(x)Hi(x)) is obtained by multi-
plying (1) by the corresponding expression at point x'
and with the index j and averaging. It is clear that

B{J(t) will be expressed in terms of B-n(0) and in terms
of the Lagrangian tensor L = <(9*i/9aJ(a.*J/8aB)) in
principle, the problem is now solved: the tensor L
characterizes the motion and is simply a given quantity
while BtJ is expressed in terms of its own initial form.

For properly conditioned specification of L, the par-
tial derivatives in (l) are replaced by finite differences;
then the numerator of the expression for L will contain
four points. Averaging means multiplying the entire
expression by the four-point distribution function p4(xa\
at, i)a, 0 = 1, 2, 3, 4—the density of the probability
that fluid parcels will be at point xa it they were at
points aa at time t = 0. Thus, the task has been re-
duced to specification of pt.

Let us formulate the results. Specification of the
distribution function />„ makes it possible to obtain the
exact FF dynamic equation. In the range of very small
scales that appears in a medium with extremely high
conductivity, the equation is of universal form. This
makes it possible to answer the main question of FF
dynamos in the affirmative: a growing solution is ob-
tained, i.e., generation occurs. Specification of the
two-point distribution function p2 leads to the dynamic
equation of the large-scale field.

Thus, determination of the Lagrangian characteristics
of the motion from experimental and observational
data (for example, from the motion of fine-structure
elements that have been "frozen into" a plasma) would
make it possible to establish the dynamics of the mag-
netic field. We note that direct laboratory or numerical
modeling of the turbulent dynamo is not possible at this
time, and that observational data cannot be interpreted
without ambiguity.
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G. M. Zaslavskii. Aspects of the origin of stochasticity
in quantum systems. We define stochasticity as the
chaotic (random) motion of classical dynamic systems
that arises in the absence of all random forces or
parameters.1 The phenomenon of stochasticity results
in mixing of paths in phase space (the term "K sys-
tem" is also used with certain reservations). In
Hamiltonian systems, stochasticity arises as a result
of breakdown of separatrices and the formation of a
stochastic layer around them.2 From the dynamic
standpoint, the basis of the phenomenon of stochasticity

is local instability: a small disturbance of initial
system conditions results in an exponential increase of
the distance D between paths:

D (!) = D (0) eu. (D

The average value of the increment h (the Komogorov
entropy) is the basic characteristic of stochasticity.
Systems with the same h have topologically equivalent
dynamics in phase space (the universality property
of systems with mixing).
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Investigation of the local instability conditions (1)
makes no sense in quantum mechanics, which does
not have a path concept. The uncertainty relation must
result in correlation effects. In quantum mechanics,
there is also the steady-state eigenvalue and eigen-
function problem, which has no analog in classical
mechanics. There are also several problems of a
more subtle nature that arise in attempts to inves-
tigate stochasticity in quantum systems.3

The following statement of the problem is possible in
quantum mechanics: what are the properties of a
quantum system that is a. K system in the classical
limit (#=0)? Analysis of this problem has shown4*8

that the existing level of development and understanding
in quantum mechanics is in a certain sense inadequate
when we attempt to answer this question.

It is convenient to distinguish two types of problems
for analysis of quantum K-system properties: 1) the
steady-state problem and determination of the
system's energy spectrum; 2) the nonsteady-state
problem and determination of system evolution.

Let us consider a classical system of nonlinear os-
cillators (composed, for example, of N coupled
nonlinear oscillators) with violation of the integrals of
motion (except for the energy E). Violation occurs at
E > Et. Violation of the motion integrals means the
appearance of stochasticity at E > E,.l The appearance
of a finite boundary of stochasticity Ef is possible even
at N » 2. Violation of the classical motion integrals
simultaneously implies violation of the corresponding
quantum numbers. The problem of quantization rules
for cases in which the number of integrals of motion
in the corresponding classical system is smaller than
the number of degrees of freedom was first posed by
Einstein.9 Considerations pertaining to the energy-
spectrum structure of very complex systems (heavy
excited nuclei, etc.) with violated quantum numbers
were advanced in the book by Landau and Smorodinskii:10

the distribution of levels is random, but the probability
P(E\ AE) that if E is a level, the level next to it is at a
distance AE, tends to zero as AE— 0 (the principle of
"repulsion" of levels). An analysis of quasiclassical
quantization rules for the case in which the motion
integrals of the corresponding classical system are
violated (i.e., the system is aX system) was made in
Refs. 4 , 5 , and 7. It indicated that the level distri-
bution in quantum K systems is quasistochastic, and
that the distribution of distances among the levels
P(E|AE) has the asymptotic form

Relation (2) indicates that equivalence of the level dis-
tribution and the eigenvalue distribution of an ensemble
of random matrices of a certain symmetry type
(Dyson11) does not hold, since according to Dyson's
results, a may assume any of the values 1, 2, 4,
which do not depend on any way on the dynamic pro-
perties of the system. A numerical confirmation of
these results was obtained in Ref. 12.

These results call for a review of several of our
conceptions, in intramolecular dynamics and concer-

ning the formation of the chemical bond.3-7 At E>£5,
the vibrational spectra of molecules , even those with
small numbers of atoms, acquire a quasistochastic
structure that should completely change the shapes of
absorption lines, etc. In particular, when the motion
integrals are violated, the energy absorbed by a mole-
cule should be distributed over different degrees of
freedom, and the mixing time should determine the nature
of the dissociation process. Other examples are given
in Refs . 3 and 7 .

Quantum K systems also exhibit new properties in
the nonsteady state problems.6-3 In particular, ex-
ternal time-periodic fields may result in excitation of
molecules or an atom and their dissociation or ioniza-
tion. The excitation mechanism is stochastic . This
effect is an interesting case of the Fermi acceleration
mechanism brought about on a single atom or on a
single molecule.

The averaged dynamics of quantum K systems may
differ significantly from the dynamics of classical
K systems. The extent of this difference is determined
by the dimensionless parameter £ :3-7

(3)

where y is a dimensionless nonlinearity parameter, /
is the action, o> is the system frequency, T is the
characteristic time scale on which the action of the
system changes significantly, K is the stochasticity
parameter (lnK = h), and nis the number of quanta in
the perturbation.

At £« 1, there is an interval of time during which
the correspondence principle is valid and the dynamics
of the quantum system is similar to the classical dy-
namics . Then the quantum corrections come to be of
the order of magnitude of unity, and the macroscopic
average values differ strongly from the classical
values. In particular, a deviation in the values of the
diffusion coefficient was found from numerical analysis
in Ref. 15.

If £ » 1 , the wave packet is dispersed quickly and the
quantum dynamics is essentially nonquasiclassical,
despite the fact that I/K» 1 and x» 1 .
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N.G. Basov, A.F. Plotnikov, and V.N. Seleznev,
Electronic processes in metal-silicon nitride-silicon
dioxide-semiconductor (MNOS) structures. One trend
in the search for new principles of recording and
storing information is associated with the use of optics
in high-capacity storage devices. We investigated the
possibility of using a multilayered dielectric-semicon-
ductor structure as a highly sensitive reversible
medium for an optical storage unit.1 This structure
was investigated with a view to the possibilities of
obtaining high light sensitivity by absorption of the light
in the semiconductor base on the one hand and, on the
other, of long-term (more than a year) storage of the
information by accumulating charge on traps in the
structures broad-band dielectric. To build such a
structure, it will be necessary to find an effective
method of charge injection from the semiconductor
into the dielectric that forms when the structure is
illuminated. Experiments made with a silicon base/
tunnel thin (20-25 A) SiO2 layer/Si3N4 (500-800 A)
layer structure showed that the silicon-to-dielectric
injection tunnel current reaches A/cm2 at a voltage
across the structure that exceeds a certain threshold
value. Because of the difference between the values
of the injection current and the current flowing through
the bulk of the Si3N4 film, a polarization charge ac-
cumulates in the silicon nitride layer next to the SiO2

= Si3N4 boundary (memory effect). Depending on the
polarity of the voltage, it is possible to inject either
electrons or holes from the silicon and, consequently,
to accumulate either positive or negative charges in
the dielectric. The optical switching is based on the
threshold-type dependence of the amount of charge
accumulated in the dielectric on the voltage across
the dielectric layer. In the absence of light, the voltage
across the dielectric must be lower than the threshold
value, and in the presence of light it must be higher.2

The upper metal electrode is made transparent to light.
The concentration of the doping additive in the semi-
conductor base must not exceed 1016 cm"3. In this
case, 80-90% of the pulsed switching voltage, the
polarity of which corresponds to depletion on the semi-
conductor surface, will fall on the depleted layer in the
silicon. The voltage across the dielectric layer will
be quite far below threshold, and the structure will
not switch. At room temperature, nonequilibrium
conditions may persist in the semiconductor for several
seconds. Illumination of the structure which is in the
state of nonstationary semiconductor-surface depletion
with light at a wavelength that generates electron-hole
pairs in the semiconductor will result in the accumula-
tion of minority carriers at the semiconductor-dielec-
tric boundary and in screening of the electric field
in the semiconductor. The voltage across the dielec-

tric layer rises and the structure is switched. Optical
control of the switching makes it possible to combine
many memory cells (104) under a common metal
electrode. The correct cell is selected with a laser
beam. The density of the surface charge created in
the illuminated cell at the Si-SiO2 boundary is 1013

cm-2. About 20% of these charges tunnel into the die-
lectric and are captured on deep traps in the Si3N4.
In order to prevent charge transfer from the traps
into neighboring unlit memory cells, it is necessary
to prevent minority carriers that have accumulated at
the Si-SiOj boundary from leaking along this boundary.
For this purpose, the dielectric is thickened in the
gaps between cells. Under the action of a voltage
applied to the structure, a potential relief appears
along the dielectric-semiconductor surface and retains
the carriers generated by the light in the illuminated
cell. The light-pulse energy necessary to switch a
single cell with a linear dimension of 10 microns is
10'11 J. Reading of the information is based on photo-
electric measurement of the semiconductors surface
potential, which is related to the charge in the traps
of the dielectric.3 The nonequilibrium carriers
produced by the light lower the surface bending of
the semiconductor's bands to zero. The resulting
electric signal at the structures contacts characterizes
the dielectric-trap charge. The information can be
read repeatedly without damaging it.

Structural schemes for storage devices using an
optically controlled MNOS medium have been proposed.4

A diagram of such a storage device is shown in Fig. 1.
The light beam of the addressing laser electron beam
tube (LEBT) passes through a splitter that forms a
ray matrix. The memory plate contains a matrix of
structures (chips), and the number of chips is equal to
the number of rays. The lens focuses each ray onto
a certain chip. The beam can be scanned over all
cells of the chip by varying the position of the laser-
tube light spot. Beam-splitter cubes are placed
between the lens and the storage medium to increase

Multiplier Dl .

Splitter

FIG. 1.
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