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The current state of research on the free oscillations of the sun is reviewed. Observational data on oscillations
with periods from 5 to 160 min published through the end of 1980 are described. The interpretation of these
data in connection with research on the internal structure of the sun is discussed. A theory of the free
oscillations in the linear adiabatic approximation is described; differential rotation is taken into account. The
principles for classifying the theoretical normal modes are discussed. The problem of the excitation of the
solar oscillations is outlined. The theoretical normal-mode spectra of Jupiter and Saturn are discussed.
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1. INTRODUCTION

Just a short time ago the problem of the internal
structure of the sun was considered basically solved.
Detailed evolutionary models of the internal structure
had been constructed from laboratory and theoretical
results on the cross sections for nuclear reactions and
the average-mass radiation absorption coefficients
(opacities) and from assumptions regarding the struc-
ture of the convection zone (mixing-length theory).
These "standard solar models" were constructed under
the assumption that the chemical composition was ho-
mogeneous during the formation of the sun and that the
matter below the convection zone did not become in-
volved in the mixing during the evolution; in other
words, the products of the fusion reactions were as-
sumed to accumulate where they were formed. Calcu-
lations were carried out for the evolution according to
these models, and by varying the original helium con-
tent it was found possible to match the modern luminos-
ity of the sun with an age of 4.7 • 109 yr. By varying a
free parameter (the ratio of the length of the mixing
path to the pressure scale height) in the theory for the
convection zone it was found possible to match the radi-
us of the sun. It was believed that the slight uncertain-
ties associated with the errors in the physical proper-
ties used could be eliminated without any radical re-
vision of the original assumptions. Research in the
past few years, however, has not only failed to justify
this optimism but has in fact spurred a reexamination
of the original assumptions regarding the structure and
evolution of the sun.

The solar-neutrino problem remains unresolved.1

The standard models predict a flux density of high-en-

ergy neutrinos 2.6-4.0 times the observed values, if it
is assumed that the neutrinos produced in the solar in-
terior reach the earth without undergoing any changes.27

There is a second problem regarding paleoclimatol-
ogy. The standard models predict a significant increase
in the luminosity of the sun during the earth's history.
A billion years ago the luminosity should have been
10% lower than the modern value, and four billion years
ago it should have been 30-40% lower. The early quan-
titative models for the earth's climate showed that a
decrease of only 2% in the solar luminosity would have
led to global glaciation on the earth, if the atmosphere
had the same composition as it has today. Even if the
luminosity subsequently increased to the modern value
the earth would have remained covered with snow be-
cause of the high albedo. On the other hand, the earli-
est life forms are estimated to go back at least three
billion years. Some ancient rocks have a morphology
which would require liquid water. Isotope analysis in-
dicates that the climate in the past was in fact some -
what warmer than the modern climate. Furthermore,
certain features of the Martian channels indicate that
there was liquid water on Mars in the past, so that the
climate was warmer; this conclusion is again difficult
to reconcile with a low solar luminosity. There are
still a large number of unresolved problems in the ef-
fort to construct a theoretical model for the climate
over a large time scale, and the reliability of such con-
clusions should not be over-estimated. A low luminos-
ity could be offset to some extent by an increase in the
greenhouse effect because of a different chemical com-
position of the atmosphere in the past. At the moment,
therefore, all we can say is that the theoretical model-
ling runs into difficulties in attempts to relate clima-
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tological data with the predictions oi the standard mod-
els of a low solar luminosity in the past. The state of
the climate-history problem is described in books by
Budyko104 and Monin and Shishkov2 and in a review by
Pollack.3

The third problem, to which the present review is
devoted, arose in connection with the discovery of free
oscillations of the sun. This research basically began
with the discovery of the 5-min oscillations of the sun
by Leighton, Noyes, and Simon.4 Hill, Stebbins, and
Brown5 later reported detecting a large number of
periods in the fluctuations of the solar diameter, rang-
ing from a few minutes to an hour. Severny, Kotov,
and Tsap6 and, independently, Brooks, Isaak, and van
der Raay7 reported the detection of oscillations with a
period of 160 min.

These oscillations have now been detected by six
groups of investigators.6'10'116 The 160-min oscillation
is difficult to interpret in the standard model. There
are also some difficulties in interpreting some recent
data obtained by the Hill group.11 We will return to this
question later on in this review.

Aside from these problems there are still many puz-
zling phenomena associated with the solar activity. As
Parker13 has written, the sun is the only star about
which we know enough to sense just how little we actu-
ally know. The problem of the internal structure of the
sun has left the category of apparently solved problems
to become one of the most critical and urgent problems
of astrophysics. Research on free oscillations is
rapidly developing into a promising new field of solar
physics.

The free oscillations incorporate quantitative infor-
mation on the internal structure of the sun which can-
not be obtained by any other method. Since the periods
of the oscillation modes are determined by regions of
different depths in the sun, it will become possible at
some time in the future, as experimental data are ac-
cumulated, to take up the inverse problem of construct-
ing a solar model. Aside from the periods of the os-
cillations, the oscillation amplitudes and the time evo-
lution of these amplitudes potentially carry much in-
formation about the internal structure. The precession
of the surface displacement pattern contains informa-
tion on the differential rotation of the solar interior. A
solid theoretical basis has been developed for the nor-
mal-mode method, and much experience has been
gained in the use of this method to study the internal
structure of the earth, for which more than 1000 ob-
served frequencies have been identified with the theo-
retical spectrum.

We will also discuss the theoretical normal-mode
spectra of Jupiter and Saturn. These planets are at-
tracting considerable interest because of the first fly-
bys of space vehicles. It is presently believed that both
of these planets are in a gaseous-liquid convective
state.14 So far, the detailed models for the internal
structure have been based on extremely scanty data,
specifically the average density, the first two gravita-
tional moments, and the boundary conditions on the

pressure and temperature in the atmosphere.15 It is
thus an extremely urgent problem to acquire more ex-
perimental data bearing information on the interiors of
Jupiter and Saturn.

The problem of the free oscillations of the sun has
much in common with the corresponding problem for
the giant planets. In both cases, rotation is important.
A comparative analysis of the theoretical spectra will
make it possible to refine the principles for classifying
the oscillations, with direct application to the inter-
pretation of the observed oscillations of the sun.

2. THEORY

In this section we will outline the normal-mode theory
as adapted to the interpretation of the observed solar
oscillations and to calculations of the theoretical nor-
mal-mode spectra of the giant planets. We will discuss
only some of the most important studies which bear di-
rectly on these problems. In describing the general
aspects of the normal-mode theory for the sun and the
gaseous-liquid giant planets, we will refer to the ob-
ject in question as simply a "star." To a reader who
is interested in the development of the theory in a
broader scope we suggest the reviews by Ledoux and
Valraven16 and Ledoux17 and the recent book by Cox.105

Some recent advances in the normal-mode theory for
stars are summarized in a review by Cox.18

a) Equations for small adiabatic oscillations of a
differentially rotating star

The initial equations in the inertial coordinate system
are as follows:

1) the equation of motion,

a = — P-IVP — V1!1* (2.1)

where a is the acceleration of an element of mass, and
p, p, and 4> are the density, pressure, and gravitational
potential;

2) the Poisson equation,

ySj) = 4nGp; (2.2)

3) the continuity equation,

p'=-v(Po"). (2.3)

where u is the displacement of the element of mass
from its position in the unperturbed star, p' is the
Euler perturbation of the density, and p0 is the unper-
turbed density;

4) an equation relating the Lagrange pulsations of the
pressure and the density,

Ap=/fpp1Apt (2.4)

which would be written in Euler coordinates as

In the calculation of the adiabatic compression modu-
lus

K = p(^i.} spr, (2.6)

the solar matter will be treated as a mixture of a gas
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of particles and radiation. Under the physical condi-
tions prevailing in the solar interior, the gas of parti-
cles can be described well by the ideal-gas equation of
state, while the radiation can be described well by the
law of blackbody emission:

(2.7)

where a is the Stefan-Boltzmann constant. For this
mixture we have19

r, =t (2.8)

l f p c » p f (this is a good approximation), we would have
I\= 5/3.

In the adiabatic model of the gaseous-liquid planets
Jupiter and Saturn the compression modulus is calcu-
lated from

Tr dp ; dp \ -1 /« Q\
P~/ i—I ~A—J * \*t**'t

We will assume that the unperturbed velocity field of
the differentially rotating star is a stationary field and
that the velocity does not depend on the azimuthal angle
(p in the spherical coordinate system (r, 0,<p). In this
case the velocity field can be written

v, (r, 9) = rc Q (r, 9) 9, (2.10)

where rcis the distance from the rotation axis (this dis-
tance is the radius in the cylindrical coordinate system
with z axis along the rotation axis), Ji is the angular
rotation frequency, and <p is the unit vector in the di-
rection of (p. We will determine the dependence of the
displacement u on the angle <p during the oscillations by
the factor exp(Jw^), where m is an integer. This pro-
cedure is legitimate since the ip dependence must be
periodic, and in the linear theory any oscillation can
be treated as a superposition of elementary waves of
this type with different values of m.

After linearization, the equations of the small adia-
batic oscillations take the following form in the inertial
coordinate system:
p0 [—co2u + Q (2i<oz x " — 2m<ou) + Q2 (2imz X u — m2u)l

= v (K\ •") — V I" -Po (v1>o — rc^2)]
- p' (Vt>o - rcQ2) — poV*' - Pofo (u-V^).

(2.11)
VV = 4nGp', (2.12)

p '=_ v . (p 0 u) . (2.13)

Here z is a unit vector along the rotation axis. The
time dependence is singled out in the factor exp(tcof),
where u is the angular frequency of the oscillation.
The quantity in brackets on the left side of (2.11) is the
Lagrange pulsation of the acceleration.20'21 In the de-
rivation of (2.11) we used the equation for the pressure
pulsations, (2.5), and the continuity equation, (2.3).
The solutions of (2.11)-(2.13) must satisfy the free
boundary conditions at the deformed surface of the star
(these conditions are that there are no stresses and
that the gravitational potential and its gradient are con-
tinuous).

Equations (2.11)-(2.13) with the appropriate boundary
conditions constitute an eigenvalue boundary-value
problem with partial differential equations. This prob-

lem is solved by perturbation theory, which yields the
corrections for a sufficiently slow rotation to the solu-
tion of the simpler problem of a nonrotating star.

b) Perturbation theory

Two different approaches are taken to the derivation
of a perturbation theory. The first approach — a varia-
tional approach — can be outlined as follows: One finds
the frequencies and eigenfunctions (the shapes) of the
modes in the absence of rotation. The mode frequency
is then written as a functional of the parameters of the
model and of the eigenfunctions of the corresponding
mode. This can be done by integrating the scalar pro-
duct of the vector oscillation equation and the vector
displacement field over the volume of the star. By
varying the rotational frequency from zero to a given
value in this functional, the correction to the mode fre-
quency can be found. The justification for this method
is that the frequency found in this manner is, in a first
approximation, stationary with respect to variations of
the eigenfunctions. This approach has the advantage of
simplicity, but it yields only a first correction to the
frequency, and it does not yield corrections to the
eigenfunctions. The effect of a slow differential rota-
tion on the frequencies of the normal modes has been
studied by the variational method by Hansen, Cox, and
Van Horn21 (their results have been put in a form more
convenient for numerical calculations by Cuypers106).

A second and more general method is the perturbation
theory for Hermitian operators which is used in quan-
tum mechanics. We will briefly outline the application
of this method to the calculation of the normal modes of
a rotating star.22"24

The differential rotation of the star is conveniently
described in dimensionless form by singling out the
average angular frequency of the rotation, fi0:

Q(r, 9) = Q0Qd(r, 9). (2.14)

The equations of small adiabatic oscillations are written
in operator form:
— <i>2u 4- Q (2itoz x u — 2mou) + Q2 (2imz x u — mzu)

(2.15)
The operator H0 in (2.15) corresponds to the problem
without rotation:

H0u0. (2.16)

The form of this integrodifferential operator is deter-
mined by Eq. (2.11), with $' and p' from (2.12) and
(2.13). The operator * +- E is then determined from the
condition that Eqs. (2.15) and (2.11) be equivalent. On
the left side of (2.15) there are operators which repre-
sent Coriolis forces. The operator * describes the
effect of centrifugal forces, while E describes the ef-
fect of the eccentricity (the deformation of the star
caused by the rotation).

The small parameter

(2.17)

is also introduced, and solutions are sought in the form
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U = U0 + hi, + J»Ua + . . . . (2.19)

Substituting expansions (2.18) and (2.19) into operator
equation (2.15), and equating terms with identical pow-
ers of X, we find the system of perturbation-theory
equations:
[I—(i>;1H0]u0=0, (2.20)

[I—(ar^HoJu,^ — 2a,u0 — Qa [2m — 2izx Ju0,
° ° " ° (2.21)

[I—a>j- 2HoJ u, = - 20,u, - (aj + 20,) u, - Qa [2m - 2iz x ] u,

where I is the unit operator. Equations (2.20)-(2.22)
are solved in succession. Equation (2.20) corresponds
to the problem without rotation (the zeroth order ap-
proximation), Eq. (2.21) determines the first-order
perturbation theory, Eq. (2.22) determines the second-
order, and so forth.

c) The problem without rotation. Classification of
oscillations

The zeroth order approximation is the foundation for
a scheme for classifying the oscillations and for study-
ing the properties of the various normal modes. The
effects of rotation and other possible perturbations,
such as the magnetic field and tides, and also the prob-
lems of the stability and excitation of the oscillations
are usually studied on the basis of the zeroth-order ap-
proximation solutions. In the zeroth-order approxima-
tion the nonrotating star has a spherical shape.

The normal modes of a nonrotating, self -gravitating
elastic sphere fall into two groups: spheroidal and tor-
sional modes. For the spheroidal modes the vector
displacement field is

(2.23)(r) Ylm (9, cp) + V (r) (6, <p),

(2.24)

and that for the torsional modes is

u = —W (r) t x Vi^'m ("> *P);

where Ylm is the spherical harmonic of indices I and^w,
Vt is the angular part of the gradient operator, Vt = 08/
36 + $ sin'^a/a^, and r, 0, ^ are the unit vectors
along r, 6,<p. The index m takes on the 2Z+ 1 values
m = -Z,.. . , 0,.. .,1. The eigenfunctions of the spher-
oidal and torsional modes form a complete set: Any
free motion of a gravitating sphere can be expanded in
these eigenfunctions. For the spheroidal mode, the
radial component of the curl (or rotor) of the displace-
ment is zero. For the torsional modes there are no
radial displacements, and the divergence of the dis-
placement is zero. A particular case of the spheroidal
modes with I = 0 is represented by radial oscillations
with displacement directed along the radius. The os-
cillations with 1= 1 are dipole oscillations; those with
1=2 are quadrupole oscillations; etc. In the absence of
rotation, a gaseous or liquid sphere would not be sub-
ject to torsional oscillations (there are no restoring
forces in the absence of shear stresses), and all the
corresponding frequencies would be zero. These modes
cannot, however, be ignored in the analysis: Aside

from the fact that the vector fields of the torosional
modes complement the vector field of the spheroidal
mode in forming the complete set of eigenfunctions of
the elastic gravitating sphere,25 their frequencies are
nonzero when a rotation or a magnetic field is intro-
duced.

Because of the spherical symmetry, a separation of
variables is possible by substituting (2.23) for a spher-
oidal vector field into the vector oscillation equations
(2.11)-(2.13) for O = 0 . This step reduces the problem
to a linear, homogeneous system of four first-order
ordinary differential equations16'17'37:

d*. 4nGpoi(i+l)

(2.25)

Here^0 is the gravitational acceleration, and the fol-
lowing variables have been introduced:

,

These variables have a simple physical meaning: They
are the radial factors in the radial displacement com-
ponent (yj, in the pressure pulsation (}>2), in the per-
turbation of the gravitational potential (y3), and in the
horizontal component of the displacement (y0). The
boundary conditions are that all quantities are regular
at the origin, that there are no stresses at the de-
formed surface of the star, and that the gravitational
potential and its gradient are continuous at this sur-
face:

,=0 (r=fl); (2.27)

where R is the radius of the star. Inside the star all
the functions yt must be continuous, except that y0— the
tangential displacement—may have discontinuities in
the star where discontinuities are caused in the proper-
ties of the medium by changes in the chemical compo-
sition or by phase transitions. Since the density and the
pressure both fall off continuously to zero in the direc-
tion toward the surface for the sun and the giant plan-
ets, the boundary conditions in (2.27) are imposed at
some sufficiently large rb<R. This approach is equiva-
lent to calculating the modes of a model by discarding
the light outer shells of the star and replacing them by
a constant pressure equal to the pressure which the
discarded outer shells exerted. The validity of this
procedure is checked in the course of the numerical
calculations by a direct variation of rb; the procedure
works because the outermost shells have only a minor
effect on the periods and shapes of the oscillations.
Equations (2.25) with boundary conditions (2.27) are
solved numerically by iterations in co. The different
papers on the normal modes use different choices of
the functions yf to describe the modes, so that Eqs.
(2.25) may take different forms in the different papers.16

The choice of the function in the form in (2.26) corre-
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spends to the choice adopted in the normal-mode theory
for the earth.26 In addition, the mode index (the first
index on the spherical harmonic) is denoted by the let-
ter "n" in some papers. To avoid confusion we have
adopted for this review the indexing scheme used in the
overwhelming majority of the papers cited.

At a fixed value of / all the modes with m = -/,..., /
have the same frequency; in other words, in the ab-
sence of rotation the frequencies are degenerate with
respect to the azimuthal index of the spherical har-
monic. This (21 + l)-fold degeneracy is a consequence
of the spherical symmetry of the problem.

Furthermore, for each value of I there exists an in-
finite set of solutions with discrete values of w, whose
eigenfunctions have (a) different numbers of nodes and
(b) amplitudes with different radial profiles. A descrip-
tion of these eigenfunctions requires a classification
scheme which reflects the differences in the properties
of these modes. Below we will discuss the principles
for such a scheme for the particular cases of the theo-
retical normal-mode spectra of polytropic models, a
standard solar model, and models for the giant planets.
We will see that the mode spectrum of stars may be
extremely complicated, so that the classification of the
modes is an important question in practice.

For a preliminary study of the basis for the classifi-
cation of the theoretical normal-mode spectrum, the
problem can be simplified considerably by using the
Cowling approximation,28 i.e., to ignore the perturba-
tions of the gravitational potential which result from
the mass redistribution in the star during its oscilla-
tions. If the mass is significantly concentrated toward
the center of the star, where the displacements in the
oscillations are basically horizontal, this approxima-
tion yields good quantitative results.29 In this case the
Poisson equation drops out of the problem, and the
problem becomes one of solving a system of second-
order ordinary differential equations, which may be
written17'30

ju _ r 1(1 +i) p.r» ]Po2/ri
dr L <"' r lPoJ p.

du> l / 2 i ^ ^ \ P o ^ O O Q ^-j— = — I <" -\-Aga\—2/F "i \&.£o)

where v = r'Up^i-, w- p'/pg^1, P' is the Euler per-
turbation of the pressure, I\= 5/3 (we are ignoring the
elasticity of the radiation), and

(2.29)dr dr

(ntl) Ai

The boundary condition at the surface is p' + U(dpQ/dr)
= 0(r=R).

Let us examine the nature of the solutions of this
problem for a polytropic gaseous sphere whose struc-
ture is determined by the following relationship be-
tween the pressure and the density: p0= const -pa

(

where n, the index of the polytrope, may lie between 0
and 5. The polytrope of index 0 makes the model one of
constant density, while the polytrope of index 1.5 cor-
responds to an adiabatic gaseous mode. The concen-
tration of mass toward the center intensifies with in-
reasing index of the polytrope, tending toward infinity

at n= 5. The polytropic law is a major convenience in
describing the internal structure of stars.

The solutions of differential equations (2.28) may be
exponential or oscillatory functions of the radius, de-
pending on whether the coefficients on the right sides
of these equations have the same or different signs.
For a given model these coefficients are functions of
the radius and the frequency. The coefficient in the
first equation is zero under the condition a>2 = [ / ( /+ 1)
/r2]rip0/pa> and that in the second equation is zero un-
der the condition o>2 + Ag0= 0, i.e., under the condition
o>2 = N2, where N is the Brunt-Vaisala frequency. The
coordinate plane (x= r/R, u>2) thus breaks up into four
regions, in two of which the solutions are oscillatory
in x, while in the other two the solutions are exponen-
tial in x. These regions are the regions bounded by the
solid curves in Fig. 1 for the polytrope of index 3. The
regions G and A are those for which the solutions are
oscillatory in x (Ref. 30).

The horizontal lines in Fig. 1 show the oscillation
frequencies calculated through a numerical integration
of Eq. (2.28) for the polytropic model of index 3. For
each frequency the positions of the nodes in the eigen-
functions of the radial displacements are marked by
circles. The nodes occur in regions in which the solu-
tions are oscillatory in x. We see that there is one
mode without nodes, and this mode is labelled the "fun-
damental mode,"/. The modes of higher frequencies
are concentrated toward the outer part of the star and
correspond to acoustic or p modes; the index of a. p
mode is equal to the number of its nodes. The lower-
frequency modes, which are concentrated closer to the
center of the star, correspond to gravity or g modes,
and the index of a g mode is again equal to the number
of nodes in the corresponding eigenfunctions. This
classification of modes as p, f , andg modes was intro-
duced by Cowling.28

The classification scheme becomes slightly more
complicated for the polytropic modes of higher index,
as can be seen from Fig. 2 for an index of 4. Regions

FIG. 1. The polytrope of index 3. The solid curves bound re-
gions A and G. The horizontal lines show the frequencies of
several modes (1 = 2), and the circles show the positons of the
nodes. The frequency is given in units of GM/R3. The dashed
curves show the limiting frequencies for plane waves.30

701 Sov. Phys. Usp. 24(8), Aug. 1981 S. V. Vorontsov and V. N. Zharkov 701



FIG. 2. The same as in Fig. 1, but for the polytrope of index
4.

G and A overlap in frequency, and as a result the os-
cillations in a certain intermediate frequency interval
are of a mixed nature, having some of their nodes in
the gravity or G region and some in the acoustic or A
region. For each oscillation, the additional nodes en-
ter in pairs as the index of the polytrope is increased,
and the number of additional nodes in regions G and A
is the same. Formally, the classification scheme is
slightly modified: The fundamental mode/ is taken to
be that for which the number of nodes in region G is
equal to that in region A. The index of a p mode is de-
termined by the difference between the numbers of
nodes in regions A and G; analogously, the index of a.g
mode is equal to the number of nodes in region G minus
the number of nodes in region A. As before, the fre-
quencies of all the p modes are higher than those of the
g modes, and the frequency of the/ mode lies between
the two cases. In this case the oscillations of the first
p and g modes are mixed in nature.

The physical nature of the oscillations is conveniently
demonstrated by using an analogy from the theory of
plane waves.30'31

The two regions in which the solutions are oscillatory
in the radius according to calculations based on this
analogy are shown by the dashed curves in Figs. 1 and
2. We see a good correspondence between the regions
of the acoustic and gravity waves, on the one hand, and
the A and G regions on the other. The mixed oscilla-
tions (Fig. 2) exist because at these frequencies parts
of the star at different depths are undergoing oscilla-
tions which differ in physical nature. In other words,
in a certain frequency interval gravity waves may be
propagating in the interior of a star, while acoustic
waves are simultaneously propagating in the outer part.

The classification of the theoretical spectrum in
terms of the p, f, and g modes can also be carried out
formally by using phase diagrams for the eigenfunc-
tions, e.g., plots of the radial displacement vs. the
pressure pulsation.30

The use of this classification is illustrated in Fig. 3,
which shows the eigenfunctions of the radial displace-
ments U(x) for quadrupole oscillations for three poly-
tropic models of a star having the mass and radius of
the sun.32 Plotted along the abscissa in each part of the
figure is the dimensionless radius (the center of the
star is at the left, and the surface is at the right). The
classification in terms of the p, f, and g modes is spe-

A. *'"

y\

f.SO"

f,.3 .K" I
t .X ,

35,SS"

••*' .7.
I

t^/c,

a) b)

FIG. 3. Eigenfunctions of the quadrupole oscillations of the
polytropic models of the sun.32 The dimensionless radius x
= r/R of subscript 0 is plotted along the abscissa. The center of the
sun is at the left, and the surface is at the right. The normalized
amplitude of the radial displacement, t/(*), is plotted along the
ordinate. Where necessary, the positions of the nodes are
marked by line segments, while the antinodes are marked by
arrows. The relative amplitudes of the tangential displace-
ment V at the surface are shown by the circles. The p, j, g
classification is shown for each oscillation, along with its
period in minutes, a—Polytrope of index 3; b—polytrope of
index 3.4; c—polytrope of index 3.7.

cified for each oscillation, along with the period in
minutes. The oscillations are arranged in order of in-
creasing period from bottom to top. Where necessary,
the radial positions of the nodes are indicated by line
segments, while the positions of antinodes are marked
by arrows. The circles show the relative amplitudes of
the tangential displacements V at the surface. For the
model with a polytrope index of 3.7 we can see the ap-
pearance of a pair of additional nodes in the Pl}f,gi
modes, reflecting the mixed nature of these oscilla-
tions. These results were obtained through a numerical
solution of the complete problem, without the use of
Cowling's approximation (the oscillations of polytropic
models have been studied by many workers; see Ref.
29, for example).

Figure 4 shows the dependence of the periods of the
quadrupole oscillations of the polytropic models on the
index of the polytrope.32 The dashed curve shows the
density at the center of the mode. As the polytrope in-
dex is reduced to 1.5 (corresponding to the adiabatic
model), the periods of all the g modes increase without
bound. To illustrate the simple physical meaning of this
result, we consider an arbitrary mass element in the
interior of the star which is displaced upward by some
perturbation, while it simultaneously undergoes an
adiabatic expansion. In the adiabatic model the density
of this mass element becomes equal to the density of
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FIG. 4. Periods of the quadrupole (I = 2) oscillations of poly-
tropic solar models, plotted as a function of the index of the
polytrope. The dashed curve shows the density of the center
of the sun.32

the surrounding shells as the mass element rises, so
that there is no restoring force, and the periods of the
g modes determined by perturbations of this type are
infinitely large. For a model with a polytrope index
less than 1.5 the adiabatic expansion of the mass ele-
ment during its ascent leads to a density lower than that
of the surroundings. Forces arise which tend to thrust
the mass element along the direction of the displace-
ment, so that the model becomes unstable. This insta-
bility is analogous to the Rayleigh-Taylor instability
for an incompressible fluid with a density which in-
creases in the upward direction. Such unstable g modes
have a negative square of the frequency, i.e., an ex-
ponential time dependence. A physical manifestation of
unstable g modes in stars is convection. If the poly-
trope index is below the critical value, the motions of
the convective type rapidly lead to a redistribution of
the mass in the star (over a time of the order of an hour
for a star with the mass and radius of the sun), and the
polytrope index reaches a value very nearly equal to the
critical value, even if the convection is continuously
sustained by a heat flux from the interior.

The critical value of the polytrope index is equal to
1.5 only for an ideal gas with r\- 5/3. In general, the
critical condition for the onset of convection is deter-
mined by the vanishing of the parameter A in (2.29). If
the star has a homogeneous chemical composition, the
condition for the onset of convection is determined by
the extent to which the temperature gradient exceeds
the adiabatic gradient (the Schwarzschild criterion). If,
on the other hand, the average molecular weight in-
creases toward the center of the star, convection might
not arise even if there is a superadiabatic temperature
gradient. In a model in which the effective polytrope
index varies along the radius, the unstable g modes and
convection are limited to the corresponding regions of
the star.

The oscillations with 1+ 2 are classified by analogy
with the quadrupole oscillations, with the single excep-
tion of the radial oscillations (/ - 0), whose spectrum
contains no gravity modes, which are by nature non-
radial.

We turn now to the oscillation spectra of the detailed
modern models of the sun and the giant planets, again

from the standpoint of classification of these oscilla-
tions. By establishing the physical nature of the oscil-
lations, the classification of the theoretical spectrum
leads to conclusions regarding the probabilities for the
excitation and detection of the various periods. The
theoretical results are usually reported as a spectrum
of periods classified in accordance with some scheme
or other. When the p,f,g scheme is used it is assumed
that the p and/ modes are the most likely to be ob-
served, since they have the maximum amplitudes at the
surface, in contrast with the g modes, which are con-
centrated in the interior. This conclusion must be ap-
proached cautiously, however, since the formal appli-
cation of the p,f,g classification may in certain cases
mask the actual nature of the individual oscillations.

Figure 5 shows a theoretical spectrum of free oscil-
lations of a modern standard solar model for 1= 2, I
= 4, and 1= 6. The notation is the same as in Fig. 3.
The calculations of Ref. 32 used the internal-structure
model constructed by Abraham and Iben33 (model I; the
relative abundance of heavy elements is 0.0149; the
initial helium abundance is 0.253; the central tempera-
ture is 15.38 • 106 K; and the central density is 161.3
g/cm3) and the model of a convection zone with a depth
of 198000 km, calculated by Spruit.34 This model
agrees well with both the internal-structure model and
the HSRA model for the solar atmosphere.35

Distinctive among the gravity modes with 1= 6 is that

a)

FIG. 5. Eigenfunctions of the various nonradial (1 = 2, 4,6)
oscillations according to the standard solar model.32 The no-
tation is the same as in Fig. 3. Shown in parentheses for
some of the modes is their classification according to the
auxiliary scheme, a—I = 2; b—I = 4; c—I = 6.
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with a period of 59 min, whose structure is markedly
different from that of other g modes with similar peri-
ods. This is actually an oscillation of the outer part of
the sun, with very small amplitudes in the interior.
The detection of this oscillation would be more probable
than that of other g modes of similar period for / = 6,
since for a given energy this oscillation has an incom-
parably higher amplitude at the surface. Here we see
an important disadvantage of the formal pj,g classifi-
cation: It ignores the existence of a distinctive mode of
this sort among gravity modes of other periods. Fur-
thermore, the 31-min oscillation with 1= 6 is formally
classified as a/>t mode, while the amplitudes at the
surface are comparatively small.

With reference to these disadvantages, the classifica-
tion scheme could be refined by taking two different ap-
proaches.

The first approach is to introduce an auxiliary scheme
in which the oscillations are classified on the basis of
their spatial nature.32 This auxiliary classification is
shown in parentheses in Fig. 5 for the oscillations of
the outer regions with / = 6. Here ,£t6 denotes the fun-
damental spheroidal mode (S) of the external region (e)
with / = 6; jSgg is the second harmonic; etc. The ex-
istence of a fundamental mode for the external region
has a simple physical meaning. Returning to the in-
compressible sphere of homogeneous density, we find
that all the acoustic modes, whose frequencies become
infinite, disappear, as do all the internal # modes,
whose frequencies vanish. For each 1= 0, a single os-
cillation (a Kelvin mode)36 remains; in physical nature,
this remaining mode corresponds to gravity waves at
the surface of an incompressible fluid. This mode is
the limiting case of the fundamental mode of the exter-
nal region in the transition to this simple model. We
wish to emphasize that this oscillation is definitely of
a gravity nature in a compressible model also, despite
the fact that it refers to the external regions. The
higher harmonics of the external regions are deter-
mined by elastic forces. The classification of these
harmonics in the auxiliary scheme is the same as their
classification in terms of p modes, or at least it be-
comes the same at a. certain harmonic index. All the
other modes corresponding to a given value of I are
gravity modes and refer to oscillations of the internal
regions. For the standard model with / = 6 these other
modes are easily classified: The oscillation with a
period of 31 min is the fundamental mode of the internal
regions, that with 40 min is the second harmonic, etc.
The indices of the higher harmonics correspond to the
index of the g mode. For / = 6, the spectrum therefore
breaks up into two parts: one corresponding to the in-
ternal regions and one corresponding to the external
regions. The two parts of the spectrum overlap some-
what along the period scale. This overlap, which de-
termines the possibility of mixed oscillations, has es-
sentially already been discussed in the/>,/,£ classifi-
cation, in which oscillations of a mixed nature—acous-
tic in the external region and gravitational in the inter-
nal region—appear for a polytrope of high index. These
discussions of modes are of a local nature, however,
and cannot incorporate a distinctive fundamental mode

of the external region in the £-mode spectrum.

For I = 4 the fundamental mode of the external regions
is not unambiguously singled out; it could with equal
justification be identified as the 64-min mode (gj or
the 68-min mode (g5). In the case / = 2, this fundamen-
tal mode is not singled out at all; it is mixed with a
large number of internal gravity modes, and it gives
them substantial amplitudes at the surface. The reason
is that with decreasing / the oscillations of the outer
r.egions penetrate deeper toward the center of the star.
This mixed nature makes it difficult to apply the auxil-
iary classification scheme outlined above; if the funda-
mental harmonic of the outer regions is not distinctive,
the p,f,g classification is free of this shortcoming.

A second method for refining the classification
scheme is to retain the p,f,g scheme, but to be always
alert to the possible existence of a distinct oscillation
in the g -mode spectrum, concentrated in the external
parts of the star and having maximum amplitudes at the
surface.

We turn now to the oscillation spectra of Jupiter and
Saturn.23'37 Models for these planets will be described
briefly in Sec. 4 below. From the standpoint of the
classification of oscillations, these models have two
important characteristic features: an adiabatic struc-
ture throughout their volume and the presence of two
discontinuities in the radial profile of the material
properties. The first density discontinuity results from
a phase transition of hydrogen to a metallic state at
high pressures; the deeper second discontinuity cor-
responds to the boundary of the inner core and results
from a change in chemical composition.

Figure 6 shows the eigenfunctions for the radial dis-
placements for the oscillations of Jupiter with / = 0,
1= 2, and 1= 8. All the radial oscillations [Fig. 6(a)]
are acoustic in nature. The fundamental mode, g50,
has the longest period. The periods decrease mono-
tonically with increasing harmonic index, and the index
of a harmonic is equal to the number of nodes in the
eigenfunctions.

I

*S-

a) 1-0 b) 1=2 c) 1=1

FIG. 6. Eigenfunctions of the oscillations of Jupiter. The
notation is the same as in Figs. 3 and 5. A classification
scheme based on the spatial nature of the oscillationshas been
used. The maximum amplitudes of the interior gravity modes
correspond to the radial positions of the density discontinui-
ties. (These are the results of Ref. 37, with some additions).
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The spectrum of quadrupole oscillations [Fig. 6(b)]
contains, in addition to the fundamental gS2 and the
acoustic higher harmonics jSj, £2, etc., two gravity
modes, ,£J2 and <£i2. The mode gSJ2 is the fundamental
mode of the oscillations of the inner core and is related
to the density discontinuity at the boundary of this core.
The 05,,, mode is similar in nature and is related to the
density discontinuity at the boundary of the region of
metallic hydrogen. These two modes do not have cor-
responding higher harmonics, because of the adiabatic
structure of this model. In summary, these two modes
exhaust the list of gravity oscillations, and the mode
gS/2 has the longest period in the spectrum of quadru-
pole oscillations.

The spectra of the oscillations of higher values of I
[see Fig. 6(c) for I = 8] have the same structure as the
quadrupole oscillations. It can be seen from the com -
parison of the / = 8 and I = 2 oscillations that with in-
creasing I the oscillations concentrate near the physical
boundaries at which they have their maximum ampli-
tudes. For example, the oscillations of the external re-
gions are displaced toward the surface, while for the
gravity oscillations the displacements are concentrated
closer to the density discontinuities, which determine
these oscillations. The oscillation spectrum for the
model of Saturn has a similar structure.

The p,f,g classification scheme cannot be used for
the oscillations of the giant planets. The auxiliary
scheme discussed above, in which the oscillations are
classified as modes corresponding to external and in-
ternal regions, is more versatile. It is essentially this
scheme which is used to classify the oscillations of
Jupiter. The spectrum shown for Jupiter clearly dem-
onstrates the fact that the period of the fundamental
mode for the external region may lie among the periods
of the internal gravity modes.

If the structure of the inner core in the Jupiter model
were not adiabatic, then the fundamental core mode
would be supplemented by core harmonics with increas-
ing periods. On the other hand, there would be only a
slight change in the nature of the oscillation at the fun-
damental mode of the external region, since this change
in the model would not penetrate into the inner core.
The fundamental mode would have a period lying among
those of the higher harmonics of the core (g modes in
the Cowling scheme); having nodes in the inner core,
by virtue of the interaction with these higher core har-
monics, this mode would be classified formally as a g-
mode. This situation also illustrates the distinction of
an "anomalous" g mode in the gravity mode spectrum.

The theoretical normal-mode spectrum of a star with
a continuous density profile has been studied in detail
by Christensen-Dalsgaard.38 The interaction of the
modes has also been studied by Gabriel.107-108 The
spectrum of modes for a star with density discontinu-
ities has been discussed by Gabriel and Scuflaire.109'110

The properties of oscillations with a large number of
nodes have been studied analytically by Wolff.39 Refer-
ences 38, 39, and 107-110 also contain a more exten-
sive bibliography of the oscillation-classification prob-
lem.

d) Effect of rotation

The effect of rotation is found by solving the pertur-
bation-theory equations, (2.20)-(2.22), with the help of
the frequencies and eigenfunctions calculated before-
hand in zeroth-order.

We denote the volume of the star by V, and we define
the following scalar product for any pair of vector
functions specified in V:

("i. "2) == f p0Ul-U:dl7. (2.30)

The asterisk denotes the complex conjugate. It is not
difficult to see that the operators H0 and *zx, defined in
the space of piecewise-continuously differentiable func-
tions which satisfy the free boundary conditions, are
Hermitian. Since H0 is Hermitian, those eigenfunctions
UQ of the zeroth order, (2.20), which correspond to dif-
ferent frequencies are orthogonal. Since H0 is Hermit-
ian, the stationary perturbation theory for Hermitian
operators developed in quantum mechanics can be used.

The degeneracy of the oscillation frequencies with re-
spect to the index m is lifted by the rotation. The
first-order correction for the frequency is determined
by

=• -(u0, (2.31)

which is found after taking the scalar product of (2.21)
and u0 and making use of the Hermitian nature of H0.
The first correction to the eigenfunctions is found in
the form of an expansion in the zeroth-order eigenfunc-
tions:

nSWi*r.*.»'.a+*l „...,•. (2-32)

Here we are using the l,m,n classification of oscilla-
tions. The index n determines the classification for
fixed values of / and m, as discussed in the preceding
section, i.e., the classification in terms of the set of
radial eigenfunctions. The last term in (2.32) gives the
increment of the torsional or toroidal type. It is de-
termined by the projection of both sides of Eqs. (2.21)
onto the space of eigenfunctions of the torsional oscil-
lations, (2.24):

"I m n ,={ — ^ d ( 2 m — 2 i Z X ]U, m „ 0}T. (2.33)

The index "T" denotes the projection. We have used
the orthogonality of the vector fields of the spheroidal
and torsional types, the Hermitian nature of H0, and
the vanishing of the frequencies of the torsional oscil-
lations in the unperturbed problem. The coefficients in
the expansion in spheroidal oscillations are determined
by taking the scalar product of both sides of Eq. (2.21)
with u,'. „•.„•-:

''m'nf,:"''n''° <••»""•"'=-(u<- -•• -• °'Q'12m -2fz x J u<. -. -. •>•
(2.34)

Then, by analogously multiplying (2.22) by u,.m,n,0
sUa,

we find the second-order correction to the frequency:

2<J2- a] = - (Qd [-2m - 2iz x ] u0, u,)

- m(u0, Q?a (m - 2iz X ] uj -r (uc, [V + E] u,,).

(2.35)
The problem thus reduces to one of evaluating volume
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integrals determined by the zeroth-order functions.
For numerical calculations, the angular dependence is
singled out and reduced to one-dimensional integrals.
The differential-rotation law is specified through an
expansion in spherical harmonics:

oo

For practical calculations, a finite number of terms in
(2.36) is sufficient, so that each integral can be evalu-
ated as a finite sum. If the model contains discontinui-
ties in the radial profile of the material properties (as,
for example, in the models of Jupiter and Saturn), the
surfaces of these discontinuities are deformed when the
rotation is introduced. This deformation leads to addi-
tional terms in those integrals which determine the ef-
fect of the eccentricity of the star. To calculate these
terms is a separate additional problem; the method
used is that developed in the theory of normal modes of
the earth by Woodhouse.40

The rapid rotation of the giant planets has strong ef-
fects on the normal modes, changing the frequencies of
the fundamental modes by some tenths. The second-
order correction to the frequency is extremely impor-
tant in this case; the spectra given for the giant planets
at the end of this review were calculated on the basis of
the entire second-order perturbation theory. In the
calculations for the normal modes of the sun, the rota-
tion of the sun is so slow that first-order perturbation
theory is sufficient. The first-order calculations be-
come particularly simple and have a graphic interpre-
tation if the differential rotation is ignored and some
average angular frequency Jis is adopted for the rota-
tion.

In the first-order for rigid-body rotation, in which
only the Coriolis forces are considered, the frequen-
cies of the normal modes are determined by a simple
expression which corresponds to the result first de-
rived some time ago by Cowling and Newing41 and Le-
doux42:

• ™ /t \ O /O Q^(& = (OQ -f- jn (1 — i) "3i \«» ** * /

(2.38)
J

where m is the longitudinal index of the spherical har-
monic, and the functions U and V are defined in (2.23).
Since T does not depend on m, the multiplet which is
degenerate in m is split symmetrically. The normal
modes with m of identical magnitude and opposite sign
are two waves which are travelling along the equator,
one in the direction of the solar rotation and one in the
opposite direction. In the absence of rotation, and with
equal amplitudes, these waves combine to form a
standing wave with antinodes in fixed positions with re-
spect to the observer. When rotation is introduced, the
first wave is slowed down slightly, and the second is
slightly accelerated. As a result, the spatial pattern of
displacements of the resultant oscillation precesses
around the rotation axis of the sun. The angular fre-
quency of this precession for an observer in an inertial

coordinate system can be found directly from (2.37):

O p » c = ( l - T ) Q ® . (2.39)

Here r can take on values from 0 to 1. The rotation of
the spatial picture of the oscillations with respect to
the observer may therefore lag considerably behind the
solar rotation. This effect is important for experimen-
tal observations made over long time intervals. If the
precession frequency can be determined from observa-
tions, the results would be extremely informative.

In addition to the rotation effects, it would be inter-
esting to evaluate the effect of the large-scale magnetic
fields of the sun and the giant planets on the normal
modes. For the giant planets the magnetic field has an
effect because of an internal conducting region of me-
tallic hydrogen. The correction to the mode frequency
for the magnetic field, Awmagn, depends on the field H,
its configuration, and the nature of the mode under
consideration. Theoretical studies have been carried
out for some special cases,43'44 and some general esti-
mates of the magnitude of the effect have been made.16

Simple estimates, on the other hand, are sufficient for
finding the comparative magnitude of the effect of the
magnetic field for the lower-order modes,21 In order
of magnitude we have I Aw magn | = | Wo I (Em,en/Eirav),
where £magn is the total magnetic energy, of order
H2R3, and Eem is the total gravitational energy of the
star, of the order of GM*/R (M is the mass of the
star). Taking the correction to the frequency for the
rotation, &wto,; to be of the order of to [see (2.37)], we
can easily show that the condition I Aq)magn I « I Aw I0t I is
equivalent to the condition £magn « V Erot Egrav , where
Etot is the total rotational energy of the star, of the or-
der of MR2Q?. The latter condition holds for both the
sun and the giant planets at H «106 G. The effect of the
magnetic field can thus be completely ignored in com-
parison with the rotation.

e) Excitation of oscillations

The normal-mode problem, covered in the preceding
sections, can tell us only the periods and shapes of the
normal modes. For a theoretical prediction of the
mode amplitudes it becomes necessary to study the ex-
citation and damping mechanisms at a quantitative level.
Calculations of this sort run into serious difficulties,
and the results reported to date have been largely con-
fined to the study of the linear stability of the oscilla-
tions.

The mechanisms which are primarily responsible for
the excitation and damping of the solar oscillations stem
from perturbations of the region in which fusion energy
is released, from dissipation as a result of radiative
heat transfer, from perturbations of the radiation flux
toward the surface because of perturbations in the
opacity, from convective motions, from dissipation be-
cause of turbulent friction, and from the emission of
acoustic waves into the corona.

The simplest studies of the linear stability of the os-
cillations are based on the quasiadiabatic approxima-
tion, which uses the frequencies and eigenfunctions of
the adiabatic problem and treats the deviations from
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this problem as small perturbations.16'17 The sign of
the imaginary correction to the frequency calculated in
this manner determines the stability of the oscillation.
The stability of the solar p modes was studied by this
approach by Scuflaire et a/.45 The stability of g modes
during the solar evolution has been studied by Christen-
sen-Dalsgaard etal.46 Since the deviations from the
adiabatic case may be quite large in certain regions
(particularly in the outer, optically thin shells of the
sun) and thus cannot be treated as small perturbations,
some more general, completely nonadiabatic, methods
have been developed for calculating the complex fre-
quencies of the linear oscillations.47"49

A study of the stability of the solar g modes by Saio111

confirmed the results found in the quasiadiabatic ap-
proximation: Some of the lower -order g modes turn out
to be unstable during the early stages of the solar evo-
lution. The gz mode for I = 1 (with a period of about 80
min) turns out to be unstable even for a model with an
age of 4.5 • 109 yr. It is not clear, however, whether
the amplitudes grow fast enough to mix the matter in
the solar interior (this mixing provides one of the ways
out of the neutrino problem), since the characteristic
time for the growth of the oscillations is very long
(S106 yr).

One of the most detailed studies of the linear stability
of the acoustic oscillations of the sun in the nonadiaba-
tic approach was carried out by Goldreich and Keeley.50

They restricted their calculations to radial oscillations.
The damping by the turbulence in the convection zone
was parametrized by introducing a scalar turbulent-
viscosity coefficient. If the damping by this turbulent
viscosity is ignored, all the oscillations with periods
longer than 6 min turn out to be unstable. The oscilla-
tions with shorter periods are stabilized by the radia-
tive damping in the atmosphere. The primary excita-
tion mechanism is an anomalous behavior of the opacity
because of the ionization of hydrogen near the upper
boundary of the convection zone (the "k mechanism,"
which has been studied thoroughly in connection with the
pulsations of the cepheids51). When damping is taken
into account, the turbulent friction makes all the modes
stable, but the stability margin is small. The large
uncertainty regarding the choice of the turbulent-vis-
cosity coefficient leads us to the conclusion that the
theory in its present state is not capable of unambigu-
ously solving the problem of the linear stability of
acoustic oscillations of the sun. The primary obstacle
is the lack of a reliable theory for turbulent convection.

Similar methods have been used by Ando and Osaki48

for calculations of the linear stability of nonradial os-
cillations. Those calculations, however, ignored the
interaction of the oscillations with the convection. The
damping rates found for the nonradial f> modes for the
low values of I agree with the results found by Gold-
reich and Keeley for radial modes of similar period,
provided that the damping due to turbulent viscosity is
ignored. At the same time, there are discrepancies in
the estimated damping of the short-period oscillations
in the atmosphere.

Studying the possibility that the solar p modes were

nevertheless stabilized by turbulent viscosity, Gold-
reich and Keeley estimated the amplitudes of these
modes, working from a stochastic excitation of these
oscillations by turbulent convection.52 The predicted
amplitudes range from 10~2 cm/s for the fundamental
radial mode to 0.6 cm/s for the higher radial harmon-
ics with periods of about 5 min. Such low amplitudes
are difficult to reconcile with the observational results
reported by the Hill group, but we cannot rule out the
possibility that some of the p modes may actually be
linearly unstable, despite the turbulent damping. Cal-
culations of the amplitudes of these modes must take
into account their nonlinear interaction with other
modes, but this complication presents serious theoreti-
cal difficulties.

In summary, whether information on the amplitudes
of the observed oscillations can be used to study the in-
ternal structure of the sun in the near future remains
an open question. While the periods of the free oscilla-
tions of the sun can be determined quite accurately with
a single radial density profile, so that there is the hope
that the normal-mode method can in fact be used to re-
fine the model, the solution of the excitation problems
requires a detailed physical model of the sun. Even
with the detailed model presently available, such stud-
ies run into serious difficulties. At present it is not
possible to resolve even the question of the linear sta-
bility of the oscillations, primarily because we lack a
reliable theory for turbulent convection.

3) FREE OSCILLATIONS OF THE SUN

a) 5-min oscillations

Since Leighton, Noyes, and Simon's discovery4 of the
5-min oscillations of the sun two decades ago, these
oscillations have been studied intensely by many re-
search groups. Rhodes etal.™ have published a com-
parative analysis of some of the most detailed observa-
tion methods. A bibliography of the experimental and
theoretical work has been published by Dubov54; see al-
so Refs. 55-57. In the present review we will describe
only some of the recent results.

In the observations the period of the 5-min oscilla-
tions has been found subject to random fluctuations over
the approximate range 3-7 min. These apparent fluc-
tuations in the period are actually the result of an in-
terference of a large number of oscillations of different
frequencies w, with different horizontal wave numbers
kH, and with different amplitudes. Observations with a
high spatial and temporal resolution have yielded the
power spectrum of the periodic signal in a plot of kH

vs u in the form of clearly defined bands.12>53>58>59 Fig-
ure 7 shows one such two-dimensional power spectrum,
obtained by Deubner et al.12

These oscillations penetrate only a short distance in-
to the interior of the sun, so that they may be treated
theoretically as a superposition of oblique acoustic
waves which are captured in the outer part of the
sun61'60 or global acoustic waves with high values of /
{the horizontal wave number is related to / by62 k^
= [l(l + l)]/R2}.62 Numerical calculations based on both
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FIG. 7. Power spectrum of the 5-min oscillations on the feH,
w plane. The contours show the relative power levels; a
quadratic scale is used for the power. The lower level cor-
responds to 2.8% of the maximum power. For convenience,
the values of the power were multiplied by V^H before being
plotted. The dashed curves show the theoretical frequencies
of the acoustic modes for the model of a convection zone with
u= 2 (from Ref. 12).

these approaches are in good agreement for similar
models.

The observed oscillations involve only the outer shells
of the convection zone, but they potentially carry infor-
mation about the structure of the sun down to the lower
boundary of the convection zone, which is determined
by the condition for convective stability. The model for
the structure of the convection zone based on the mix-
ing-length theory can be parametrized in terms of the
free parameter a, which is the ratio of the mixing
length to the pressure scale height. Ulrich and
Rhodes61 have calculated theoretical spectra of the
acoustic oscillations for various values of a; the
dashed curves in Fig. 7 show the theoretical frequen-
cies for the case a = 2. The close agreement with the
experimental data leaves no doubt that the 5-min os-
cillations are solar p modes with high values of I .

The resolution which has been achieved is such that
we can identify some slight systematic discrepancies
with the theoretical frequencies; the theoretical fre-
quencies are slightly higher than the experimental fre-
quencies everywhere on the kH, co diagram (except for
the lowest-frequency branch). The discrepancies de-
crease with increasing a, in accordance with an in-
crease in the depth of the convection zone.61'63 This
increase, however, is accompanied by a transition of
the base of the convection zone to higher temperatures,
and this effect is limited by the observed abundance of
lithium. Estimates of the rate at which lithium is burnt
up, combined with the present abundance of lithium,

impose a lower limit of about 0.62ff0 on the radius of
the base of the convection zone. These calculations left
a small systematic discrepancy between the theoretical
and experimental frequencies,53 but the discrepancy was
not fundamental, and it has now been eliminated by im-
proving the accuracy of the calculations.64'112 If the cal-
culations are correct (a question which remains open is
the correct formulation of the boundary conditions in
the atmosphere65'113), the convection zone should have
a depth of about 200 000 km (Ref. 64).

The structure of the sun below the convection zone
does not directly affect the oscillations with which we
are concerned here, but we can derive some indirect
information about the model from the depth of this zone.
From this standpoint, the data on the 5-min oscillations
constitute a serious argument against those solar mod-
els which have low abundances of heavy elements in the
interior (such models have been proposed in an attempt
to solve the neutrino problem66'67), since such models
have a thin convection zone.

Improvements in the quality of the experimental data
on the 5-min oscillations have made it possible to use
these oscillations to study the solar rotation. For os-
cillations of such short periods, the rotation has only a
small effect, and it is sufficient to use first-order per-
turbation theory, which incorporates only the Coriolis
forces. According to the first-order results, the spa-
tial pattern of the resultant oscillation formed by the
superposition of waves travelling in opposite directions
is rotating slowly with respect to the observer at an
angular frequency Wprec= (1 -T)ns. For the oscillations
under consideration here (/> 100) the parameter T in
(2.37) is small, and for a preliminary study it is quite
legitimate to ignore the Coriolis forces altogether, set-
ting r= 0. If a rigid-body rotation is then assumed, the
spatial pattern of the oscillations is tied rigidly to the
solar rotation; by measuring the velocity at which this
pattern drifts across the field of view one can deter-
mine the rate at which the solar matter is rotating (the
drift velocity is measured by measuring the observable
difference between the frequencies of waves travelling
toward the east and toward the west, whose superposi-
tion is the given oscillation). Although such measure-
ments have been carried out,68 it has been difficult to
determine the absolute value of the rotation velocity
accurately because of imperfections of the telescope
tracking system.

An even more unusual possibility is that of determin-
ing the relative change in the rotation velocity with in-
creasing depth. This possibility arises because of the
different depths to which the p modes penetrate into the
convection zone. For each p mode the theory furnishes
an effective depth at which, in the case of solar rotation
differential with respect to the radius, the motion of the
spatial pattern of the oscillations is frozen in the veloc-
ity field.89 The drift velocities observed experimentally
for the various/" modes therefore determine the rota-
tion velocity at the corresponding effective depths.

The results which have been found12 are shown in Fig.
8. Despite the large scatter in the data there is a visi-
ble tendency for the rotation velocity to increase with
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FIG. 8. Relative rotation velocity at the equator, plotted as
a function of the depth below the photosphere. The average
rotation velocity is normalized to zero for the four upper
levels. A positive velocity corresponds to a rotation more
rapid than in the photosphere. These results were obtained
from the data of three days of observations in 1977 (Ref. 12).

increasing depth. Such an increase in the velocity, of
about 80 m/s down to a depth of about 11 000-15000 km,
is in agreement (within the measurement error) with the
observed difference in the rotation periods of sunspots
and of the photospheric plasma (the most recent results
on the solar rotation are reviewed by Howard70). Below
15000 km the situation is less clear, although a ten-
dency toward a decrease in the velocity is not ruled out.
There is the hope that this unique method for measuring
the differential velocity field in the convection zone will
be significantly improved in the future.

Doppler measurements of the velocities in the inte-
grated light from the entire solar disk (without spatial
resolution) have been published in the last two years,
and these results also show a large number of oscilla-
tions with periods near 5 min (Refs. 71 and 114-116).
The most detailed data have been obtained in observa-
tions from the south pole.116 The frequencies of the
peaks in the power spectrum of the Doppler signal are
spaced approximately uniformly with an average sep-
aration of 68.0

Such oscillations cannot be explained by the interpre-
tation described above, since the high-/ oscillations
with a large number of waves over the solar disk cannot
be observed in a spatially averaged signal. It has now
been established beyond doubt that these oscillations
are higher acoustic harmonics with low values of /. In
the asymptotic limit of high harmonics (when the index
of the harmonic is considerably higher than /), the fre-
quencies in the theoretical mode spectrum are also
spaced in an equidistant manner.72'117 At a fixed value
of I the difference between the frequencies is given by

6

where c is the adiabatic sound velocity. The frequen-
cies for different even values of I are nearly equal, and
the same is true of the odd values of /, for which the
frequencies lie roughly halfway between the even-/ fre-
quencies. The theoretical values of Ay are slightly
sensitive to the choice of model and are roughly twice
the observed value of 68.0 ^Hz. It follows that oscilla-

tions with different values of / are excited. Analysis of
the alternation of peaks in the power spectrum and a
comparison of the theoretical predictions116 have made
it possible to identify modes with / = 0, 1, 2, 3, and,
possibly, 4. The corresponding harmonic indexes run
from about 15 to 35. Such oscillations penetrate deep
into the solar interior and bear information not access-
ible to the high-/ oscillations. The results from the
first comparisons with the theoretical spectrum seemed
to argue in favor of models with a reduced abundance
of heavy elements,71'73 but this conclusion has been re-
futed by more detailed calculations incorporating the
effect of the solar atmosphere. The model of the stan-
dard chemical composition has proved to agree well
with the observed frequency distribution.118

b) Oscillations with periods of 7-70 min

Several research groups have obtained data which
may indicate free oscillations of the sun in this range of
periods. Kaufman74 detected a period of about 41 min
in recordings of the solar microwave emission. Kobrin
and Korshunov75 have observed fluctuations with a peri-
od of about 50 min in the difference between the intensi-
ties of the solar radio emission at two adjacent fre-
quencies; in a study of longer recordings, this period
split into two other periods, about 57 and 33 min. Fos-
set and Ricort76 detected oscillations with a period of
about 40 min in the average velocity field in the photo-
sphere. Brooks et a/.7 reported observing oscillations
with periods of 58 and 40 min in the Doppler shift of a
solar absorption line (in addition to the 160-min oscil-
lations, which will be discussed in the following sec-
tion). Gal'per et a/.77 have observed variations in the y
flux density in the upper atmosphere of the earth with
periods of 11.7 ±0.1, 12.7±0.1, 7±0.1, 15.8±0.2,
23.2 ±0.2, and 33 ±1 min.

The most detailed results have been obtained by Hill
and his colleagues in observations carried out at the
Santa Catalina Laboratory for Experimental Relativity
by Astrometry (SCLERA). In measurements of the
oblateness of the solar disk which were undertaken as
an experimental test of the general theory of relativity,
a large number of periods were detected in the fluctua-
tions of the solar diameter.5'78'79 Repeated observations
have confirmed the reality of these oscillations.78'79'119

Some of the periods are listed in Table I. The observed
amplitudes are of the order of 10"6tfe. The actual dis-
placement amplitudes may be much smaller than the ob-
served amplitudes if the resultant signal is determined
primarily by brightness pulsations at the limb of the

TABLE I. Periods (in minutes) of the pulsations in the
solar diameter according to the average data from 11
days of observations in 1975 (Ref. 80). The periods mark-
ed with asterisks might have been detected as the result
of anomalously large peaks in the power spectrum in the
data from only one or two observation days.

66.16
44.66
39. u
32.1

28.7
24.8
21.0*
19.5

13.3
12.1
11.4
10 7

9.9
9.3
8.5*
7.8

7.6
6.9
6.7
6 5

709 Sov. Phys. Usp. 24(8), Aug. 1981 S. V. Vorontsovand V. N. Zharkov 709



disk, rather than by surface displacements.

At present we have essentially no information on the
spatial pattern of the oscillations, i.e., on the probable
values of /, which may correspond to the observed
periods. The method used to observe the pulsations of
the solar diameter is capable of detecting oscillations
with Z up to several tens,11'80 so there is no possibility
of an unambiguous identification with the theoretical
spectrum, in which the range of 7-70 min is densely
packed with the periods of radial and nonradial acoustic
oscillations. Table II shows the theoretical oscillation
periods of the standard solar model with a relative
heavy-element abundance Z= 0.02 according to calcu-
lations by Iben and Mahaffy.81 Taking into account the
errors in the experimental and theoretical periods
(which are at least 1-2%), we conclude from a com-
parison of Tables I and n that the identification is ex-
tremely ambiguous. Furthermore, the theoretical
periods depend on the choice of model (for example,
with Z = 0.01 and Z = 0.03, the maximum periods of the
radial oscillations are 56.22 and 66.14 min, respec-
tively).81 It is thus not surprising that the periods
which have been detected can be identified with the the-
oretical spectra of some wildly different models.81"83

A detailed analysis of observations of the solar diam-
eter11 has, however, yielded indications that the oscil-
lations with periods of about 66 and 45 min probably
have high values of I , in the range 20<l <40. If this is
the case, then these two oscillations could not be acous-
tic modes, whose periods at these values of I are much
shorter. At the same time, an attempt to make an
identification with gravity modes in the standard model
also runs into serious difficulties. According to cal-
culations by Dziembowski and Pamjatnykh,84 the ampli-
tudes of the g modes with such high values of I are con-
centrated in the interior of the sun and decrease by a
factor of at least 10s in the transition through the con-
vection zone to the surface. It is doubtful that such os-
cillations could be observed, because the amplitudes
in the interior would have to be exceedingly high. This
difficulty does not arise for models with a low value of

TABLE II. Mode periods according to the standard solar mo-
del with a relative heavy-element abundance of Z= 0.02 ac-
cording to the calculations of Iben and Mahaffy.31

Mode

pi
p2
p3
p4
P5
P6
pi
P8
P9
plO
pll
pi2
p!3
p!4
p!5
p!6
p!7
pl8
p!9
p20

Period, min

(-0 1-1

62.29
40.94
30.93
24.49
20.19
17.17
14.93
13.21
11.86
10.78
9.90
9.15
8.50
7.94
7.45
7.02
6.64
6.29
5.98
5.69

57.25
36.98
27.88
22.30
18.68
16.04
14.08
12.55
11.34
10.35
9.54
8.84
8.23
7.71
7.25
6.84
6.47
6.14
5.84
5.56

! = 2

42.50
32,19
25.09
20.52
17.39
15.10
13.35
11.97
10.87
9.97
9.21
8.56
7.99
7.49
7.06
6.67
6.32
6.00
5.71
5.45

I = 3

39.53
29.42
23.21
19.26
16.44
14.38
12.77
11.51
10.49
9.65
8.94
8.32
7.78
7.31
6.89
6.52
6.18
5.87
5.60
5.34

1 - 4

37.58
27.62
21.92
18.31
15.72
13.81
12.32
11.14
10.18
9.39
8.71
8.11
7.60
7.15
6.75
6.39
6.06
5.77
5.50
5.25

Mode

/
?1
«2
g3
g4
g5
&
e
«̂8
«9
«10gil
812
«13
«14
»15
«16
«17
glS
gl9
820

Period, min

(= 1

61.58
84«4

105.8
127.3
149.2
171.1

I - 2

45.90
55.05
63.03
72,58
83.49
95.38

107.7
120.2
132,9
145.9
158.9
172.1

( = 3

40.97
47.94
54.88
61,88
67.76
74.9
83.1
91.8

100.7
109.7
118.9
128.1
137.6
147.0
156.5
166.7
175.9

! = 4

38.82
44.18
49,59
57.73
61.11
64.89
70.30
76.83
83.62
90.56
97.62

104.5
111.7
118.9
126.5
133.3
141.5
148.6
156.4
164.0
171.1

Z in the interior, whose thin convection zones corre-
spond to a slighter damping of the amplitudes as the
modes propagate to the surface.85 Such models, how-
ever, do not agree with the data on the 5-min oscilla-
tions, in addition to having other difficulties.85

Another way to eliminate the difficulties presented by
the oscillations at 45 and 66 min is related to the dis-
tinctive or anomalous £ modes in the theoretical spec-
trum, with large amplitudes at the surface. For the
standard models at high values of I , however, these
oscillations have periods which are too low.

Boury et al.122'123 have studied the oscillations of a
solar model with small and zero initial abundances of
hydrogen in a small central region (including 3% of the
solar mass). The density discontinuity in such a model
leads to the appearance of distinct modes in the theo-
retical spectrum which are associated with the discon-
tinuity. This model does not, however, simplify the
problem of identifying the oscillations: The theoretical
spectrum turns out to be very dense in the range 7-70
min.

The reality of the observed oscillations still raises
some doubt. The oscillations found from the observa-
tions of the solar diameter could not be confirmed in
measurements of the velocities86'87 or brightness pul-
sations.88"90 Hill and Caudell11 and Knapp et al.120 have
reviewed the continuing discussion of the possible rea-
sons for the discrepancies. An exceptionally important
argument for identifying the observed periods with free
oscillations of the sun is the phase coherence of the ob-
served oscillations11'119'121 (in preliminary estimates,11

the statistical significance of the observed coherence
was greatly overestimated91). If future experiments
confirm the reality of these oscillations, then more ac-
curate and more reliable information on the spatial
structure of the oscillations will be required for an un-
ambiguous identification with the theoretical spectrum
and for the use of this information to refine the model
for the internal structure of the sun.

c) 160-min oscillations

The detection of these oscillations in the Doppler shift
of absorption spectral lines was first reported by Sev-
erny, Kotov, and Tsap6 and, independently, by Brooks,
Isaak, and van der Raay.7 In observations at the Cri-
mean Astrophysical Observatory,6'92 the difference in
the velocities along the line of sight from the central
part of the solar disk, with a radius of 0.66#®, and
from the limb was measured. Observations by a Birm-
ingham group7 were carried out in the integrated light
from the entire solar disk. Oscillations of the same
period have been detected in observations by Snider
et al.s The 160-min period has also been found in vari-
ations of the geomagnetic field9 which are possibly of
solar origin.

The extensive observations at the Crimean Astrophys-
ical Observatory over the years 1974-1978 demonstrat-
ed a high phase coherence of the oscillations and made
it possible to refine the value of the period93'94: 160.01
min. Similar observations carried out at Stanford
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University10 yielded the same period and were also in
good agreement in terms of the phase. These results
have been confirmed by observations in 1979 at both
observatories.124 The research at the Crimean observ-
atory also showed that there are changes in the bright-
ness, the general magnetic field of the sun92'95 and its
radial emission96 which are synchronized with the vel-
ocity oscillations (whose amplitude is about 1 m/s). A
detailed study of the power spectrum of the oscillations
has also revealed several similar periods: 134.398,
148.359, 171.099, 175.061 min (Ref. 92). The ampli-
tudes corresponding to these additional periods are
much smaller. The detection of these periods is less
reliable and may to some extent be an artifact of the
analysis of the observations.

The reality of the 160-min oscillations has been ques-
tioned on several points. It has been suggested that the
observed 160-rnin period may be caused by the passage
of solar supergranules across the field of view.97 This
interpretation has turned out to be incompatible with
the phase coherence of the signal, which has been ob-
served over several years. Some doubt was raised by
later observations by the Birmingham group, which
failed to confirm the presence of the 160-min oscilla-
tions.125 Since the period of 160 min is precisely 1/9
of a terrestrial day, and the long series of observa-
tions, carried out only in daytime, has been modulated
by the earth's rotation period, serious doubt has been
raised regarding the solar nature of the oscillations.
In particular, it has been suggested that these oscilla-
tions could be a consequence of fluctuations in the
transparency of the earth's atmosphere.98 Long-term
observations in the Crimean and at Stanford have
shown, however, that the exact value of the period is
slightly higher than 160 min and is thus not precisely
1/9 of the terrestrial day. Possible consequences of
certain terrestrial effects have also been the subject
of a special study,126"128 and the results speak in favor
of a solar nature of the oscillations.

Some unique observations, free of the effects of the
alternation of day and night, were carried out at the
south pole in late December 1979 and January 1980
(Ref. 116). Doppler measurements of the velocities
were carried out by a method of resonant spectroscopy
in the integrated light from the entire solar disk. Os-
cillations with a period of 160 min were extracted in an
analysis by the superimposed-epoch method (this meth-
od has been used at the Crimean and Stanford observa-
tories) of the data from 5 days of continuous observa-
tions. The oscillations found are in good agreement
with the Crimean and Stanford data in terms of ampli-
tude and phase.

The observation method which has been used has so
far not yielded an unambiguous determination of the
mode index /, but it is most probably 1= 2 (the quadru-
pole mode). It is difficult to detect oscillations with
higher values of / because the signal is averaged over
large regions on the solar disk. Radial oscillations
could not have such a long period (the only exception to
this statement is for the solar model with a homogene-
ous density). The detection of dipole oscillations (I = 1)

would be probable only if there were a significant dif-
ference between the amplitudes of the radial and tan-
gential displacements (U and V) at the surface: If these
amplitudes are approximately equal, the dipole oscilla-
tions correspond to translational motions of the surface
as a whole, and it would be difficult to detect these mo-
tions in measurements of the velocity difference.

Attempts to interpret the 160-min oscillations in the
standard solar model run into serious difficulties. In
the theoretical normal-mode spectrum this period cor-
responds to high-index gravity modes. At a formal
level, there is no difficulty in identifying this oscilla-
tion with one of these modes (for example, ^10 for / = 2);
the periods can be matched exactly for example by
slightly adjusting the value of Z in the model. Gravity
modes with such periods are linearly stable in the
standard model. The excitation of turbulent convection
could not lead to the observed amplitudes.129 It is also
difficult to explain why this particular g mode has been
excited, while no others have been, over a time of
several years. The possibility is not ruled out that this
selective excitation is of a resonant nature and is a
consequence of an interaction with other oscillations,
because of (for example) an approximately equal beat
period of two radial modes.81 It is difficult to find a
more convincing interpretation in the standard model.
No help comes from the possibility, discussed above,
of singling out in the theoretical spectrum an anomal-
ous^ mode (the fundamental mode for oscillations of
the outer regions). If the mixed nature of the oscilla-
tions did not prevent it, this fundamental mode in the
case I = 2 could have a rather long period, as has been
shown by calculations carried out by a numerical al-
gorithm with a formal suppression of the interior grav-
ity oscillations.99 The actual interaction of the oscilla-
tions of the outer and inner regions at low values of /,
however, is so pronounced that the fundamental mode of
the outer regions is not singled out as an isolated mode
in the theoretical spectrum: All the g modes have es-
sentially the same amplitude (Fig. 5). Anomalous g
modes are clearly distinguished at I« 6, but their peri-
ods are too short.

The identification of the 160-min oscillations with the
theoretical normal-mode spectrum based on the stan-
dard solar model thus requires a problematic mechan-
ism which leads to the selective excitation of only one
of several modes of similar properties and similar
periods. These difficulties, as well at the neutrino
problem, may mean that the actual structure of the sun
is quite different from that predicted by the standard
evolutionary model. A question of interest for future
research, therefore, is that of which change in the
model might lead to a distinct, isolated oscillation of
this particular period in the theoretical spectrum. A
circumstance which would be of assistance here is that,
from the standpoint of adiabatic oscillations, the model
can be specified quite accurately by specifying simply
the radial density profile. One likely possibility is a
density discontinuity. Such a discontinuity could make
the oscillations of the outer and inner regions largely
independent of each other, and it could also determine
oscillations of a new type, with maximum amplitudes
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at the discontinuity (the spectrum of Jupiter in Fig. 6
illustrates one such core oscillation). The density dis-
continuity could arise because of an inhomogeneity of
the chemical composition. A model of this type, with
an anomalously high central abundance of heavy ele-
ments and with a convective core, has been proposed
by Hoyle100 as a possible solution of the neutrino prob-
lem. In this model a solar core with a mass of (0.3-
0.5)Me has a low initial abundance of helium, Y~ 0.04
(so that the present value is 7= 0.15), and a high
abundance of iron-group metals (Z = 0.075-0.15 in the
cases considered). The high opacity caused by these
metals makes the core convective. The low emission
of high-energy neutrinos results from a high concentra-
tion of hydrogen, X-Q.l, which is maintained at the
center of the sun and also from the rapid convective
mixing of 7Be, which retards the reaction 7Be(/>,y)8B.
Hoyle's model predicts that the solar luminosity re-
mains roughly constant over the history of the earth.
It would be interesting to study models of this type to
see the implications for the theoretical normal-mode
spectrum, in which a "core" mode can be singled out
for each value of I * 0. This mode might be excited as
a result of convective motions in the core. A slightly
different possibility was considered by Zatsepin
etal.101: Working from their calculations for multi-
layer polytrope models of the sun, they suggested
identifying the 160-min period with one of the lowest-
order quadrupole g modes of a core in a nearly convec-
tive state. A periodic mixing of the matter in such a
core would also reduce the neutrino production.

Observations of the 160-min oscillations have re-
vealed regular variations in their amplitude with a peri-
od equal to or approximately equal to the 27-day solar
rotation period.93'94 Such a modulation could be ex-
plained directly by a precession of the spatial picture
of the oscillations caused by Coriolis forces.102 If the
oscillations are quadrupole oscillations (if they have
two diametrically opposite antinodes which are in
phase), then the observation period would correspond
to a rotational-splitting parameter T» 1/2. Once the
160-min oscillations have been unambiguously identified
with a theoretical mode spectrum, measurements of
the period of this modulation could yield information
about the rotation in the solar interior. The observed
amplitude modulation is a further argument in favor of
a solar nature for the observed oscillations.

4. THEORETICAL NORMAL-MODE SPECTRA OF
JUPITER AND SATURN

a) Models for the internal structure

Modern detailed models for the internal structure of
Jupiter and Saturn have been used for calculations of
the free oscillations of these planets.15 These models
are adiabatic, having two shells with different chemical
compositions. Each shell consists of a homogeneous
mixture of hydrogen and helium with some admixture of
heavy components. The core consists exclusively of
heavy components, water, methane, ammonia, sili-
cates, and iron in their solar proportions. The models
have been constructed from accurate equations of state

and are consistent with the existing observational data:
the mass, the radius, the gravitational moments J2 and
Jt, and the boundary conditions on the pressure and
temperature in the atmosphere.

b) Normal-mode spectra

The basic characteristic properties of the models,
which determine the structure of the mode spectrum,
are the adiabatic structure throughout and the presence
of two discontinuities in the radial density profile. The
inner discontinuity corresponds to a change in the
chemical composition at the core boundary, and the
second discontinuity corresponds to a phase transition
of hydrogen to a metallic state at high pressures. The
general structure of the theoretical spectrum in the
absence of rotation (in zeroth-order perturbation the-
ory) was discussed above in connection with the class-
ification of the oscillations (Fig. 6). Thy existence of
two density discontinuities determines two modes with
maximum amplitudes at these discontinuities for each
oscillation index I * 0. Since the model has an adiabatic
structure, these two modes constitute all the interior
gravity oscillations. These oscillations are sensitive
to the detailed structure of the core and to a possible
radial blurring of the density discontinuity associated
with the phase transition of hydrogen. In this regard
the present ideas regarding the internal structure of
the giant planets are extremely tentative. Such interior
oscillations have, furthermore, relatively small ampli-
tudes at the surface. The first step to be taken, there-
fore, is to study the fundamental modes with the maxi-
mum amplitudes at the surface and the acoustic higher
harmonics.

The theoretical mode spectra have been calculated in
second-order perturbation theory incorporating all the
rotation effects: the Coriolis forces, the centrifugal
forces, and the shape deformation of the planet. Both
rigid-body and differential rotations have been consid-
ered.23'24 In the differential-rotation case, some sim-
ple model distributions of cylindrically symmetric dif-
ferential rotations have been used; the angular velocity
of the rotation, O, is a function of the distance from
the rotation axis, and the function is chosen to be
quadratic:

(4.1)

(4.2)

On the average, these model distributions reflect the
observed increase in the rotation velocity toward the
equator. The value of O0 corresponds approximately to
a 10-h rotation period.

Figures 9 and 10 show the mode spectra which have
been derived for Jupiter and Saturn. For a clear pic-
ture of the rotation effects, the results are shown in a
coordinate system which is rotating at the angular fre-
quency n0. The planet is at rest in this system in the
case of a rigid-body rotation, and if rotation effects
are ignored the oscillation periods are degenerate in
the azimuthal index m. These degenerate periods cor-
respond to the zeroth-order problem37 and are shown
by the circles. For each value of I, the fundamental

= Q0[l + 0.01 (JLsine)2]- for Jupiter,

0.1 (-^-sin9)2J— for Saturn.
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FIG. 9. Normal-mode spectrum of Jupiter. The circles show
the mode periods in the zeroth order. Shown above the circles
is the splitting of the multiplets for the case of a rigid-body
rotation; the corresponding splitting for the case of a differen-
tial rotation is shown below the circles. The values of the in-
dex m are shown near two of the multiplets. The results are
given in a coordinate system which is rotating at the angular
velocity Sic (Refs. 23 and 24).

modes have the longest periods. In the short-period
range there are branches of higher acoustic harmonics;
the periods of the interior gravity modes are not shown.
The vertical line segments show the splitting of the
multiplets caused by the rotation. The results shown
above the horizontal lines correspond to rigid-body ro-
tation, and those below these lines correspond to the
differential rotation. The sequential order of the mode
periods in terms of the index m is shown near two of
the multiplets; this order is characteristic of the en-
tire spectrum.

Beginning with the results for the rigid-body rotation,
we see that multiplets of the fundamental modes exhibit
the greatest splitting. At low values of I the rotation
has its effects primarily through the Coriolis forces.
These forces cause waves which are travelling in the
direction of the rotation (m<0) to be slowed, with the
result that the period is increased, while the waves
travelling in the opposite direction (w?>0) are acceler-
ated. We can also see an asymmetry in the splitting,
which becomes more pronounced with increasing mode
index I. At high values of I the mode periods are much
shorter than the rotation period, and the splitting is
caused primarily by the eccentricity of the shape of the
planet. In the limit Z-«, the oscillations are displaced
toward the surface and become analogous to surface
waves. In the case m= 0, these oscillations are formed
by waves which are travelling along the meridian; in
the case \m\ = l these oscillations correspond to waves
which are propagating along the equator. Because of
the eccentric shape, the distance around the planet
along the equator is longer than that along a meridian,
so that the periods of the modes with I m I = I are larger
than those with I = 0. The eccentricity thus causes the
wings of the multiplets to acquire periods longer than
those of the m = 0 central line. For the higher acoustic
harmonics there is a generally smaller splitting be-
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FIG. 10. Normal-mode spectrum of Saturn. The notation is
the same as in Fig. 9.

cause of the shorter periods.

The differential nature of the rotation has greater ef-
fects in the case of Saturn (Fig. 10). It affects the fun-
damental modes most. In general, it makes the split-
ting of the multiplets somewhat less than in the case of
the rigid-body rotation. In the case of the differential
rotation, the outer equatorial regions of the planet are
rotating slightly faster than the rotating coordinate
system. Because of this effect, waves travelling in the
direction of the rotation (m < 0) receive an additional
acceleration in the direction of the motion, so that their
periods decrease. In the case m > 0, the effect is the
opposite. With increasing /, the effect of the differ-
ential rotation intensifies, because the oscillations are
displaced toward the surface, where the inhomogeneity
of the rotation is at maximum.

c) Interaction of modes

It can be seen from Figs. 9 and 10 that the effect of
the rotation on the normal-mode spectra of the giant
planets is quite pronounced. The small parameter of
the perturbation theory—the ratio of the zeroth-order
oscillation frequency to the rotation frequency—reaches
a value of 1/4 for the fundamental quadrupole mode of
Jupiter and a value of nearly 1/3 for Saturn. The mul-
tiplets split by the rotation overlap along the period
scale, raising the question of just how much we can
trust the perturbation-theory results.

The actual mode frequencies may be quite different
from the perturbation-theory results because of the in-
teraction between different modes. The eigenfunctions
(the shapes of the oscillations) of a rotating planet are
mixed in nature and consist of a superposition of the
eigenfunctions of certain of the zeroth-order modes.
If the frequencies of the interacting modes are approx-
imately equal, and the rotation is sufficiently rapid,
then the corresponding corrections to the zeroth-order
eigenfunctions may be substantial.

At the same time, the accuracy with which the mode
frequencies are calculated by perturbation theory is
determined by the accuracy with which the eigenfunc-
tions are calculated. Consequently, if the correction
to the eigenfunctions for the substantial interaction with
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adjacent modes is ignored (this correction may arise
only in the higher orders of the perturbation theory),
the accuracy of all the results may suffer severely.

The perturbation theory has been modified for a quan-
titative account of the mode-interact!on effects.22'24

The case of a rigid-body rotation has been studied. The
modification follows the method used in quantum-me-
chanical perturbation theory for Hermitian operators
in the case of a quasidegeneracy.103 In the initial equa-
tions, (2.15), the operator H0 of the zeroth-approxima-
tion problem (co2Uo = H0u,,) is replaced by the operator

Hp H0 + (<02
0 - all) P' + K - <o§2) P

2; (4.3)

where w01 and a>02 are the zeroth-order frequencies of
the two adjacent modes with which the mode in ques-
tion, of frequency o>0, is interacting; and P1 and P2

are the operators which project onto the zeroth-order
eigenfunctions, u^ and 11,32, respectively, of these ad-
jacent modes (P1!̂  =11 ;̂ P2u02 = u02). This replacement
of the unperturbed operator reduces the interacting
modes to a common frequency, the frequency of the
zeroth approximation, CDO. A perturbation theory is
constructed for this problem with an artificial degener-
acy, and a conversion is made from the results to the
solutions of the original problem. This algorithm eval-
uates the correction to the eigenfunctions for the inter-
action of adjacent modes and determines how this cor-
rection affects the oscillation frequency.

The symmetry of the problem dictates the selection
rules for the interacting modes. Only modes with iden-
tical values of m can interact; a mode with index I in-
teracts with modes with I and I ±2.

Numerical calculations have been carried out on the
basis of this modified perturbation theory. The inter-
action of the fundamental mode / with the fundamental
1+2 and 1-2 modes has been studied. The results are
illustrated by Fig. 11, which shows the multiple! of the
fundamental / = 4 mode in expanded scale. The results
shown above the horizontal line are the results of the
ordinary perturbation theory, while those shown below
the linear are the results of the perturbation theory
modified to incorporate the mode interaction. The
slight differences in the results reflect this interaction.
The resulting corrections to the periods, however, are
much smaller than the total splitting. This result con-
firms the applicability of the ordinary perturbation
theory, although the splitting of the multiplets is great-
er than the separation of the unperturbed periods. This
unusually broad applicability of perturbation theory for
the normal-mode problem of a rotating planet results

4 J i
U-X-

-2
1

-J
1

Period, min

FIG. 11. Multiplet of the fundamental I = 4 mode of Jupiter.
The circle shows the unperturbed period. The results shown
above the line are those of the ordinary perturbation theory,
while the results shown below the line are those of the per-
turbation theory modified to incorporate the mode inter-
action.22'24

from the stringent selection rules, which place a
severe limit on the number of interacting modes.
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