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The formation of polymer ring structures leads to new physical effects that arise from topological restrictions.
These restrictions consist of the fact that the topological state of a ring polymer molecule cannot vary.
Interest in this type of object has increased sharply since the proof that in most cases the molecules of DNA
function in the cell in a closed circular form. This review presents the necessary information on the physical
properties of circular DNAs. The mathematical basis of the theory of knots and linkages are briefly presented,
together with the theory of ribbons. This apparatus is employed to obtain quantitative data on the behavior of
closed polymer chains by Monte Carlo calculations on a computer. The results of the calculations are
compared with the experimental data for circular DNAs. This comparison has made it possible to obtain
valuable information on the properties of the double helix, such as its torsional rigidity. The biological role of
the topological restrictions in DNA is discussed, as well as the significance of the recently discovered
enzymes, topoisomerases, which alter the topological state of circular DNAs.
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1. INTRODUCTION

The study of long polymer molecules has posed a
number of theoretical problems, which have long since
become a part of the group of problems of statistical
physics (see, e.g., Refs. 1,2). The analogy between a
polymer chain and a Brownian trajectory has proved
very fruitful. In fact, the configurations adopted by the
simplest model of a polymer chain, in which links re-
mote along the chain can pass through one another with-
out hindrance, are equivalent to the trajectories of a
random walk. This model serves as the starting point
of the statistical physics of polymers (see Refs. 3-7).
A polymer chain differs from a Brownian trajectory in
its corporeality, i.e., in the fact that self-overlap is
forbidden in it. This leads to the well known effect of
swelling of polymer coils, and an extensive literature
has been devoted to its theoretical study (see the re-
views of Refs. 6-8 and the studies cited therein).

Effects of a completely different type, also caused by
the corporeality of the polymer chain, must arise in
treating the statistical physics of ring polymers. In
fact, the configurations that a ring polymer chain or a
system of ring chains can adopt are limited solely to
topologically equivalent states, i.e., to those that can
be derived from one another by continuous deformation

without self-intersections. Topological restrictions of
this type give rise to completely new problems in the
theoretical analysis of the behavior of systems made of
closed chains, which require the application of a special
mathematical apparatus for their solution.

This review will analyze the approaches that, have
been proposed to overcome the stated difficulties, and
which allow one to solve a number of problems of sta-
tistical physics of polymer chains with account taken of
the topological restrictions. The interest in problems
of this type arises from a number of factors. First,

FIG. 1. Topological "cross-Unking" in a polymer network.
The dots denote ordinary chemical cross-links.
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FIG. 2. Examples of topologically nontrivlal structures made
of circular polymer chains: a knot (a) and a linkage or cate-
nane (b).

ever more attention has been attracted in recent years
to the possible effect of entanglement of polymer chains
on mechanical and other properties of polymer net-
works9"12 (Fig. 1). Second, the purely chemical problem
of synthesizing polymer molecules having the shape of a
knot or of polymer molecules linked together (catenanes)
possesses a certain interest (Fig. 2). Third, and most
importantly, it has turned out in recent years that ring
molecules play a very great role in biology. Namely, it
has turned out that DNA molecules practically always
function in the cell in a closed circular form. In other
words, the functioning DNA molecule amounts to two
closed polymer chains, which in addition form with one
another a linkage of very high order (Fig. 3). The ex-
istence of such structures poses a number of very in-
teresting topological problems. Understanding of the
physical, and ultimately the biological, properties of
DNA molecules hinges on their solution. Considerable
attention will be paid in this review to examining these
problems.

2. CIRCULAR CLOSED DMAs

a) The circular form of DNA and its biological role

The fundamental stimulus for the development of the
theory to be presented in this review was the discovery
of circular DNAs. We recall that DNA molecules, which
contain all the information on the structure of living or-
ganisms, consist of two polymer chains attached to one
another by weak, noncovalent interactions. These
chains form a double helix in which y0= 10 monomer
links (base pairs) occur per turn. Figure 4 depicts a
packing model of a fragment of the DNA molecule. Ac-
tual DNAs contain from several thousand to billions of
monomer links. Initially the main attention was focused
on studying the properties of linear DNA molecules,
since this is precisely the form of DNA that could be
extracted from cells and virus particles. A number of

FIG. 3. Schematic diagram of closed circular DNA. Each of
the two complementary chains of the double helix is closed.
Consequently the chains turn out to be linked. A quantitative
measure of the linkage is the quantity Lk, which is the number
of times that one of the chains passes through a surface
stretched on the other chain (for the case drawn in the dia-
gram, we have Lk= 9). In actual cases we have Lk £ 102.

1 nm

FIG. 4. Space model of a region of the double helix of DNA.
The dark circles, which are connected for the sake of per-
spicuity with helices, are the phosphate groups. The nitrogen
bases, in whose sequence me genetic information is recorded,
lie inside. There are 10 base pairs per turn of the helix.

reviews (see, e.g., Refs. 16-18) have been devoted to
the physical studies of these DNAs.

In was unexpectedly found in 1963 that DNA exists in
certain viruses in a closed circular (CC) form. In this
new state the two single chains of which the DNA con-
sists are each closed on themselves. CC DNA is illus-
trated schematically in Fig. 3. We see that the two
complementary filaments in CC DNA proved to be link-
ed. Here they form a high-order linkage (of the order
oiN/y^, where N is the number of pairs in the DNA).
Initially this discovery was not seen to be very signifi-
cant, since this form of DNA was regarded as exotic.
However, in the course of time, the CC form of DNA
was discovered in an ever greater number of organisms.
Currently it is generally acknowledged that precisely
this form of DNA is typical of the simplest DNAs, and
also of the cytoplasmic DNAs of animals. Also most
virus DNAs pass through a stage of the CC form in the
course of infection of cells. Such a widespread occur-
rence of this form of DNA in nature has elicited the in-
terest in its structure and properties that has been
manifested in recent years (see the review of Ref. 19).

The discovery of CC DNA has led to the formulation
of fundamentally new problems, since it has turned out
that many of the physical properties of the CC form dif-
fer radically from those of the linear form. The dif-
ference between the properties of these two forms of
DNA is not at all due to the existence of end effects in
the one case but not in the other. They involve all re-
gions of the molecule and are caused entirely by the
topological restrictions that arise in the CC form of
DNA. The topological restrictions are the strict invar-
iance of the order of linkage of the two complementary
chains. Evidently these topological restrictions are im-
mediately eliminated after even one of the chains has
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been broken. Therefore the special properties of CC
DNA vanish not only when it is converted to the linear
form, but also when the nicked circular form is form-
ed, i.e., the form in which one of the filaments has been
broken, while the other remains closed into a ring.

b) Superhelix formation and its effect on the properties of
closed circular DNA

The existence of a topological invariant of CC DNA
gives rise to a new physical parameter that character-
izes this form and determines many of its properties.
This parameter is introduced as follows. Let us denote
by Lk the linking number of the two complementary
chains. This quantity amounts to the algebraic number
of intersections by one chain with a surface stretched
over the second chain (see also Sec. 4). The supercoil-
ing number of CC DNA denotes the quantity

JL
Yo '

U)

Here N is the number of base pairs in the DNA, and y0

is the number of base pairs per turn of the double helix
in linear DNA under the given conditions. Often one
employs the supercoiling density, which is defined as a
= 10r/N. In all cases when T* 0, one says that the CC
DNA is supercoiled. Evidently the double helix as a
whole proves to be under stress in the supercoiled
state. This stress can lead both to a change in the ac-
tual number of base pairs per turn of the double helix
in CC DNA, and to a regular bend of the axis of the
helix in space (Fig. 5). The latter possibility has given
rise to the term "supercoiling", since structures of the
type shown in Fig. 5 are often observed in CC DNA in
the electron microscope.

Native DNA as extracted from cells proves to be not
only circular and closed, but also supercoiled. Here
the supercoiling always possesses the same sense—itis
negative and amounts to —a = 0.03—0.10 (see Ref. 19).
This means that CC DNA in the cell is somewhat un-
twisted as compared with the linear form of the double
helix under the same conditions. For a long time, the

\

FIG. 5. Supercoiled CC DNA. This is how DNA looks when
carefully extracted from the cell. The supercoiling is always
negative.

problem has been discussed of whether negative super-
coiling is necessary for the normal functioning of CC
DNA in the cell, or whether it arises during extraction
of the DNA. At present it has been firmly established
that negative supercoiling is actually necessary for the
normal functioning of CC DNA in the cell. Thus, the
fundamental biological process that occurs in DNA, its
replication (i.e., the formation of two daughter mole-
cules), does not happen if the CC DNA is not negatively
supercoiled. Moreover, it has turned out that a special
enzyme, DNA-gyrase, occurs in cells, which creates
negative supercoiling in CC DNA. This enzyme is only
one of the members of an entire class of enzymes that
can change the topology of DNA, and which have re-
ceived the general name of topoisomerases (see also
Sec. 6).

The stress that arises in negatively supercoiled CC
DNA considerably facilitates the formation of unwound
regions in these DNAs, i.e., regions in which the weak
bonds between the two complementary chains forming
the double helix have been broken. In fact, the fila-
ments are not twisted about one another in the unwound
regions (for more details, see Ref. 16). Therefore the
formation of open regions relieves the stress in the re-
maining parts of the molecule. An opening of the frac-
tion 6 of pairs in DNA such that 6 = -(o"Xo/10) = -cr com-
pletely relieves the stress. However, further opening
of the DNA has the result that stress arises again.

Thus the double helix in the negatively supercoiled
CC form of DNA is substantially weakened as compared
with the linear form or the closed circular but not
supercoiled form. Experimentally this is manifested in
the fact that negatively supercoiled CC DNA is consid-
erably more subject than the other forms to modifica-
tion by many chemical agents, in particular mutagens
and carcinogens. It also possesses an elevated affinity
for a number of important proteins, e.g., such as RNA-
polymerase, which reads the genetic information from
the DNA molecule.

Formation of uncoiled regions is not the only way to
relieve the stress in CC DNA. The negative supercoil-
ing can also be relieved by formation of cross-shaped
structures in regions of the double helix in which the
sequence of bases has a second-order symmetry axis
(Fig. 6). Another way is to bind molecules (ligands) to
the DNA that diminish the rotation angle between adja-
cent base pairs.

This effect is employed for measuring the values of T
(or of cr). The method is based on the fact that the DNA
"straightens out" as the stress is relieved in negatively
supercoiled CC DNA as larger numbers of ligand mole-
cules are bound to it. That is, its mobility decreases.
Then, when the number of bound molecules exceeds the
quantity

360 /o\[i=-—T (2;<p

(<p is the change in the angle between adjacent base pairs
when ligand molecules are intercalated between them),
the stresses in the DNA again begin to increase and the
mobility will increase. Consequently the curve of the
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FIG. 6. A cross-shaped structure that can arise in CC DNA.
Formation of this type of structure requires negative super-
coiling as well as a special sequence of nucleotides possessing
a twofold symmetry axis.

dependence, e.g., of the sedimentation constant on the
number of bound ligand molecules has a minimum (Fig.
7). Upon determining the value of fi at the minimum
and substituting it into Eq. (2), one can find T if one
knows the value of <p. For the data shown in Fig. 7,
where ethidium bromide has been used as the ligand,
we find <p = -26°.

In recent years, yet another method of determining
the number of supercoiling turns has become wide-
spread. It is based on employing the method of gel
electrophoresis. The method has such a high resolving
power that molecules that differ in T by unity yield sep-
arate bands. Application of the method of gel electro-
phoresis to studying CC DNA has led to a series of re-
markable experimental studies. The results of some of
these studies will be presented and discussed in the
light of the theory set forth in this review in Sec. 6.

The development of very sensitive and strictly quan-
titative methodologies of studying CC DNA has made it
possible to realize the unique possibilities involved in
the properties of this form of DNA. Consequently, CC
DNA has become a powerful tool for studying the prop-
erties of the double helix of DNA in general. In this re-

FIG. 7. Dependence of the sedimentation constant of circular
DNA from the tumorigenic virus SV 40 on the number of mole-
cules per base pair of a ligand (ethidlum bromide) bound to the
polymer (v = n/N). Curve 1 pertains to the closed circular
form, and the curve 2 to the nicked circular form (from the
study of Bauer and Vinograd44).

gard it is interesting to note that when doubts arose not
so long ago as to whether DNA is a double helix, owing
to the appearance of an alternative model, the latter
could be definitely rejected, precisely on the basis of
data on CC DNA (see Ref. 20).

The vigorous development of studies of the CC form of
DNA has in a compelling manner posed especially
sharply the need for constructing an adequate theory,
i.e., a theory of ring polymer structures that takes into
account the topological restrictions. Considerable pro-
gress has been attained in the past ten years in con-
structing this type of theory. We shall present these
results in detail in Sees. 3-5, while in Sec. 6 we shall
return to examining circular DNAs and shall show how
the results of the theory enable one to interpret the ex-
perimental data on these new and extremely interesting
objects of living nature.

3. THEORY OF KNOTS AND LINKAGES

a) The statistical integral for closed chains

In calculating the statistical integral (partition func-
tion) for a closed chain or a system of closed chains,
one must restrict the region of integration only to the
region of phase space that corresponds to the topologi-
cally equivalent states of the system. Therefore one
must know how to characterize the topological states of
a system by starting with the configurations of the poly-
mer chains contained in it. Such a characteristic,
which depends only on the topology of the system, i.e.,
remains invariant upon any deformation of the chains
that can be carried out without destroying their integri-
ty, is called a topological invariant. Thus, in the case
of a single closed chain, a topological invariant must
primarily answer the question of whether the closed
chain is knotted (Fig. 8). In the case of a system of two
closed chains, the simplest question consists of whether
they are linked or not, etc.

Let us clarify what we have said with the example of
the statintegral for a single closed polymer molecule
represented by a model of a freely- linked chain made of
n - 1 identical links of length 6. The statistical integral
of this chain has the form

J] dit ft +,-r, |-6)6(t,)6(rn)

X(4ji62)-"e-e<I'6(G0-G(r), . . . ,rn)). (3)

Here r{ is the radius vector from the coordinate origin
to the ith vertex of the chain, and * is the total intra-

FIG. 8. Examples of topologically equivalent and nonequivalent
polymer chains.
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molecular potential. This expression coincides with the
standard expression for the statsum of an open chain
having the distance between the ends r (see, e.g., Ref.
2, Chap. 7, Sec. 9) for r = 0, with a substantial excep-
tion consisting of the presence of the last 5 function. In
it G0 is a certain value of a topological invariant of the
closed chain, while G symbolizes a function with the aid
of which one can find the value of the topological invari-
ant by starting with the spatial configuration of the
chain. The appearance of this 6-function expresses ex-
plicitly the fact that the statistical physics of closed
chains can in no case be considered a simple limiting
case of the statistical physics of linear chains for r = 0.
One might say that, just as the physics of linear poly-
mer chains is governed by the linear memory (see,
e.g., Ref. 8) arising from the fixed sequence of links,
the physics of closed chains is further governed by the
topological memory arising from the mutual impene-
trability of the links with one another.

The simplest topological invariant that allows one to
distinguish the states of two closed curves C, and C2 is
the following expression (the Gauss integral; see, e.g.,
Ref. 21, Chap. 3, Sec. 15):

(ill X dia) r
(4)

Here Ti and r2 are radius vectors that pass along the
curves Ct and C2, respectively, and we have r12 =r4

- r2. By using the Stokes theorem, we can easily show
that the integral in (4) equals the algebraic number of
intersections by one of the curves with a surface
stretched on the other curve. This directly implies that
the Gauss integral is not a complete topological invari-
ant—examples exist of linked curves for which G = 0,
just as for unlinked curves (see below, Fig. 10 and
Table II). Thus, the Gauss integral is a weaktopologi—
cal invariant. The situation is even worse with knots-
no integral invariant exists for them at all. The as-?
sumption that the integral in (4) for C, = C2 can betreat-
ed as the invariant of a knot10 has proved false (see Ref.
22; the true meaning of the Gauss integral taken over a
single curve will be treated in detail below in Sec. 4).

Thus the calculation of the integral in (3) by analytic
methods is impossible owing to the lack of an analytic
expression for the function G for knots. As for link-
ages, the employment for them of analytic methods for
calculating the statintegral while using the function G in
the form (4) faces serious mathematical difficulties.10'23

Even more importantly, if one were able to overcome
these difficulties, it is not evident how far one could
trust the results obtained, owing to the defects of the
Gauss integral as an invariant of linkages. Therefore
another approach has been proposed,22'24 based on using
numerical, machine methods. The attractiveness of
this approach consists of the fact that it enables one to
use algebraic invariants of knots and linkages. The
construction of such invariants has been one of the re-
markable advances of algebraic topology. Without tak-
ing up the mathematical details, which are contained in
the monograph of Ref. 25 we shall take up below the
fundamental ideas that have led to the construction of
the algebraic invariants of knots and linkages.

b) Classification of knots and linkages

Before we proceed to describe the algebraic invari-
ants of knots and linkages, let us dwell briefly on the
problem of what are knots and linkages in general and
how are they classified. To do this, we must stipulate
the reduction of any knot or linkage to a certain stand-
ard form. Naturally, in such a reduction we must take
case not to allow self-intersection of chains. This type
of deformation is called in topology an isotopic defor-
mation. Two knots (or linkages) that can be converted
into one another by isotopic deformation belong to the
same isotopic type. The standard form of a knot (or
linkage) has been adopted as being its representation
that realizes the minimal number of crossings when
projected on a plane. The simplest knot has three such
crossings (see Fig. 2), and it is called the trefoil.

Knots are simple or compound. A knot is called com-
pound if an unbounded surface exists that is intersected
by the knot at only two points, and which divides it into
two knots. Figure 9 shows the initial part of the table
of simple knots. In particular, all knots are presented
having a number of intersections less than nine when in
the standard form. A knot and its mirror image are
treated as belonging to the same type of knot, although
they can belong to the same or to different isotopic
types. Thus the trefoil and its mirror image belong to
different isotopic types, while the figure-eight (the knot
4,) and its mirror image belong to a single isotopic
type. The table of knots is actually the table of types of
knots, since it presents only one representative of mir-
ror pairs. With increasing number of intersections,
the number of types of simple knots increases very
rapidly. Thus, tables have been constructed at present
of all the types of knots with a number of intersections

FIG. 9. Table of the simple knots having in the standard form
a number of crossings less than nine.
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less than ten,26 with ten,27'28 and a perhaps incomplete
table of knots with eleven intersections (see Ref. 27). It
turns out that 49 types of knots exist with nine intersec-
tions, 165 types of knots with ten intersections, and a-
bout 552 types of knots with eleven intersections (pic-
tures of all these knots can be found in the cited stud-
ies).

Curiously, this distinctive activity of compiling com-
plete tables of knots, which was begun (and very strong-
ly advanced) more than one hundred years ago by Tait,
Kirkman, and Little, has been continued after a long
interuption by Conway27 and Perko.28 We note that such
tables are very valuable for the problems treated in
this review, since they allow one to test the effective-
ness of invariants of knots.

In contrast to the table of knots, the table of linkages
was first compiled quite recently.27 It contains 275
types of simple linkages with a number of intersections
less than eleven, and is constructed by the same princi-
ple as the table of knots. The initial part of the table of
types of linkages is shown in Fig. 10.

c) Algebraic invariants of knots and linkages

The first and most essential step in constructing an
invariant of a knot is to introduce the concept of the knot
group. The knot group amounts to a special case of the
fundamental group (see Ref. 21), the concept of which is
the basis of many branches of algebraic topology.

Thus, let us treat a knot in three-dimensional space
(Fig. 11). A knot is understood to be any closed curve,
and in particular the topological equivalent of a circle
(in this case it is called a trivial knot). Let us remove
from the space being considered all the points belonging
to the knot. The remaining set of points is called the
complementary space of the knot. Let us choose an ar-
bitrary point p in this space. We shall call any trajec-

FIG. 11. On the concept of a knot group. The loops aj and a2

are equivalent (o4» a2) and we have a^a^, a,o2 *a3.

tory a loop with the basis point p if it completely be-
longs to the complementary space, and begins and ends
at the point p. Let us assign a direction of passage a-
round the loop. Two loops are termed equivalent if they
can be transformed into one another by continuous de-
formation in the complementary space of the knot. It is
essential to stress that any self-intersections of the
loops are allowed during their deformation, though it is
strictly forbidden to go outside the complementary space
(see Fig. 11). Thus all possible loops are subdivided into
classes of equivalent loops. A remarkable fact is that
the classes of equivalent loops form a group, which is
called the knot group. Here the product ab of the two
loops a and b is taken to be trajectory that successively
passes along the loop a and then the loop b. The loop
a"1, or inverse of the loop a, passes through the same
points of space, but in the reverse direction. The
identity element of the group is the class of loops that
can be retracted into the point p (cf. loop a0 in Fig. 11).
We should stress that the knot group does not depend on
the choice of the basis point p. Knots that belong to the
same type (and a fortiori to the same isotopic type) cor-
respond to isomorphic groups.

Let us clarify what we have said with the example of
the trivial knot, i.e., a circle. Evidently, in this case
each class of equivalent loops is unambiguously charac-
terized by the number of turns that the loops contained
in it make around the given circle. That is, the set of
these classes is equivalent simply to the set of integers.
Thus the group of the trivial knot is isomorphic with the
group of integers. Moreover, a very important theorem
has been proved in the theory of knots: no nontrivial
knot has a group isomorphic with the group of integers.
Hence we see that the knot group is a very powerful
topological invariant. However, examples are known of
knots of different types that have isomorphic groups
(Fig. 12). Nevertheless, the knot group would be a very
good invariant if a universal method existed for estab-
lishing the isomorphism of two knot groups. However,

FIG. 10. Table of the simple linkages having in the standard
form a number of crossings less than nine.

FIG. 12. Example of knots of different types that have isomor-
phic groups.
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TABLE I. Alexander polynomials of the knots shown In Fig.
9.

FIG. 13. On the calculation of an Alexander polynomial. Here
xt, x-i, and A: 3 are the generators, and 1, 2, and 3 are the
crossing points in the projection of the knot.

no such method exists because the knot group always
consists of an infinite number of elements. Therefore
the next step is taken in the theory of knots — one seeks
invariants of the knot group, which unavoidably prove to
be weaker topological invariants, but for which the
problem of equivalence is easily solved. The most con-
venient invariant of this type is the so-called Alexander
polynomial. We shall present here the algorithm for
calculating the Alexander polynomial in a final form
convient for machine calculations.22

First we shall project the knot on a plane along an ar-
bitrarily chosen axis, while drawing breaks at the
crossing points in the part of the curve that lies below
(Fig. 13). Now the projection of the knot amounts to the
set of segments of curves, which are called the gener-
ators. Let us fix arbitrarily the direction of passage of
the generators and number them, having selected arbi-
trarily the first generator. The crossing that separates
the kth and (k + l)th generators will be called the kth
crossing. The crossings are of two types (Fig. 14).
Thus each crossing is characterized by its number, by
its type (I or II), and by the number of the generator
passing over it. Now we can correlate the knot with a
square Alexander matrix, in which the kth row corre-
sponds to the kth crossing and which consists of n ele-
ments (n is the total number of crossings in the projec-
tion of the knot). Here all the elements except aM, «»,»»!
and akf (i is the number of the overpassing generator)
are zero. The nonzero elements of the kth row are de-
fined as follows:

1 ) when i = k or i ~ k + 1 , independently of the type of
crossing, we have:

2) when itk, ii=k+\, we have for a type I crossing:
ahh — 1, akk+i = — t, a f t j = * — 1

and for a type II crossing:

These relationships hold for all k =1, .
the condition of the substitution n +1 — 1.

n under

®
FIG. 14. The two types of
crossings.
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8
8
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A (1)

2l4 — 6(' + 7(2 — 6( + 2
I1 — 3lb + 5l4— 5(3 + 5l2 — 3t + 1

1s— 3(5 + 5l4— 7l3 + 5(2 — 31 + 1
1s — 3(s + 6(4— 713 + 6(2— 31+1

(4— 713+13I2 — 71+1
2(«— 7(3+11(2 — 7l + 2
2l«— 8(3+11(2 — 8( + 2

(6 _ 4(5 + 8(»_ 9C +8(2 - 4( + 1

Is - 5(s + lot4 - 13(3 + 10,2 _ 5, + !
(«_ (> + {»— ( + 1
(4_2(3 + 3t2_2( + i

The Alexander polynomial A(f), which is an invariant
of the knot, is obtained from the Alexander matrix as
follows. One calculates any (n— l)th order minor (the
result does not depend on the choice of minor) and mul-
tiplies it by +t'm (m is an integer) so that the polynomi-
al obtained has no negative powers and has a positive
free term.

Thus the problem of the equivalence of knots reduces
to the problem of the equivalence of polynomials of fin-
ite order, which no longer presents any difficulty.

Thus for the trivial knot we have A(f) = 1, for the tre-
foil A(f) = t2 - t + 1 , etc. Table I gives the Alexander
polynomials for all the knots shown in Fig. 9. The
Alexander polynomials for more complex knots have
been given in Refs. 26-28.

Although the Alexander polynomials differ from one
another for all the knots of Table I, the Alexander poly-
nomial is, of course, not a complete invariant of a knot.
Thus, replacement of all the type I crossings by type II
crossings and vice versa does not alter the Alexander
polynomial. Yet, evidently, this operation corresponds
to a mirror reflection of the knot. Thus, just like the
knot group, the Alexander polynomial does not permit
us to distinguish a knot from its mirror image.. We can
easily convince ourselves of the equality of the Alexan-
der polynomials for the knots shown in Fig. 12. In fact,
each of these knots is composite and consists of two
trefoils. At the same time, the Alexander polynomial
of a compound knot equals the product of the Alexander
polynomials of the simple knots that form it. Thus the
Alexander polynomial of the two knots shown in Fig. 12
is simply equal to (f2 - t + 1 )2. Many other examples are
known of coincidence of the Alexander polynomials of
knots of different types.

Nevertheless the Alexander polynomial has an impor-
tant advantage that makes it very suitable for use in the
statistical physics of ring chains — the simplest knots
have almost unique Alexander polynomials. Namely, a-
mong the 802 knots with less than 12 crossings, only
two have the polynomial A( / )= l ; these are shown in Fig.
15. The polynomials t2 - t + 1 and f - 3t + 1 are en-
countered only once in all, and they correspond to the
knots 3, and 4,, respectively.
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FIG. 15. Nontrlvial knots for which the Alexander polynomial
A (f) = 1. The knot 11473 belongs to fee same isotopic type as
the knot shown in Fig. 6 of Ref. 22.

An invariant in the form of an Alexander polynomial
also exists for linkages, but it is a function of two var-
iables, rather than one (or more than two, depending on
the number of chains being considered). The algorithm
for calculating the Alexander polynomial A(s, t) for two
chains is analogous to that for calculating the Alexander
polynomial for a knot, but is somewhat more unwieldy.
It can be found in Ref. 24. Table II gives the Alexander
polynomials for the linkages shown in Fig. 10. For un-
linked curves we have A(s,f) = 0.

There is a very simple relation between the Alexan-
der polynomial and the Gauss integral of (4):

I G | = | A (1.1) | (5)

Hence we see that the Gauss integral is generally a far
weaker invariant than the Alexander polynomial. An
especially substantial defect of the Gauss integral as an
invariant of a linkage is that it vanishes for many rath-
er simple types of linkages and thus does not enable one
to distinguish them from unlinked curves (see Table II).
At the same time, among the 91 types of linkages with a
number of crossings less than nine given in Ref. 27,

TABLE IL Alexander polynomials A (s, t) and values of the
Gauss invariant in (4), A (1, 1), for the linkages shown in
Fig. 10.

Type of
linkage

1
(J-1)(<-1)

2«l-(t+o'+2

2s3t— I3 — s + 2

(1 +«)(«'

— 2(s+0 + l

t — 4s>— 4

(s3-!)((-!)

ft — 4s*< + 4s* + 4s( — 4s + 1

I A ( i . 1 ) l

Note. We have A (s, t) = 0 for unlinked contours. The form
of the Alexander polynomial is fixed apart from the replace-
ment s —1/s and/or t -~ 1/t. Thus the polynomials s2+ f2 + st
and s2t2 + st + 1 are equivalent.

there is not one for which A(s, t) =0, while we find
A(s, f) =1 only for the simplest linkage 2,. Thus the
Alexander polynomial is a very good invariant of knots
and linkages that is highly suitable for use in the statis-
tical physics of closed polymer chains.

4. THEORY OF RIBBONS

Along with the application of purely topological con-
cepts and methods to analyzing ring polymer structures
that were discussed in Sec. 3, considerable attention
has been paid during the past decade to employing a new
mathematical apparatus that has arisen at the boundary
of topology and differential geometry for treating a
special class of closed polymer molecules, namely the
circular DNA molecules that were discussed in Sec. 2.
A broad range of external conditions exists in which we
can treat the double helix of DNA as being a smooth
ribbon whose edges are the sugar-phosphate skeletons
of the two complementary strands (Fig. 4). Closed cir-
cular DNA will always correspond to a two-sided rib-
bon, since the chemical structure of the molecule rules
out the possible formation of one-sided ribbons of the
type of the Moebius strip. Thus each edge of the ribbon
forms a separate closed curve, and these two curves
can be unlinked or form linkages of various types. The
types of linkages that can arise here comprise a sub-
class of the entire set of linkages. As we can easily
convince ourselves, for this subclass of linkages the
Gauss integral of (4) is a complete topological invari-
ant.1' The value of this integral, which can be only an
integer, is called the linking number of the edges of the
ribbon, and is denoted by Lk. Thus the quantity Lk is a
natural topological invariant of a ribbon. A given value
of Lk corresponds to a set of different geometrical
forms of the ribbon. The problem consists in finding
the differential-geometric characteristics of the ribbon
that are associated with its topological characteristic,
i.e., with Lk. Evidently one such characteristic is the
twist Tw of the ribbon, a concept well known in differ-
ential geometry29 [see also Eq. (10) below]. Situations
exist in which Lk = Tw. In particular, this happens if
the axis of the ribbon lies completely in a plane. On the
other hand, we can at least partially realize a given
value of Lk by fixing the axis of the ribbon over a cer-
tain interval in the form of a helical line, rather than
by twisting the ribbon. Thus, in the general case we
have Lk*Tw, This fact, unexpected at first glance, in-
volves the fact that the quantity Tw is the sum of the
small rotations of the vector perpendicular to the axis
of the ribbon as measured in the local system of coor-
dinates, which per se rotates as we move along the rib-
bon.

As an example to illustrate what we have said, let us
examine a ribbon tightly applied to the surface of a
cylinder, and whose axis describes a helix (Fig. 16).
Let R be the number of turns that the axis of the ribbon
makes (fl > 0 for a right-hand helix and R < 0 for a left-

*' For simplicity we assume in this section that the ribbon as
a whole forms a trivial knot. However, this does not re-
strict the generality of the results.
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FIG. 16. A ribbon wound flat on
the surface of a cylinder (R= -2).

hand helix), p be the pitch of the helix, and r the radius
of the cylinder. In this case we have:

Lk = R, (6)

(7)

Thus, in addition to the twist of the ribbon, at least
one more differential-geometric characteristic of the
ribbon must exist that is associated with its topology.
This characteristic was found relatively recently in
Refs. 30-33. It was shown that we always have

Lk = Tm + Wr. (8)

Here the quantity Wr, which has been called the writh-
ing number (from the English verb writhe) is determin-
ed solely by the arrangement in space of the axis of the
ribbon C and is expressed in the form of the Gauss in-
tegral (4) with C,=C2=C:

' . (9)

Formula (8) was proved by White33 in 1969. Since the
cited studies, and in particular Ref. 33 are written for
mathematicians and are difficult to understand for a
reader not having special preparation, we shall give a
simplified proof of White's theorem due to V.V. Anshel-
evich.

Let r ( t ) , 0« <« 1 be a doubly differentiate closed
curve without self-intersections, i.e., a curve for which
r(Z)=r(0); r'U)=r'(0); r"(Z) = r"(0). Moreover, let
|r"(<)|<const. That is, the curve has a bounded curva-
ture.2' As the parameter t, let us select simply the
distance between the points r(t) and r(0) along the curve.
Then |r'U)| = l.

Further, let a.(t) be a unit vector normal to the curve
r(t). Let us consider the two closed curves, r(t) and
rU) + eaU). We shall consider the parameter £ to be so
small that the type of linkage of the two curves does not
change upon further decrease in e. Such an e exists,
since we have |r*(f)|«const. Thus we have correlated
the curve r(t) with a certain ribbon having the edges r(t)
and r(t) + ta.(t).

Let us calculate the limiting value of the Gauss inte-
gral of (4) for these two curves:

_L f ds f At l(r (0 - r (») - ea (»)) X r' (t)] (r' (») + ea' (.))

0 0

2) All the results remain valid also for piecewise smooth
curves.
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as £—0. By definition, this value is the quantity Lk.

Let us subdivide the interval of integration with re-
spect to t into two parts: a small neighborhood of the
points, i.e., s - 6 « / « s + 6, and the remaining part of
the segment [0, 1], where the integrand has no singular-
ities. In the 5- neighborhood we can consider r(f) to be
a segment of a straight line:

r (t) = r (s) + r' (s) (t - s),
r' (t) = r' (s).

Then the integral with respect to t in the 6-neighbor-
hood of the point s will be:

( ' ' («)xa(«))a'(«)d«

apart from terms small in comparison with the param-
eter e.

The integral over the remaining part of the segment
has no singularities, and to the same accuracy is equal
to:

1 f f Kr(«)-t(i))Xr'(Qlr '(«)

Here we can extend the integration over the entire seg-
ment [0,1], since the value of this integral in the re-
gion s - 6 « < « s + 6 approaches zero as 6—0.

Finally we have:

dS+
^ I I

l(r(Q-r(i))xr ' ( t) ldtdt (JQ)

The first term in this expression is the total twist of
the ribbon.29 In the special case in which we take a.(t) to
be the principal normal of the curve r(t), this term will
amount to what is called in differential geometry the
twist of the curve. Formula (10) was derived specific-
ally for this special case in the pioneering study of Cal-
agareanu.30' 31 White33 showed that this formula is valid
for an arbitrary ribbon. The principal point is that the
second term of Eq. (10) does not contain the vector a(<).
That is, this term depends only on the form of the axis
of the ribbon. It amounts to a new differential-geomet-
ric concept of the writhing number of a curve. This
term was introduced in 1971 by Fuller,34 who first
pointed out the importance of the mathematical results
presented above for the theoretical analysis of the prop-
erties of circular DNAs (see also Crick's article35).

Let us examine the fundamental properties of the
writhing number. First of all, we must stress that the
writhing number in (9) is generally a continuous func-
tion of the form of the curve, in contrast to the classi-
cal Gauss integral for two curves, which can adopt only
integral values. The quantity Wr suffers discontinuities
only when one region of the curve passes through an-
other, and here the magnitude of the jump is always +2.
It is evident from Eq. (9) that the quantity Wr is zero
for curves possessing a center or plane of symmetry.
One can say that the writhing number serves as a
measure of the right- left asymmetry of the curve, i.e.,
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a measure of its chirality.

Similarly to Wr, the quantity Tw is also a continuous
function, which depends both on the form of the curve
fixed by the axis of the curve and on how the
ribbon is "wound" on this curve. Thus, the right-hand
side of Eq. (8) contains the sum of two continuous
functions, while the left-hand side contains a topologi-
cal invariant that can adopt only integral values. The
stated properties of the quantities Wr and Tw are well
illustrated by the example of a ribbon wound on a cyl-
inder discussed above (see Fig. 16). Equations (6)-(8)
imply that in this case we have

(ID

This same formula can also be derived directly by cal-
culating the integral in (9). We note that Eq. (11) is
general for all ribbons whose axes describe a helix
having the pitch/), radius r, and number of turns R.
This does not pertain to Eqs. (6) and (7), which hold
only for the doubly special case of a ribbon tightly ap-
plied to the surface of a cylinder. The same configura-
tion of the axis of a ribbon, i.e., the same value of Wr,
can correspond to a set of ribbons having different
values of Tw and correspondingly of Lk.

5. CALCULATIONS BY THE MONTE CARLO
METHOD

a) Methods of calculation

We see from the material presented in Sec. 3 that
very effective invariants of knots and linkages exist.
However, these invariants have a nature such that they
do not enable one to calculate statintegrals of the type
of (3) by analytical methods. Therefore one naturally
turns to numerical methods of calculating the statisti-
cal characteristics, i.e., to Monte Carlo methods.
As applied to the problems treated here, this implies
generating closed chains in a random fashion and clas-
sifying them according to their topological states.
Further, one can study by such a machine experiment
any of the statistical properties of chains existing in a
certain topological state.

1) Generation of closed chains. A problem that
arises in calculating the statistical properties of
closed chains by the Monte Carlo method consists of
the need to generate closed chains having an unde-
formed distribution function. The most direct method,
albeit absolutely inapplicable from the practical stand-
point, would be the random generation of chains having
a nonfixed distance between the ends, with selection of
those for which the ends fortuitously meet. The inef-
ficiency of this method is obvious. Therefore the de-
velopment of special algorithms that enable generation
of only closed chains of a given length was required
for the set of problems under study. Such algorithms
could be constructed only for the simplest model of a
polymer chain in which the directions of adjacent seg-
ments are uncorrelated. This model is very popular
in polymer physics, since, when the chains are long
enough, the properties of real polymer chains are
practically indistinguishable from those predicted by

this simple model. The connection between the actual
and the idealized polymer chain is established by
selecting an appropriate value of the length of a seg-
ment (it is called the statistical or Kuhn segment, see,
e.g., Refs. 3-5).

Instead of generating chains in which the probabilities
of any direction for each link are the same and then
choosing from them the closed chains, one can proceed
in a different way. One can construct chains segment
by segment so that the direction of each link is deter-
mined by the conditional probability calculated taking
into account the fact that the chain must close at the
last step of the construction. It is important to em-
phasize that this approach must yield the same statis-
tical ensemble of closed chains as does the first, di-
rect approach.

Let us calculate this conditional distribution function
P (n -i, r(, 8), where i is the number of links already
constructed, r( is the radius vector from the origin of
the chain to the end of the z'th link, and 6 is the direc-
tion of the (i + l)th link. Let P (k, r») be the distribu-
tion function of the vector of the distance between the
ends of an unclosed chain made of k segments. In
order to calculate the function P (n -i, ri; 8 ), let us
examine the remaining part of the closed chain, which
consists of n -i segments, and which joins the point
with the radius vector r( with the origin of the chain.
The sought distribution function is the ratio of the
number of trajectories passing through the point rt + 6
to the total number of trajectories reaching the point
ri =
P (n — i, r,, «)

= P (n - i - I,T, + 6) P(i, 6) ( j P (n — i — l,r, + 6)^(1,6) dfl)"1.

According to the Chapman- Kolmogorov equation, we
have:

f P (i, 6)P (n~i — i, r, + «) dfi = P (n - i, r,).

Consequently we finally obtain:

P („-,-, rlt 6)- (12)

Equation (12) is universal in nature and it can be used
both for lattice and non-lattice models. The problem
consists only in having the expressions for P (k, r4)
turn out simple enough so that the obtained function
P (n -t, r{, 6 ) would be convenient for machine genera-
tion of closed chains. Two models have been proposed
that satisfy this requirement.

A lattice model of a polymer chain has been treated22

that consists of segments of identical length, for the
case of a body -centered lattice, for which the function
P (k, r,) has the form

i-l

In this case Eq. (12) yields the expression

P (m, r, 6) = ]][ "7''*'.. where 6/= ±1 . (13)

The lattice model has the defect that cases are un-
avoidable in it in which the end of a segment falls at

688 Sov. Phys. Usp. 24(8), Aug. 1981 M. D. Frank-Kamenetskii and A. V. Vologodskii 688



an already occupied lattice node. In order to avoid
such events, a simple method was employed in Ref.
22 that consists of having the whole lattice shifted by
a small random vector at every such event, and con-
structing the chain thenceforth on the new, shifted lat-
tice.

A convenient distribution function for the lattice -free
model was proposed in Ref. 36. It treats a freely -
linked chain consisting of segments of unequal length.
Specifically, it was proposed that the projection of the
length 5] of the segments on an arbitrary axis has a
normal distribution:

In this case the function P (k, r,,) will have the following
form:

(14)

The formula (14) coincides with the well-known dis-
tribution function for the distance between the ends for
a freely-linked chain made up of k identical segments
of length / in the case k » 1. The convenience of the
model being treated consists of the fact that in it the
expression (14) is rigorous for any k (including k = 1).
Upon substituting (14) into (12), we finally get:

P(m, (15)

There also exist other, formally less rigorous al-
gorithms, yet not inferior in practice to that presented
here, which enable one to treat a lattice-free model of
closed chains made up of segments of differing lengths
(see, e.g., Ref. 37).

2) Calculation of the Alexander polynomials. In
performing the machine calculations, one conveniently
does not compare with one another the Alexander poly-
nomials A(£) , but the numerical values of these poly-
nomials for certain previously selected values of t.
Here again the tables of knots come to one's aid, or
more exactly, the corresponding tables of Alexander
polynomials. Analysis of these tables shows that the
Alexander polynomials are as a rule sign-alternating.
Consequently the value A (-1) corresponds to the sum
of the absolute values of the coefficients of the poly-
nomials, which is larger than 3 for all polynomials but
A(0 = 1 and &.(t) = t2-t + 1. Thus, in order to distin-
guish the trivial knot and the trefoil from one another
and from the rest of the knots, it suffices in practice
to calculate only A (-1), as was first proposed in Ref.
22. If we add as well the value of A (-2), we can dis-
tinguish all the polynomials of knots with a number of
crossings less than 10.

Before we calculate the Alexander polynomial on the
basis of the Alexander matrix, it is very convenient to
reduce the order of the matrix according to the follow-
ing rules:36

a) If the feth row contains only two nonzero elements
fl4t= -1 and a,^i = 1, then we should add the column k
to the column k + 1. Then we delete the yfeth column and
the feth row and renumber the rows and column afresh.

FIG. 17.

b) If in two adjacent rows of the matrix having the
numbers k and k + 1 elements having the value t - 1 lie
in a single column and elements equal to t -1 are lack-
ing in the (k + l)th column, then we should add the feth
column to the (k +2)th, and then delete the feth and
(k + l)th rows and columns and renumber all the rows
and columns afresh.

These two operations performed on the Alexander
matrix correspond to removing the crossings shown in
Fig. 17a and b, respectively. They are identical to
the first two operations on the table of crossings of a
knot proposed by Le Bret.37

In order to distinguish unlinked curves from the
simplest linkage 2X and these two situations from all
more complex linkages, it suffices to restrict the
treatment to calculating the value of the Alexander
polynomial A (-1, -1) (see Table II).

b) Results of the calculations

1) Probability of knot formation. The first problem
that arises in analyzing ring polymer chains consists
of the following. Let a ring molecule be formed by
fortuitous closure of a linear molecule consisting of n
segments. What is the probability of forming a
knotted chain, i.e., a nontrivial knot? This problem
has been clearly formulated by Delbriick38 and first
solved22'39 by the methods presented in Sec. 3 and in
the last subsection. Analogous calculations have re-
cently been performed in Refs. 36 and 37. All the
published data on the relationship between the proba-
bility of knot formation and the number n of segments
in the chain, as well as the results of our recent cal-
culations, are collected together in Fig. 18.

We see that the results obtained by various authors .
agree very well with one another. This is not sur -
prising, since, in spite of a certain difference in the
polymer models employed, to which certain differences
in the results are due, the presented data in all cases

0.6-
P
OJ

a -I
-{--2

a 100 200 n 300

FIG. 18. Dependence of the probability jP of formation of a
nontrivial knot during random closure of a polymer chain on
the number of segments in it. 1—data of Refs. 22, 39; 2—
data of Ref. 36; 3—data of Ref. 37; 4—recent data of the pre-
sent authors.
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fit the model of an infinitely thin polymer chain.

We see from Fig. 18 that the probability of knot for-
mation has an evident tendency to approach unity as
n — oo, though as yet it has been possible to perform
the calculations only up to n values such that P barely
exceeds 0.5. The extension of this relationship into
the region of large n is hindered by the memory size
and speed of the computer. Of course, there is a
limitation in principle, which involves the fact that
certain nontrivial knots have the same Alexander poly-
nomial as an unknotted chain (trivial knot) does. How-
ever, such knots constitute such an infinitesimal frac-
tion of all the knots (see Sec. 3), that this restriction
becomes substantial only at n values for which the
probability of knot formation already has become unity.

It has been shown22 >37>39 that the probability of knot
formation declines sharply with increasing ratio of the
thickness d of a segment to its length 6. Le Bret37 has
generalized the results of the calculations of the prob-
ability P of knot formation in the form of the following
interpolation formula:

P = (-1.97 -10-2 + 2.76-10-3n + 5.60-lO-W - 2.37-10-8n»)
x exp (—11,6 d/6), 6< ra< 150.

(16)
The probability of knot formation for chains having

an excluded volume can become so small that doubts
can arise whether the probability of knot formation
always approaches unity as w — «. At one time
Hammersley40 proposed that the fraction of unknotted
closed chains becomes exponentially small with in-
creasing n, even for chains having an excluded volume.
As Frisch and Klempner41 have shown, this fact stems
from the work of Kesten42 and from one of the theorems
of knot theory. As we see from Eq. (16), however, the
probability of knot formation at fixed n declines expo-
nentially with increasing ratio of the thickness to the
length of a segment.

The sharp decline in the probability of knot formation
with increasing thickness of the chain, i.e., increasing
excluded-volume effect, suggests that this probability
will increase when attraction between remote segments
of the chain is introduced, i.e., in the case of a nega-
tive excluded volume. To test this hypothesis, we have
performed calculations of the probability P of knot for-
mation as a function of the value of the swelling para-
meter a of the polymer chain in the region a < 1.

The quantity a was defined as usual (see, e.g., Refs.
5, 8), i.e., a2= <S2)/<S2>0) where (S2> is the rms radius
of inertia of the chain under study, and (S2)0 is the
same for the 0-point, i.e., for an infinitely thin chain
without interaction between the segments. A model
potential of the form U= -J/0exp(-xr2) was used, where
r was taken to be the distance between any pairs of
vertices of the freely-linked chain. The calculations
were performed for two fixed values of H (0.2 and 0.5).
Each time the quantity a was varied by changing the
parameter U0. The results do not depend on the pa-
rameter x. Moreover, a potential of a quite different
type led to exactly the same results. Thus the prob-
ability of knot formation can be considered to be a

0.J-

0.2

o.a i.o

FIG. 19. Dependence of the probability of knot formation on
the swelling parameter a of the polymer in the region a <l,
i.e., in the presence of attraction between the segments. The
calculations were performed for a chain consisting of 30 seg-
ments.

single-valued function of the swelling parameter a,
without depending on the specific form of the interac-
tion potential between the segments. Figure 19 demon-
strates the very sharp dependence of the probability of
knot formation on a. It was not possible to proceed in-
to the region of smaller values of a since the calcula-
tions require too much machine time.

Data are also given in Refs. 22 and 39 on the prob-
ability of formation of knots of different types for the
model of an infinitely thin interaction-free chain. The
results of calculations of the probability of knot for-
mation have been discussed in connection with various
problems in Refs. 22 and 39. Extremely interesting
experimental data have appeared since then, and we
shall discuss them below in Sec. 6.

2) Topological interactions of polymer chains. Just
as the first problem of the statistical mechanics of
knots is the problem treated above of the probability
of knot formation upon random closure of a solitary
chain, the first problem associated with the behavior
of two chains is the probability of formation of the
linked (or unlinked) state during the random closure
of the two chains at a given distance (R) between their
centers of mass. The results of this type of calcula-
tions for the model of an infinitely thin chain (i.e., at
the 0-point), which were performed in Refs. 24 and 39,
are shown in Fig. 20. It turned out that the results of

i.o

FIG. 20. Dependence of the probability of formation of the un-
linked state of two polymer chains on the distance R between
their centers of mass. The different curves correspond to
different values of the number n of segments in each chain
(both chains are assumed to consist of the same number of
segments); 1—20, 2—40, 3—60, and 4—80. Data from Ref.
24.
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the calculations satisfy very well the interpolation
formula

P, - 1 - A, exp (-a0fl
s). (17)

Here A0 and a0 depend on the number of segments in
the chains (see Refs. 24, 39).

Equation (17) shows that the number of states of a
system made of two unlinked rings is a sharply varying
function of the distance between them. This means
that a gas (or solution) of unlinked, infinitely thin ring
polymer chains will not be ideal. Repulsion between
the chains of an entropic type arises in it. The second
virial coefficient for a. gas (or solution) of such chains
will have the following simple form (see Refs. 24, 39):

,, 2 A,
D = -5- It —3 <Z0 (18)

Analysis of the results of machine calculations shows
that the values of B obtained are very close to that
corresponding to spherical, mutually impenetrable
particles having a radius equal to the rms radius of
gyration of a closed polymer chain. Thus, ideal
closed chains must experience a mutual repulsion
completely caused by toplogical restrictions.

On the other hand, the quantity B enables one to cal-
culate the concentration of linked molecules (catenanes)
c,, that will be obtained upon random closure of linear
polymers having the concentration c:

c» = fB. (19)

3) Writhing-number distribution of closed chains.
In addition to the purely topological characteristics, a
differential-geometric quantity that was discussed in
Sec. 4 plays a very important role in the description
of circular DNAs, the writhing number Wr. The
problem of calculating the writhing-number distribution
of closed chains was first proposed by Benham43 and
solved in Ref. 44. Here the writhing-number distribu-
tion of chains belonging to a given topological type was
treated.

Figure 21 shows the results of the calculations of the
variance of the writhing number for unknotted chains
(trivial knots), as taken from Ref. 44. Exactly the
same results have been obtained by Le Bret." The
calculations were performed by the Monte Carlo meth-
od for lattice-free models of a freely linked, infinitely
thin polymer chain. In this case the double integral of
(9) can be converted into a double summation over the

FIG. 21. Dependence of the variance of the writhing number on
the number of segments in a closed, unknotted polymer chain.

segments, since this integral for two arbitrarily
oriented rectilinear segments can be calculated analyt-
ically. Le Bret37 employed a different, but completely,
equivalent definition of the writhing number.

The results of the calculations showed that the quan-
tity Wr for unknotted closed chains (trivial knots) has
a normal distribution with a maximum at zero and a
variance that depends almost linearly on the number
of segments in the chain (see Fig. 21). For the tre-
foil one obtains a bimodal distribution that is the sum
of two normal distributions, each of which corresponds
to the two mirror-isomeric forms of the trefoil (see
Ref. 37). The centers of these distributions lie at the
points Wr»±3. For the knot 4t, the center of the dis-
tribution lies at zero, as is natural, since this knot is
isotopically equivalent to its mirror reflection. Bi-
modal distributions are again obtained for the knots 5t

and 52, and here the maxima are separated respective-
ly by the amounts 126 and 9.4.37

It is important to emphasize that, even with a rela-
tively small number of segments in the chain, for
which the fraction of knotted chains obtained by ran-
dom closure is still very small, one must not calculate
the value of ((Wr)2) without treating the knotted
chains.44 This involves the fact that the knots lacking
mirror symmetry give a disproportionately large con-
tribution to the variance of the writhing number, owing
to their bimodal distribution.

6. APPLICATIONS OF THE THEORY TO CIRCULAR
DNAs

The topological problems in polymers began to be
discussed in connection with attempts at chemical
synthesis of knots and catenanes.13 Then the impor-
tance of topology in polymer networks was recog-
nized.9"12 These two lines of study have been discussed
in detail in the review by Frisch and Klempner.41 The
experimental situation in these fields has changed but
little since the publication of that review. Thus, in
spite of persistent, many-years of work on the chemical
synthesis of knots, this has not yet succeeded. How-
ever, during these years vigorous development has
occurred in the applications of topology to a complete -
ly new field: the field of circular DNAs. This prob-
lem was touched upon very cursorily in the review of
Ref. 41 solely in connection with the discovery of
linked DNA rings (catenanes). Currently it is pre-
cisely in the field of study of closed circular (CC)
DNAs that topological ideas and methods are finding
the most widespread application.

The application of topological ideas to studying the
properties of CC DNA was started by Fuller34 in 1971,
when he applied the results of ribbon theory to analyz-
ing the properties of these molecules. According to
this theory (see Sec. 4), besides the topological char-
acteristic of a ribbon—its linking number Lk, also two
differential-geometric characteristics play an impor-
tant role, the twist Tw of the ribbon, and its writhing
number Wr. Here all three characteristics are inter-
related by the condition (8).

We recall that CC DNA is generally not characterized
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by the total quantity Lk, but by the number of excess
turns (the number of supercoild T), as defined by using
Eq. (1). We stress that the quantity N/y0 in Eq. (1)
is rigorously fixed under given external conditions.
However, upon changing the external conditions (tem-
perature, composition of the solvent, etc.), the quan-
tity y0 varies. Therefore the number T of supercoils,
in contrast to Lk, is a topblogical invariant of DNA
only under fixed external conditions.

The true value of the twist Tw of the ribbon, that is
the axial twist of CC DNA, can generally be anything
whatever, depending on the value of Wr, since the sole
condition for a ribbon is the condition (8). Thus we
can require that Tw=N/y0. Then, according to (8),
we have Wr = r. Conversely, one can make Wr = 0 so
that all the supercoiling is realized in the form of an
axial twist. In this case we have Tw = Lk = T + (N/y0),
and the mean number of base pairs per turn of the
double helix will be

The real situation, i.e., what fraction of the super-
coils is realized on the average in the form of axial
twist, and what fraction in the form of writhing, i.e.,
bending of the axis of the double helix, is determined
by the relationship between the coefficients of rigidity
of the double helix for twist and for axial bending.
They are what determine the amplitude of the thermal
fluctuations of the quantities Wr and Tw about their
equilibrium values.

Experimentally one can measure directly only the
quantity r. The currently existing methods are based
on the fact that each value of T corresponds to its own
mean value of the writhing number, and consequently,
to its own value of the mobility of the CC DNA (see Sec.
2). This section will present the results of the studies
on circular DNA in which the theory presented in the
earlier sections has been employed in an essential
manner. We must remember in comparing theory
with experiment that DNA amounts to a very rigid
polymer, for which the ratio of the thickness of a seg-
ment to its length is of the order of 10"2. Moreover,
in the usually studied region of ionic conditions and
DNA lengths, one can neglect the interaction between
segments remotely spaced along the chain in DNA
(volume effects). Therefore the results of Sec. 5 that
pertain to the model of an infinitely thin chain without
interaction between the segments are applicable to
DNA.

a) Distribution of closed circular DNAs with respect to
topoisomers

Thus far we have been discussing conformational
rearrangements of CC DNA in which Lk is strictly in-
variant. That is, both strands of DNA remain con-
tinuous. Very valuable information on the energy and
conformation characteristics of CC DNA has arisen
from experiments in which the value of Lk could vary,
and the equilibrium distribution of the CC molecules
with respect to Lk was studied. The most convenient
way to vary Lk is to employ special enzymes, which

PIG. 22. Equilibrium distribution of CC DNA with respect
to the topoisomers. CC DNA of SV 40 virus was treated with
a type I topoisomerase and the obtained preparation was sub-
jected to gel electrophoresis. The abscissa is the coordinate
x along the gel; the ordinate is the corresponding amount of
DNA (y is in arbitrary units). Adjacent peaks correspond to
topoisomers that differ by unity in the value of T.

have been called topoi some rases.

The studies under discussion45'46 employed type I
topoisomerases, which alter the topological state of
CC DNA by breaking and re combining only one of the
strands of the double helix. These enzymes relax the
distribution of the molecules with respect to Lk to its
equilibrium form. The very sensitive gel-electro-
phoresis method was used for analyzing the distribution
of the CC DNA molecules with respect to Lk in these
studies. This method can separate molecules of CC
DNA that differ by unity in Lk. An example of the dis-
tribution of material obtained after gel electrophoresis
is shown in Fig. 22. Naturally, the maximum of the
equilibrium distribution always corresponds to r = 0.
We note that, although the quantity T can only adopt
discrete values that differ by no less than unity, it is
not required to be an integer. Therefore, as a rule,
molecules having r = 0 do not appear in a preparation.
It is also evident that molecules having values of T
close in absolute magnitude must have close -lying
mobilities and lie close together in the gel. A dis-
tribution of the type shown in Fig. 22, in which the
molecules having positive and negative values of r are
separated, are obtained when the electrophoresis is
performed under conditions differing from those in
which the reaction with the topoisomerase is con-
ducted. The change in conditions means that we must
substitute some other value y'0 in place of y0 in Eq. (1)
without changing Lk. This means that the entire dis-
tribution is shifted by the amount 5T = N[(l/r0) - (I/
yp]. Then the molecules that possessed the value r
in the original distribution will possess the values T'
= T+ &T in the new distribution. If 6r is large enough,
all of the topoisomers are well separated.

Experiments have shown that the obtained distribution
is always normal. The variance of this normal dis-
tribution <T2}= ((AZ,fe)2> as measured for different
DNAs is shown in Fig. 23. For numbers of pairs N
s 3000, the results of the experiments satisfy the fol-
lowing phenomenological formula:

- . (20)

We see from Fig. 23 that the results obtained by dif-
ferent authors, who have used completely different
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FIG. 23. Dependence of the variance <(AZ,*)2> of the distribu-
tion with respect to linking number of the DNA strands on the
number of segments in the DNA chain. The length of a seg-
ment was taken as 115 nm, i.e., 338 paris. 1—data of Ref. 45,
2—data, of Refs. 46, 47.

enzyme systems, fit a single curve. This very fact
convinces one that the distributions of molecules with
respect to Lk obtained in Refs. 45-47 are actually
equilibrium distributions. Each of these studies has
given other highly convincing proofs of the equilibrium
nature of the observed distributions.

These experiments have played a very important role
in studying the physical properties of CC DNA. They
have made it possible to find the relationship of the
free energy of CC DNA to the number of supercoiling
turns:

F = 1000flf-^-. (21)

Moreover, these data, together with the theoretical
results presented in Sec. 5, have made it possible for
the first time to obtain a reliable estimate of the tor-
sional rigidity of the double helix and to find what frac-
tion of the supercoiling r is realized in the form of a
change in the axial twist A Tw, and what fraction in
the form of the writhing number Wr. Under conditions
allowing multiple breaks and reconnections of one of
the strands of DNA, i.e., in the presence of topoiso-
merases, ATw and Wr are independent random quanti-
ties, while the resultant quantity ALfe equals their
sum [cf. Eq. (8)]:

ALfr = A TV + Wr. (22)

Evidently the mean values are (ATw>)= (Wr)= (AL&)
= 0. However, the quantities ((AT^)2} and ((Wr)2) dif-
fer from zero. Then, owing to the independence of the
random quantities A Tw and Wr, we have

- awr)*). (23)

The quantity ((AL£)2) is known from experiment (see
Fig. 23), and the quantity ((Wr)2) is obtained by cal-
culation (see Fig. 21). Therefore Eq. (23) makes it
possible to find {(A Tw )2) as a function of the length of
the DNA.

The results are shown in Fig. 24. On the other hand,
the quantity ((ATw)2) is unambiguously related to the
value of the torsional rigidity of the double helix. In

30

FIG. 24. Dependence of the variance <(T«>)2} of the axial
twist of DNA on the number of segments in the molecule.44

The points were obtained by subtracting the calculated values
of ((Wr)i) shown in Fig. 21 from the experimental values of

shown in Fig. 23.

fact, let a deviation of the angle between adjacent base
pairs of DNA by the amount A <£ increase the free en-
ergy by the amount

/ = -i-g(A(f)'-. (24)

Here g is the torsional rigidity.

When the fluctuations of the adjacent angles A $ are
independent, we have

(25)_ jy RT

In full agreement with Eq. (25), the value of
that was found proved to be strictly proportional to N
(see Fig. 24). The slope of the straight line made it
possible to determine g, which proved to be

g = 0.036 RT. (26)

This value of the torsional rigidity of DNA corre-
sponds to an rms amplitude of thermal fluctuations in
the value of the angle <f> between adjacent base pairs
of 5°. Thus the analysis of the experimental data on
circular DNAs employing the results presented in the
theoretical part of this review made it possible to es-
timate one of the fundamental characteristics of the
double helix. We should note that other attempts have
also been undertaken to estimate the torsional rigidity
of DNA on the basis of completely different experimen-
tal data (see Refs. 48-51). However, all these at-
tempts led to substantially less definite estimates.
Only recently has a rather accurate estimate been ob-
tained of the torsional rigidity of DNA from data on the
kinetics of depolarization of the fluorescence of a dye
bound to DNA.52 These data confirmed the results
given above from Ref. 44.

The presented results depend in an essential manner
on knowledge of another very important characteristic
of the double helix: its flexional rigidity. The flex-
ional rigidity of DNA is commonly characterized by
the value of the persistence length a, or, as is equiva-
lent, by the magnitude of the statistical segment 6 = 2a.
Studies during the past decade have yielded a reliable
estimate b = 115 ± 10 nm (see Refs. 53-56). It has been
shown very recently that this value remains constant
over a broad range of variation of external condi-
tions57'58 (ionic composition of the solvent, etc.). It
was assumed in Ref. 44, whose results have been
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presented above, that b = 115 nm independently of the
ionic conditions under which the DNA was treated with
topoisomerases. On the other hand, Le Bret37 could
not obtain a concrete estimate of the torsional rigidity,
although he also obtained correct results on the var-
iance of the writhing number (see Sec. 5). This is be-
cause he relied on the data of Harrington,59 which in-
dicated a very strong dependence of the persistence
length of DNA on ionic conditions. The complete in-
consistency of Harrington's conclusions has been
clearly demonstrated in Refs. 57 and 58.

We see directly from comparing Figs. 23 and 21 that
the value of (Wr2} amounts to almost exactly half of
the value of ((&Lk)2) for all lengths of circular DNAs.
This directly leads to the conclusion that in CC DNAs
half of the supercoils r must be realized in the form of
the writhing number, and half in the form of a change
in the axial twist.

b) Knots and catenanes

Above we have been treating the properties of CC
DNA that are determined by its two-strandedness. In
this case the topological characteristic is the quantity
Lk. In this section we shall take up the problems in
whose analysis we can treat the double helix of DNA
as a unitary polymer chain. The different topological
states in which closed polymer chains can exist, i.e.,
knots and linkages, have been described in detail in
the theoretical part of this review.

As mathematical objects, knots and linkages have
been studied already for more than a hundred years.
The problem of the possible existence of such topologi -
cal states in molecules has been raised relatively re-
cently (see the review of Ref. 41). It has acquired
special interest since the discovery of circular DNAs.
Shortly after the discovery of single circular molecules
of DNA, catenanes were found60*61 in certain cells, i.e.,
linkages, and even entire networks of linked circular
DNAs (see the review of Ref. 62). Catenanes are of-
ten obtained upon replication of DNA in vitro (see Ref.
63 and the references cited therein), and also upon
closure into a ring of linear DNAs having "sticky ends"
at sufficient concentration.64 The problem has arisen
of the mechanism of replication of catenanes and net-
works. In fact, it is very difficult to imagine how this
type of structures can duplicate itself in cell division.

The calculations of the probability of knot formation
upon closing a polymer chain, the results of which are
given in Sec. 5, have posed the problem of the possible
existence of knotted DNAs. Thus, according to these
results, the equilibrium fraction of knotted DNAs must
be appreciable for circular DNAs containing more than
10" base pairs (30 segments). In most cases DNA
molecules have even a greater length, and the hypothe-
sis has been advanced of the existence in the cell of
special mechanisms that prevent the formation of
knotted DNAs.39 In fact, in the replication of a knotted
chain the daughter filaments cannot separate. That is,
the replication of knotted DNAs involves serious prob-
lems.

Although the theory has predicted the possible forma-

tion of knotted molecules, at least in vitro, for a long
time they were not observed. This involved the fact
that, for the short DNAs (N < 104) for which one can
expect an appreciable difference in physical properties
(e.g., mobility) between knotted and unknotted mole-
cules, the probability of knot formation is very small.
On the other hand, for long molecules (N> 104), for
which this probability is considerable, the expected
changes in the physical properties are very small.
Knotted molecules were first detected in preparations
of single-stranded circular DNAs after they had been
treated under certain special conditions with a type I
topoisomerase.65 This was the first case of a dis-
covery of knotted polymer chains.

However, the problem of discovering knots in nor-
mal, two-stranded DNAs continued to be very intrigu-
ing. Knots in such DNAs have been obtained very re-
cently. M It turned out that there is a special subclass
of topoisomerases, i.e., enzymes that can alter Lk in
CC DNAs, called type II topoisomerases, and are
capable of untying and tying knots in CC DNAs. More-
over, these enzymes catalyze the formation of cate-
nanes from pairs or from a larger number of mole -
cules of CC DNA.67>68 Here entire networks are
formed, similarly to those observed in vivo in kineto-
plasts.62 In contrast to type I topoisomerases, type n
topoisomerases break, and then directly rejoin both
strands of DNA molecules. It has been shown that the
enzyme "draws" a segment of the same or of another
molecule lying nearby through the "gap" that is formed
in the intermediate state between the ends that arise
through breakage (Fig. 25). This operation with an
individual CC DNA corresponds to a change in the
writhing number by ±2 (see Sec. 4). However, it
evidently does not alter Tw. Consequently, we have
AL£ = ±2. That is, type n topoisomerases can change
the value of Lk only by an even number. In fact, ex-
periment shows that type n topoisomerases, in con-
trast to type I, always alter Lk only by an even num-
ber.88'69 Thus type II topoisomerases catalyze the
process of mutual penetration of segments of the double
helix through one another. Consequently, these topoi-
somerases must lead to establishment of complete
topological equilibrium, i.e., to a distribution of the

FIG. 25. Three "topological reactions" catalyzed by a type II
topoisomerase. a) change in the number of supercoiling turns
(Ar= ±2); b) untying and tying of knots; c) unlinking and for-
mation of catenanes.
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molecules over the topological states that would cor-
respond to freely penetrable strands.

As we have noted above, these molecules need not
be very long for a reliable proof of the detection of
knotted molecules, but then the fraction of knots, as
calculated, must be small. Liu and his associates66

have been able to overcome this contradiction by using
topoisomerase II in very large concentrations in which
it substantially changed the macromolecular properties
of the DNA itself. Moreover, they did not add ATP to
the enzyme, which is necessary for its normal opera-
tion. Precisely under these extreme conditions, they
found even in short DNAs having A T = 4 . 5 x l 0 3 a con-
siderable fraction of knotted molecules. They were
able to detect them initially from the appearance of
new bands in the gel electrophoretogram that corre-
sponded to a greater mobility. Study of the properties
of these fractions by various methods including elec-
tron microscopy has made it possible to show unequi-
vocally that they correspond to knots of various types.
If now one adds topoisomerase n in the normal amount
and ATP to a purified preparation of knotted molecules,
rapid untying of the knots takes place. That is, the
system rapidly relaxes to the equilibrium state for pure
DNA molecules, in which, as calculated, there should
be practically no knots for the given length. As regards
the reasons why the enzyme in high concentration
sharply shifts the equilibrium toward knot formation,
in the light of the results presented in Sec. 5, the most
likely explanation consists of the idea that the protein
in high concentration decreases the dimensions of the
polymer coil of DNA by changing the character of the
interaction of segments remote along the chain. As we
see from Fig. 19, even a small change in the dimen-
sions of the polymer coil sharply increases the equi-
librium fraction of knots. Another explanation66 of the
effect of the protein owing to a change in the dimension
of a segment seems less plausible. Knotted molecules
of DNA (and also catenanes) have been obtained also by
a highly refined method by employing special cell ex-
tracts that cause recombination, and preparation by
gene engineering of special "chimeral" DNAs.70

Thus it has been experimentally shown possible to
form knots in vitro. Moreover, a class of enzymes
has been found that can tie and untie knots in the cell.
Now, after the discovery of type II topoisomerases,
the existence and replication of knotted DNAs do not
seem so improbable. In fact, in principle these topoi-
somerases eliminate all the topological problems that
can arise here. Hence it becomes quite possible to
assume the existence of knotted DNAs in vivo. They
have not yet been discovered, but the publication of
Refs. 66 and 70 permits us to expect that the problem
will be elucidated in the very near future of the exis-
tence of knotted DNA molecules in the living cell.

7. CONCLUSION

The presented material shows that the theory of cir-
cular polymer structures possesses a specific, well
developed apparatus that rests on the results of alge-
braic topology and modern differential geometry. The

special interest in this theory arises from the fact
that it has found application in recent years in studying
the properties of circular DNA molecules, the most
popular objects of modern molecular biology. The
DNA molecule has proved a highly favorable object for
applying the theory also because its properties can be
described by simple models for which exact results
can be obtained owing to the very great rigidity of the
DNA chain. These results can be quantitatively cor-
related with experiment.

We should emphasize that the problems discussed in
this review, which involve the properties of closed
circular DNAs, pertain to the case of small values of
the supercoiling. The most reliable results have been
obtained in this region. At the same time, the study
of arbitrary values of the density of supercoils of
CC DNA is of substantial interest for application. A
number of problems arises here that have as yet been
studied insufficiently. Thus, there have been a number
of attempts to answer the question of the spatial con-
figuration of the chain of CC DNA in the supercoiled
state.71"73 However, the authors of these studies re-
stricted the treatment of the purely mechanical prob-
lem, treating DNA as an elastic rod of infinitely small
thickness and without taking thermal motion into ac-
count. There are serious grounds for suspecting that
both the finite thickness of the chain (see Ref. 34) and
the statistical properties of the chain substantially af-
fect the configuration of CC DNA.

Another, even more important problem bearing on
CC DNA having a sufficiently large negative super-
coiling involves the fact that the stresses that arise in
such a DNA can lead to substantial conformational re-
arrangements, as was mentioned in Sec. 2. Analysis
of this type of conformational changes is closely as-
sociated with the theory of the helix-coil transition
DNA (see the review in Ref. 16). A number of attempts
have been made in recent years to construct a theory
of the conformational changes in CC DNA with topo-
logical restrictions taken into account. 74~77 One of the
most interesting conclusions of the theory was the pre-
diction of a very sharp increase in the probability of
formation of cross-shaped structures of the type shown
in Fig. 6 as the supercoiling increases.75 Quite re-
cently the formation of structures of this type in super-
coiled DNAs has been convincingly demonstrated in the
elegant experiments of Liliey78 and of Panayotatos and
Wells.79

The recent discoveries that were discussed in Sec. 6
have considerably expanded the experimental possibili-
ties of directed variation of the topological state of DNA
molecules. Undoubtedly this will lead in the next few
years to the appearance of new, interesting data on the
physical properties of CC DNA in the knotted and
linked states.
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