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INTRODUCTION

The remarkable discovery by Gardner, Green, Krus-
kal, and Miura1 of a new method for integrating non-
linear differential equations, the so-called method of
the inverse scattering problem, together with the al-
gebraic formulation of this method given by Lax,2 has
led to the possibility of studying a broad class of non-
linear equations which could not be dealt with by older
methods.

Detailed expositions of this method can be found, for
example in a recent monograph,3 and one of a number
of review articles.4 Here we merely point out that in
the method of the inverse scattering problem the solu-
tion of a given nonlinear equation is reduced to the
solution of linear problems, namely to finding the
scattering data for a given potential and the inverse
problem of finding the potential from the scattering.

For the simplest integrable nonlinear equation, that
of Korteweg and de Vries,

the solution consists of three stages.

1) From the potential u(x,t) given at the initial time
£ = 0, UQ(X)=U(X,Q), one finds the scattering coefficient
r^(k) for the Schrodinger equation

~0-+"o (*)* = **!>.

2) The scattering coefficient r(k,t) at an arbitrary
time t can be found from the formula

r (fc, t) =- exp (iSfc3*) r0 (fc).

The last step in the procedure is to find the potential
u(x ,t) from the scattering coefficient r(k,t), i.e., to
solve the inverse scattering problem for the SchrO-
dinger equation.

In its degree of effectiveness the inverse scattering
method is analogous to the Fourier transformation
method for linear equations with constant coefficients
and has found wide application in all branches of theo-
retical and mathematical physics.

The use of this method in field theory has led to
striking progress in our understanding of the structure
of both classical and quantum nonlinear field theories
in two-dimensional space-time, outside the framework
of perturbation theory.

In recent years many papers have been devoted to
the study of the solutions of the equations of classical
field theory. Among these-we point out a number5"92 in
which more detailed information and references to the
literature can be found.

As a result of these researches a new type of solu-
tions has been found, which play an important part in
physics but cannot be derived in the framework of the
ordinary theory.

These include, for example, the so-called soliton
solutions, or simply solitons, i.e., localized solutions
of wave equations which preserve their shape and size
for arbitrarily long times. Such solutions were first
discovered in the last century in the equations of
hydrodynamics (cf. Refs. 3,4).

The existence of such solutions in nonabelian gauge
field theories used in the theory of elementary par-
ticles was discovered by 't Hooft5 and Polyakov.6 The
solutions turned out to be stable; they cannot smear
out and disappear, for topological reasons; that is, in
just the same way that a knot tied in a rope cannot be
removed without cutting the rope. Another important
property is that the particles corresponding to these
solutions can be monopoles, i.e., they can carry an
isolated magnetic charge (the properties of such solu-
tions have been examined in detail in Ref. 7).
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Another type of solutions of nonlinear equations is
the so-called instantons, i.e., solutions localized in a
small region in both space and time. Instantons cannot
be interpreted as real objects, but rather as processes,
not as particles, but rather as quantum-mechanical
transitions between different states of particles.

The existence of instantons, like that of solitons, is
primarily due to topological causes and is not associ-
ated with the specific form of the Lagrangian of the
theory in question, but with the geometric structure
of the fields involved in the Lagrangian.

Soliton and instanton solutions have been found for
many equations of field theory: In the Yang-Mills
gauge theory,8"" (see the reviews in Refs. 15—17), in
the Einstein gravitation theory,18"26 and in the simplest
essentially nonlinear field-theory models, the so-call-
ed chiral models.27"92 An elementary treatment of this
type of solutions is given in Ref. 26.

The chiral models are field-theory models in which
the interaction is introduced not by adding to the free-
field Lagrangian an interaction Lagrangian, but in a
purely geometric way.

Namely, in such models the Lagrangian is kept un-
changed from the free-field case, but restrictions are
placed on the field itself, so that now the field <f takes
on values in a certain nonlinear manifold $. (In the
simplest version, the three real fields forming a vec-
tor n are subjected to the condition n2 = 1, so that the
manifold $ is a two-dimensional sphere S2 in three-
dimensional space.) This model already describes
interacting fields.

Furthermore, chiral models in two-dimensional
space-time, or, for short, two-dimensional chiral
models, are particularly interesting. They are in
many respects analogous to four-dimensional gauge
field theories, which at present are regarded as most
probably suitable for describing the strong interac-
tions. (This analogy has been pointed out repeatedly
by a number of authors, and was particularly empha-
sized by Polyakov.)

This is true, for example, for such properties as
asymptotic freedom, nontrivial topological structure,
the existence of instantons, and the presence of a high
hidden symmetry, which in the two-dimensional case
leads to an infinite number of conservation laws.

A field-theory model is characterized, as usual, by
a Lagrangian£(<p) and its integral S over space-time,
the action, a functional of the field <p(x)\ S =S[<p}. The
equations which serve as equations of motion are ob-
tained as usual by requiring that the action be an ex-
tremal: 6S = 0.

The instanton solutions are obtained by going over to
a pure imaginary time, or, in other words, by chang-
ing from the <p pseudoeuclidean metric dt2 -dx1 to the
Euclidean metric dx\ + dx\.

In going to the quantum case it is convenient to use
the method of the functional integral (or integral over
paths) introduced by Feynman. In this method the

probabilities of various processes are described by
functional integrals involving the actions.

In the calculation of these integrals in the quasiclas-
sical approximation instantons correspond to extremal
values of the action. They involve a transition in the
functional integral to a pure imaginary time and de-
scribe tunnelling processes in the quasiclassical ap-
proximation. Expansion of the functional integral near
the instanton configuration and calculation of the re-
sulting Gaussian integrals gives the first nontrivial
quantum corrections (this is analogous to the calcula-
tion of the one-loop Feynman diagrams). We empha-
size that it is in principle impossible to obtain these
corrections in the framework of ordinary perturbation
theory. Owing to limited space, however, we cannot
consider here the role of instantons in the quantum
case.

The purpose of the present paper is to give a survey
of the properties of the instanton solutions in two-di-
mensional chiral models of general type. Such solu-
tions have been found in Refs. 28, 38-42 for ordinary
chiral models and in Refs. 85, 86, 88, 89 for super-
symmetric generalizations of these models." The
more complicated case of instantons for the Yang -Mills
field and the Einstein gravitational field18"24 will not be
considered here.

It must be especially emphasized that in the study of
chiral models (and still more so for the Yang -Mills
field and the gravitational field) topological concepts
and methods, Lie group theory, and also differential
and algebraic geometry are very important. In the
present review we shall explain the necessary ideas,
appealing to physical intuition and referring the reader
interested in a more rigorous formulation to the appro-
priate literature.

The article consists of four sections. In the first
section we consider, from various points of view, the
simplest chiral model, the so-called n-field model,
for which instanton solutions were first found in -a pa-
per by Belavin and Polyakov.28 In this model the field
n(x) is a three-dimensional vector, n = (nl,n2,n3), on
which the restriction n2 = 1 is imposed. The field n(x)
is defined on the two-dimensional plane x = (xt,x2).
The action S[n] is determined by the metric on the
sphere (n2 = l), which is invariant under rotations in
three dimensional space

The resulting "equations of motion" are

d,An + (dBn -3^11)11 = 0.

We shall be concerned with solutions of these equations
that have finite action; therefore we require that the
field n(x) have a definite limit

' Ordinary chiral models describe boson fields; supersym-
metric chiral models describe both boson and fermion fields
in such a way that there is a definite symmetry between
them.
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n (x) for

Such a field can already be considered on an extended
plane of the variable x , to which is associated an infi-
nitely distant point {°°}. By means of stereographic
projection, this plane can be mapped with the well
known formulas

onto the unit sphere in the three-dimensional space of
vectors v with vi = \.

Accordingly, the field n(x) determines a mapping of
a sphere in v space onto a sphere in n space. But, as
is well known from topology (cf. e.g., Ref. 96), two
such mappings [corresponding to two fields n(x)] can-
not always be deformed into each other. More exactly,
to a field n(#) one can assign an integer Q, called the
topological charge

and two fields n^x) and n2(x) can be deformed into each
other only when their corresponding topological charges
Q, and Q2

 are equal.

It then turns out that the action S has a lower bound
given by the topological charge

Furthermore the equality sign holds here only when one
or the other of the equations

which are called "duality equations," is satisfied.

It is not hard to see that any solution of these equa-
tions is also a solution of the equations of motion.

The equations of duality are nonlinear, and to solve
them it is convenient to go over from the variable n to
a new variable w, again using stereographic projection

„ .
n2 = 1 .

The duality equations are thus simplified; they be-
come linear, namely they go over into the Cauchy-
Riemann equations

^- = 0 or —^. = 0, z — x, + ix«.
e'z m

Using the boundary condition n(#) = n0 for \x\ — °°,
we find from this that the function w(z) [or w(z)} must
be rational:

w (z) ---- c \ z - a;) [[I (z-&/)]"•

Furthermore, owing to the invariance of our equation
under rotations in the n space we can take as the limit-
ing value w0 any number, for example w0 = l. Then the
conditions c = 1 and k{=ki=k must hold.

The topological charge corresponding to this solution
is equal to fe.

Accordingly, in the case of the model of the n field
the instanton solutions have been completely described.

It turns out that analogous results hold for a broad
class of chiral field-theory models.

The remaining three sections of this paper are de-
voted to chiral models of this class.

In Sec. 2 we examine in detail chiral models of gen-
eral form. It turns out that the results of Sec. 1 can be
transferred to the case of chiral models in which there
are N complex fields w"(x) and the action is of the form

= hap(w, w) d^W i=l, 2,

and is invariant under a group of transformations
which is large enough so that any point w" can be taken
into any point z<A Besides this it is required that the
metric hai be of a special form; it must be a KShler
metric, i.e., it must satisfy the condition

In this case, just as in that of the n field, the duality
equations can be reduced to the Cauchy-Riemann equa-
tions, and the instanton solutions are given by rational
functions.40 In this section we must use a number of
concepts of topology, Lie group theory, and differential
and algebraic geometry which are unfamiliar to a
physicist, and which we have tried to explain with very
simple examples.

A reader who is not interested in chiral models of
general type can omit this section and go on at once to
the next one, where a model is considered in which
the field takes on values in an n dimensional complex
projective space, usually denoted as CP". We note
that the usual n field can be regarded as a CP1 model.
However, the situation for the CP" model becomes dif-
ferent for n > 1. For n>2 the instanton solutions do not
exhaust all the possibilities for solutions with finite
action. Such solutions for CP" models have recently
been completely described.76'77

The last section of the paper is devoted to a consid-
eration of the so-called Grassmann chiral model, in
which the field <p(x) takes on values in a so-called
complex Grassmann manifold, which can be regarded
as a definite set of matrices.

Accordingly, the n field model, the CP" model, and
the Grassmann model can be regarded as models of a
complex scalar field, a complex vector field, and a
complex matrix field.

In concluding this section we would like to thank L. B.
Okun', who examined the manuscript of this paper,
for a number of helpful comments.

1. THE SIMPLEST CHIRAL MODEL, THAT OF THE
n-FIELD

We shall begin with the simplest case, the so-called
n field model, whose instanton solutions were found in
a paper by Belavin and Polyakov.28 In view of further
generalizations, we consider this model from various
points of view.

1. In this model [often called the SO(3)-invariant
CT model] we deal with a field
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n (x, t) = (n1, n2, n3) or n" (x, t), a = 1, 2, 3, (1.1)

with a Lagrangian which is formally identical with that
for the free field

2 = 1^0-SuD, n = 0, 1, x0 = J, z, = z. (1.2)

In order to get a theory of interacting fields, we shall
not proceed in the usual way, adding an interaction to
the Lagrangian, but impose a simple quadratic restric-
tion on the n field:

n2 = 1. (1.3)

Accordingly, the field n now takes on values in a non-
linear manifold $, a two-dimensional sphere S2 defined
in a three-dimensional space by the condition (1.3).

In this model the interaction is due to the intrinsic
curvature of the manifold (in this case a sphere) and
is purely geometrical in origin. This enables us to
study this kind of theory in considerable detail.

The instanton solutions are solutions that describe a
tunnelling process, and the convenient and usual pro-
cedure for finding them is to change from the ordinary
time t to a purely imaginary time it, i.e., from the
pseudoeuclidean case to the Euclidean case. Therefore
we shall suppose from the very beginning that the field
n is defined on a two-dimensional Euclidean plane:

n = n (x), x = (ZL *,).

Let us introduce a coordinate system of some kind
on the sphere, so that a point on the sphere is deter-
mined by coordinates ur, y = 1,2. Such a model is then
determined by giving the action (energy) functional:

5 = 1 j

where gr& is the metric tensor

ds2 = g.:i Aui du8.

(1.4)

(1.5)

The equations of motion follow as usual from the con-
dition that the action be an extremal:

(1.6)

here

are the Christoffel symbols.

These equations are a generalization of the well-
known equations for geodesies

'Jv + rV<"i»=o. (1.8)

We note that the sphere is a uniform manifold; it is
invariant under rotations of the three-dimensional
space. Therefore it is natural to take for guf> a metric
which is rotation invariant:

ds? = dn-dn.

From this we get

and the "equation of motion"

) n = 0.

(1.9)

(1.10)

(1.11)

We note that it follows from Eq. (1.11) that

a,, tn, a^n) = 0. (1.12)

We point out that this model can also be regarded as
a model of an n field in (2 + 1) dimensional space-time,
with the condition that we concern ourselves only with
solutions that do not depend on the time.

We shall consider only solutions with a finite action
S, and therefore require that the field n(x) have a defi-
nite limit

for I x | -»• oo. (1.13)

In this case we can deal with the field n(x) as given on
an extended plane of the variables x = (xl,x1) with an
infinitely distant point {°°} associated with it.

To do this it is convenient to use stereographic
projection to map this extended plane onto a two-di-
mensional sphere S2 ={i>: v1 =• 1}; the mapping is

»*=*• (1.14)

It can be seen from this that the extended plane is topo-
logically equivalent to the two-dimensional sphere.

Accordingly, we can consider that the field n is given
on a two-dimensional sphere: n = n(y), and this field
determines a continuous mapping

v -»• n (v)

of the two-dimensional sphere S2 ={v : v2 = 1} onto the
two-dimensional sphere S2 ={n: n2 = 1}.

A characteristic peculiarity of such a field is that in
general it (unlike a field given on an ordinary plane)
cannot be deformed continuously into a field independent
of*: n = n(|=const. Namely, to each field n(x) that
satisfies the condition (1.13) one can assign a whole
number Q (usually called the topological charge) which
does not change in a continuous deformation of the
sphere. Then two fields that have the same topological
charge can be continuously deformed into each other.2)

In the present case we can write an integral repre-
sentation for the topological charge

n, 0vnJ), (1.15)

where eul, is the antisymmetric tensor and Et2 = l. That
Q is an integer follows from the fact that in this case
the density of topological charge is nothing other than
the Jacobian of the mapping x = n(x). In fact, using the
usual parametrization

n = (sin 6 cos <p, sin 6 sin <p, cos 6),

we get

<? = -35- J sin 8 (i) d6 (i) dtp (i).

Then, from the obvious inequality

(aun =p e „„[!!, avn])s>0

(1.16)

(1.17)

(1-18)

it follows that the action is bounded below by the topo-
logical charge

2)This property of fields n(f) is well known in topology (see,
for example, a recent monograph").
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S > 4n | Q \.

Furthermore the equals sign in (1.19) is reached
when one or the other of the conditions holds

d^n = ±e,,v ln> dvnl. (1.20)

The equations (1.20) play an important part in the
theory and are called the "equations of duality." Unlike
the "equations of motion" (1.11), the equations (1.20)
are of the first order. It is not hard to show, how-
ever, that any solution of the "equations of duality" is
also a solution of the " equations of motion" (1.11).
Solutions of the " equations of duality" are also called
instanton solutions.

2. Although Eqs. (1.20) are first-order equations,
they are nonlinear, and to solve them it is convenient
to use a different parametrization. Namely, by stere-
ographic projection from the north pole of the sphere
we change to new variables

(1.19) (or fc-anti-instanton) solution.

(1.21)

In these variables the expression (1.10) for the action
S takes the form

(1.22)

or

_ , f
J

dm dw . dw dw \

and the topological charge is given by

i f
1T J

dw dw dw dta

al dz (1.23)

From this it follows at once that the topological
charge has the lower-bound property (1.19), and also,
which is more important, the equations of duality (anti-
duality) take the simple form

£-0 or £-0, (1.24)

i.e., the duality equations reduce in this case simply
to the Cauchy-Riemann equations.

At first glance it seems that the general solution of
the equations of duality is given by the formula

w = f (z) or w = f (z),

where/ is an arbitrary analytic function. But we must
also require that this function have a definite limit w$
(including M;O = °°) for \z\ — °°. It follows that the func-
tion / must be a rational function.

Because of the homogeneity of our space *=S2 under
the group SU(2) we can take for the limiting value w0

any number, for example w0 = 1. Then the solution of
the equations of duality takes the form

* * -
(1.25)

11 Z-bj " z-b,
i=\ i-t '

It is not hard to calculate that for this solution the
topological charge is

Q = k -k, k >0, (1.26)

We see that a fe-instanton solution is characterized
by 4fe parameters: 2fe complex numbers at and bj. This
is natural, since one instanton can be characterized by
four parameters; they are its position b, its extent
a -b, and one more quantity, its angle (phase) 6 = arg(a
-b).

The analogous function w =f(z) gives a solution with
k < 0, which we can call a solution with \k\ antiinstan-
tons.

We also point out that with parametrization by means
of w the equations of motion (1.11) take the form

It follows from them that the function

(da/as) to/dz

(1.27)

'.) (1.28)

does not depend on z.

Similarly, the function

(l-j-|u,|2)-2^^.=/(2) (1.29)

does not depend on z.

It can also be shown32 that many-instanton and anti-
instanton functions give the only solutions of the equa-
tions of motion (1.11) with finite action.

3. The connection with group theory becomes clear-
er if we examine a different formulation of the n field
model. Namely, we go from the vector n to a two-
row square matrix <p according to the formula

<p (x) = an (x), (1.30)

and it is natural to call such a solution a fe-instanton

where a = (alt02.^3) are the Pauli matrices.

We can now regard the field <p(x) as an element of the
Lie algebra # of the group SO(3), the rotation group
of three-dimensional space, or of the group G =SU(2)
which is locally isomorphic to it; this is the group of
unitary second-rank matrices with determinant unity.
The restriction (1.3) then takes the form

tr(cp2) = l. (1.31)

The group G = {g} = SV(2) acts naturally on the Lie al-
gebra & of the group SU(2), or, what is the same thing,
in the space of fields <p:

&• *p ~*~ gty§+* (1.32)

where g' is the matrix Hermitean adjoint to the matrix
g. [This type of action is called the adjoined repre-
sentation of the group SU(2).]

Choosing some element <?0 of & and acting on it with
all elements of the group G, we obtain the orbit Si of
the adjoined <p representation of the group SU(2),
which, as can be easily seen, is the two-dimensional
sphere S2 given by Eq. (1.31).

Accordingly, in this case the space <t is the orbit of
the adjoined representation of the group SU(2).

The expressions for the action and the topological
charge in terms of <p are
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Q = c f tr (<( \dny, dv<pl) e,,, d*x,

(1.33)

(1.34)

and, as we shall see in the next section, these formu-
las can be naturally extended to the case in which * is
the orbit of the adjoined representation of an arbitrary
compact Lie group.

4. We shall give another formulation of the theory of
the n field. Let us consider a two-component spinor
field #(*)=(*!$), P(x) = $i(x),$t(x)] and use it to form
a vector field

n (x) = ft* (x), ay (x)), (1.35)

where (Ji,a2,o3 are the Pauli matrices. Then the con-
dition (1.3) will be satisfied if we impose the restric-
tion (normalization condition)

It must, however, be kept in mind that the two spin-
ors $(x) and exp [ia(x)]^(x) give the same vector a(x),
and therefore such spinors must be regarded as equi-
valent.

Accordingly, we are dealing with normalized spinors
i)i(x) defined up to a phase factor exp [ta(x)]. It is
therefore natural to change to a new space such that
the quantities ($1,^3) and (x^i.X^) define one point in
it. Such a space is well known in mathematics. It is
called a one-dimensional complex projective space and
is denoted by CP1.31 It is also well known that such
a space is topologically equivalent to a two-dimension-
al sphere: CPl~S2.

Substituting n = $*ai/) in the expression (1.10) for the
action and using Eq. (1.36), we get

S = d'z (1.37)

It is not hard to see that this action determines a met-
ric on *=CP' which is invariant under the action of
the group SU(2). Similarly for the topological charge
Q we have

Q = c \ d2xE(lv (duy\ d^). (1.38)

We note that the expression (1.37) for the action is
gauge invariant under the action of the group U(\), i.e.,
under the replacement $(x) — exp[toc(j;)]^(x).

5. One more formulation of the n field model; this is
a formulation in terms of an Abelian gauge field Au(x)
and a complex field Bu(«).4) This formulation is most
convenient for tracing the analogy between the two-
dimensional chiral model and four-dimensional non-
abelian gauge field theories.

We here expound a version of the formulation follow-
ing Ref. 48.

We consider our space * as a unit sphere imbedded

3) The n-dimensional complex projective space CP" is defined
analogously; a point in this space is a nonzero (n + l)-dimen-
sional complex vector, defined up to a common factor.

4) This sort of formulation for the general case was given in a
paper by Semenov-Tyan-Shanskii and Fadeev.33

in a three-dimensional space: * =S2 = {n : n2 = l}. We
introduce a movable orthogonal coordinate system, so
that at each point x, the set e,(x), e2(#), and e3(x)
— a(x) are a triad of mutually orthogonal unit vectors

e,-e»=aA. (1.39)

In other words, we consider that at each point x there
is given an element g(x) of the three-dimensional ro-
tation group, which takes the standard reference frame
into the frame (e1,e2,es). As x varies, the movable
system undergoes a rotation. Therefore

/, fc=l, 2.

From this we get

(1.40)

(1.41)

We note that the transition to a different movable ortho-
gonal coordinate system is given by the formulas

e', = cos a (x) • e, + sin a (x) • e^,
6j= —sin a (:t) • e, + cosa(x)-e1,

(1.42)

where a(x) is a gauge function. In going from e|,e2

to ej,e2 the vectors Au andBf, are also changed:

— sina-Sj 4-cosa-Sj, (1.43)

From the fields and Bu =B we can recover
the movable reference system (e1,e2,e3 = n) by means
of Eq. (1.40), provided that the conditions

y. = 0, (1.44)

are satisfied; here S^ + iA^^D^ is covariant differen-
tiation, Bu is the field complex conjugate to B^, and
BIL = ituvB

v is the field dual to Bu.

• In terms of the fields Aw and Bu the action and the
equations of motion take the forms

S = ljd^flX. (1-45)

0^=0, (1.46)

and the equations of duality (antiduality) can now be
written

B» + B» = 0. (1.47)

Accordingly, the n field model is equivalent to the
theory of an Abelian gauge field A„ and a charged vec-
tor field BU which have to satisfy the conditions (1.44).

We note that the quantity BUB is proportional to the
density of topological charge e)ll,(n[3un,31,n]), so that,
according to Eq. (1.44), we have

<?=47T (1.48)

This formula is analogous to the corresponding one for
the Yang-Mills field [cf. Ref. 16, Eq. (4.3)]

^= 8P" j d'«!l'vp°^vpa, H, v, p, 0=1, 2, 3, 4, (1.49)

where the field Avpa is given by the expression

A __ t p J A p _ „ > 4 > d y 4 > ^ 1 S (1 \

and Au =(2?)"'^^^ is the Yang-Mills field,
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We note that the field equations (1.44) and (1.46) have
the obvious symmetry (dual symmetry)

4, = 4,,

where 0 is a constant parameter.

(1.51)

This symmetry transformation was first discovered
by Pohlmeyer29 and was called by him Re: It has a
very simple form in precisely this formalism. As was
shown in Ref. 36, there are associated with this sym-
metry an infinite set of nonlocal integrals of the mo-
tion, which in the quantum case lead to a strong re-
striction on the dynamics of scattering processes: No
particles are created. Regarding the dual symmetry
for general chiral models see Ref. 49.

The instanton solutions are invariant under the dual
symmetry, which in this case reduces to a global
gauge transformation. Conversely, any field that is
invariant under the transformation of dual symmetry
must be either self-dual or antiselfdual.

This indicates that the existence of instantons is
closely connected with the existence of the dual sym-
metry.

2. CHIRAL MODELS OF GENERAL FORM

In the general case we have a field <p(x) in a d-dimen-
sional Euclidean space (*6R"), which takes on values
in a nonlinear manifold *. Let there be introduced in
* local coordinates ua and a Riemannian metric

ds2 = gafl du* duB. (2.1)

Then the chiral model is determined by prescribing the
action

S = -j j dxt ... didga9 (u) dfjfd^vft. (2.2)

The condition 6S = 0 leads to the "equations of motion"

where r|L are the Christoffel symbols

We shall concern ourselves with smooth fields <p(x) that
have a definite limit <p0 for \x ->°°. In this case we
can adjoin to the Euclidean space R" an infinitely re-
mote point {°°| and regard this space as a d-dimen-
sional sphere

= \" \J {oo}. (2.5)

Accordingly, each point of the sphere Sd is put into
correspondence with a point of the space *, or, in
other words, the field <p(x) defines a mapping of the
sphere S" into the space *:

<p:5"-vO. (2.6)

We recall that two such mappings <pl and <p2 are called
homotopic51 to each other if they can be continuously

w We shall not give here the rigorous definitions of the topo-
logical concepts. They can be found, for example, in Refs.
96, 97, and 99.

deformed into each other. We unite all mappings that
are homotopic to each other into one class. Then, as
is well known,96 in the set of such classes we can in-
troduce an operation of multiplication relative to which
they form a group; this is the d-dimensional homo-
topic group of the manifold *, or ir^*). Accordingly,
as a topological characteristic of a field <f(x) we can
take its homotopic class, or, in other words, an ele-
ment of the homotopic group TT<(*). Therefore it is
natural to regard a chiral theory as topologically non-
trivial if 7T,j(*)*0.

a) Chiral models with nontrivial topology

We confine ourselves to consideration of only the
most fully studied two-dimensional Euclidean chiral
models. Readers who are interested in the pseudo-
euclidean case are referred to Refs. 29 and 35, and
those interested in the many-dimensional case, to the
fundamental work in Ref. 74.

Following Refs. 38 and 40, we suppose that the field
<p(x), x = ( x { , x 2 ) e R2, takes on values in a compact
manifold *, which is topologically nontrivial: 7T2(*)#0.
We further assume that 4> is a homogeneous space such
that it can be acted on transitively by a compact semi-
simple Lie group G = {g}.e> In other words, for any
two elements <p\ and <P2 there exists a transformation
of the group G that takes <p{ into <p2. We take some
fixed element cf>0 of the space $ and denote by H ={h]
the set of elements of the group G that leave it fixed:
/z<p0=<p0. it is,not hard to see that this set is a sub-
group of the group G, the stationary subgroup of the
element <P0.

We now divide all the elements of the group G into
so-called adjacency classes; we regard elements^
and g2 as belonging to the same class if there exists
an element h &H such that g{ =£2fe.

It is not hard to see that our space * is isomorphic
to a factor space, the space of adjacency classes of
the group G with respect to the subgroup H, denoted
ordinarily by

O = GIH. (2.7)

We remark that any homogeneous space can be repre-
sented in this way. Examples:

1. The space <S=S2 considered in the preceding sec-
tion can be represented in the form

52 = SU (2)/U (1) or S2 = SO (3)/SO (2), (2.8)

2. the w-dimensional sphere S" can be written in the
form

S" = SO (n + 1)/SO (n). (2.9)

3. For the complex n-dimensional projective space
CP"

6) The required information about the theory of Lie groups can
be found, for example, in a book by Kirillov.100 We mention
that a semisimple Lie group is the direct product of simple
Lie groups, and a simple Lie group is a group that has no
invariant subgroup.
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CP" = SU (n + 1)/SU (n) X U (1). (2.10)

Let OB further assume that the space * is connected
and simply connected, i.e., any two of its points can be
connected with a curve, and any closed curve can be
deformed within * into a point. In this case, to find
the second homotopic group of the space $ we may
use a formula well known in topology96'97:

n, (0) = n, (GIH) = n, (H), (2.11)

where VI(H) is the first homotopic group of the space
H, i.e., the group of classes of mutually homotopic
closed curves passing through some fixed point of the
spaceH.

Thus a chiral theory will be topologically nontrivial
if the first homotopic group of the stationary subgroup
H of some point of the space * Is nontrivial, or in
other words, if the subgroup H is not simply connected.
The calculation of the group n^H) in our case presents
no difficulty, since the structure of the subgroup H is
well known. Namely, if G is a simple compact Lie
group of rank I , i.e., if the maximal subgroup of G of
the form U(l)xU(l)x.. .xu(l) consists of I factors,
then H is of the form

H = (U (1) x . . . x U (1) X H0)IK, (2.12)

where the factor U(l) occurs k^l times, and the group
#0 is simply connected: Tr^H^ — O, and the group K is
finite. Since rri(XXY) = vi(X) + ni(Y)> it follows from
Eq. (2.12) that

j,2 (<D) = n, (GIH) = .1, (H) = Z+ ... +1 + K,
h times

where Z =irj[U(l)] is the additive group of integers.
Accordingly, up to the finite group K

(2.13)

= Z+ ... + Z, (2.14)

or, in other words, fe whole numbers can be assigned
to the field <?(*), its topological charges.
Examples:

1. From Eqs. (2.8)-(2.10) it follows at once that

(S2) = Z, n, (S") = 0, for n > 3,
Ji, (CPn) = Z.

(2.15)

We note that a SO(w)-invariant chiral theory with n * 4
is topologically trivial, and owing to this has no instan-
ton solutions. At the same time there is a broad class
of topologically nontrivial homogeneous spaces. The
ones most thoroughly studied are the so-called orbits
of adjoined representations of simple compact Lie
groups, which we shall consider in greater detail.

Then let G be a compact simple Lie group, and let
y be its Lie algebra. The group G acts on the algebra
# naturally, but nontransitively, i.e., it cannot take an
element of 9 into an arbitrary element of &. Accord-
ingly, under the action of G the algebra #breaks up
into orbits. An orbit ft is the set of elements obtained
by applying all the transformations of the group G to
some one element of #.

Examples:

1) Let G =SO(3), the group of rotations of three-

dimensional space, i.e., the group {g} of three-rowed
matrices obeying the condition gg' = 1, where the prime
denotes transposition.

Then y is the algebra of real skew-symmetric ma-
trices :

/ 0 I, -X,\

?={*). *= -*, 0 x , ) , i'=-z.
V x, -x, 0 /

The adjoined representation of the group G is given by
the formula x =gxg'. If we prescribe an element of 9
with the three-dimensional vector x = (x\,x2,x3), the
orbits of G will be a sphere in three-dimensional space
with its center at the origin: n=SO(3)/SO(2),n2(n)= Z,
including a degenerate orbit, the origin of coordinates
itself.

2) G =SU(3) = {̂ }, where g is a unitary three-row
matrix with determinant equal to unity: gg*=I, detg
= 1; £={«), the algebra (eight-dimensional) of anti-
Hermitean three-row matrices: x*=-x. The action
of the adjoined representation is given by x=gxg*. In
this case there are two types of orbits besides the
origin of coordinates:

a) All the eigenvalues of the matrix x are different.
Then the orbit n is six-dimensional: ir2(£2) = Z + Z, n
= SU(3)/U(l)xU(l).

b) Two eigenvalues of the matrix x coincide. The or-
bit is four-dimensional: «=SU(3)/SU(2)xU(l))7r2(n)
= Z. In this case an orbit « is isomorphic to the two-
dimensional complex projective space: n = CP2.

3) G =SU(n), y={x},x* =-x, (n -1) eigenvalues of the
matrix x coincide. Orbit Ji = SU(n)/SU(n - I)ti(f>,ir2(n)
= Z, and Ji is isomorphic to the space CJP""1'.

It is well known that the orbit of the adjoined repre-
sentation is a connected and singly connected manifold:
iT!(n) = 0. Therefore the reader versed in topology can
use the theorem of Gurevich96:

If * is connected and singly connected: ir((*)=0 and
ir/*) = 0,j = 2 , . . . , ( fe- l) , i r»(*)#0, thenHj($) = Q,j
= 2 (fe-!),#„(*) =*»(*); hereof/*) is the j-th
homology group. Consequently, Hl($)~0,j = 2,... ,(k
-1), where #j(*)is the ; -th cohomology group, and the
sign ~ means equality up to a finite group.

But in virtue of De Rham's theorem H'($) is the fac-
tor space of closed external j-forms with respect to the
subspace of exact j-forms. On the other hand, it is
known that there exists on * a closed 2-form which is
not exact, the so-called Kirillov form (cf. Ref. 100).
Consequently, for the orbit of the adjoined representa-
tion/^2(4>)#0, and by Gurevich's theorem:

n, (<D) = ff» (O). (2.16)

We shall explain what we have said for readers not
acquainted with the homology and cohomology groups.
The fact that the group ;r2(*) is nontrivial means that
in the space * there are closed two-dimensional mani-
folds or two-dimensional cycles, deformed two-dimen-
sional spheres, which cannot be deformed to a point.
Over them one can integrate closed 2-forms, i.e.,
expressions that are in the form of a total derivative.
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A quantity so derived remains unchanged by deforma-
tions of the 2-cycle over which the integration is per-
formed, and therefore is topologically invariant.

It follows from Gurevich's theorem that all the topo-
logical charges can be obtained in this way as integrals
of2-forms, i.e., as twofold integrals. Symbolically
this is written

(? = c-1jS. (2.17)

Here uJ is a closed 2-form on S2 =R2 u{°°} which is not
exact.

The form uJ can be obtained in the following way.
The mapping <p: S2 — * induces a corresponding map-
ping in the space of cohomologies, f*: /f2(4>)—/^(S2),
and

S = <p*<a. (2.18)

If we regard the solutions of interest to us as solutions
independent of the time in a chiral theory with d space
dimensions and one time dimension, the assertion just
arrived at can be formulated differently: A topological
charge can be represented as the integral of the zeroth
component of a topological current Ia = (I^,Iu):

= c-1 J

where /„ is a complete divergence

We give examples of such currents.

(2.17')

(2.19)

1) The case of the so-called principal chiral field:
<j> = G,d = 3. In this case the topological charge is given
by the formula67

Q = c-1 j d8xelivl tr <[£„, L,} LJ, (2.20)

where the chiral field <p is a field on the group G: tp(x)
=g(x),Lu = d»g-g~* is an element of the Lie algebra &,
taken in the adjoined representation, and c is a nor-
malization constant. Here the topological charge is

i tr ([Lb, Lc] Ld (2.21)

and is conserved:

sja = o.

Here Greek indices run through the values 1,2,3 and
Latin ones through 0,1,2,3; euvx and zaM are com-
pletely antisymmetric tensors. Conservation of the
current /„ follows from the identity (condition of zero
curvature)

[/„, It] = 0 (2.22)

and the Jacobi identity for commutators. With a suit-
able normalization the topological charge takes on in-
teger values.

2) Then field, d = 2:
/„ = st,6cEal,vn^i,nH»T. «, P, V = L 2, 3; a, b, c, d = 0, 1, 2,

(2.23)

from which we have

'o = euveapTn"d^vna, H-. v = 1, 2, (2.24)

and arrive at the expression (1.15) for the topological

charge. Conservation of the current /„ follows from the
linear dependence of the vectors 3uii.

3) The n field, d = 3. In this case a current analo-
gous to that in the foregoing case cannot be introduced,
but another topological invariant can be associated with
the n field.67 In analogy with Eq. (2.23) we introduce
the vector

Then owing to the fact that div H = 0 we can represent
H in the form

H = rot A.

For the n field without singularities the integral

-i-JArotAd3*

(2.26)

(2.27)

exists and takes on integer values. This topological
invariant is called the Hopf invariant.101

For the reader familiar with topology we point out
that for the vector A there is a corresponding 1-form
u> and for the vector rot A, a 2-form du, and the ex-
pression (2.27) can be rewritten in the invariant form

(4H)-1 f w A dw.

where the sign A denotes outer multiplication.

(2.28)

In the general case, when * = n, the orbit of the ad-
joined representation of the group G, we can make use
of the fact that on the orbit there exists a universal
closed 2-form w, the Kirillov form100

= co (X, Y) = ((f, I X , Y]). (2.29)

Here X and Y are vectors tangent to the orbit at the
point <p, and (<p,il>) is the invariant scalar product in the
Lie algebra 9. In the simplest case #=SU(JV), <p and
ty are N-rowed antihermitean matrices, and (<p,4>)

The topological charge corresponding to the form
(2.29) is

Q = c-1 j d2are^ (q> [d»<f, 9vq>]), p = 1, 2. (2.30)

Here 3t<p and S2cp are two vectors tangent to the orbit,
which in the case $ = SU(AT) is defined by the conditions
tr((p")=ct. This formula is a generalization of the for-
mula (1.15) for the topological charge of the n field.

b) Instanton solutions in chiral models

Up to this point the specific form of the action func-
tional has not been of essential concern to us. We now
choose it so that it is bounded below by the topological
charge Q. This approach has already been used in
Refs. 27, 28, and 67. Here, following Ref. 8, we con-
sider the general case, in which Q is given by Eq.
(2.30).

We denote by $M the quantity tuv[<p,dv<P], where <p e &
is an element of the Lie algebra y, and by (<p , $ ) the
positive-definite invariant scalar product in #. We
have the obvious inequality

(2.31)

Therefore, if we take as the action S
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1J >], [<p, avcp])},

we have the obvious bound

(2.32)

(2.33)

This inequality becomes an equation if the so-called
equations of duality

aB<p = ±e,,v [<p,

are satisfied.

(2.34)

Accordingly, the situation in the general case is
reminiscent of that for the n field (Sec. 1), but the
expression for the action is now more complicated. At
first glance the expression (2.32) for S reminds one of
Skyrme's expression,27 but actually it is quite different,
since it contains the derivatives S^ only quadratically,
while Skyrme used an expression of the fourth degree
in d^tp.

The equations of duality (2.34) are simplified some-
what if we go over to the complex variable z —x{

They become

d<¥ = ±i If, 3rf], dtf = =pi [<p, dip],

where

(2.35)

We note that from the equations of duality we have
(di<f, 3s<p) = 0, (9, dtf) = (<P, 5i<p) = 0, (a,q>, ai(p) = (d,<f, 0,q>).

(2.36)
This means that in the case when the duality condi-

tions hold the mapping <p: S2 — * is conformal.

We now return to the treatment of chiral models of
general form and assume further that the manifold 4>
is a complex manifold." Let w" be local coordinates
in the neighborhood of a point wa = 0, and let
be a Hermitean metric

(2.37)

Then as the action functional we 'can take the functional

.̂ (2.38)

Substituting in Eq. (2.38) the quantity S^w"
instead of 3ww°, we get the inequality

s> c I <? i, Q=1 j (2.39)

This inequality becomes an equation only for fields
which satisfy the duality equations

(2.40)

or, after changing to the complex coordinate z=x,

= 0 ( o r ; = 0). (2.41)

The local solution of these equations is wa =fa(z) [or
ui" =f(z)]. Accordingly, the equation S=cQ (or, re-
spectively, S=-cQ) can be obtained only for holomor-
phic (or antiholomorphic) mappings <p of the compact! -

IJ This means, roughly speaking, that points of the manifold
can be parametrized with complex coordinates; for the ri-
gorous definition, see Refs. 98, 99.

fied z -plane z: R2 ui00} (which can be regarded as a
one-dimensional complex projective space CP1, into
the manifold *.

Unfortunately, Q is in general not a topological inva-
riant and changes with deformations of wa(x). There-
fore in the general case it cannot be asserted that a
solution of the duality equations is also a solution of the
Euler equations that follow from the condition 65 = 0.

However, as was pointed out in Ref. 40, there exists
a broad class of complex compact manifolds for which
this difficulty does not arise. Namely, let * be a
Kahler manifold, i.e., a complex manifold on which
there exists a Hermitean metric ha-t, whose imaginary
part w = (l/2)fcaj[fM;"A du? is a closed nondegenerate
2-form. We note that the condition that this form be
closed is equivalent to the conditions

dh dh -«g _ i
The mapping #>: S2 -* defines a two-dimensional

cycle in *. In this case the quantity cQ is the integral
of w over this cycle, and since the form w is closed,
this quantity depends only on the class of homoiogies
to which this cycle belongs. Consequently, in a given
class the quantity Q is constant, and the action integral
S is equal to its minimal value if the conditions (2.41)
are satisfied, i.e., for holomorphic mappings <f: S2

= CP1 — $. These mappings, if they exist, give solu-
tions of the duality equations (2.41), so-called instanton
solutions.

We note that if the manifold * is algebraic, i.e., an
analytic submanifold without singularities in the com-
plex projective space CP" for someJV, then thef*
exists a KShler metric (the so-called Ho<lge metric)
such that Q will always be an integer.

We further point out that if we go from the variables
x^ and x2 to the complex variable z=#1 +ix2, the ex-
pressions for the action and the topological charge take
the form

= \
(2.43)

(2.44)

for holomor-It is now obvious that S coincides with i
phic and antiholomorphic fields.

The "equations of motion" are obtained as usual
from the condition 6S = 0. Recalling the condition
(2.24), we get

h ^ (ddw*1) -\ — dwa dw^ = 0 (2.45)

and the equation complex conjugate to this. We now
multiply the left side of Eq. (2.45) by 9w*, sum over 0,
and add to it the left side of the conjugate equation,
similarly multiplied and summed. Using the relations
(2.42) we can transform this expression into

0. (2.46)

(2.47)
From this we get

and similarly

654 Sov. Phys. Usp. 24(8), Aug. 1981 A. M. Perelomov 654



= /(*). (2.48)

Let us now consider the solutions of the equations of
duality (2.41). These equations are of the form of the
Cauchy Riemann equations, but owing to the compact-
ness of the manifold * there is by no means always a
global solution or, what is the same thing, a holomor-
phic mapping <p-. CP1-*. For example, if * is a two-
dimensional compact manifold of type g (iorg = 0, *
= S2=CP'; for gr = l,* = T2, a two-dimensional torus),
i.e., a Riemann surface, such a mapping exists only if
$=CP'. (This case is considered in a paper by Bela-
vin and Polyakov.28) Here a mapping with topological
charge depends on 4fe parameters.

Such a mapping exists, however, if $=CP", a com-
plex projective space (this case is considered in detail
in the next section).

Let us now consider the important class of Ka'hler
manifolds for which holomorphic mappings CP1 -*
exist. This case includes singly connected compact
Ka'hler manifolds. It follows from Ref. 102 that they
all have the form G/H, where G is a compact connect-
ed semisimple Lie group with trivial center, and# is
the centralizer of some torus in G. It is not hard to
see that these spaces can be regarded as orbits of ad-
joined representations of compact semisimple Lie
groups G in their respective Lie algebras $. These
spaces are not only algebraic, but also rational.105'8'

In this case it is also known that not only the real
group G, but also the corresponding complex group Gc

act transitively on 4>. Therefore the manifold $ can
also be represented in the form $=G/H =GC/P, where
P is the parabolic subgroup, i.e., the subgroup of Gc

that contains the maximal connected solvable subgroup.

It is known104 that any such subgroup can be con-
structed in a canonical way in terms of the subsystem
/ of the simple roots of the Lie algebra of the group
Gc.

Let R, be the subsystem of positive roots, consisting
of linear combinations of elements oil. Let Gr be the
subgroup of G generated by H and the subgroups

7VT = (exp ((£,,): t 6 C} for v 6 RI U {-R,}, P, = G,-N,.

As is well known, any parabolic subgroup is conjugate
in Gc to one of these subgroups.

We present here the construction of invariant Kahler
metrics given by Bore.102 It is constructed by means of
left-invariant forms, so-called Maurer-Cartan forms.98

Let us consider the simplest case * —GIT, where T
is the maximal torus: T=S 'x . . .xs1 (r factors, r
being the rank of the group G). Let wa be left-invari-
ant Maurer-Cartan forms, which induce on the Lie al-

8> A manifold Af" is said to be rational if the field of meromor-
phic functions on it is isomorphic to the field of meromorp-
hic functions of n complex variables. For example, the two-
dimensional sphere S2~ CP1 is a rational manifold, while the
two-dimensional torus is a Kahler manifold, but not a ration-
al manifold.

gebra a basis dual to the basis of vector fields Xa, and
which are orthogonal to He. Using the Maurer-Cartan
equations and the well known properties of structure
constants, one can show that the form

(0=4-51^-v

is closed provided only that

- cf = c7 for a = V-

(2.49)

(2.50)

Therefore the form w is determined by the constants
ca for the simple roots a, which can be regarded as
arbitrary: ca=(h,a). Let us consider the restriction
of this form to the group G. We thus get a form left-
invariant with respect to G and right-invariant with
respect to T. Since on complex conjugation the form
wa goes over into the form w~", the form CD is a form
of the type (1.1) on G/T. This form is real for real
values of the constants ca, and it can be shown that
the class of real cohomologies that corresponds to it
is obtained from the element h e#ll)(T) for which (a,h)
= ca (the a are simple roots) by transgression. If h
belongs to the interior of the positive Weyl cell, all
the numbers ca are positive, and the metric

ds2= S ca<a*m« (2.51)
<*E«t

is a Ka'hler metric on G/T.

If, besides this, h e#a>(T; Z), then the correspond-
ing orbit is an integral one and the image of the ele-
ment h in transgression gives an integral class of co-
homologies. Then the corresponding metric is a Hodge
metric, and by Kodaira's theorem the manifold G/T
is algebraic. We note also that, as is shown in Ref.
105, any orbit of the adjoined representation is a ra-
tionale algebraic manifold.

This fact is especially important for us, since in this
case there exist homomorphic mappings CP1 — *=G/ff
which are different from the constant one,91 or, equi-
valently, are nontrivial instanton solutions of the
corresponding chiral theories.

3. AN SUM-INVARIANT CHIRAL MODEL. THE CASE
OF THE COMPLEX PROJECTIVE SPACE <J>=C/""0)

In this section we study a special case of the chiral
models considered in the preceding section. Namely,
we examine the case in which * is the most degenerate
orbit (the orbit of smallest dimensionality) of the ad-
joined representation of the group SU(N). It is well
known that this orbit is a homogeneous space * =G/H
= CP" (i.e., a complex projective space of n dimen-
sions) where the stationary subgroup is H = SU(n)xu(l),
n =N - 1. We recall that since the group G is connect-
ed and simply connected, ijt(G/H) = -n^(H), and conse-
quently

9) Yu. I. Manin has pointed out that this follows from certain
theorems of algebraic geometry.

10J The special case n = 1 was studied by Belavin and Polya-
kov28; cf. Sec. 1. The pseudoeuclidean case is treated in a
paper by Zakharov andMikhailov.25 The Euclidean case is con-
sidered in Refs. 39, 41-43. Here we follow Ref. 39.
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n, (<D) = n, (CP») = Z, (3.1)

where Z is the additive group of integers. Consequent-
ly, the field <p(x) can be assigned a topological charge
if it is such that its limit exists for \x\ —«°. As was
already pointed out in Sec. 2, we can consider that
<f> e y, i.e., in this case tp(x) is a Hermitean (n +1)
x(n +1) matrix with zero trace and the eigenvalues

•«—CTT. (S.2)n+l

where without loss of generality we can set x = 1. It is
not hard to see that such a <p(x) can be written in the
form

9 (i)- (n + l)-1/-!.® a,

where / is the unit matrix and

(U® u)aB="o«B. «i P = 1- • • -1(1+1),

Consequently, the field <p(x) is determined [up to mul-
tiplication by a phase factor exp(t(«(x)))] by a single
complex (w + l)-dimensional vector u. Now, using (3.3)
we can readily show that

(3.4)

and

tr (l*pj ^uCpl» i*P» ^u^pi) ==: —tr (^uCpi $ii*p)« \3»5)

Therefore we can take the action S in the form

(3.6)
We see that the action given by Eq. (3.6) differs from
that for the ordinary n field, Eq. (1.3), by the presence
of an additional term. We note that this term is neces-
sary in order for the action (3.6) to be gauge invariant,
remaining unchanged for u — exp[ia(x)!pi .

The gauge invariance becomes obvious if we change
in Eq. (3.6) from the ordinary derivative 9U to the co-
variant derivative

Then the expression (3.6) for the action can be re-
written in the form

•x(D~u, D^u). (3.8)

The equations of motion that follow from the condition
6S = 0 are

Changing, as before, to new variables

d-A-,

we get

(3.10)

(3.H)

Another important difference between the CP" model
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and that of the n field in tf -dimensional space is that
the model now considered is always topologically non-
trivial and always has instanton solutions, whereas the
SO (N) -invariant model of the n field is topologically
nontrivial only for W = 3.

For the density of topological charge it is not hard to
derive the expression

)= (a,u. a,a)-(a,u, a,u>

(3.3) Consequently,

(3-13)

(3.14)

(3.15)

We note that by means of Eq. (3.14) the "equations of
motion" (3.12) can be written in the form

or

(3.12')

(3.12")

where

2, = -J-(S + 7)=(5£, D,u), X- = ±-(X-q) = (DJi, D^u).

We now form the Hermitean matrices

V?=a,,<pT*eBV[(p, 9,«pJ. (3.16).

By considering the obvious inequalities

(3.17)

(3.18)

-T tr ([<f, au<p] [cp, 5B<p]) =p t tr (^(p [<p, av<p])

we get

The inequalities (3.17) become equations only for fields
that satisfy the "equations of duality"

duty = rtiGiiv [(p, dvcpj, (3.19)

(3.20)

which in the variables u take the form

du = ^f(u, du) u, du = ±(u, du) u

or
0^=0, Dyi = 0. (3.21)

In order to find the solutions of the equations (3.20),
we go from the variables (u{,u2, ... ,un,un^) to new
variables (wi,w^ ..... wn>u^) according to the formu-
la11'

(«„ . . ., U,, "n + l) = K+lO'l, • - •, «„ + !»„, Un+l). (3.22)

From this we have

| U0 P = (1 + I 10 I2) = 1.

Consequently, the last of the equations (3.20) can be
written in the form

dun+l = (a du) un+1. (3.23)

u) The coordinates wa are indeed those in which the invariant
metric on CP" takes the Kahler form.
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By means of this equation we can rewrite the remain-
ing equations in the form

= Q (or dwv = 0), y = 1, . . ., n. (3.24)

Accordingly, the equations of duality have been re-
duced to the form of the Cauchy-Riemann equations;
this was first done for the special case 4>=S2=CP' by
Belavin and Polyakov.28 Consequently, the solution of
the equations has the form wr =f^z). But we must also
satisfy the condition <f(x)~tp^ for \x\ -°°. Since the
space * = CP" is homogeneous, we can take as <P0 any
point of CP", for example the point with the coordi-
nates wr=l. In this special case our condition takes
the form /r- 1 for z -«. Consequently, we can
consider that t h e f ^ z ) are rational functions, and on
reducing them to a common denominator we get

[n ( k

1 [[(—' (3.25)

Accordingly, an instanton solution in an SU(JV)-invari-
ant chiral model depnds on 2Nk real parameters, and
corresponds to the topological charge

<? = k. (3.26)

Consequently, each instanton is characterized by 2N
parameters.

We give the expressions for the action and the topo-
togical charge in the coordinates wr:

S= (3.27)

(3.28)

We point out that both of these expressions are deter-
mined by the Kahler structure for 4>=CPn.

Returning from the variables wrto the variables ua

(a = 1,... , N ) , we come to the conclusion that the
most general instanton solution is of the form

». = -W. « = 1. ••••", (3-29)

where Pa(z) are polynomials in z that have no common
roots, and

(3.30)

The instanton solutions (3.29) are solutions of the
"equations of motion" (3.9) [or (3.12), (3.12'), (3.12")]
with the finite action (3.8).

The question naturally arises of describing all the
solutions of the "equations of motion" that have finite
action.

For the ordinary n field model (*=CP') it is not hard
to show that the instanton and antiinstanton solutions
exhaust all solutions with finite action. For the case
of the CP" model with n^2 this is not true; solutions
exist with finite action which do not reduce to instanton
or antiinstanton ones.75 Namely, it was remarked in
Refs. 75 and 76 that such solutions can be obtained
from known solutions of the SO(JV)-invariant model of a
real n field. For finding solutions of the n field model

inRef. 79, a mathematical method previously developed
in Ref. 80 was used.

It must be pointed out, however, that in the model
of the real n field the situation is more complicated
in comparison with the CP" model, since in the n field
model a number of supplementary conditions must be
satisfied, and therefore in Ref. 79 only a recurrence
procedure was indicated for finding the general pro-
cedure in the SO(JV)-invariant model (with odd N).

Using these techniques80'79 explicit expressions were
obtained76"78 for the general solution of the CP" model
with finite action, without any sort of supplementary
conditions.

We shall present these results, following Refs. 76
and 77.

The explicit form of the general solution of the CP" model
with finite action

Let u(z,z) be a solution of the "equations of motion"
of the CP" model, Eq. (3.12), with finite action. For
instanton (or antiinstanton) solutions the vector u satis-
fies the equation Djw = 0 (or D,u = Q). Therefore it is
natural to consider two sequences of vectors

D , (3.31)

and

D,u, D\u

The vectors of these two sequences turn out to be orth-
ogonal to each other. Namely,

= 0 for m= (3.32)

It is obvious that Ag i ( =A,_ 0 , and not hard to show that

Let us now assume that the quantities A^^A^^
*,* are equal to zero. Then, using the identity

) = (Di-a, b) + (a,Dzb), (3.33)

we get

Therefore it suffices to verify that

Xtt,'+i=0. (3.35)

The proof of this fact reduces to proving that the
quantities A^J,,] are analytic and using a variant of
Liouville's theorem together with the inequality

Uo"t,'+il2<|£>rMu|2. (3.36)

Now, let w(z ,z) be a solution of the equations of mo-
tion (3.12) with finite action. We denote by Hk andH'm

the subspaces spanned by the vectors D^t,D^u,... and
Djt,Dlu,..., respectively; here k and m are the di-
mensions of the spaces Hk and H'm. These spaces are
orthogonal to each other (Hk±H'm) and to the vector u.

It is obvious that

(3.37)

and for a solution of general type the equals sign is
attained here (with the possible exception of individual
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points).

It can also be shown that the first k vectors Dfu,D$u,
... ,DjM form a basis in the space Ht, and correspond-
ingly the vectors Djt,Dfy D?u form a basis in the
space H'n.

Let M(Z,Z) be a solution of the equations (3.12) which
is not an instanton solution. Then k * 1. It turns out
that in the space J?»={«,#»} there exists a holomorphic
vector /=(/i /„), i.e., a vector satisfying the
equation 7/=0, and that it can be chosen so that is sat-
isfies the condition

(J, D^u) = a>8fh, 7 = 0,1,...,*, (3.38)

where w is some function. We shall not give the proof
of this assertion; it can be found in Ref. 77. It can also
be shown that the components of the vector/ are ra-
tional functions of z and that the points of the z plane
at which/ is singular correspond to the case k+m<n.

It can also be shown that

(1, z, zz). (3.45)

(3.39)

Accordingly, the vectors /, 3/ 3*f form a basis in
the space Hk which is dual to the basis u,D&,... ,D^u.

In Ref.76 an explicit expression was found for the
expansion of the vector u in the basis /, 3/ 3*/. It
is of the form

M ' (3.40)

Then

«). Ul'-l. -» 11. (3.46)

For |z| -°°,tt-(0,l,0), and consequently this solution
corresponds to topological charge Q=0.

where

4. THE SU(n + /7>)-INVARIANTCHIRAL MODEL. THE
CASE OF A COMPLEX GRASSMANN MANIFOLD:
* = Gm,n'

2)

In this section we consider another SU(AO -invariant
model namely the case in which the field <p(x) takes on
values in the complex Grassmann manifold Gm,n.

The space Gm,n can be regarded as a space of m-di-
mensional (or n-dimensional) hyperplanes in the (m
+ n)-dimensional complex space C"1*". These spaces
are a natural generalization of the complex projective
space CP" considered in the preceding section; the
space CP" corresponds to the case m = l.

A point of this space can be regarded as a set of m
vectors faa] in an (n +?w)-dimensional complex space,
under the condition that two such sets {«0} and jw"B} are
counted as equivalent if they are connected by a trans-
formation from the group U(m); ua=ga#ie, ge.U(m).

In other words, we can consider a point of this space
as a rectangular matrix u with m columns and (m + «)
rows, this matrix being required to satisfy the condi-
tion

v=(-\)* laV-S ( S (M-
;—0 1=0

and Mj, is a fe-row matrix

(3.41)

Mi,= (d'f, d'f), j, 1=0 *—1. (3.42)

This matrix is positive definite and invertible.

We note that furthermore

i> = I v I, (3.43)

and that the vector space H'm is spanned by the vectors
f,Sf,...3j.

It can also be shown76 that for an arbitrary rational
analytic vector f - f ( z ) in (n + l)-dimensional complex
space such that the vectors /, 3/, . . . , a"/ are linearly
independent (with the exception of individual points ,
including the infinitely remote point), and for any inte-
ger k such that O^k^n, the vector defined by Eqs.
(3.40)-(3.42) is actually a solution of the equations
(3.42), and the action S for this solution is finite.

Let us consider the simplest nontrivial case, that of
the CP2 model.

Here the solutions with fe = 0 , m = 2 (or fe = 2 , m = 0)
are instanton (antiinstanton) solutions. The case fe = l,
m = l corresponds to solutions that are neither of in-
stanton nor of antiinstanton type. In this case

/ = (A (z), /, (*), /, W),
(3.44)

. . i « ' (4.1)a = l, . . . , m - f - n ; ;, k~i, ...,m,

where /(m) is the unit matrix of order m.

On the other hand, the field <f(x] can be regarded as
a field which takes on values in the Lie algebra of the
group G, that is, we regard <p(x) as a Hermitean ma-
trix of order (n +m) with zero trace and the eigen-
values

. . . Xm . ^ Xn / . n \

Here without loss of generality we can assume that

It is not hard to show that <f(x) is of the form

We note that the matrix

P = uu+

satisfies the condition

P2 = P

(4.3)

(4.4)

(4.5)

(i.e., this matrix is a projection operator), and the ma-
trix

g = l-2P, g+ = g (4.6)

Let

12) For the pseudoeuolidean case this sort of model was first
considered in Ref. 35. For the Euclidean case see Refs. 39,
40, 42.
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satisfies the condition

(4.7)

Therefore we can regard the matrix g as an element
of the group G =SU(w+n). Accordingly, in the Grass -
mann case we can regard the chiral field as an ele-
ment of the group G which satisfies, first, the condi-
tion

?+ = g (4.8)

and second, the condition that n of the eigenvalues of
the matrix.? are equal to +1, and the other eigenvalues
are equal to -1. Consequently, an arbitrary element of
our space can be obtained from the element

ga = diag(l 1, -I, -1)

by using the action of the group13' G.

(4.9)

We remark that in the space G m _ n under consideration
there exists a unique (up to a constant factor) SU(m
+ w)-invariant metric

ds'2 = tr ( (4.10)

by means of which we obtain an expression for the ac-
tion

Substituting in this formula the expression of ip in
terms of u [Eq. (4.3)], we get

S = I d2:rtr {(311u+311u)-(u+311u.3(lu
+"))- (4.12)

We now give a different formulation of this model. We
introduce Hermitian matrices Au (^=1,2) of order m:

/il l=-L[(u+allU)_(a|1u+u)]=iu+3|1u. (4.13)

It is not hard to see that under the transformation

«->•«' - u-exp (la (*)), (4.14)

where a is a Hermitian matrix of order m, the field
Ay. transforms as a gauge field does relative to the
group U(m):

A» ^>-A'n —d^a, ^ = exp( — ia)/4,,exp(ia). (4.15)

It is convenient to introduce the covariant derivative

D^d^-'-tAr (4-16)

Then the expression (4.12) can be rewritten in the
form

S= jd"*tr(( /vrz>u U), (4.17)

where

D^u = duu + iuAv, (4.18)

We note that the second term in Eq. (4.12) is neces-
sary in order that the actions be invariant under the
group U(m). Accordingly, the theory in question is
globally SU(m +n)-invariant and invariant relative to
SU(m) with respect to gauge.

13) An analogous statement also holds for a number of other
homogeneous spaces (namely for so-called symmetric
spaces93). For details see Refs. 40, 50, 70.

The G m > r i model, like the CP" model, is topologically
nontrivial; the second homotopic group ttzW = it2(Gmn)
= Z. Therefore the field (p(x) can be characterized by a
single integer, the topological charge.

According to the general formula (2.30) we have the
integral representation

(4.19)

for the topological charge. Substituting here the ex-
pression (4.3) for <p, we get

or

(4.20)

(4.21)

We now proceed to find the instanton solutions. We
form the Hermitean matrices of order (m +n) given by

(4.22)

(4.23)

From the obvious identity

tr (<|;±it±) > 0

it follows that

(4.24)

This inequality becomes an equation only for fields
which satisfy the equations of duality

which can be written in a different form

0,,* = ±eB»Dvu

or

du = ±u (u+du), du = =FU (u* du),

where

= = -

(4.25)

(4.26)

(4.27)

To find solutions of the equations (4.27) we carry out a
change of variables. We go from the variables uj

a[j
= 1 , . . . , m; a — 1 , 2 , . . . , (m + n] ] to the new variables
wi(j = l, ...,m;a = l,..., «):14)

)i, (4.28)

(4.29)

(4.30)

where w ( 0 > is a matrix of order m

(»<»>)( = «H+», ;, A = l, ...,m.

From Eq. (4.27) it follows that

du&=0 (or Ji0i = 0), / = !, . . . . m, a = l ..... n.

Therefore the quantities w^ are rational functions of
the variable z (or z), and besides this we can consider
(just as in the preceding section) that for \z\ ~«>,wi

a(z)
— 1. Reducing the expressions for w( to a common de-
nominator, we get

(4.31)(=1 (—1
/= 1, .. ,,m, o = l, . . . , n.

4) The coordinates ui1 are coordinates in which the invariant
metric on Gm§n is a Kahler metric.
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Accordingly, an instanton (anti-instanton) solution for
the SU(n + m)-invariant Grassmann chiral model de-
pends on 2(mn + \)k real parameters. The topological
charge corresponding to this solution is

<? = *• (4.32)

Consequently, each instanton (anti-instanton) is char-
acterized by 2(mn +1) real parameters.

We further give expressions for the action and the
topo logical charge in the coordinates w(:

(4.33)

(4.34)

where

!">!* = S |u£l2=tr(u>u>+),

A,i__jv_° F_ „ (4.35)
•" a»'asj'

In concluding the section we point out that in the
Grassmann model considered, as also in the CP"
model, besides the instanton and antiinstanton solu-
tions there exist also other solutions with finite ac-
tion. Their description is a more complicated prob-
lem than for the CP" model, and we shall not deal with
it here (on this matter see Hef. 78).
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