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Investigations of the processes of excitation and ionization of multicharged ions by electron collisions are
reviewed. It is shown that the Coulomb-Born method with exchange, for calculating cross sections of these
processes, is identified here with the perturbation theory in a small parameter—the reciprocal of the ion
charge. Resonant scattering substantially alters excitation cross section in a small region of collision energies;
however, its contribution to excitation constant is small. Relativistic effects are also considered.
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INTRODUCTION

Lately, for a variety of reasons, attention has turned
to intensive studies of a plasma at very high tempera-
tures, of the order of several or even tens of keV. At
such temperatures, light-element atoms in a plasma
are completely stripped, and heavy-element atoms are
partially stripped. Multicharged ions, which contain
electrons, may be excited by the plasma particles, thus
giving rise to a time spectrum that may be used to de-
cide on the plasma parameters.

The general spectral properties of multicharged ions
and the spectroscopy of a high-temperature plasma
were considered by Presnyakov.1 This review contains
the results of investigations of the electron inelastic

scattering by multicharged ions. Specifically, the ex-
citation and ionization processes are discussed.

The physics of the electron inelastic scattering by
multicharged ions contains a number of interesting
properties. In addition to the direct Coulomb excitation
of multicharged ions, and the direct ionization of the
same, inelastic electron scattering is characterized
by the possibility of formation (in the course of a colli-
sion process) of long-lived, so-called self-ionized
states which break up in a time interval much longer
than required for the orbital motion of the electrons.
In nuclear physics such states are called compound-
nuclei. When electrons are scattered by multicharged
ions the formation of self-ionized states occurs by
means of excitation of one of the ion-bound electrons
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and the transition of an incident electron from the con-
tinuous spectrum into a discrete spectrum state: the
Auger-decay of such a state leads to the resonance ex-
citation of a multicharged ion; or by means of exciting
an electron from the inner ion shells: the Auger-decay
of such a state leads to ionization of multicharged ions.

The relativistic effects begin to appear in the process
of electron scattering by multicharged ions essentially
at temperatures already attainable in a laboratory plas-
ma. In view of this the very general questions, con-
cerning the role of magnetic interactions and the delay
effects in the process of excitation and ionization of
multicharged ions when the ion multiplicity increases,
require elucidation.

The interaction between electrons, which is the cause
of inelastic processes, is considerably weaker than the
energy of interaction between electrons and a multi-
charged ion. This fundamental fact permits us to con-
sider from a unique viewpoint the entire broad range
of questions associated with the processes of electron
inelastic scattering by multicharged ions.

The data concerning the results of calculations of the
electron excitation cross sections of multicharged ions
by means of the Coulomb-Born method are presented
in the Vainshtein, Sobel'man, Yukov book,2 which con-
tains original results by the authors. Today, a large
number of calculations of the electron excitation of
multicharged ions obtained by other methods is avail-
able. In the vicinity of the excitation threshold all
available methods may be used only numerically; more-
over, especially important is the clearly expressed
viewpoint concerning the methodology of the process:
what is the accuracy of the method used? In which
case and what advantages does this method offer over
others, etc.

1.GENERAL CHARACTERISTICS OF INELASTIC
COLLISIONS BETWEEN ELECTRONS AND
MULTICHARGED IONS

a. Applicability of perturbation theory in the case of
near-threshold excitation

The binding energies of the ground and nearest ex-
cited states of multicharged ions of one isoelectron
series may be considered proportional to Z\ (ion charge
Z2»l).1) Ion excitation requires, therefore, an energy
~Z\, excluding the transitions with the principal quan-
tum number unchanged, Aw = 0. In order to verify the
applicability of the perturbation theory in the interac-
tion between electrons, it becomes necessary to explain
which interelectron distances are significant for exci-
tation or ionization.

In quantum mechanics, relatively large interelectron
distances contribute to the cross section, such that
perturbation theory appears to be applicable.3 This

'Further, all values are measured in atomic units for which
the energy unit is 27.21 eV; the mass unit is the electron
mass; the length is Bohr' s radius a 0 = 5.29* 10~9; the cross
section is measured in units a\ = 0.28 x 10~16 cm2.

follows from qualitative considerations such as in the
case of the long-range nature of the Coulomb interelec-
tron coupling the intrinsic region is defined by electron
wavelengths (for a bound electron, simply the dimen-
sion of its wave function). The size of the intrinsic
region should be of the order of or greater than the
sum of wavelengths of both electrons. In other words,
this dimension cannot be smaller than the size of the
wave function of the bound electron which is "^bound"^1-

Thus, in quantum mechanics

(a) The effective interelectron distances are large or
of the order of Z?;

(b) the perturbation theory of interaction between
electrons is applicable.

The same conclusion holds also for transitions be-
tween degenerated states, a result that may be obtained
from estimates by means of the perturbation theory of
degenerated states.4

In this problem the following typical situation takes
place: Although, according to the classical mechanics,
electrons separated by distances ~Z^ may not inter-
change energies AE-Z2,, such exchange occurs in quan-
tum mechanics although with a low probability, which
is proportional to (F/AE) ~Z\. By multiplying this
probability by the geometric transverse cross section
of a bound state we obtain the effective cross section

Thus, the well-known and frequently used Coulomb-
Born (C-B) approximation for calculating the electron
excitation cross section of multicharged ions consti-
tutes a strict perturbation theory with respect to the
small parameter z£« 1 up to the reaction threshold.
Inasmuch as the required symmetrization of the wave
functions with respect to electron transposition tends to
change them even in the zero approximation, the Cou-
lomb-Born approximation with exchange (CBE) is the
absolutely strict perturbation theory. We note that
unlike the case of the Born-Oppenheimer approximation,
the wave functions of the initial and terminal states in
this case are orthogonal with respect to each other, as
are wave functions of one and the same Hamiltonian.

Among other methods widely used in the literature
for calculating the excitation cross sections of multi-
charged ions, the method of perturbed waves with pola-
rized orbitals and the strong interaction method are the
most interesting. We shall focus briefly on these.

In the case of the method of perturbed waves with po-
larized orbitals (see Refs. 25 and 26), the wave func-
tion of an incident electron is determined not only by
including the ion field, but also the bound electron field
and the correlation among electrons. However, at Z2

»1 these effects are small, contribute to only higher
orders of the parameter z£ and, therefore, taking them
into the consideration without allowing for the second-
order perturbation theory with respect to interelectron
coupling actually exaggerates the accuracy (but does not
lead, as seen below, to appreciable numerical errors).

The strong coupling method indicates the following:
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The total wave function of the ion-incident electron sys-
tem decomposes with respect to ion wave functions.
The coefficients of this expansion are functions of the
coordinates of the incident electron and their set de-
scribes the state of this electron, i. e., it represents
its wave functions. The resultant sum is symmetrized
with respect to electron transpositions. Subsequently,
only several terms remain in this infinite sum which
are states pertaining to the physics of the subject tran-
sition. As a result of this, a system of several Integra-
differential equations must be solved to calculate the
cross section. A detailed description of the strong
coupling method may be found in Refs. 88 and 89.

The method of strong coupling involving more than
two states means taking into account transitions through
several intermediate states (for example, Is —2/> — 2s,
Is — 2s — 2p). When the perturbation theory applies,
i.e., when the small parameter exists (Z?« 1), the
above allowance may mean that accuracy has been ex-
aggerated—incomplete allowance for the second approx-
imation of perturbation theory. To calculate the second
approximation fully requires the summation of the con-
tribution of transitions through all intermediate states.
However, allowance for only certain of these may im-
pair the final result.

Thus, when the perturbation theory applies, the
strong coupling method, generally speaking, fails to
guarantee improved results as compared to the CBE
approximation with properly picked wave functions.
However, this method also yields correct results for
multicharged ion scattering.

From experience with calculations of the excitation
cross sections of neutral atoms by electrons, we know
that when the Born approximation is used, the contri-
bution of individual moments may exceed a theoretical
limit. For this reason a majority of the Bornian cal-
culations with neutral atoms tend to overestimate cross
sections near the threshold. To eliminate this disad-
vantage, an artificial procedure is used: the Born
approximation is normalized. The purpose of this
operation is to constrain the contribution of above men-
tioned methods to a theoretical limit. According to
Seaton,5 this goal is attained if the reaction matrix is
calculated which automatically ensures unitarity of the
scattering matrix. According to Vakishtein and co-
workers,2 the calculated cross section may be renor-
malized. Both methods are equivalent and are mean-
ingful only when the Born approximation substantially
(several fold) exceeds the result.

In the case when the multicharged ions are excited
by electrons, i. e., under the conditions of strong per-
turbation theory, contributions of arbitrary moments
may not exceed the theoretical limit. For this reason
there is no need for normalization. Accuracy is ex-
ceeded when the latter is used, a fact that has little
effect or the numerical results.

b. Dipole approximation

The specific calculations of the excitation cross sec-
tions fail to yield analytical results for even hydrogen-

like ions. This is occasioned by the fact that continu-
ous spectrum Coulomb functions must be used for an
incident electron, which are expressed in terms of a
degenerate hypergeometric function. Thus, in order to
obtain qualitative results, numerical methods are used,
and for the estimating use is frequently made of Bethe's
dipole approximation.6 In the context of the latter, in
the expansion of the interelectron coupling in terms of
the Legendre polynomials

°° . ii î * / < \ /< \
1-0 > >

[where r< = min(n, r2, r> = max(n, r2); 6 is an angle be-
tween radius vectors FI, r2 of the bound and incident
electrons], contains only the dipole (1 = 1) term. The
zero term (/ = 0) contributes nothing due to the ortho-
gonality of the wave functions.

We shall transform the dipole term in Eq. (1) by
means of relationships of the classical mechanics which
hold for matrix elements in the quantum mechanics:

^~-f-=-^r<^>- (2)
If the exchange is neglected in the CB method the use of
Eq. (2) to calculate dipole transition cross sections
permits one to adopt Sommerfeld's results, derived
from bremsstrahlung theory,7 namely to adopt a dipole
matrix element between continuous spectrum functions.
The ion dipole transition cross sections were derived
in this manner and tabulated by Gailitis.8

Inasmuch as the CB method in this case represents
the strong perturbation theory, there is a need to ex-
plain the conditions under which simplification of this
method—use of the dipole approximation [Eq. (2)]—may
also be completely justified. In other words, it is
necessary to identify instances in which the excitation
cross section is determined by large distances of the
incident electron, which are greater than the dimen-
sion of a bound electron state where, while using di-
polarity, it is possible simultaneously to neglect ex-
change .

It will be shown further that among the unknowns are
cases of small energy transfer AE«Z2; more precisely,
AE is much smaller than the ionization potential of the
excited ion, i.e., cases of dipole transitions between
components of the fine structure and between states
without a change in the principal quantum number (An
= 0). For example, the 2s~Z-2p transitions in lithium-
like ions; 2s2~'2s2p, 2p2, in beryllium-like ions; etc.
These states are split as a state electrons, such that
These states are split as a result of different exchange and
other couplings with ground state electrons, such that

We shall calculate cross sections of these transitions,
assuming that the incident electron travels along a clas-
sical Coulomb trajectory, a hyperbola. We shall con-
sider the bound electron to be quantized. A justifica-
tion of all approximations will be given after the deri-
vation of results.

With this approach the excitation cross section is

?07, = 2n f «(p)pdp, (3)
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where the excitation probability w(p) in the case of di-
pole coupling [Eq. (2)] and a given impact parameter p
is

co(p) = -^-|(r,)0n(r2(A£, p))p; (4)

where r^AE, p) is the Fourier component of a radius
vector of an incident electron. This quantity was cal-
culated in Sec. 70 in Ref. 9. We get

-ffSi'flve), (6)

(7)

where xi,2 and vi,2 are the coordinates of a bound elec-
tron and incident particle in the trajectory plane; H^l
is the Hankel function. We are interested in a proba-
bility which has been averaged with respect to the ini-
tial and summed over the final substates. The latter
pertain to different projections of the moments. In this
case (.vi)on = ( r i )o n = ^On 2 - Then, in the same manner
as is used in calculating bremsstrahlung,9 we obtain the
excitation cross section

n .= ^on Lill
(2? — -1) A£ i<"~ (8)

(9)

(?0 is the orbital momentum of initial state), where /On

= 2AE rf0n
 2 is the oscillator strength of the investigated

transition. The cross section is expressed as a func-
tion of a single universal quantity v.

We shall now find conditions under which Eq. (8)
holds; these are determined when the classical approx-
imation is used for the incident electron and by means
of coupling dipolarity.

The distance of least approach of an electron to a
positive ion is10

>•„„„ = -!%-()/ I+ (*£)*-i). (10)

In order to obtain criteria for the correctness of
theory, the function OJ(P) or, according to Eq. (5) and
(6), the dependence of the Hankel function H^(tVe) on
E must be analyzed. By neglecting the trivial details
of such analysis we arrive at the final conclusions.
The incident electron trajectories are characterized
by different degrees of curvature depending on v. At
v»l , i.e., in a near-threshold energy region, dipo-
larity rmU » Z^ and the classical character (contribu-
tions to cross section made by large moments of the
incident electron) are achieved when

A£«z*. (11)

We have assumed that the energy transfer AE to a
bound electron has no effect on the trajectory of an in-
cident electron. This is valid if energy of the latter in
the reaction zone, i.e., atr2
than AE. At v » 1

is much greater

(12)ln~ Gl/3( A £ )2/3 •

It is clear from the foregoing that the condition
u^ A£ is automatically fulfilled when Eq. (11) is

satisfied, at v »1 the trajectories are pronouncedly
bent.

At v ~1, v < 1 and v«\ contributions to cross section
are made by e— 1 ~v~*. Moreover,

r ~ n ~ Z* l (ill' m l n ~ ( ) o j F " T " i V*w/

i.e., trajectories are slightly bent. Dipolarity is
achieved again under a condition in Eq. (11) and E^Z\
(the latter because of the smallness of electron diffrac-
tion effect).

The function in Eq. (9) approaches analytical form in
the range of small (v« 1) and large (v» 1) "frequen-
cies."9 Accordingly, there are two limits for the cross
section:

» z* (v< l ) , (14)

(15)I"^AF vz* >'

where y=ec = 1.781 (C is Euler constant),
E -,3/2 .. Z,

(—\3
I AE ;

<?0,,

2 y'2A£

/3(2Z0+1)AE

•1),

1

(16)

(17)

We note that Eq. (8) may be obtained from the quan-
tum result8 in a quasi-classical limit for a hypergeo-
metric function; moreover, Eq. (17) corresponds to a
quasi-classical Kramers limit in bremsstrahlung.11

The asymptotic behavior of one cross section at high
energies [Eq. (15)] does not go over to the known re-
sult yielded by the Bethe-Born approximation, and the
logarithmic term fails to coincide. The reason for
that, as was said earlier, is diffraction—the quantum
nature of electron scattering at very small angles.
The resultant formula [Eq. (8)] in the Born interval of
collision energies E»Z\ is inapplicable. The cross
sections of transitions with a low excitation energy in
the Born limit were calculated in other works.12'90

c. Resonance excitation

The effective cross sections of interaction between
electrons and positive ions under investigation are
characterized by a wealth of resonances. The values
of cross sections in very narrow energy regions of the
incident electron exhibit sharp jumps which occur due
to the presence of autoionization states in a system in-
cident electron ion. The incident electron may excite
any ion level and cross over to a bound orbit of the
same ion. In this manner a system containing two ex-
cited electrons is formed which is unstable and sub-
jected to autoionization, i. e., capable of reverting to
the initial state as a result of a backward energy ex-
change between electrons (Fig. la). The formation of
an intermediate autoionization complex is indeed the
cause of resonances in the elastic scattering of elec-
trons by positive ions.13 An ion's electron which is in
the ground state prior to collision may be excited when
an autoionization complex is formed, not to the first
level but to a higher excited level (Fig. lb). In the
course of reverse decay of such a state, this electron
may move to a lower-lying excited state. This results
in an ion excitation. In fact, such is the mechanism of
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FIG. 1. Energy diagram of electron transitions in the case of
scattering via intermediate autoionization states in elastic (a)
and inelastic (b) channels. total energies of inter-
mediate autoionization states of configurations (n,nO.

resonance formation in the case of inelastic scatter-
ing.3'14 Inasmuch as an incident electron may "sit" on a
highly-excited ion level, the resonances under con-
sideration are grouped in the cross sections in the form
of Coulomb bunching in an energy region before the
opening of the next inelastic channel. The abundance
of these resonances may in fact lead to their making a
notable contribution to the mean cross section, while
the width of each individual resonance is small.

In the case of electron scattering on neutral atoms
similar resonances are also possible, although the
number of these is limited since the number of auto-
ionization states which correspond to a negative ion
configuration is limited.

The resonant structure of cross sections, as well
as the potential part, may be examined, generally
speaking, by means of perturbation theory (in second
order, allowing for the widths and shifts of states
occurring as a result of the summing up the entire ser-
ies of perturbation theories over 1/Z2), as is done in
the theory of resonance fluorescence.15

We shall analyze the role of resonance excitation
using as an example a single autoionization state whose
width is considerably smaller than the energy gap be-
tween adjacent autoionization states. In this case, per-
turbation theory leads to the same expression for the
resonance scattering cross section Qres as in the Breit-
Wigner theory*:

n __2i±ljL__Ii!j__. (18)
Vres— 2 E (E — E0)

a + (ra/4) ' ^ '

where / is the resonant moment of an incident electron;
£0 is energy of an autoionization state; E is energy of
an incident electron; T is the total width of an autoioni-
zation state; Tt and T2 are widths at the input and out-
put channels, respectively. Equation (18) represents
the resonance cross section for an ion transition from
state 1 to state 2.

Inasmuch as the incident electron energy E~Z\, Eq.
(18) clearly shows that the resonance cross section
decreases with increasing Z^ less than the potential:
the resonance cross section ~zf; at resonance, the
cross section increases from ~Z* to ~Z2

2. The area
under the resonance peak QTm(E-Ea) is also ~Z2

2.
Nevertheless, the resonance scattering contribution to

the total excitation rate K = (vQ) is of the same order
in Z2 as the potential scattering contribution. The
parentheses ("•) denote averaging with respect to the
velocity distribution function of the plasma electrons

f£ f Q d/ j r, ("\Q)

(v is the electron speed).

The integration in Eq. (19) with the Maxwellian dis-
tribution function leads to the following contribution of
the resonance cross section [Eq. (18)] to excitation
rate:

£k*-E°'T, (20)

where T is electron temperature. At T~Z\, we get

(21)

The above expression contains, in addition to Z*,
small widths (at Tj ~ T2 ~ T «1). For this reason KIX

is r« 1 times smaller than Kfot. It follows from cal-
culations of the autoionization widths that Tli2 ~0.01
for the lowest excited state and that it is practically
independent of Z2. Nevertheless, on the whole, the
ratio -KrM/Kpot may attain values ~0.1 due to a large
number of autoionization levels.

The resonance denominator of Eq. (18) contains the
total width for the decay of a given state in all possible
channels. This includes, as a component of T, the
radiation width, which corresponds to emission of a
photon during transition of one of the electrons into the
ground or a much lower excited state of the ion. In the
case of such a radiative decay of the newly-formed
autoionization state, coupling occurs between an inci-
dent electron and ion (after such an electron also com-
pletes radiative transition to ground state). This pro-
cess is known as dielectric recombination. Its cross
section may be obtained if T2 in Eq. (18) is considered
to be the radiation width. Thus dielectric recombina-
tion and resonance excitation of ions are competing
processes. Inasmuch as the autoionization and radia-
tive widths are different functions of Z2, each of these
processes is predominant in different regions of Z2

values.

The autoionization width, as stated earlier, is almost
independent of Z2 and it may be estimated for a lower
excited level as raut~0.01 a.u. The radiation width
highly increases with increasing Z2:

r 4 ois . ,., Inn)
1 rad K V 775™r « , \"'

where o> is the transition frequency; d is the dipole
matrix element of transition. Clearly, rrad ~Z\/\yf'.
This value should be compared with the constant auto-
ionization width ~0.01. These are comparable when

• (O.OM373)1/4« 13. (23)

At Z-i < 13, resonance excitation predominates, and at
Zi > 13, F ~TTad and the contribution of resonance exci-
tation cross section to K is proportional to the product
of three small quantities:

K, (24)
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Thus, if at Z2« 13 the contribution of resonances to ex-
citation is -10-20%, at Z2 > 13 it sharply decreases.

d. Relativistic formulation of the problem

As the nuclear charge Z increases, the role of rela-
tivistic effects also grows requiring, as a result, that
their contribution to the excitation cross section of
multicharged ions by electron impact must be known.

Both the relativistic and non-relativistic theories
make use of a perturbation theory of interelectron
coupling. The total Hamiltonian in the relativistic
case is

2 2 _

i-1 t=l ''

where tif = mc2Pt H-cpj t t j +e2/rt is the Dirac Hamil-
tonian of an electron in the field of a point charge Z2

with infinite mass; Hv is the Hamiltonian of a free
electromagnetic field; Vee=rll; Vlvi = eaiA is a coup-
ling operator between the electron and the transverse
electromagnetic field which is defined by a vector po-
tential A; a is the Dirac matrix triplet.

Inasmuch as photons in the initial and terminal states
are nonexistent, ion excitation due to coupling via a
virtual transverse electromagnetic field is described
in second order perturbation theory in terms of V^.
The amplitude of the excitation probability, moreover,
is proportional to

d A -
, 2) (26)

where E{ and Ef are initial and final energies of an in-
cident electron; 1, 2); | V); and |l', 2') are the eigen-
functions of the Dirac Hamiltonian of two non-interact-
ing electrons (at rK~°°, states 1,2} and |l', 2') be-
come initial and final states of a system, respectively)'
k is the wave vector of an intermediate photon. The
identical character of the electron is reached by anti-
symmetrization of the Hamiltonian eigenfunctions H(®
+ H^\ The transition amplitude, in addition to "direct"
term also contains an "exchange" term.

Inasmuch as

l — E,—ft)'1 = ijtfi (£, — £, — k) + P E,-E,-k

the main portion of the integral in Eq. (26) may be
combined with the excitation probability amplitude in
first order perturbation theory with respect to the
Coulomb interaction ril and, after a series of identical
transformations, it may be reduced to

2). (27)
18In fact, Walter used this expression initially. ° This

clearly shows what Walker actually neglected: a polar
term in the transition probability amplitude [Eq. (16)]
describes a process of excitation via an intermediate
resonant stage of bremsstrahlung photon emission by an
incident electron, and the subsequent absorption of the
same by an ion. In this case, the law of conservation
of energy may be fulfilled in the intermediate state at
resonance and, subsequently, the virtual state becomes

real. This process, which is forbidden to free elec-
trons, scattering from each other and causing energy
to be transferred, becomes possible in the external
Coulomb field of a nucleus.

Regardless of a substantially different dependence of
the cross section of such a process on Z2 (increase
~Z\) than the dependence of direct excitation cross sec-
tion (~Z*), its neglect is justified for real values of Z2.
This conclusion permits a precise analysis to be made
in the second order perturbation theory.

We shall note a possibility of using a more elegant,
relativistically invariant form of perturbation theory
[see, for example, Eq. (17)] which leads, in the end,
to the same results. In this theory, a covariant Lor-
entz gauge is used in which the electromagnetic field
is equally quantized into longitudinal and transverse
photons, and interaction between the electron and pho-
ton fields is characterized by a single universal con-
stant e2/Kc.

The relativistic effects are very distinctly manifested
when non-dipole transitions between the fine structure
components of complex multicharged ions are excited.
For example, the 3D5/2— 3D3/2 radiative transition of a
potassium- like ion Mo23* is the Ml transition— magnetic
dipole transition. But, when this transition is excited
by charged-particle impact, the electric quadrupole
excitation (E2) may also be dominant. The magnetic
dipole excitation cross section has the order of small-
ness (Ze2/Kc)2(v/cf with respect to the electric dipole,
since the amplitude of a magnetic field which travels
with a speed of charge v is v/c— fold smaller than the
amplitude of an electric field. However, the quadru-
pole electric excitation cross section is of the order of
(E/zf with respect to the electric dipole. Therefore,
when E»Z6/M(137)4 (where M is the mass of an inci-
dent particle), the magnetic excitation is smaller than
the electric quadrupole. For protons, this condition is
more than satisfied under the conditions of a high-tem-
perature plasma (T~10 keV). Either E2 or Ml may
be dominant for electron- shock excitation in accord-
ance with the condition above.

2. EXCITATION AND IONIZATION OF HYDROGEN-
LIKE IONS BY ELECTRONS

Hydrogen- like ions are the simplest of all cases
under consideration. The wave functions of the con-
tinuous spectrum, which at large distances from an
ion become plane waves with a given direction of pro-
pagation, i.e., a given vector fe,4 are:

% = e,72/2*r(l-^.)e
i'"-/'(-^; l ; i ( f t r -k r ) ) . (28)

Total and differential scattering cross sections are:

Q,n = 2n [<?„„ (9 ) s i nede , (29)

<?o» (6) = % [|l/ (6) + g (8)P + |-!/ (6)-g (9)|*] ; (30)

where feo and kn are initial and final momenta of an in-
cident electron. The direct f(Q) and exchange g(8)
scattering amplitudes are

/ \ ,* / \ dri dr. /oi\
* to (ri) <!>*„ fa) ' , (31)
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g (9) rz> ** (32)

It follows from Eqs. (28) and (30) that at the threshold
when fen = 0 the excitation reaction cross section 0—w
is finite. It is also evident that the cross section of the
reverse process of de-excitation by very slow electrons
with a momentum £n~"0 proceeds in proportion k~£.
This conclusion also follows from the detailed balance
principle:

tiOn — lr*f) (W\K^Qn— KnVnO' WW

The divergence of de-excitation cross section by slow
electrons can be explained in terms of attraction by the
ion Coulomb field which effectively increases the elec-
tron flow in the reaction region.

The aforementioned properties of the finiteness of ex-
citation cross sections and the divergence of the de-ex-
citation cross section can be explained only in terms of
the Coulomb field attraction and, therefore, take place
when electrons are scattered by positive ions, with any
number of bound electrons.

It follows from the properties of wave functions and
scattering amplitudes that the excitation cross sec-
tion Qo« °f the 0—w transition may be represented as
follows

<?on = z;4<po» (*)• x=-§Bt (34)

where <p0n is independent of Z2 and is determined only
by a given transition for a given number of isoelectron-
ic ions. The proportionality Q^ ~Z? holds only for
transitions with the excitation energy ~Z\.

a. Excitation of hydrogen-like ions

The CBE method for the excitation of hydrogen-like
ions was used in several works2'18"20; elsewhere,21"24

the CB method was used and, in Refs. 20 and 21, ex-
pansion in terms of moments for the S—S transitions
was avoided. A method of perturbed waves with pola-
rized orbitals was used,25'26 while a complex combined
method, tested on experimentally studied cases of ex-
citation of H and He atoms, was also introduced.28 All
these calculation methods should yield identical results
in view of correctness of the perturbation theory.

Figures 2 and 3 show normalized (or scanned) cross
sections Z*Q for the excitation from ground to /»-states:
Is— n>l — l. According to Eq. (34), such a product
should be a universal function for the isoelectronic
series under consideration, which depends on the nor-
malized energy x of an incident electron and on a speci-
fic transition 0 — n. Evidently, the function 24Q0n is
actually independent of Z2 at high values of Z2.

Figures 2 and 3 clearly show that taking into consi-
deration exchange between incident and bound electrons
has a weak effect on the results for the excitation of
hydrogen-like ions. This can be explained by the proxi-
mity of values of direct and exchange amplitudes.

We shall examine the behavior of cross sections as
n—°°, i. e., when the principal quantum number of an
excited state increases. For this purpose it is con-

I fc T<3—2fl

"- f
o-2
*- 5

f

/ff rs

FIG, 2. Normalized excitation cross section Z*Q (Is —2p)
(nonrelativistic) of the Is—2£ transition of hydrogen-like ions
by electron shock as a function of ratio of kinetic electron
energy and transmittedenergyjc = £/A£. Calculations wihout
allowing for exchange: 1—CB18lM 2— Ref. 2. Calculations allow-
ing for exchange: 3—CBE18; method of perturbed waves with
polarized orbitals; 4—Z=2625; 5—2=10; 6—Z=626; 7—Ref.
27; 8—method of strong coupling Is, 2s, 2p, Z = 6 and 1029.

venient to express cross section in terms of so-called
impact force n18:

'<? (Is-»-»! (*)

where the normalized impact force
follows

(35)

is related to S7 as

(36)

When Z2— °° and n —°°, O tends to a constant limit which
is a certain universal function of x. Table I shows a
limit of function n at n, Z—« calculated by Tully using
the CB approximation without exchange.23 The table,
when supported by Eq. (35), may be used to calculate
cross sections for any values of Z^ 4 and M* 4. If we
compare the results of this calculation with the excita-
tion cross sections of level n = 4—shown in Fig. 3—we
see that the error due to the use of the critical impact
force fi(x) \Htt., is 15% for n = 4. This error decreases

> -1
• -1
' ~3.
•-5

FIG. 3. Normalized excitation cross section Z*Q (Is—np)
(nonrelativistic) of the Is—-«p transition of hydrogen-like
ions by electron shock. Calculations without allowing for ex-
change (CB method): 1—Ref. 2; 2—Ref. 23; 3—Ref. 24.
Calculations allowing for exchange: 4—method of perturbed
waves with polarized orbitals, Z = 2625; 5—CBE.19
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TABLE I. Limit atn, Z-"*> of normalized collision force
nis,n, (see Ref. 55), which depends on the incident electron
energy, in threshold units x = £/A£.23

I

0
\
2

i= 1

1.843
6,94
0.835

* = 2

1.883
10.14
1.342

*= 3

1.878
12.27
1.59

* = 4

1.869
13.8

1,74

as n increases.

Hayes and Seaton29 calculated the normalized impact
forces Z\Sl for the excitation of the 2s and 2p levels of
He', Li2*, C5*, and Ne9* ions. Calculations were made
using the perturbing wave and strong interaction (Is,
2s, 2p) methods with exchange. It was found that re-
sults for C5*, calculated by both methods, are already
similar. This coincidence is due to the applicability
of the perturbation theory: both methods in different
ways take into consideration only a portion of the next
approximation. For this reason neither one of these
methods should be given preference. However, it may
be stated with confidence that the perturbation theory—
the CBE method—yields reliable results already for C5*
ions.

We note that the absolute values Z\Q, obtained in Ref.
29, are 5-10% lower than the same values obtained
elsewhere.18,25

Equations (8), (15) and (17) may be used to calculate
excitation cross sections of transitions between fine
structure components. Fine splitting of the 2P3/2

— 2Si/2, 2P1/2 levels strongly increases with increasing
Z,30 giving rise to a strong increase in the electric
fields which leads to the 2s~2# mixing. The 2s~3p,
1p, Z~°° transition cross sections were calculated by
the CB method.31

Hayes and Seaton32 investigated contributions of reso-
nances to excitation of the 2s, 2p levels of C5* and Ne9*
ions from the ground state using the strong coupling
method, allowing for the Is, 2s and 2p ion states and the
autoionization states 3s2, 3p2 and Srf2. Figure 4 shows
transition strengths Z2£2 calculated by these authors.
Clearly, good separation exists between resonances.
This figure may be used to estimate roughly the average
resonance width for C5* (0.2 eV) which is comparable
to values normally obtained in calculations of autoioni-
zation state widths. The same authors32 have estimated
the contribution of resonances to excitation rate K as
-20% for the Is—2s transitions, and -10% for the Is
•~2p transition. Higher autoionization states nl, n'l'
with n, n' > 3 contribute even less since Taut decreases
strongly with increasing n.

Figure 5 shows results of calculations of the Is— 251/2,
2Pi,2 and 2P3/2 transitions16 by means of the CBE meth-
od in the relativistic approximation, using Eq. (27).
The figure clearly shows that the most changeable as Z
increases—due to the relativistic effects—is the cross
section at lower incident electron energies, in particu-
lar, near the threshold, i.e., a tx = l. (In the non-
relativistic approximation each curve in Fig. 5 should
become a straight line parallel to the abscissa.) As

FIG. 4. Resonance structure in the normalized collision force
Z2 tt of au electron with C5* and Ne9* ions for the Is —2s and
Is—2p transitions. Calculations by means of a strong coupling
method of the Is, 2s, 2p states with autoionization states 3s2,
3p2, 2d2.32

this energy increases, the effect of relativistic effects
decreases. It can be also seen that allowing for the
relativistic effect changes cross sections at .2 = 100
more than twofold. The electron binding energy in the
Is state at 2 = 50 is ~37 keV. Therefore, a conclusion
may be made on the basis of Walker's results16 that
relativistic effects become noticeable during excitation
of electrons with binding energies S40 keV.

b. lonization of hydrogen-like ions

In order to calculate ionization cross sections by
means of perturbation theory it is necessary to re-
place in Eqs. (29)-(32) the terminal state function of a
bound electron by a wave function of the continuous
spectrum with a diverging wave at infinity. As was the
case for excitation, the first approximation of pertur-

10

ran z ° is so
b)

ft*
C)

FIG. 5. Normalized electron excitation cross sections Z*Q
of the Is—2sty5 and Is—2p1/2,3/2 transitions of hydrogen-
like ions as a funtion of Z (allowing for exchange), calculated
by Walker16 in the relativistic pproximation by Eq. (37) for three
values of relative energy x = £/A£: 1.07(—.—), 1.33( ),
and 5.33(—).
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bation theory leads to an expression for the ionization
cross section that is similar to Eq. (34), i. e., ioniza-
tion cross section decreases with increasing nuclear
charge ~Z* and can be characterized by an energy de-
pendence in threshold units x = E/I (/ is ion ionization
potential) which is universal for the entire isoelectronic
series. A distinctive feature of this function is the
conversion of the ionization cross section to zero at
threshold. This can be explained by a tendency toward
zero of the energy interval when E—/, in which the
knock-on electron spectrum is different from zero.

The nonrelativistic CBE method was used to calcu-
late the ionization cross section of hydrogen-like ions
(H, He, andZ = 128)33and(.Z=°°).34 Salop35 calculated
the ionization cross sections of many multicharged
ions, including hydrogen-like ions C5*, N6*, O7*, and
Ne9*, using a method of pair collisions between elec-
trons, i, e., a modified Grizinskiy method which uti-
lizes classical mechanics concepts.

Experimentally, ionization was also investigated for
many multicharged ions,36"38 including hydrogen-like
N*+, O7* and Ar17* ions.38 The measuring technique,
similar to the one used in these works, has been used
elsewhere.39.40

Figure 6 shows a comparison of theoretical and ex-
perimental values of normalized cross section Z*Q for
a number of elements. Clearly, there is a good gen-
eral agreement between experiment and theory, except
at two data points. Certain experimental points near
the threshold are ~50% above theoretical. It should be
noted that derivation of experimental cross sections
from observed values requires solving a system of a
large number of coupled algebraic equations. The re-
sults of calculations based on classical mechanics35

are closer to experimental points. However, accu-
racy of such calculations is indefinite. Practice with
calculations of ionization cross sections of neutral
atoms shows their accuracy is of the order of 2 (i.e.,
~200%).

c. Excitation and ionization rates of hydrogen-like ions

Calculations of radiation intensities from a plasma
require that ion excitation rates must be known, i. e.,
K = vQ (v is electron speed), which are averaged with
respect to electron velocity distribution function (see
Ref. 19). We shall use Maxwell's distribution function
with temperature T.

70
x-f/f

FIG. 6. Normalized ionization cross section Z*Qt n(ls—k) of
hydrogen-like ions by electrons.

Using cross sections obtained elsewhere18"28'31 and
calculating the integral [Eq. (19)], we get excitation
rates of hydrogen-like ions:

1.5K (Is-* 2s) = ii 0i/2«-« [1 +0.058ea/ (a)],

'], 07)

(38)

K (is-v 3p) = ̂ «-« [ -0.52 + (1.83 + 1.70a) e"I (a)], (40)

(41)

a = ̂ , 0.05sja<oo.

The I(a) function is related to the integral exponential
function41 and it can be calculated using the following
approximation:

, / 0.562 \ ots , a3 a4 -.!„(__)+„__+____, 0<1,
(42)

The rate of ionization of a hydrogen- like ion from a
state with the principal quantum number n was approxi-
mated as follows33

Kton(n, z) = 1 (43)

where /„ is the ionization potential of the wth state and
the matching coefficients xm are

«0 Xl Xz X3 *4 *5

Is: 4.013 -u.2186 -0.3474 0.1338 -0.01769 7.767-10-'
2s: 3.275 0.8003 —0.8262 0.2439 0.02943 1.238-10-3'

The rate of excitation (or de-excitation) in those cases
where the cross section is determined as a dipole ap-
proximation by means of Eqs. (8), (15) and (17), is

a-3/2»z/2 l/2A£, 7 = 1.781 (44)

(45)

We should point out that the atomic unit of the reaction
rate is A"0 = <4w0 = 6.12xio"9 cmVs, where ac is Bohr's
radius and i>0 = 2.188xl08 cm/s is the atomic rate unit.

3. BOUND STATE ENERGIES OF COMPLEX
MULTICHARGED IONS

One of the difficulties facing theory when addressing
helium-like and more complex ions is the calculation
of the excited and ground state energies. There are no
strict analytical formulas for these energies for ions
with two or more electrons; instead, they are obtained
by a variational method or, using the perturbation
theory, by expansion in terms of the small parameter

Ivanova and Safronova42 have calculated energies of
ground and certain excited states of ions with the elec-
tron configurations ls22sB12/>"2 (m =0 - 2, w2 =0 - 6) as
a nonrelativistic approximation by means of a field
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form of perturbation theory. These energies can be
written out as a series in l/Z: E = E0Z

2 + E^Z + E2 + • • • .

Excited state energies of a {He} series have been cal-
culated.43'44 Blanchard has processed a large number
of variational calculations (based on Ref. 45) and other
calculations based on the perturbation theory.43 He
presented the total energy of two electrons as a power
series in Z'1 [E0 = -0.5(1 +n~*)} and determined 5-8
first coefficients Ek by comparing these series with the
results of original calculations. His work43 provides
nonrelativistic energy values of the n1, 3S and n1,3P
(« = 2-5) states. The Is2, 21, 3P and 21,3S state ener-
gies were calculated by means of the perturbation
theory allowing for relativistic effects.44 Numerical
results for .2 = 10, 20, 30, . . . , 100 are given.

A comparison of theoretical43145 and experimental46

values of ionization potentials and excitation energies
for certain states of helium-like ions demonstrates
an excellent agreement of calculated and experimental
data. As Z increases, theory and experiment diverge
(in the fourth, fifth signs) due to relativistic effects
neglected in theory.

In addition to conducting relativistic calculations,
available experimental values of energy at Z < 10 may
be extrapolated to a higher Z region. This operation
was carried out for ions of several isoelectron series

30) by comparing the expansion of unknown en-

a. Lithium-like ions {Li >, 2s^2p transition

The cross section of this transition was calculated
for several ions in a number of works: by means of the
Coulomb-Born (CB) method for Be*, N4* and Ne7* ions,54

and N4* ions55; by means of the CB and strong coupling
methods for Be*56; by the strong coupling method, al-
lowing for five states nearest to the ground state for
N4* 57 and C3* and Ar15*5B ions. Resonances were
studied by use of the strong coupling method when this
transition was excited by electrons with energies 1.4
Ry« Es 2.6 Ry.59 A large number of narrow resonan-
ces were identified (Fig. 7); however, their contribu-
tion to the averaged out cross section was small (~5%).

The experimental cross section of the aforementioned
transition was measured only for C3* ions60 (in an en-
ergy region 8-500 eV), and N4* ions61 (130-305 eV).

Figure 8 shows comparisons of excitation cross sec-
tion of this transition for various ions, determined by
means of Eq. (8), with those obtained by numerical
methods. To calculate cross sections by means of Eq.
(8), we used the oscillator strengths of the 2s~2p
transition of lithium-like ions, assembled in Ref. 62.
These data may be approximated by the following rela-
tionship:

/2^2i>{U} = l|l+^f (47)

which is well confirmed by more recent measurements
ergies in powers of Z'1 with their experimental values.47 for lithium-like sulfur ions.163

Lotz's results41 very accurately reproduce the experi-
mental value of ionization potential for Fe24* 43

The results of calculations of selected levels of lithi-
um-49'50 and beryllium-like51 ions are in a good agree-
ment with the results of Ivanova and Safronova.42

The foregoing may be used to conclude that very many
levels of a large number of multicharged ions may be
determined in some manner, either on the basis of
theoretical calculations or extrapolation of spectro-
scopic data46 with an accuracy that is sufficient for the
calculation of cross sections of various processes.

4. EXCITATION OF DIPOLE TRANSITION OF
MULTICHARGED IONS WITH SMALL EXCITATION
ENERGY

We shall compare values of cross sections given by
Eq. (8) with those calculated by more complex com-
puter methods.

The function F(v) has been adequately studied in the
theory of electromagnetic excitation of nuclei by posi-
tive ions52 and in the theory of bremsstrahlung of a
classical particle in a Coulomb field. This function
was tabulated in the 0.1^ v ̂  4 region52 and was the sub-
ject of a dissertation over the broader region 0.01* v
«20.53

The function F(v) may be approximated by the follow-
ing relationship:

The energy differences were taken from Ref. 42:

\EtMf {Li} = 0.0707Z - 0.120; (48)

where Z is nuclear charge, as opposed to Z2, ion
charge.

Figure 8 shows that the results from all sources are
in a good agreement with each other at sufficiently high
Z's. An exception to this is the C3* ion for which Eq.
(8) exceeds results by 1.5-2-fold (which may be ex-
plained by insufficient smallness of Z^ for this ion),
while results obtained by means of the strong coupling
method coincide with experimental results.

In the case of large ion charges Z2 differences be-
tween the fine components 2Pt/2 and 2P3/2 become sub-
stantial, such that two dipole transitions 2Si^-*2P1/2

and 2S1/2 —2P3/2 must be distinguished. Table n shows

J_ln
 U23 i

4 , 0.163

v<0.2,

v>0.2.
(46)

FIG. 7. Electron excitation cross section of the 2s-"2p
transition of C3* ion (threshold 8eV= 0.59 Ry), calculated by
strong coupling method59 with autoionization states C2t.
Dash line—cross section averaged with respect to resonance.
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x-E/AE

FIG. 8. Electron excitation cross sections of lithium-like ions
as a function of energy in threshold units x = E/&E. — *
Eq. (8); its limit Eq. (17); a: 1—experiment;eo 2—
strong coupling method (2s, 2p, 3s, 3p);53b: 1—CB method,S5

2—strong coupling;57 c: 1—CB method; M d: 1—strong
coupling.58

the parameters of these transitions for iron Fe23+ and
molybdenum Mo39* ffi ions, as also the cross sections of
these when excited by electrons and protons (see Ref.
52) at energies of 0.5, 1 and 2 keV.2) Clearly, the
proton cross sections are small due to repulsion in
this energy region, but they sharply increase with in-
creasing E,

b. Beryllium-like ions {Be}, 1s*2s2 !1S->1s22s2pl1P
transition

The collisional and cross section values for this tran-
sition were calculated by Osterbrock for B*, C2*, N3*,
O4* and Ne6* ions using the strong coupling method.65

Parks and Sampson calculated cross sections of the
same transition by means of hydrogen-like functions

TABLE II. Parameters / and A.E62 and excitation cross section
of lithium-like ions of iron and molybdenum, calculated from
Eq. (8) for electrons (Qe) and from a formula in Ref. 52 for
protons (Qp).

and the CB method for an interval Z =°° ,8a Berrington
and coworkers studied resonances in the collision for-
ces for C2* and O** ions.81 Nakazaki and Hashino analy-
zed the roles of various approximations for the wave
functions of ions' bound electrons within the framework
of the CB method.

Some difficulty for the numerical calculations of
cross sections of transitions under consideration is
presented by the fact that the many moments of an in-
cident electron contribute in this case. Osterbrock's
work65 shows the principal cross sections for excitation
of the 2s2p 1JP states of the C2* and O4* ions in the
near-threshold energy region. In the excitation of an
inter-combined transition to the 3P state, only 3-4
moments are substantial, while the excitation of a di-
pole-allowed transition to 1P involves 10 moments.

Cross sections calculated by means of Eq. (8) are
compared in Fig. 9 with the parameters / and A£ taken
from spectroscopic data,46 and those calculated by the
strong coupling method for C2*, N3*, O4* and Ne6* by
Osterbeck85 and Nakazaki and Hashino.88

Fe«+

&E

f

E, keV
9e
Cp

lsa2slS-Ms»2p|P3/2
2.371 a.u. = 64.51 eV

0.048

0.5 1 2
5.0. ID-"™ * 3.1 • 10-" on* 1.9- 10-19cm*

10-" cm2 3-10-Mcro! 5.10-2°cins

la«2slS-ls»2p|P,/,
1.785 a.u. =48.57 eV

0,018

0,5 1 2
26.10-1Bcm» l.e-lO-^anM.O.lO-Wcm1

10-« cm« 4.10-"cm> 2.6.10-"™"

Mo*>+

AE

/

E, keV
?e
Qv

ls>2s|S->-ls»2p| P3/,
7.881 a.u. =214.44 eV

0,056

0 5 1 2
1.4.10-i»cm*8.MO-*>ciii'4-7.10-«cm2

0 0 10-" cm'

ls»2s|S^ls>2p|P,/,
3.276 a.u.=89.14 eV

0,011

0,5 1 2
7.5- 10-«cm' 4.4- 10-Mcm* 2.7- JO-MCOI»

0 0 1.2.10-^on'

The spectroscopic data*8'63

the following relationships:
3.30 . 5.60

may be approximated by

A£ 2S2 _ 2.2p|.p {Be} =0.13 2Z- 0.350.

c. Sodium-like ions {Na}, 3s-*3p transition

The approximation relationships of tabulated data41

for the oscillator strengths and transition energies
are

(49)

(50)

8.44 28.8

= 0.076Z-0.732.

(51)

(52)

Blaha and Davis used the method of perturbed waves
without exchange to calculate collision strengths of the
3s~3p, 3rf, 4s, 4/>, 4d, and 4f" transitions for the CaX,
FeXVI, KrXXVI, and MoXXXII ions. The same authors
give excitation energies and oscillator strengths of the

2Recently measured values of Fe23+ oscillator strengths coin-
cide with those shown in Table II.M
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FIG. 9. Electron excitation cross sections of beryllium-like
ions as a function * = £/A£. C—calculation by strong coupling
method;65 D—CB method;68 x—Eq. (8) with parameters/
and A£ equal to:46 (a)/= 0.81, A£ = 0.466; (b)/= 0.64 A£
= 0.595; (c)/= 0.53, A£ = 0.723; (d)/= 0.57, A£ =0.979.

foregoing transitions of these ions. We shall compare
the excitation cross sections of the 3S — 3P1/2, 3P3/2

transitions of the MoXXXII ion (SS-SP^: AE = 2.57
a.u., / = 0.073; 3S-3P3/2: AE = 3.53 a.u. , /=0.201),
given by Eq. (8), with those obtained by Blaha and
Davis.69 Using Eq. (8) we get the following: x = \:Q

cm2, Q(3S-3P3/2) = 5.0xlO'18

= 5.8xiO~19 cm2

are69 =

-3P1/2) = 3.9xiO-19 cm2; Q(3S - 3P3/2)
The corresponding cross sections
= 3.5X 10"18 cm2; Q3/2 = 4.5X 10"18 cm2

X10"19 cm2, Q3/2 =4. ix 10'19 cm2.

Evidently, machine- calculated cross sections are
also somewhat smaller here (clearly, for the same
reason as also for the {Li} ions) than those calculated
from Eq. (8).

d. Helium-like {He} ions, 2'S^2'P, 23S^23P
transitions

The tabulated values of oscillator strengths and ener-
gy differences46 are approximated by the following re-
lationships:

23S-.-23P:

A£ = 0.0282—0.040,

0.69

= 0.036Z—0.009,

(53)

(54)

which may be used to calculate cross sections for Eq.
(8).

In addition to dipole transitions there exists a large
number of non-dipole transitions with Aw = 0 for which
&E«Z\. The electron excitation cross sections of
these, as shown in the analysis, can be calculated by
neither multipole expansion of interelectron interaction

nor classical description of the incident electron. In
this case, quantum calculations by means of the Cou-
lomb-Born method with exchange are required.

The excitation reaction rates K = (vQ), which are de-
termined by the cross section [Eq. (8)] can be obtained
by averaging the product vQ with respect to Maxwell's
electron energy distribution function. Since F(v) is a
slowly varying electron energy function E, K may be
calculated by means of a method proposed earlier.70

We then get

(55)

Z,AE (56)

Representation of the reaction rate in this form is
convenient because to calculate it and also the cross
section one can use the function F(v) which is shown as
an approximation formula [Eq. (46)].

We shall compare excitation rates of the 2s—2/> tran-
sition of a lithium-like argon ion Ar15* (AE = 1.15 a.u.;
/=0.082), given by Eq. (55), with those obtained by
Vainshtein and coworkers.2 At three temperatures:
T=AE/2= 0.575; T=AE = 1.15; T = 3AE = 3.45, Eq.
(55) yields K = 1.6, 3.3 and 4.2X1Q"9 cmVs, respec-
tively. The corresponding values obtained by Vain-
shtein2 are 1.5, 2.5 and 3.2xio'19 cmVs.

5. EXCITATION OF TRANSITIONS WITH An =£ 0

a. Helium-like ions

We shall now direct our attention to transition cross
sections with a variable principal quantum number,
which require an excitation energy ~Z\.

The excitation cross sections of the 21, 3S and 21,3P
states of helium-like Li*, Be2*, B3*, C4*, N5*, O6*,
Fe7*, Ne8*, Si12*, Ca18* and Fe24* ions from the ground
state 'S were calculated as a nonrelativistic approxi-
mation by a method of distorted waves with exchange,'1

and also by the CB method. The excitation cross sec-
tions of the 2'S j.nd 2'P states of ions with 3 « Z « 10
and Si12*, Ca18* id Fe24* were calculated by a method
of perturbed waves with polarized orbitals, taking ex-
change into account also as a nonrelativistic approxi-
mation.26 The excitation cross sections of the w'S and
n'P states (w = 2-6) were calculated by the CB method
without exchange by Tully.72 The CBE method was used
also to calculate excitation cross sections of helium-
like ions.73'74

71

In view of the correctness of the perturbation theory
the most consistent method for calculating cross sec-
tions is the CBE method with hydrogen-like functions.
Such calculations were made by Burgess and cowork-
ers75 (IS- 23P,
workers76 (1'S-

1'S — 23S, Z =°°) and Sampson and co-
•n', 3S, P, D; 2', 3S-w\ 3S, P, D,

Figure 10 shows normalized cross sections Z*Q of
the 21, 3S and 21,3P states excited from the ground 1'S
state by electron shock and calculated by different
methods. Clearly, results obtained by different meth-
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FIG. 10. Normalized electron excitation cross sections Z4<? of helium- like ion states. Calculation by distorted wave method
with exchange71: a— Li*; 2— Be2*; 3— B2*; 4— C4*; 5— N5*; 6— O6*; 7— F7*; 8— Ne8*; 9— Si12*; 10— Ca18*; 11— Fe24*. Calculation
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5.351n*A)10-16cm2; (b) (5 +2.55 In x) *M
(c) 1. 8 x'1 • 10'16 cm2; (d) (8.2/x3)- (5. 2/«*) 10'17 cm2.

ods are in satisfactory agreement with each other. An
exception to this is the excitation cross section of the
23P state obtained by Sampson and coworkers76 which
clearly constitutes a numerical error. The coherence
of results obtained by different methods is attributed to
the applicability of perturbation theory. It is evident
from Fig. 10 that as the ton charge increases the re-
sults obtained by Bhatia and Temkin71 tend to converge
on the curves obtained with hydrogen- like functions.15'16

Figure 11 shows twice-normalized excitation cross
sections n*Z*Q of higher levels (n = 3, 4, 5) from the
ground state 1'S, calculated by the CBE method with
hydrogen- like functions.18 A relatively good conver-
gence is seen between these cross sections with in-
creasing n and the universal functions of x which we
approximate by the following relationships (Z is ele-
ment number):

{He}

n»Z«g(l'S->-B'D)

).iO-»cmJ, (57)

-) . 10-Wcm1 , (58)
/

£) . 10-" cma, (59)

..lo-«cm2, (60)

.10-" em*, (61)

a. (62)

r z

ft/'" cm

The above expressions may be used to calculate ex-
citation cross sections of levels with any n ̂  3 for any
ion Zi ̂  4; they hold in the region 1 « x s 10.

Figure 12 also shows twice-normalized excitation

FIG. 11. Twice normalized excitation cross sections n3Z*Q
of states B1, *S, n1,3P, n1, 3D (n = 3,4,5), from ground state of
helium-like ions by electron shock, calculated by CBE method
with hydrogen-like functions.76 O—n = 2; • —n = 3; *_„ = 4;
+—w= 5; approximating relations, Eqs. (57J-69).
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helium-like ions by electron shock, calculated by CBE met-
hod.67 •—re =3 ; x _ w = 4 ; +— n= 5; approximating re-
lations, Eqs. (63)-(68).

cross sections n3Z*Q (w = 3, 4, 5) of states from the
metastable state 23S, calculated by the same authors
and method.76 The approximating relationships of these
cross sections are as follows:

{He}

K3Z'9(23s-*-»'S) = 10-^cm\ (63)
. _ . „ . . •>

(64)

(65)

™ 2 , (66)

S c™2' (67>

«3Z'<? (23s->• «3D) = (-^r- — -^-)-10-'5 cm2. (68)

The analysis of excitation of hydrogen-like ions has
shown that the effect of exchange on cross section val-
ues was weak. The position is different for helium-
like ions: excitation of intercombinational transitions—
with a change in the spin—is impossible without ex-
change of an incident electron with a bound electron.
However, exchange shows up substantially exerted in
the values of excitation cross sections of transitions
without spin changes. Excitation cross sections of
helium-like C4*, N5*, O6* and Ne8* ions from the ground
state to 2'P and 3'P, calculated by Nakazaki by means
of the CB method without exchange,77 are ~2 times
greater near the threshold than same values calculated
with allowance for the exchange.

We shall now give the excitation rates for helium-like
ions scattered by electrons K, which are averaged with
respect to Maxwell's electron velocity distribution func-
tion with temperature T. If we integrate the approxi-
mating cross sections of the function (see, Fig. 10), we
get

{He}

K (1's-* 2'P) = 2 1/^-2^--^-(6.07o+19.1) / (a), (69)

-"-a/ (a)), (71)

-•—a(2.93 + 0.93a)7<a)]

IE <72)

a = — •

The integral exponential function /(a) was determined
in Eq. (42).

The excitation rates of high states, whose cross sec-
tions are given by Eqs. (57)-(62), are:

{He}

(12.1.--5.46o7 (a)), (73)

J .

e-a—a (10.1+2.35o) 7 (a)],

(74)

(75)

K(l'S-*n'P) = 2J/ -£^--y.(12.1e-« + 7.717(a)), (76)

(77)

i. (78)

The rates of transitions from the excited 23S state,
whose cross sections are given by Eqs. (63)-(68), are:

{He} _

(79)

(80)

(81)

(82)

, (83)

») 7 (o)J .K (2'S -> n'D) = 2 - [ - 321ae— + (321o

(84)

We now compare the existing results of the experi-
mental measurements of aggregate rates of excitation
of the l'S~(2'P +2'S), l'S~(23P~23S) transitions of
the O6* ion.78 These were carried out at an electron
temperature of 250 eV and speed given by Eqs. (69)-
(72), and using Vainshtein's calculations.2 The experi-
mental values are K2iS+2-P= 3.1 x 10~n cmYs, /f2

3s+23p
= 1.5><10"11 cmVs. The experimental error, accord-
ing to the authors,78 was 100%. Equations (69)-(72)
yield the following values (T = 250 eV): K2,s+2,p =

'11 cmVs, #2
3

S+2
3

P = xio'11 cmVs. Data tabu-

I (a), (70)

lated in Vainshtein's work are2: K2,s+2,p = 3.
cmVs, •K2

3s*23j> = 2.2xio'lt cmVs. The results of
theoretical sources, while at variance with each other,
generally agree with the experiment within experimen-
tal error. At T = 250 eV, which is 2.2 times (a = 2.2)
smaller than transferred energy AE, the basic contri-
bution to K comes from near-threshold values of cross
sections. The latter, shown in Fig. 10 and when cal-
culated,2 are sufficiently close to each other.

b. Lithium-like ions

The cross sections of the 2s~np (w = 2-7) transitions
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of the Be*, N4* and Ne7* ions were calculated by Bely
using the CB method without exchange.54 Can and Hen-
ry used the strong coupling method with exchange of
the Is22s, Is22p, Is23s, ls23/>, Is23d states for cal-
culating excitation cross sections of the 2s — 2/>, 3s,
3p, 3d, 2p-3s, 3d, 3p transitions of the C3* and Ar15*
ions.58 In both calculations use was made of the Har-
tree-Fock wave functions. The Is2 core electrons were
considered to be "frozen," i. e., their wave functions
remained unchanged in the course of transitions of the
2s orbital electron. Figure 13 shows normalized ex-
citation cross sections Z*Q of the 2s — 3p transitions of
certain ions. Clearly, although exchange varies the
nature of the energy dependence of cross sections near
the threshold, such a change is numerically small. An
exception to this is the C3* ion for which the perturba-
tion theory remains unfeasible. It can be seen from
Fig. 13 that the cross section Z*Q of this transition is
well represented by the approximating function. The
spectroscopic values of excitation energy AE of the
2s — 3p transition may be approximated by the following
expression

{Li}, ^E (2s -*• 3p) = 0.069Z2

-0.175Z + 0.024. (85)

The rate constant of this transition is:

-(185

+ 98o)/(a). (86)

The twice-normalized excitation cross sections in
n*Z*Q of the 2s—np transitions, calculated by Bely
using the CB method without exchange,54 for the N4* and
Ne7* ions are well approximated by the function (4.0A2

+ 6.61nxAr)xiO'15 cm2; this yields the following rate
constant for these processes:

(87)

Using the results of calculations by means of the
strong coupling method with exchange58 for the Ar15*
ion, we get the following approximating functions for
rate constants:

{Li}

2p-»3s:

^1), (88)

M), (89)

)), (90)

FIG. 13. Normalized excitation cross sections Z*Q (2s-* 3p)
of the 2s —3p transition of lithium-like ions by electron shock.
CB method without exchange54: 1—Ne7*; 2—N**. Strong cou-
pling method. 2s, 2p, 3s, 3p states with exchange58: 3—Ar15*;
4—C3*; 5—approximating relation (2. 7x~l lax) 10'15 cm2.

2p->3p:

2p-»3d: .<rf;(«))- (92)

These functions hold in the 1 « x « 5-10 and 0.2 « a
«°° regions.

The strong coupling method was used to calculate the
contribution of the resonance excitation processes to
the cross section for the 2s~3s, 2/> — 3s transitions of
lithium- like oxygen O5*.3 The resonance scattering in a
narrow energy region tends to increase the cross sec-
tion substantially, although its contribution to the con-
stant K is small.

c. Beryllium-like ions

The 2s2 1S'-2s2/>3P intercombination transition cross
section with a small excitation energy

A£ = 0.068Z - 0.170 (93)

was calculated by Osterbrock for the B*, C2*, N3*, O4*
and Ne6* ions using the strong coupling method.65 Con-
tribution of the 2s2plP, nl resonance configurations
was taken into consideration when averaging with re-
spect to nl by means of the Gailitis formula.79 The
collision forces for the excitation of this transition of
the C2* and O4* ions also are shown graphically else-
where.67

The rate constant for the cross section of this tran-
sition was obtained by the authors by means of the fol-
lowing approximating function of cross section Z*Q:

K (2s2/'S' -»• 2s2p/3F) = 2 ] -̂ - - - [2.7 • e-" + 1 .25 • 10><x7 (a)] .

(94)
2 !The oscillator strength of the 2s2p 3P-2s S' radi-

ative transition increases with increasing Z and, in the
case of the P11* ion, is 1.1 x lo"4.

The collision forces for transitions with a change in
the principal quantum number of beryllium- like ions
from the ground 2s2 state and 2s2pl, 3p states were
calculated by Parks and Sampson80 who used the CBE
method and hydrogen- like single- electron functions.
The Z=<*> interval was considered. Displacement of
the initial and final state configurations was taken into
consideration, which was due to relativistic effects.
The results are shown for two values of energy in
threshold units: x = \ and 1.5.

6. IONIZATION OF MULTICHARGED IONS

lonization of multicharged ions has been studied
more thoroughly than excitation. Donets and cowork-
ers, using ion-trap method have observed ionization
of atoms to very high multiples; in fact, they observed
Xe37* ions.36"38 Data from observation of ion spectrum
evolution in a trap, obtained by means of solving a sys-
tem of ionization balance equations, have yielded ioni-
zation cross sections of ions of all multiples for nitro-
gen, oxygen and argon atoms. These cross sections
are shown in Fig. 14 alongside results of calculations
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FIG. 14. lonization cross sections of nitrogen (a) oxgyen (b),
and argon (c) ions. * — experiment;38 -- — Salpo's cal-
culations by binary classical method; 81 Coulomb- Born approxi-
mation:82 *.— N3+; N4

by means of pair collision method involving an incident
and bound electrons in a classical treatment (a modified
Grizinskiy method).81 In Salop's work,81 calculations
were made for all ions of C, N, O. Ne and Ar atoms.
Figure 13a also shows the ionization cross sections of
N3* and N4* ions calculated by Moores as a Coulomb-
Born approximation without exchange. The results of
this calculation are in a satisfactory agreement with
Salop's results.81

The latter's calculations take also into account ioni-
zation from the 2/>6 shell in the course of ionization of
argon ions with a small number of electrons in a shell
with the principal quantum number w = 3. This notice-
able increased the cross section. Vainshtein's book
provides numerical values of ionization rates all the
way to neon- like ions.2

A comparison of data given in Fig. 14 shows that the
theoretical cross section follows the power law Z~*
well, while the experimental does not follow it so well.
The ionization coefficients /floa of certain nitrogen,
oxygen and neon ions in a theta-pinch plasma were mea-
sured. Ml84 Luminescence of these ions was measured
which yielded information concerning their concentra-
tion. lonization coefficient of lithium- like oxygen was
the same: fflc.(r=128 eV)=2.2xiQ-9 cmVs; Kt (T
= 119 eV)=2.6xlo'9 cm Vs. Estimating the ionization
cross section by means of a relation Q =K/v we get-
using these rates— the following values: Q1(B(128 eV)
= 3.2xio-18cm2, Q10Q(119 eV)=3.8xlO'18 cm2. These
values are 2-3-fold higher than Salop's cross sections

(see Fig. 14b).81 Extrapolation of the measured cross
sections38 in a small energy region (120 eV) (see Fig.
14b) yields good qualitative agreement with aforemen-
tioned experimental values.

Rudge and Schwartz calculated ionization cross sec-
tions of Fe XV and Fe XVI ions using the CB and CBE
methods.85

Their calculations (see Ref. 49) were repeated by
Golden and coworkers using hydrogen-like functions
by means of the CBO method.88 The results were
found to be in a good agreement.

The resultant cross sections85'86 are well described
by Lotz's empirical formula87

„, 4.5.10-»cm2 ., l"-Tni
<?i°n = F7TT! ""' ITT ' (95)

where /„, is the ionization potential (in eV) of the ril
shell, from which an electron is removed, Nnl is the
number of equivalent electrons in the n shell, Xnl = E/

A comparison of Lotz's formula [Eq0 (95)] with the
Donets-Ovsyannikov experiments results (see Fig.
14c)36 goes as follows. At 2-keV energies of the Ar8+(/ = 423
eV), Ar9+(/=479 eV), Ar10*(/=539 eV) and Aru*(/=618
eV) ions, experimental cross sections are 7.0; 5.3;
4.0; 2.7; xio"19 cm2, respectively. However, Eq. (95)
for ionization from only the outer shell yields the fol-
lowing values: 4.9; 3.3;2.2;1.3X10"19 cm2. The in-
creasing divergence as the number of ionized electrons
decreases may be reduced if ionization of the 2s2 elec-
trons is taken into consideration [also from Eq. (95)].

In the case of ionization (see Fig. 14b) of the OP*(l
= 739 eV) and O7*(/=871 eV) ions, experimental cross
sections at E = 2 keV are 7.4 and S.lxlQ'20 cm2, re-
spectively. Equation (95), however, yields 5.9 and
2.1X1Q"20 cm2. Thus, in all aforementioned cases,
Lotz's empirical formula yields ~30% divergence.

To calculate the contributions of the inner electrons
of complex ions to the total cross section of direct
ionization, results of Moores' work91 may be used,
whereby the CBE method is used to calculate ioniza-
tion cross sections of the Is, 2s, 2p, 3s, 3/> and 3d
shells. These calculations were carried out with hy-
drogen-like wave functions in the energy region 1.125
« xnl « 6.0 in threshold units.

When calculating ionization cross sections of positive
ions, contribution of excitation of autoionization states
of the same ion must be taken into account. The auto-
ionization states of a system ion + incident electron,
discussed in Sec. Ic, cannot contribute to ionization.
In this case, different autoionization states are involved,
which form when an incident electron excites orbital
electrons to free discrete excited levels. These states
are states of the initial ion without an incident electron
present. The autoionization decay of these leads to
formation of the next higher multiple ion, i.e., to ioni-
zation. The significant difference between this process
and the process of excitation via the autoionization state
stage is the fact that the cross section for the forma-
tion of an intermediate state is not resonant in nature
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but, instead, is comparable to the excitation cross sec-
tion of an inner electron. Consequently, the contribu-
tion of this excitation to ionization may be greater than
that of direct ionization of all ion shells.

A particularly important role, for ions with a small num-
ber of outer electrons, is played by excitation of inner elec-
trons. Bely's estimates for sodium-like Fe15+(ls2, 2s22/>33s),
Ca9*, P4*, Al2* and Mg* ions show that the cross sec-
tion of ionization via the formation of autoionization
states ls22s22£53s3(s,/>, d) and Is22s2/>63s3(s,/>,d) of
an iron atom ion is approximately 10 fold greater than
direct ionization cross section of the 3s electron.92 In
this work, however, radiative stabilization of autoioni-
zation states, which competes with autoionization decay,
was not taken into consideration. In Hahn's calcula-
tions,93 radiative stabilization was included in the form
of an approximation formula for emission probability,
although its accuracy has not been validated. A more
detailed analysis of the process of ionization via exci-
tation of inner electrons for the Fe15* and Mo13* ions
was carried out by Cowan and Mann.94 However, rates
of direct ionization and excitation of inner electrons
were calculated from empirical formulas whose accu-
racy is unknown.

In the experimental work by Crandall and coworkers
a method of crossed ion and electron beams was used
to measure the ionization cross sections of lithium-
like ions C3*, N4*, and O5* in the energy region from
threshold to 15 keV.95 In addition to the principal max-
imum, a second maximum was observed at large ener-
gies in the function which relates ionization cross sec-
tion and ionizing electron speed. Its value increased
from C3* to O5* ions. The occurrence of a second max-
imum was explained by excitation of autoionization
states ls2s2/2S, ls2s2p/*P, and 2P. Henry96 used the
method of strong coupling of six states to calculate ex-
citation cross section of autoionization states observed
in the experiment. The calculated and measured cross
sections are in a good agreement with each other.
Moores' calculations, which allow for only the direct
ionization from the Is2 and 2s shells, failed to reveal
the second peak of ionization cross section of the C3*
and N4* ions.

These first works unquestionably underscore the im-
portance of the effect of excitation of inner electrons,
although its quantitative contribution to ionization has
not been established with sufficient reliability.

CONCLUSIONS

The foregoing comparison of calculations of excita-
tion and ionization cross sections of multicharged ions
by electrons, carried out by different methods, shows
good agreement with results at Z2» 5. This pertains
also to excitation of degenerate levels. Thus, evidence
of the applicability of the perturbation theory consider-
ed in this review has been specifically confirmed nu-
merically.

Although the CBE method may be used only numeri-
cally, it is much simpler than other numerical meth-
ods. We note that electron scattering by multicharged

ions represents the second case in the physics of elec-
tron-atom collisions (despite the Born approximation),
for which a theoretically well-founded method of cal-
culating cross sections may be given.

An incident electron was shown to be a possible
source for the excitation of dipole transitions with
small transition energy (A£< Z\), considered as a
classical particle, and to assume its interaction with a
bound electron same as with a dipole. As a result of
such consideration, a very simple analytical formula
was obtained for the cross section, which holds in the
interval from the threshold to the Born region, and
whose accuracy is also determined by the reciprocal
of the ion charge.

Investigation of the relativistic formulation of the
problem of electron scattering by a positive ion shows
that a matrix element of the Breit operator is sufficient
for calculating the inelastic scattering amplitude. The
numerical calculations of the excitation of hydrogen-
like ions show that the relativistic effects for the exci-
tation of transitions with a change in the principal quan-
tum number become noticeable for ions with a charge
Zi ^ 50. A different situation takes place for transi-
tions without a change in the principal quantum number.
Relativistic effects occurring during direct interaction
between incident and bound electrons also play a small
part. However, variation in the bound electron param-
eters (transition energy, oscillator strength), caused
by relativistic effects becomes substantial for Z^20.
This, as is evident from Eqs. (8), (15), and (17), has a
substantial effect on the value of cross section both near
threshold and at large energies.

Electron scattering by positive ions differs by the
rich resonant structure which is inherent in the depen-
dence of cross sections on collision energy. These
resonances depend on the formation of autoionization
states of an ion-incident electron system. The value
of cross section in a resonance is approximately Z\-
fold greater than normal cross section.

Radiative losses of a plasma at G thermonuclear tem-
perature consist not only of the emission of excited
valence electrons. So-called satellite emission lines
are also observed. They occur in the course of radia-
tive transition from an autoionization state. Excitation
cross sections of satellite transitions must be known to
study the plasma. Evidence concerning such cross
sections is only beginning to be seen at this time.

Upon collision with an ion, incident electron may ex-
cite inner electrons. In this case autoionization states
are formed which leads to ionization of an ion. For
ions with a small number of outer electrons, the cross
section of such Auger-ionization may substantially ex-
ceed direct ionization cross section.

In this review we have examined relatively simple ions
containing a small number of bound electrons. In the
case of more complex ions the CBE approximation will
experience an additional difficulty: the determination
of the zero approximation wave functions. These func-
tions must take into consideration interaction of the
ion core with electrons.
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