The pion-pion interaction (review of experimental data)

K. N. Mukhin and O. O. Patarakin
I. V. Kurchatov Institute of Atomic Energy, Moscow
Usp. Fiz. Nauk 133, 377-426 (March 1981)
Experimental methods for studying the $\pi \pi$ interaction are reviewed. Problems involved in the phase-shift analysis of reactions of the type $\pi N \rightarrow \pi \pi N$, which are the primary source of information on $\pi \pi$ scattering, are discussed. The experimental characteristics of the $\pi \pi$ interaction are summarized.

PACS numbers: $13.75 . \mathrm{Lb}, 11.80 . \mathrm{Et}$

CONTENTS

1. Introduction . 16 I
2. Methods for studying $\pi \pi$ interactions . 162
3. Reactions of the type $\pi N \rightarrow \pi \pi N$ and $\pi N \rightarrow \pi \pi \Delta \ldots \ldots . .$.
4. Description of pion resonances . 167
5. Angular distributions of secondary pions . 170
6. Phase-shift analysis . 171
7. Research on the $\pi \pi$ interaction at low energies . 174
8. Experimental results . 178
a) Scattering lengths . 178
b) The elastic-interaction region and sealar resonances . 179
c) The inelastic-interaction region. Choosing the actual solution . 183
9. Conclusion 184

References . 184

1. INTRODUCTION

It has now been more than 20 years since the introduction of the first concepts regarding the $\pi \pi$ interaction and more than 15 years since theoreticians and experimentalists began their vigorous study of it. This interaction nevertheless remains one of the most popular and interesting problems in the physics of elementary particles, apparently because of a combination of three important circumstances: the fact that this interaction is so widespread ("omnipresent"), the relative simplicity of the theoretical description, and the novelty of the method by which experimental information is obtained.

Pion-pion scattering is a particular case of the strong interaction, so it is a governing factor in a broad range of effects. A classic example of its importance was in the analysis, some years ago, of the electromagnetic form factors of the nucleons, which led to the prediction of vector pion resonances. Vector mesons were discovered soon thereafter, as we know, first in strong interactions and then in electromagnetic interactions. With the passage of time this field has grown into an extensive spectroscopy of pion resonances. Among more recent examples of the importance of pion-pion scattering are the significant developments in research on $N N$ interactions, which became possible as a result of our improved understanding of the $\pi \pi$ amplitudes and the use of the concept of dipion exchange, and the concept of a new form of the pionpion interaction: pion condensation.

The $\pi \pi$ interaction cannot be studied by direct experiments because intersecting pion beams are not available. Everything which has been learned experimentally about this interaction has thus come indirectly: from analysis of reactions in which pions are produced in the
final state (K decays, the reactions $\pi N \rightarrow \pi \pi N$, the reactions $e^{+} e^{-} \rightarrow 2 \pi$ and $\bar{p} p \rightarrow 2 \pi$, etc.). To a large extent this circumstance determined the nature of the early theoretical work on $\pi \pi$ scattering. Foremost among the early developments are the Ansel'm-Gribov method, which in principle makes it possible to determine certain characteristics of pion-pion scattering by studying various processes near the threshold for three-particle production in the final state, ${ }^{1-4}$ and the fundamental work by Chew and Low, ${ }^{5}$ who offered a specific method for extracting the cross section for $\pi \pi$ scattering from the cross section for the reaction $\pi p \rightarrow \pi \pi N$ (and similar reactions), which can be measured directly. The methods for extracting information on the $\pi \pi$ interaction will be discussed in more detail in Section 2. Here we would simply like to emphasize the important contributions of several Soviet groups, particularly Anisovich and his colleagues (on the determination of the $\pi \pi$-scattering phase shifts from $K-3 \pi$ decays ${ }^{4 \cdot 6 \cdot} 7$, Aref'ev and his colleagues (on the determination of the scattering lengths ${ }^{8}$), and Boreskov, Kaídalov, and Ponomarev (on the reggeization of π exchange and a description on the basis of it of reactions in which one and two pions are produced ${ }^{9-12}$). Various aspects of this problem have been discussed elsewhere (see, for example, Refs. 13-17). The state of the problem as of January 1969 is covered well and in detail in the review ${ }^{1)}$ by Leksin. ${ }^{18}$

One reason for the considerable interest in the $\pi \pi$ interaction is its unique nature (the scattering of a quantum by a quantum). However, the interaction is more important than simply as an end in itself. Since this interaction is so common, information on it is required

[^0]for testing many theoretical models. Since the pion has a small mass and no spin, and since $\pi \pi$ scattering has complete crossing symmetry, reactions of the type $\pi \pi$ $\rightarrow \pi \pi$ are extremely sensitive to theoretical assumptions. The reactions $\pi \pi \rightarrow \pi \pi$ and $\pi \pi \rightarrow \pi \omega$ play a special role in the "dual" models. The duality principle may be described in a very simplified manner by saying that the high-energy behavior of amplitudes may be used to predict resonant states at low energies, and in a certain sense the s-channel reasonances are constructed from Regge poles in the t channel. An s, t amplitude of this type, symmetric in the Mandel'stam variables, was introduced by Veneziano, ${ }^{19}$ for example. The Veneziano model, like several other dual models, predicts new states. For a study of these states-for the spectroscopy of resonances-the study of the $\pi \pi$ interaction is extremely important. A detailed phase-shift analysis of $\pi \pi$ scattering is one of the powerful tools available for finding new structures, for studying their characteristics, and for comparing the results with the dualmodel predictions.

For a long time now there has been interest in the possibility of constructing models from the general principles of analyticity, unitarity, and crossing symmetry. The "bootstrap" hypothesis reflects the early stage of this approach. In it, the properties of hadron dynamics are built up under the assumption that all the particles are bound states of each other and that longrange forces are dominant. The $\pi \pi$ interactions played a central role in this approach. The subsequent development of $S U(3)$ symmetry and the discovery of several structures for which the bootstrap hypothesis did not work caused this hypothesis to be abandoned, but the effort to construct models from the principles of analyticity, unitarity, and crossing symmetry continued. The most promising candidate for the application of these principles is the ($\pi \pi$) system, which has complete crossing symmetry. Particular progress has been made with the help of the Roy equations, which will be discussed in Section 7. The uncertainties in the $\pi \pi$ amplitudes at low energies can be reduced by using these equations. The threshold region is of special interest because here a comparison can be made with the predictions of current algebra, of models with broken chiral symmetry, and the hypothesis of partial conservation of axial current (PCAC). For all these models it has been $\pi \pi$ scattering which has yielded the decisive experimental data. Information on $\pi \pi$ interactions which is important for constructing realistic multiperipheral models is presently being obtained. The field of research has recently attracted even more interest because of the development of the theory of the π condensate and the anomalous state of nuclear matter. ${ }^{20,21}$ It turns out that information on $\pi \pi$ scattering is required for exact calculations from these models.

Many years of research on the $\pi \pi$ interaction failed to clarify the picture. More recently, several experiments have been of substantial help. Since the 1970 publication of Leksin's review, mentioned above, few papers have been published in the Soviet literature on the overall $\pi \pi$-interaction problem. We therefore felt it was worthwhile to reanalyze the approaches and meth-
ods of the research on the $\pi \pi$ interaction and to review the experimental situation as it exists today. In Section 2 we will briefly describe the primary sources of information on $\pi \pi$ scattering, and we will compare the advantages and disadvantages of these sources. In Sections 3 and 4 we will analyze the research method which is presently proving the most successful: study of reactions of the type $\pi N \rightarrow \pi \pi N$ and $\pi N \rightarrow \pi \pi \Delta$. We will briefly review the existing models, discuss the extrapolation of experimental data to the pion pole, and discuss the ambiguity of the concept of a resonance. In Sections $5-7$ we will review the phase-shift analysis method and the particular features of research on $\pi \pi$ interactions at low energies. In Section 8 we will see the experimental results on the scattering phase shifts and scattering lengths, and in the Conclusion we will summarize the progress, point out the unresolved questions, and discuss some possible approaches for future research.

This review covers, albeit not exhaustively, work published up to November 1979.

2. METHODS FOR STUDYING $\pi \pi$ INTERACTIONS

What can we learn about the $\pi \pi$ interaction, and how can we get this information? The most interesting bits of information are an integral characteristic-the cross section $\sigma_{r r}$ - and a more detailed characteristic-the partial-wave amplitudes, i.e., the phase shifts and elasticity parameters. These characteristics are usually studied as functions of the dipion mass $m_{r r}$. For convenience, the range of dipion masses may be considered to consist of three subranges, with distinct problems and research methods. The first subrange is the lowenergy subrange, near the threshold. The most important unresolved questions here are the values of the pion-pion scattering lengths. Next comes the subrange of intermediate energies, $500 \leq m_{r r}<1800 \mathrm{MeV}$. In this "resonance" region the characteristics of the pion resonances are studied. The third subrange is that of high energies, $m_{r r}>1800 \mathrm{MeV}$. We will have very little to say about this third subrange in the present review, since essentially no experimental information is available for such masses, and the questions of joining the results of phase-shift analysis in the intermediate subrange with theoretical calculations for high energies (e.g., calculations from the theory of reggeized exchange) go beyond the scope of this review.

In the absence of intersecting pion beams and meson targets, indirect methods must be used to study the $\pi \pi$ interaction. In principle, any process which includes a $\pi \pi$ interaction might be a source of information. So far, the most important sources have been reactions in which several pions are produced in the bombardment of a simple nuclear target (a proton or deuteron) by a π beam (for example, $\pi N \rightarrow \pi \pi N$ and $\pi N \rightarrow \pi \pi \Delta$). The one-pionexchange diagram is predominant in these reactions at a low 4-momentum transfer t. With a sufficiently large statistical base it becomes possible to single out the contribution of this diagram and, by studying the scattering of a pion by a virtual pion, to move on to a description of the process at the pion pole, i. $e_{\text {., }}$ to the scattering of real pions. Then the problem reduces to

TABLE I.

Reaction	Waves studied	Possible isospin	References
1. $\pi^{-} p \rightarrow \pi^{-} \pi^{+} n$	S, P, D, F	0, 1, 2	22-42
2. $\pi \pm p \rightarrow \pi \pm \pi^{0} \mathrm{p}$	S, P, D, F	1,2	43-45
3. $\pi^{+} \mathrm{p} \rightarrow \pi^{+} \pi^{+n}$	S, D		$45-40$
4. $\pi^{-p} \rightarrow \pi^{0} \pi^{0} \mathrm{n}$	S, D	0 ,2	$50-58$
5. $\pi^{+} \mathrm{p} \rightarrow \pi^{0} \pi^{0} \Delta^{++}$	S, D	0, 2	$5{ }_{5}^{53-54}$
6. $\pi^{+} \mathrm{p} \rightarrow \pi^{+} \pi^{-\Delta^{++}}$	S, P, D, F	0, 4, 2	55-68
7. $\pi^{-\mathrm{p}} \rightarrow \pi^{-} \pi^{-\Delta^{++}}$	S, D		$57-58$
8. $\pi^{+\mathrm{d}} \rightarrow \pi^{+} \pi^{-\mathrm{pps}}$	S, P, D, F	0, 4, 2	60
9. $\pi^{-\mathrm{d}} \rightarrow \pi^{-} \pi^{-} \mathrm{pps}$	S. D		81-6.4
10. $\pi^{+d} \rightarrow \pi^{0} \pi^{0} \mathrm{pps}$	S. D	0, 2	${ }^{84}$

ordinary phase-shift analysis in its simplest form (the scattering of a spin-zero particle by a spin-zero scattering center). A more detailed justification for the hypothesis of one-pion exchange and a more detailed description of the procedure for extrapolating the experimental data to the pole will be given in Section 3.

Table I lists the basic reactions under consideration here, the isospins of the dipion system, and the partial waves whose amplitudes can be studied in each of these reactions at intermediate energies. We see that a study of these reactions in principle yields everything we wish to know about all possible states of the $\pi \pi$ system. Reactions $1-10$ in this table are usually studied at high energies of the incident pion, sufficient for the manifestation of waves with $l \leqslant 3$. It is also extremely useful, however, to study these reactions at small values of $m_{r r}$, near the threshold. Study of reactions $1-10$ has substantially broadened our understanding of the $\pi \pi$ interaction. Within certain uncertainties, which will be discussed below, it can be said that the behavior of the $\pi \pi$ scattering phase shifts is known up to $m_{r r} \simeq 1.8 \mathrm{GeV}$. Many new resonant states (S^{*}, h, etc.) have been discovered and studied.

An understanding of the details of the resonance phenomenology requires a study of such reaction channels as $\pi K \rightarrow \pi K$ and $\pi \pi \rightarrow K \bar{K}$. The latter reaction must also be studied for a final resolution of some uncertainties which remain in the S_{0} wave for $\pi \pi$ scattering. An important source of detailed information on the $\pi \pi$ interactions at large values of $m_{r r}$ is the annihilation reaction $\bar{p} p \rightarrow \pi^{+} \pi^{-}$. This reaction has been the subject of considerable recent interest. ${ }^{65-67}$

There are certain other ways to obtain information about the $\pi \pi$ interaction. The most useful of these other ways is to analyze $K_{e 4}$ decay, which in principle permits a completely model-independent determination of the phase shifts in the region $2 \mu<m_{r r}<m_{K}$, and to analyze the reaction $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$, which determines the P_{1} wave. It is difficult to study $K_{e 4}$ decay because of the small partial width of this channel $\left(\sim 4 \cdot 10^{-5}\right)$, so that the accuracy of the results cannot be improved very much. Nevertheless, this method has yielded important data on the scattering lengths and phase shift for the S_{0} wave near the threshold, as will be discussed in Section 7.

The characteristics of the ρ^{0} resonance were obtained some time ago in a study ${ }^{68}$ of the reaction $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$at Novosibirsk, but we believe that this reaction is not being used adequately for a study of the $\pi \pi$ interaction. This method might, for example, resolve the question of the value of the P_{1}-wave scattering length.

Most of the other potential sources of information on $\pi \pi$ interactions are used less frequently, since-with certain exceptions-these other sources are either highly model-dependent (for example, $K-3 \pi$) or require an accuracy unattainable in practice ($K_{s} \rightarrow 2 \pi$). Elastic pion-nucleon interactions are studied in order to obtain information on the S-wave $\pi \pi$ interaction near the threshold. ${ }^{69}$ Analysis of data on πN scattering in the physical region and the crossing-symmetry properties can yield information on the $\pi \pi$ phase shifts. Reactions in which nucleons are annihilated, and a large number of pions are formed in the final state, are sometimes also used, but more frequently the $\pi \pi$ scattering phase shifts are introduced here to study other aspects of the reactions.

We see that at present the primary source of information on the $\pi \pi$ interaction is the study of reactions $1-10$ in Table I. This method will accordingly be discussed in detail in the sections which follow, while other methods will be touched on from time to time.

3. REACTIONS OF THE TYPE $\pi N \rightarrow \pi \pi N$ AND $\pi N \rightarrow \pi \pi \Delta$

Study of reactions $1-10$, which are presently the primary sources of information about $\pi \pi$ scattering, is based on the hypothesis that one-pion exchange is predominant (the OPE model). It is assumed in this model that the interacting particles are exchanged in the t channel by a single π meson (Fig. 1a). This model arose because at energies above 1 GeV essentially all inelastic reactions are peripheral in nature, i.e., have very anisotropic c.m. angular distributions and occur primarily with a small 4 -momentum transfer t. In πN and $N N$ collisions in which one or two pions are produced, most of the cross section is concentrated at $|t|<0.5$ $(\mathrm{GeV} / c)^{2}$.

It can be seen from geometric considerations that small values of t correspond to a large impact parameter (thus the term "peripheral interaction") and to a small mass of the exchange particle. Since the π mass is small, the pion pole is near the physical region, so that π exchange becomes predominant. This circumstance can be seen easily from the expression for the amplitude for one-particle exchange:

$$
\begin{equation*}
T=\frac{f}{m} \frac{f}{e x-t}, \tag{1}
\end{equation*}
$$

FIG. 1. Feynman diagrams for various reactions. a-Onepion exchange (OPE); b-one-pion exchange with absorption (OPEA); c, d-diffractive dissociation.
where $m_{e x}$ is the mass of the exchange particle, and f is an unknown function. If the values of f for the various particles are of approximately the same order of magnitude and also independent of t, that is, if the departure of the exchange pion from the mass shell is ignored, then everything is determined by the propagator, and π exchange is predominant at small values of t (this is the OPE pole approximation).

One of the most direct pieces of evidence that OPE is important is the agreement of the behavior of the πN cross sections ${ }^{71}$ and the angular distributions ${ }^{55}$ found experimentally on the mass shell with the results calculated by the Chew-Low method. The results of these and many other experiments have shown that OPE plays a leading role in reactions $1-10$, in which we are interested here.

In the pure pole OPE model, however, only a qualitative description of the experimental data can be found. Three methods are presently being used to improve the agreement between theory and experiment:

1) Empirical form factors are being introduced.
2) Absorption is taken into account in the initial and final states (the absorption models).
3) Models with exchange of a reggeized pion are being developed.

The meaing of the form factors and the auxiliary functions $\Phi(t)$, which allow for the t dependence at the vertices, is that their introduction allows for the departure of the exchange pion from the mass shell. Corrections of this sort cannot be calculated exactly, so that the form factor has an arbitrary parametrization under certain restrictions (the conditions of positiveness and analyticity and a normalization condition). The function $\Phi(t)$ is a universal function independent of the charge reaction channel, and it is normalized in such a manner that the condition $\Phi\left(\mu^{2}\right)=1$ holds at the pole. A rather large number of distinct form factors have been introduced at one time or another; here we will mention only those which have been used most frequently in work on the reactions of interest here.

Ferrari and Selleri ${ }^{72}$ were the first to introduce a form factor for the OPE model; it had a structure similar to that of the electromagnetic form factors of the nucleon:

$$
\begin{equation*}
\Phi(t)=0.28+\frac{0.72}{1-[(t-1) / 4.73]} \tag{2}
\end{equation*}
$$

where t is in units of μ^{2}, the square mass of the π meson. This form factor, like the Amaldi-Selleri form factor, ${ }^{73}$ has been widely used by experimentalists in the past, but it has now essentially been abandoned. The Dürr-Pilkuhn form factor, ${ }^{74}$ found from arguments based on the spirit of potential-scattering theory, is used more frequently. The interaction vertex has a spatial region of radius R. For each partial wave with angular momentum l one determines the penetration factor v_{t}, which is the probability that the particle will enter the target particle. Then the meson vertex may be written

$$
\begin{equation*}
V(t)=\sqrt{\frac{v_{l}\left(t, R_{l}\right)}{v_{1}\left(\mu^{2}, R_{l}\right)}} V\left(\mu^{2}\right) \tag{3}
\end{equation*}
$$

where

$$
v_{l}\left(t, R_{l}\right)=\frac{1}{\left|q(t) R_{l}\right|^{2}}\left[j l^{2}\left(q R_{l}\right)+\eta_{l}\left(q R_{l}\right)\right)^{-1},
$$

q is the momentum of the incident pion in the rest frame of the dipion, R_{t} is an adjustable parameter, and j_{t} and η_{t} are the spherical Bessel and Neumann functions. For the lowest orbital angular momenta the specific expressions for the Dür-Pilkuhn form factors are

$$
\left.\begin{array}{ll}
\Phi_{l=0}(t)=1 & \text { for the S-wave } \\
\Phi_{l=1}(t)=\sqrt{\frac{1+R_{\mathrm{P}}^{2} q^{2}\left(\mu^{2}\right)}{1+R_{\mathrm{P}}^{2} q^{2}(t)}} & \text { for the P-wave } \tag{4}\\
\Phi_{l=2}(t)=\sqrt{\frac{9+3 R_{\mathrm{D}}^{8} q^{2}\left(\mu^{2}\right)+R_{\mathrm{D}}^{4} q^{4}\left(\mu^{2}\right)}{9+3 R_{\mathrm{D}} q^{2}(t)+R_{\mathrm{D}} q^{4}(t)}} & \text { for the D-wave . }
\end{array}\right\}
$$

Form factors are also introduced at the second vertex, in a similar way. For practial use of the DürrPilkuhn kinematic form factors or the related BeneckeDürr form factors, ${ }^{75}$ two questions must be answered: 1. What are the values of R_{t} ? 2. What contribution is made by each partial wave? The values of R_{1} have been studied in detail by Wolf, ${ }^{76}$ who selected values for R_{t} from an extensive body of experimental data. With regard to the contribution of each partial wave, the situation is different: Although an a priori answer to this question is not known, it turns out that the effect of the form factor is not very sensitive to small changes in the contributions of the individual waves. It is thus possible to use the form factor even with rather crude estimates of the partial waves.

Form factors may be used both for work in the physical region and to improve the extrapolation process, as discussed above. As shown in Ref. 77, for example, the Dürr-Pilkuhn form factor for $\pi^{-} p$ scattering found from the reaction $p p \rightarrow n \Delta^{++}$gives satisfactory results in both cases.

The model of scattering by an absorbing disk (the optical model) works well for high-energy elastic scattering. The strong absorption by the target particle is responsible for the sharp diffraction peak in the differential cross section. The same peak is observed in quasi-two-particle reactions of the type $\pi^{-} p \rightarrow \rho^{0} n$ and $\pi^{+} p \rightarrow \rho^{0} \Delta^{++}$. This fact suggests that peripheral interactions can be studied by considering absorption. In each partial-wave amplitude it is necessary to introduce an absorption coefficient proportional to the total cross section in other possible channels. Taking into account absorption effects, which are strongest for small- l waves, improves agreement with experiment, although calculations of corrections of this sort are model-dependent.

Various versions of the OPE model with absorption (OPEA) have been proposed. One of the most popular is the OPEA formalism proposed in Refs. 78 and 79, which is based on the diagram in Fig. 1b. Here the hatched features denote the initial- and final-state interactions. The OPEA models are successful in a rather narrow energy range, and not for all reactions, but they are satisfactory in the important case of quasi-two-particle reactions, and they can be used to describe experimental data on differential cross sections and angular distributions and to calculate the correct values for the spin density matrix elements. Many studies of
the $\pi \pi$ interaction have been based on the OPEA model. Equations convenient for calculations in this model may be found, for example, in Ref. 80.

From the theoretical standpoint, the most consistent approach seems to be to introduce reggeization in the one-pion exchange. Models of this type arose as a result of developments in the theory of complex angular momentum. The model of the exchange of a reggeized pion (the OPER model) is the same as the OPE model at the pole, but in the modified model all possible states with the quantum numbers of the pion can be exchanged in the t channel. The OPER model gives a common basis for studying a broad range of reactions, and it correctly predicts the anisotropy with respect to the Treiman-Yang angle (this cannot be done by introducing form factors), the energy dependence of the cross section, and the elements of the density matrix. The OPER model was applied to various reactions in Refs. 9-11; this work is reviewed in Ref. 12.

Turning to the procedure for extracting experimental information on the $\pi \pi$ interaction, we first note that none of these theoretical models can claim general acceptance among experimentalists. The pattern is for each experimental paper to give some theoretical background and introduce a new set of changes and additions to the models and a new set of adjustable parameters.

The simplest way to extract information on $\pi \pi$ scattering is to study reactions $1-10$ (Table I) in the physical region. As mentioned above, at sufficiently small values of t it can be hoped that one-pion exchange will be governing and that the effects of other mechanisms will be small. These conditions justify the use of this method. In practice, analysis of the experimental data reduces to taking their average over some interval of t and approximating them with some model (OPEA, OPER, etc.). The partial-wave characteristics-the phase shifts and elasticities-are treated as adjustable parameters and found by fitting the experimental data.

One of the most common methods is to extrapolate the experimental data to the pion pole, to the point corresponding to scattering of a real pion by a real pion, and then employ phase-shift analysis.

We will return to the extrapolation problem below; at this point we wish to point out that although extrapolation was proposed by Chew and Low back in 1959 the extrapolation procedure has not yet been perfected, and each particular reaction must be treated separately.

Another method for determining the $\pi \pi$ phase shifts is to pick out the enriched signal corresponding to OPE and then use an extrapolation. The background amplitudes are separated out by amplitude analysis. In this method the experimental quantities are expressed in terms of the partial helicity amplitudes $H_{\lambda^{\prime} ; \mu}^{m}$ (λ and λ^{\prime} are the helicities of the primary and secondary nucleons, respectively; μ is the spin of the dipion; and m is the projection of the dipion spin). Then the amplitudes with $m=0$, caused by OPE, are found. This problem is not fully determined, so that additional assumptions must be made; one possibility is to assume that the nucleon has no spin-flip amplitudes. ${ }^{81}$ The values found for $H_{\lambda x^{\prime}: 山}^{0}$ are extrapolated to the pole.

Essentially all the work on extrapolation has been based on the old Chew-Low equation, ${ }^{5}$ which relates the cross section $\sigma_{x y}$ to the differential cross section for the reaction $\pi N \rightarrow \pi \pi N$:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} t \mathrm{~d} m_{\pi \pi}^{2}}=K \frac{f^{2}}{2 \pi} \frac{1}{p_{\pi}^{2}} \frac{t}{\left(t-\mu^{2}\right)^{2}} m \sqrt{\frac{m_{\pi \pi}^{2}}{4}-\mu^{2} \sigma_{i t \pi}\left(m_{\pi \pi}\right)} \tag{5}
\end{equation*}
$$

Here K is a numerical coefficient, taking on a value of 1 or 2 for reactions of the type $\pi N \rightarrow \pi_{ \pm} \pi^{0} N$ and πN $\rightarrow \pi^{+} \pi^{-} N$, respectively; $f^{2}=0.08$ is the πN interaction constant; and p_{π} is the momentum of the incident pion.

Strictly speaking, Eq. (5) holds only for $t=\mu^{2}$, but the pole nature of the diagram suggests that it can also be used in the physical region at small values of $|t|$. The usual approach for finding the pion-pion cross section is to construct the auxiliary function

$$
\begin{align*}
& y \cdot \frac{\left(t-\mu^{2}\right)^{2}}{m_{z a} V\left(m_{A x}^{2}-4\right)-\mu^{2}} \tag{6}
\end{align*}
$$

or $F^{\prime}(t)=F(t) / t$ (this is the pseudoperipheral approximation), which is then extrapolated to the pole, where $\sigma_{\pi r}$ $=F(t) /\left.t\right|_{t=\mu^{2}}$.

Questions involved in the extrapolation of these functions were discussed by Leksin ${ }^{18}$; here we wish to recall that the pseudoperipheral approximation requires $F(0)=0$, i.e., it is a particular case of the more general Chew-Low method [which permits $F(0) \neq 0$]. If the experimental $F(t)$ curve satisfies the condition $F(0)=0$, then both methods are applicable; the linear approximation of $F^{\prime}(t)$ corresponds to a quadratic $F(t)$, etc. In this case, the $F^{\prime}(t)$ would naturally be preferable, since it leads to smaller errors. In using this method, however, we must make sure that the condition $F(0)=0$ holds. The question of the crossing of zero by $F(t)$ has been studied by Hagopian et al. ${ }^{82}$ They mention that experiments at low momenta, $p_{\tau} \sim 2 \mathrm{GeV} / c$, yield values of $F(0)$ which are definitely negative, especially at $m_{r r}$ $\geq 700 \mathrm{MeV}$; at large values, $p_{\mathrm{r}} \gtrsim 15 \mathrm{GeV} / c$, on the other hand, we have $F(0)>0$. These results can be explained

FIG. 2. Calculation of values of the extrapolation function $F\left(s, t=0, p_{\pi}\right)$ from the OPEA model from Ref. 82.
by the OPEA model, whose results have $F(0)$ depending on p_{r}. Figure 2 shows curves from Ref. 82 showing the behavior of $F\left(s, t=0, m_{\mathrm{rr}}\right)$ for various values of p_{r}. We see that we have $F(0) \approx 0$ for any p_{τ} if $m_{\mathrm{rt}}<0.6 \mathrm{GeV}$. At large masses the condition $F(0) \approx 0$ holds only in a small momentum interval, $4<p_{\mathrm{r}}<6 \mathrm{GeV} / c$. For other momenta of the incident pion we should apparently use the ordinary Chew-Low extrapolation procedure.

Another approach for choosing the extrapolation function is the conformal-mapping method. This method was apparently first applied to the $\pi \pi$ scattering problem by Batusov et al. ${ }^{83}$ Some theoretical aspects of the method were subsequently discussed in Ref. 84. The method may be outlined as follows: The problem of reconstructing an analytic function over the entire plane from its values in a certain continuous region is a complicated one, since the resulting function is sensitive to small changes in the data in the given region. The convergence of the process can be improved by making use of knowledge of the analytic structure of the function. For this purpose one uses a convenient function W, which uses a conformal mapping to transform the complex energy plane into the interior of the circle $|W|$ $\leqslant 1$. The amplitude is written as a polynomial series in W. It has been shown that this series converges better than a series in t does. Figure 3 shows some conformal mappings. Baton et al. ${ }^{28 \mathrm{a}}$ have shown that for the reaction $\pi^{-} p \rightarrow \pi \pi N$ it is sufficient to use the variable $x(t)=(a t+b) /(t+c)(a, b$, and c are the transformation constants), since the elliptical-transformation parameters k^{2} (Fig. 3) are small in this case. This method can be used to make the following improvements:

1) to achieve extrapolation results which are less sensitive to the way in which partitioning with respect to t and $m_{r r}$ is carried out.
2) to use a polynomial of lower degree to describe the experimental data.

The net result may of course be a decrease in the extrapolation error. Figure 4 illustrates the use of the

FIG. 3. Examples of conformal mappings.

FIG. 4. Extrapolated values of $\sigma_{\pi r}$ from Ref. 111. a-Extrapolation through the use of a function quadratic in t; $b-e x-$ trapolation through the use of a function linear in x; c-extrapolation through the use of a function quadratic in x; dextrlapolation through the use of a function quadratic in x by the maximum-likelihood method; e-extrapolation using a function linear in t and the introduction of the Dürr-Pilkuhn and Benecke-Durr form factors.
various extrapolation methods for the reaction $\pi-p$ $\rightarrow \pi^{-} \pi^{+} n$ from Ref. 111.
There is also the so-called Pade approximation, in which $F(t)=a+[b t /(1+c t)]$. This parametrization, however, apparently differs only slightly from the con-formal-mapping variable x.

In order to use these extrapolation methods it is necessary to have a clear understanding of the dynamics of the processes involved, primarily the nature of the possible background of mechanisms other than OPE. To demonstrate the importance of this understanding, we will compare some possible extrapolation methods for certain reactions. For the reaction $\pi N-(\pi \pi) N$ there is a paradoxical situation, in which a very large statistical base may degrade the situation: The use of an extrapolation to very small $|t| \leqslant \mu^{2}$ may lead to pronounced distortions. This occurs because the OPE contribution to $d \sigma / d t$ vanishes in the limit $t-0$ for this reaction, but the background is not zero at $t=0$. For the reaction πN $\rightarrow(\pi \pi) N$ the extrapolation should not come very close to $t=0$ (it usually does), or we should work entirely in the physical region. This difficulty does not arise for the reaction $\pi^{+} p \rightarrow\left(\pi^{+} \pi^{-}\right) \Delta^{+*}$, and as smaller values of $|t|$ are used in the extrapolation the result becomes more accurate. In the reaction $\pi^{-p} \rightarrow\left(\pi^{-} \pi^{-}\right)\left(\pi^{*} p\right)$ the background of other diagrams is important over a broad range of $|t|$, so that it is particularly important to take this background into account. ${ }^{85}$

We thus see that the problem of eliminating or taking into account the effects of diagrams other than one-pion
diagrams is exceedingly important. To solve this problem it is necessary to find a suitable approach for each reaction, and the solution itself depends on the momentum of the primary particle and of the t region under consideration.

Let us consider in more detail the situation regarding the background for reactions of the type $\pi N \rightarrow \pi \pi N$. For such reactions the background of other diagrams can be reduced slightly by choosing a suitable momentum. Specifically, the momentum must not be too small, because there is a significant production of nucleon isobars at $p_{\mathbf{r}} \leqslant 1.5 \mathrm{GeV} / c$, and it must not be too large because the high-lying Regge trajectories become increasingly important. Even at the optimum momentum, however, the background does not disappear completely.

In experiments with an unpolarized target it is not possible to distinguish exactly the contributions of various types of exchange with the same parity. Because of the predominance of the OPE diagram at small $|t|$ it is usually assumed that exchange with an anomalous spin-parity $P=(-1)^{J+1}$ is caused completely by π exchange, and it is assumed that the possible exchange of an $A_{1}\left(1^{+}\right)$meson can be ignored. This question was discussed by Kimel and Owens, ${ }^{86}$ who used experimental data on $\pi p t \rightarrow \pi^{-} \pi^{+} n$ with a polarized target. ${ }^{87}$ The calculation results show that the A_{1}-exchange effect can be ignored within 10% for $|t|<0.5(\mathrm{GeV} / c)^{2}$. In a recent experimental study with a polarized target, ${ }^{88}$ however, a partial-wave analysis of the reaction $\pi^{-} p \uparrow$ $\rightarrow \pi^{-} \pi^{+} n$ at $p_{\mathrm{s}}=17.2 \mathrm{GeV} / c$ showed that the A_{1} effect in the vicinity of the ρ meson was -30%. This result seems to mean that A_{1} exchange must be taken into account in order to refine the $\pi \pi$ scattering characteristics.
The effect of exchange with a natural parity $P=(-1)^{J}$, e.g., the exchange of an $A_{2}\left(2^{+}\right)$meson, can be estimated from experimental data with unpolarized targets. In Ref. 39, with a large statistical base, it was shown that this exchange amounts to $<10 \%$ at $|t| \sim t_{\text {min }}$ and increases to $\sim 90 \%$ at $|t| \sim 1(\mathrm{GeV} / c)^{2}$. This conclusion agrees with the calculations by Kimel and Reya, ${ }^{89}$ who showed that the OPE model is sufficient for a description of experimental data at $|t|<0.2(\mathrm{GeV} / c)^{2}$ and that A_{2} exchange must be taken into account at higher values of $|t|$.

The situation is worse with regard to the incorporation of ω exchange. There have been only a few efforts at a phase-shift analysis of the $\pi^{-} \pi^{0}$ and $\pi^{+} \pi^{0}$ states from the reactions $\pi N \rightarrow \pi \pi N$, and the attitude to ω exchange of the authors of these papers has been different. This exchange was simply ignored in Refs. 43 and 44, while in Ref. 27 it was emphasized that ω exchange is important, especially at the small values of $|t| \sim 0.1$ $(\mathrm{GeV} / c)^{2}$. It may be that it is ω exchange which is distorting the picture and which leads to discrepancies in the values of phase shifts with $I=2$ found from the $\pi^{*} \pi^{0}$ states and by other methods.

Opinion is also divided regarding the importance of diffractive-dissociation diagrams (Figs. 1c and 1d). In a report to a Tallahassee conference, ${ }^{30}$ Walker showed
that diffractive dissociation had an effect of about 10% in the reaction $\pi^{-} p \rightarrow \pi^{-} \pi^{+}$at small values of $|t|$ (for a high initial momentum, $p_{\mathrm{r}}=25 \mathrm{GeV} / c$). Working with the same reaction at $p_{\mathrm{r}}=4 \mathrm{GeV} / c$, Oh et al. ${ }^{27}$ showed that diffractive dissociation could be ignored in the vicinity of the ρ^{0} and f^{0} resonances. This conclusion is also in agreement with the results of a study ${ }^{91}$ of the reaction $\pi^{+} p \rightarrow \pi^{+} \pi^{-} \Delta^{++}$at $p_{\mathbf{r}}=16 \mathrm{GeV} / c$ with a large statistical base (~ 30000). It was concluded in Ref. 91 that the diffractive-dissociation admixture was small, and negligible in the ρ region. At the same time, several studies (for example, Ref. 92) have shown that diffractive dissociation is important for the reactions $\pi^{ \pm} p$ $\rightarrow \pi^{\star} \pi^{0} p$, because of both the large contribution of diffractive dissociation ($\sim 20-30 \%$) and strong interference effects. Particular note should be taken of Ref. 93, where an effect $\sim 95 \%$ was assigned to diffractive dissociation in the reaction $\pi^{+} p \rightarrow \pi^{+} \pi^{+} n$ at $p_{\mathrm{r}}=3.9 \mathrm{GeV} / c$. It is hardly possible to accept this estimate, but the very fact that it has been reported indicates the need for a careful consideration of diffractive-dissociation diagrams.

We emphasize that precisely what distortions are caused in the extrapolation by the admixture of diffrac-tive-dissociation diagrams is not known at present, and this question requires further study.

To summarize this section we may say that although the predominant role of one-pion exchange is obvious at small values of $|t|$ a further improvement in the accuracy of the results on $\pi \pi$ scattering will require a further development of a procedure for correctly taking into account all possible background diagrams.

4. DESCRIPTION OF PION RESONANCES

Elementary-particle physics has dealt for a long time with unstable particles or resonances, which participate in strong interactions not only in the course of their production but also in the course of their decay. A study of resonances can contribute to our understanding of strong interactions and can help us test the various models. If the characteristics of the resonances have been determined, it is possible to study the interaction in definite quantum states and to study partial-wave amplitudes. Experimental research in the $\pi \pi$ interaction itself began with the discovery of certain distinctive features in the two-pion system, i.e., ($\pi \pi$) resonances. Another important motivation for a study of these resonances is that many methods which have been developed for studying the pion-pion interaction (the Dürr-Pilkuhn form factors, several versions of the OPEA model, etc.) are based on the assumption that the reaction $\pi N \rightarrow \pi \pi N: \pi+N \rightarrow(\pi \pi)_{\text {res }}+N$ is a quasi-twoparticle reaction. The possible existence of resonances which are multiquark molecules (of the type $q \bar{q} q \bar{q}$) and gluon formations has recently been the subject of a lively discussion. The first possible candidates are meson resonances with the quantum numbers 0^{*}, that is, S^{*} and δ mesons (Refs. 94-96).

What are these resonances from the standpoint of the experimentalist? How can they be studied?

We know that resonances have the same sets of quantum numbers as ordinary "long-lived" elementary particles. The instability of resonances with respect to a strong-interaction decay, however, leaves an important imprint on this class of particles. The short lifetime ($\tau \approx 10^{-23} \mathrm{~s}$) and the correspondingly large width $\Gamma \approx \hbar /$ $\tau \approx 100 \mathrm{MeV}$ determine the method which must be used to study a resonance experimentally.

From the standpoint of the experimentalist, a resonance is a statistical concept. In contrast with ordinary particles, which may be identified on the basis of a single event (the Ω^{-}hyperon, for example), a resonance can be identified only from a large statistical base of events over a broad mass region ($\Delta M \gg \Gamma$).
It might be thought (and in fact it was thought at one time) that a broad peak (with $\Delta M \sim \Gamma$) protruding from the background on the mass diagram, with a height equal to several standard deviations, would be a manifestation of a resonance. This conclusion turns out to be correct, however, only for so-called leading resonances, e.g., $\rho\left(1^{-}\right), f\left(2^{+}\right)$, or $g\left(3^{-}\right)$. If, in contrast, we are dealing with less obvious resonances, which are masked by the strong background in the same wave, then we evidently need some different tests.

Let us examine this question in more detail.
Resonances are described most thoroughly in a par-tial-wave analysis. Omitting the kinematic factors, we can write the partial amplitude for the case of a purely elastic interaction as

$$
\begin{equation*}
f_{l}(E)=\frac{1}{2 i}\left(e^{2 i \delta_{l}(E)}-1\right)=\frac{1}{\cot \delta_{l}(E)-i} \tag{7}
\end{equation*}
$$

A resonance corresponds to a maximum of this function at a certain value of E_{R}, which then determines the mass of the resonance. The spin and parity of the resonance are determined by the value of l for the given partial wave; the various charges of the resonance (the electric, baryon, strangeness, etc., charges) are determined by the corresponding charges of the particles making up the resonance; etc.
If we expand $\cot \delta_{i}$ in a Taylor series around the resonant energy E_{R} (at which $\delta_{1}=\pi / 2$ and $\cot \delta_{1}=0$), we easily find the Breit-Wigner formulas for the amplitude,

$$
\begin{equation*}
f_{l}(E)=\frac{\Gamma_{i} 2}{\left(E_{\mathrm{R}}-E\right)-\left(l \mathrm{l}^{\prime} ; 2\right)}, \tag{8}
\end{equation*}
$$

and for the cross section,

$$
\begin{equation*}
\sigma_{\mathrm{el}} \quad(E)=4 \pi \lambda^{2}(2 l+1) \frac{(\Gamma / 2)^{2}}{\left(E_{\mathrm{R}}-E\right)^{2}+(\Gamma ; 2)^{2}} \tag{9}
\end{equation*}
$$

If other channels are also open, then expression (7) should be replaced by

$$
\begin{equation*}
f_{l}(E)=\frac{\eta_{l}(E) e^{2 i \delta_{l}(E)}-1}{2 l} \tag{10}
\end{equation*}
$$

where the coefficient $\eta_{t}(E)$ determines the probability that the process will be elastic ($\eta_{\mathrm{t}}=1$ corresponds to the case without absorption, while $\eta_{t}=0$ corresponds to total absorption).

In this case the Breit-Wigner formula becomes

$$
\begin{equation*}
f_{l}(E)=\frac{\Gamma_{\mathrm{e} \mid} 2}{\left(E_{\mathrm{R}}-E\right)-(i \Gamma!2)}=\frac{x}{\alpha-i} \tag{11}
\end{equation*}
$$

where $\Gamma_{e l}$ is the partial width of the elastic decay of the resonance

$$
x=\Gamma_{\mathrm{e} /} / \Gamma, \quad \alpha=2\left(E_{\mathrm{R}}-E\right) / \Gamma .
$$

It is convenient to inspect the behavior of the partialwave amplitudes on so-called Argand diagrams. Here the imaginary part of the amplitude, $\operatorname{Im} f_{1}=\left(1-\eta_{t}\right.$ $\left.\left.\times \cos 2 \delta_{1}\right) / 2 \delta_{t}\right) / 2$, is plotted along the ordinate, while the real part, $\operatorname{Re} f_{i}=\left(\eta_{l} / 2\right) \sin 2 \delta_{1}$, is plotted along the abscissa (Fig. 5). The circle of radius $1 / 2$ centered at $i / 2$ is the unitary boundary.

The relationship between real parameters (phases and absorption coefficients) and $\operatorname{Re} f_{t}$ and $\operatorname{Im} f_{i}$ can be conveniently demonstrated on such a diagram. Each point on the diagram corresponds to a definite value of the partial amplitude. As the energy is changed, this point moves, tracing out some curve. In the case of elastic scattering, for example, we have $\eta_{t}=1$, and the amplitudes traces out the unitary circle; if the potential is attractive, the point moves counterclockwise. In general, the curve can be described by

$$
\begin{equation*}
\left(\operatorname{Im} f_{l}-\frac{1}{2}\right)^{2}+\left(\operatorname{Re} f_{t}\right)^{2}=\left(\frac{\eta_{l}}{2}\right)^{2} \tag{12}
\end{equation*}
$$

When $\eta_{t}<1$, the amplitude lies within the unitary circle; for $1 / 2 \leqslant x_{1}<1$ the phase passes through 90° at the resonance; and for $0<x_{1}<1 / 2$ it passes through zero.

The Argand diagram can also be used to study the more general case of scattering through the channel a $\rightarrow b$ (for example, the scattering $\pi \pi \rightarrow K \bar{K}$). Then the Breit-Wigner formula becomes

$$
\begin{equation*}
f_{l}(E)=\sqrt{x_{a} x_{b}} \frac{1}{\alpha-i}, \tag{13}
\end{equation*}
$$

where $x_{i}=\Gamma_{i} / \Gamma$ is the elasticity corresponding to channel i. This is not the only possible way to describe the resonances, but it is convenient if there is not a strong background in the given wave. It follows from this expression that in the case of a resonance we will see the following behavior of the amplitude on the diagram:

1. As the energy increases, the amplitude moves along the circle, reaching a maximum value $f_{\text {max }}$ $=i \sqrt{x_{a} x_{b}}$ at $E=E_{R}$.
2. Near $E=E_{R}$, the change in the amplitude is at a maximum:

$$
\frac{\mathrm{d} f_{l}}{\mathrm{~d} E}=\frac{\sqrt{x_{a} x_{b}}}{\Gamma} \cdot \frac{2+\alpha(\mathrm{d} \Gamma / d E)}{\alpha^{2}+1}
$$

FIG. 5. A resonance with $x<1 / 2$ on the Argand diagram in the case in which there is no background.

At resonance, the "velocity" $d f_{1} /\left.d E\right|_{E=E_{R}}$ reaches its maximum value. If there is no background, the resonance takes the form shown in Fig. 5 ($\sqrt{x_{\mathrm{A}} x_{b}}<1 / 2$).

We can summarize this discussion by stating the conditions under which we may conclude that a resonance has been identified on the Argand diagram:

1. The phase passes through a singularity, 0° or 90°.
2. The parameter η_{t} is at a minimum (the inelastic cross section is at a maximum).
3. The magnitude $\left|f_{l}\right|$ has a maximum; i.e., the elastic cross section is at its maximum.
4. $\operatorname{Im} f_{l}$ is at its maximum; i.e., the total cross section is at its maximum.
5. The "velocity" $d f_{l} / d E$ is at its maximum.

Unfortunately, it would be rare to find a case as
"clean-cut" as this. In the first place, the picture may be changed slightly by an E dependence of the resonance width Γ. This is not a very important point, since equations are available for handling such a dependence. For the elastic resonance, for example, we have

$$
\begin{equation*}
\Gamma=\Gamma_{0}\left(\frac{k}{k_{\mathrm{R}}}\right)^{2 i+1} \frac{E}{E_{\mathrm{R}}} \tag{14}
\end{equation*}
$$

where $k\left(k_{R}\right)$ is the momentum of the scattered particle (of the resonance) in the c.m. system (see, for example, Refs. 13 and 17). If the resonance is inelastic, then Γ_{d} and Γ_{b} may depend on the energy in different ways. There is also a change in the Breit-Wigner formula. The "relativistic" formula is usually written in the form

$$
\begin{equation*}
f_{a b}=\frac{E \sqrt{\Gamma_{a} \Gamma_{b}}}{\left(E^{2}-E_{\hat{R}}\right)-i \Gamma E} . \tag{15}
\end{equation*}
$$

This question is discussed in more detail in Refs. 9799.

The picture is made significantly worse by the following factors:

1. a substantial background in the same partial wave
2. the presence of several resonances which overlap on the energy scale
3. the approximate equality of the energy of the resonance to the energy at which an inelastic channel comes into play.

When the background is taken into account, the amplitude may be written as

$$
\begin{equation*}
j_{l}(E)=\frac{\eta_{i} e^{2 i \delta_{i}} \cdot \eta_{l} e^{2 i \delta_{l}}-1}{2 i}, \tag{16}
\end{equation*}
$$

where the factor $\eta_{t}^{\prime} e^{21 \delta^{\prime}!}$ describes the background. Using $\eta_{l} e^{2 i b_{l}}=1+[2 i x /(\alpha-i)]$ for the resonant part, we find

$$
\begin{equation*}
f_{1}(E)=\frac{\eta i e^{2 i \delta_{i}^{\prime}}-1}{2 i}+\frac{x}{\alpha-i} \eta_{i} e^{2 i \delta_{i}} . \tag{17}
\end{equation*}
$$

If the background is elastic and does not depend on the energy, then it displaces the resonance circle along the unitarity boundary (the circles are tangent). If the background is inelastic, and $\eta_{j}^{\prime}<1$, the resonance circle lies within a circle of unit diameter. If, on the other hand, the background also depends on the energy, i.e., if η_{i}^{\prime} and δ_{i}^{\prime} vary with increasing E, then the resonance circle becomes distorted into a loop. Figure 6 illustrates the behavior on the Argand diagram of an

FIG. 6. Examples of the behavior of an inelastic resonance on the Argand diagram in the case in which there is nonresonant background scattering. a-Attractive; b-repulsive; c-case in which two resonances are superimposed.
inelastic resonance in the presence of (a) an attractive and (b) a repulsive inelastic background which depends on the energy. As before, the parameter η_{l} has a minimum, but the position of this minimum is no longer at the resonance, and the phase may not go through the singularities. Figure 6 c shows the Argand diagram for the case in which two resonances are superimposed. The presence of a loop on an Argand diagram is a strong argument for the existence of a resonance, while a peak in the cross section for the process may correspond to either a resonance or kinematic enhancement. ${ }^{2)}$

It can be seen from these examples that the background must be taken into consideration. The resonance wave is usually described as a resonance (e.g., with the Breit-Wigner shape) which varies rapidly with the energy plus a slowly varying background, and then this parametrization is used in an energy-dependent analysis. If the energy-independent method reveals the position at which the phase passes through the singularities and the minimum of the parameter η_{1}, and if the energy-dependent method successfully describes the experimental distributions in terms of a resonance plus a background, then we can determine the parameters of the resonance at hand. This is not always sufficient, however, since a nearby threshold for an inelastic channel or for another resonance may complicate the picture. In such cases it is useful to apply the K-matrix formalism. This formalism was developed in connection with the need to consider all possible states and transitions of coupled channels. It is difficult to work with the amplitude for multichannel transitions, however, because of the various thresholds and cuts for each channel. It is convenient to remove all the unitary singularities by introducing a so-called reaction amplitude or K-matrix. ${ }^{101-103}$ This new function is determined in terms of the integral equations, which take a particularly simple form for two-particle channels. This approach has the advantages that it can be used to calculate any quantity pertaining to the given interaction, not only those quantities which pertain to some particular reaction. It has proved quite successful in describing the particular features of the S_{0} wave for $\pi \pi$ scattering near the $K \bar{K}$ threshold. This method has been used in various modi-

[^1]fications. ${ }^{33,39,40,55,104}$ It has also been used in other cases, e.g., to describe the $\rho^{\prime}(1600)$ resonance in the P wave.

In addition to using Argand diagrams, one could describe the resonances in terms of the poles of the amplitude. Let us assume that the partial-wave amplitude is an analytic function of the energy E and that it can be continued into the complex plane. Then the Breit-Wigner formula tells us that there is a pole at $E=E_{R}-i \Gamma$ / 2. If the system has a bound state, then the amplitude has a pole on the real axis, at $E=E_{B}<0$.

This approach is very convenient, since it describes both resonances and stable particles. However, the results which emerge from this method are ambiguous when applied to the problem in which we are interested, because not every pole may be assumed to be a resonance. If a pole lies far from the physical axis, we would hardly be justified in interpreting it as a resonance. In the S_{0} wave, for example, there is a singularity which can be described as a pole at ${ }^{55} E=[(600$ $\pm 100)-i(250 \pm 70)]$ MeV. A detailed study of the singularity shows, however, that the other conditions for a resonance (listed earlier in this section) are not satisfied at this energy, so that the singularity cannot be identified as a resonance. It should also be noted that the definition of the width of a resonance is ambiguous. In addition to the usual definition $\Gamma_{R}=-2(d / d E)\left(\cot \delta_{g}\right)^{-1}$ we could define the width by working from the concept of a pole: $M_{R}=E_{R}-i \Gamma_{0} / 2$. We could also take the difference between the points at which the phase passes through 135° and 45°, that is, $\delta\left(E+\Gamma_{\text {high }} / 2\right)=135^{\circ}$, $\delta\left(E+\Gamma_{\text {low }} / 2\right)=45^{\circ}, \Gamma=(1 / 2)\left(\Gamma_{\text {hiqh }}-\Gamma_{\text {low }}\right)$. The numerical difference can be seen in the example of the value of Γ_{ρ} from Ref. 28: $\Gamma_{R}=133 \mathrm{MeV}, \Gamma_{0}=131 \mathrm{MeV}$, $\Gamma\left(45^{\circ}-135^{\circ}\right)=127 \mathrm{MeV}$.

We see that it is a complicated matter to determine resonances. All the available methods and tests must be considered, and those most applicable for the given case must be selected.

5. ANGULAR DISTRIBUTIONS OF SECONDARY PIONS

The preceding section has demonstrated the need to find the phase shifts and elasticities for pion-pion scattering, so that the angular characteristics of the pions must be known. There are various ways to characterize angular distributions: by means of Legendre polynomials or simply a power series in ${ }^{3 \prime} \cos \theta$, in terms of the average spherical harmonics or the elements of the spin density matrix. Any distribution which gives a good description of the experimental angular distributions will incorporate the information necessary on the $\pi \pi$ scattering phase shifts.

For any type of description, the coefficients of the angular distribution must of course be known on the mass shell, at the pion pole. There is thus the question

[^2]of how to extract these coefficients from the experimental data in the physical region.

Some experimentalists ${ }^{33}$ believe that the angular distributions of the secondary pions at $|t|<0.15(\mathrm{GeV} / c)^{2}$ are approximately the same as the distribution at the pole. Others, ${ }^{55}$ working from a comparison of the extrapolated and nonextrapolated average spherical harmonics for $|t|<0.10(\mathrm{GeV} / c)^{2}$, note a $\sim 15 \%$ difference. This difference is important for phase-shift analysis, so that the extrapolation is apparently necessary.

As in the case of $\pi \pi$ scattering, the extrapolation law is unknown. Linear and quadratic extrapolations are ordinarily tried, the χ^{2} test being used to determine which is better. As a rule, these functions yield approximately the same results. It is customary to extrapolate normalized coefficients, i.e., coefficients normalized to the number of events in the given interval. In this case the kinematic factors are less important, and the use of form factors such as the Durr-Pilkuhn form factors has only a slight effect on the results. As Protopopescu has pointed out, ${ }^{55}$ the use of this form factor changes the value by $\sim 1 \%$, while the extrapolation errors are $\sim 10 \%$. A conformal-mapping method has been used successfully in certain studies, ${ }^{28}$ but in other cases it has yielded unstable results, frequently going beyond the unitary limit. ${ }^{55}$

In extrapolating the angular distributions we must evidently take into account the results calculated from the OPEA model of Williams. ${ }^{105}$ Williams has shown that the functions $\left\langle Y_{L}^{0}\right\rangle$ change the curvature in the nonphysical region, making it impossible to extract the correct result in an extrapolation from the physical region. The linear extrapolation, the one most frequently

FIG. 7. Calculations of the behavior of $\left\langle Y_{\nu}^{0}\right\rangle$ as a function of t from the OPEA model from Ref. 77. Dashed curves-Extrapolation from the physical region.
used, leads to systematic deviations $\sim 10 \%$ from the predictions of the Williams calculations for the first two harmonics ($\left\langle Y_{1}^{0}\right\rangle$ and $\left\langle Y_{2}^{0}\right\rangle$) and $\sim 30 \%$ for $\left\langle Y_{3}^{0}\right\rangle$ and $\left\langle Y_{4}^{0}\right\rangle$ 。 The value of $\left\langle Y_{1}^{0}\right\rangle$ decreases, and the values of all the other harmonics increase (Fig. 7). We will conclude this section with two examples of the use of the method of average spherical harmonics.

Figure 8 shows values of $\left\langle Y_{L}^{0}\right\rangle, L=1, \ldots, 4$, for the $\pi^{-} \pi^{+}$and $\pi^{-} \pi^{0}$ states from Refs. 44 and 45. From the general behavior of the harmonics we can extract some qualitative information about the $\pi \pi$ scattering phase

FIG. 8. Behavior of $\left\langle Y_{L}^{0}\right\rangle$ as a function of the dipion mass. a-For the $\pi^{-} \pi^{+}$state from Ref. 55 ; b-for the $\pi^{-} \pi^{0}$ state from Ref. 44.
shifts. For example, comparing $\left\langle Y_{1}^{0}\right\rangle$ for the $\pi^{-} \pi^{+}$and $\pi^{-} \pi^{0}$ states, we can draw conclusions about the signs and relative magnitude of the phase shifts δ_{0}^{0} and δ_{0}^{2}; from the small values of $\left\langle Y_{3}^{0}\right\rangle$ and $\left\langle Y_{4}^{0}\right\rangle$ we conclude that the higher-wave contributions are slight in the region $m_{\mathrm{rr}}<1 \mathrm{GeV}$. The maxima in $\left\langle Y_{2}^{0}\right\rangle$ and $\left\langle Y_{4}^{0}\right\rangle$ indicate the positions of the ρ and f^{0} resonances. This is clear from the relations $\left\langle Y_{2}^{0}\right\rangle \sim \sin ^{2} \delta_{1}^{1}$ and $\left\langle Y_{4}^{0}\right\rangle \sim \sin ^{2} \delta_{2}^{0}$.

The first step of a phase-shift analysis is a qualitative analysis of the characteristics of the angular distributions, and some interesting results can be obtained from this first step; the reader is referred to Refs. 39, 44, and $\mathbf{1 0 6}$ for illustrations.

6. PHASE-SHIFT ANALYSIS

All the methods for determining partial amplitudes from experimental data may be classified as energydependent, energy-independent, or model-dependent methods. Each has its own advantages and disadvantages.

In an energy-dependent analysis the experimental data for each mass interval are fitted simultaneously through an energy-dependent parametrization of the partial-wave amplitudes. The parametrization reflects certain ideas regarding the behavior of the waves, and the success of the fit tells us how closely these ideas correspond to experiment. The best formula is selected on the basis of some prespecified criterion, usually the χ^{2} test. The experimental data may be any characteristics of the angular distributions.

This approach has the advantages that the analysis is carried out over a broad energy range and that a smooth solution is found which includes known resonances. In an energy-dependent analysis, the statistical errors at the individual points are less important than in an ener-gy-independent analysis. As a rule, this method yields only one solution. The cost, however, is quite high: The systematic errors may be large if the parametrization is chosen poorly. The number of adjustable parameters is limited, and the analysis is correspondingly simplified, but some assumptions must be made beforehand about the nature of the solution.

The parametrization is usually selected to incorporate known resonances and the background in the given wave, in an attempt to achieve a "model-independent" fit. In some cases the data are grouped in energy intervals, and each interval is assigned its own parametrization. For $\pi \pi$ scattering the simplest parametrization is developed by assuming that the P_{1} and D_{0} waves contain only resonances of Breit-Wigner shape and that the phase shifts with $I=2$ are smooth power-law functions of the energy. This parametrization was used, for example, to describe $\pi^{-} \pi^{0}$ scattering in Ref. 44. In a first approximation, this parametrization is clearly valid. It seems better, however, to consider the background even for the waves with the leading resonances, particularly in a study of the region $m_{r r} \geq 1 \mathrm{GeV}$, where elasticities must also be introduced. The number of adjustable parameters required of course increases. To illustrate the method for incorporating the background
we may cite the paper by Protopopescu et al., ${ }^{55}$ who used the following expression to describe P_{1} and D_{0} waves:

$$
\begin{equation*}
T_{l}^{I}=\frac{\eta_{\text {back }} e^{2 i \delta_{\text {back }}}-i}{2 i}+e^{2 i \delta_{\text {back }}} \frac{\Gamma_{\pi \pi} / 2}{\left(m_{\mathrm{R}}-m_{\pi \pi}\right)-(i \Gamma / 2)} \tag{18}
\end{equation*}
$$

where $\eta_{\text {baik }}$ and $\delta_{\text {back }}$ describe the background (cf. Section 3).

The S_{0} wave always causes the greatest complications. It has no clearly defined resonances, although it does have much structure. Furthermore, there is a definite coupling with other channels, for example, $\pi \pi$ $\rightarrow K \bar{K}$ (Section 8). It is thus a complicated matter to parametrize the S_{0} wave. The K-matrix formalism is used for this purpose. ${ }^{107}$ Here

$$
\widetilde{T}_{\mathrm{o}}^{0}=\left(\left.\begin{array}{ll}
T_{\pi \pi} & T_{\pi \mathrm{K}} \tag{19}\\
T_{\mathrm{K} \pi} & T_{\mathrm{K} \overline{\mathrm{~K}}}
\end{array} \right\rvert\,,\right.
$$

where T_{rr} describes the S-wave $\pi \pi \rightarrow \pi \pi$ scattering, $T_{r K}$ describes the $\pi \pi \rightarrow K \bar{K}$ scattering, and $T_{K \bar{K}}$ describes the $K \bar{K} \rightarrow K \bar{K}$ scattering.

It is convenient to describe threshold effects by expressing the amplitude matrix \tilde{T} in terms of the $K-$ matrix:

$$
\widetilde{T}=\frac{\tilde{K}}{\delta_{t k}-i \widetilde{q} \tilde{K}},
$$

where $\bar{q}=\delta_{i k} \sqrt{\left(m_{r r}^{2} / 4\right)-m_{i}^{2}}$. The energy dependence of the K-matrix is given, for example, in the following form ${ }^{107}$:

$$
\begin{equation*}
\tilde{K}=\left(\delta_{i k} V \overline{q_{i}}\right) \tilde{K}^{\prime}\left(\delta_{i k} \sqrt{q_{i}}\right), \tag{20}
\end{equation*}
$$

where \bar{K}^{\prime} is a real, symmetric matrix whose elements are treated as adjustable parameters. As Hyams et al. have pointed out, ${ }^{33}$ this representation also reflects other possible channels ($4 \pi, K^{*} K$, etc.), so that they need not be introduced explicitly. A similar description is sometimes used for other waves, e.g., for the P_{1} wave in the region of a possible ρ^{\prime} resonance or for the D_{0} wave to allow for coupling of the f^{0} resonance with the 4π channel.

In an energy-independent analysis the data for different energies are analyzed separately, and the solutions for the phase shifts and elasticities are found for each mass interval. Waves with spin above a certain $l_{\text {max }}$ are assumed negligibly small and are ignored. The parameters of the other waves, with $l \leqslant l_{\text {max }}$, are treated as adjustable within the confines of unitarity. Several solutions are usually found, and a choice among them is made on the basis of energy continuity, the χ^{2} test, and agreement with the known behavior of the phase shifts at adjacent energies-or in accordance with some theoretical ideas. This method has the advantage that there are no restrictive assumptions regarding the behavior of the waves, so that new structures may be discovered. In fact it was an approach of this type which revealed certain features in the behavior of the phase shift δ_{0}^{0} near the ρ^{0} resonance and at the $K \bar{K}$ threshold. The difficulties of this method are in choosing the actual solution and in joining the values obtained in different mass intervals. Furthermore, in this method one usually has to deal with several simplifying assumptions, because for a given charge channel in each energy interval there
are $\left(2 l_{\text {max }}+1\right)$ independent experimental points, so that in the case of an $S-P$ analysis there are only three equations. There are, however, more unknowns (the phase shifts of the S_{0}, S_{2}, and P_{1} waves and the elasticities). Some of the unknowns must be fixed in order to solve the system of equations. The question of incorporating higher-order waves is thus particulary important here. The value of $l_{\text {max }}$ is usually determined by approximating the angular distributions by Legendre polynomials. This approximation shows that at $m_{\text {rr }}<1$ GeV waves with $l \geqslant 2$ may be ignored in a first approximation. If it is also assumed that the interaction is completely elastic in this region, the number of unknowns is reduced to three: the phase shifts of the S_{0}, S_{2}, and P_{1} waves. It is not possible to distinguish S_{0} and S_{2} in those states in which both waves are possible, so that the phase shift δ_{0}^{2} is usually fixed in a study of $\pi^{-} \pi^{+}$interactions, and this shift is assumed to be known from other studies. Under these approximations the angular distributions may be approximated by a power law of the type

$$
\begin{equation*}
\frac{\mathrm{d} \sigma_{\pi \pi}}{\mathrm{d}(\cos \theta)} \sim \frac{\mathrm{d} N}{\mathrm{~d}(\cos \theta)}=a_{0}+a_{1} \cos \theta+a_{2} \cos ^{2} \theta . \tag{21}
\end{equation*}
$$

followed by an extrapolation of a_{i} to the pole. ${ }^{384}$ If the angular distributions are characterized by average spherical harmonics, the latter are also extrapolated to the pole. ${ }^{44,45}$ From the values found at the pole one can calculate the phase shifts δ_{1}^{1} and δ_{0}^{0} for the $\pi^{-} \pi^{+}$ state or δ_{1}^{1} and δ_{0}^{2} for the $\pi^{7} \pi^{0}$ state. Because of the interference term, however, for which the values δ_{0}^{0} and $\delta_{0}^{0^{\prime}}=\delta_{1}^{1}+\left(\pi / 2-\delta_{0}^{0}\right)$ are equally possible, the solution is double-valued (the "up-down" uncertainty). In an energy-independent analysis of the $\pi^{-} \pi^{+}$state, with a large δ_{1}^{1}, we cannot avoid this uncertainty unless we make some auxiliary assumptions. It should be noted that the phase-shift analysis method described above is not completely accurate at $m_{\mathrm{rr}} \leqslant 1 \mathrm{GeV}$, since a higherorder wave may be very important-even if its amplitude is small-because of the strong interference with lower-order waves. This is the situation with D waves in this energy range. ${ }^{375} 44$ For work at larger values of $m_{r r}$, higher-order waves with $l \geqslant 2$ must be taken into account completely, i.e., must be extrapolated to the pole $\left\langle Y_{L}^{0}\right\rangle$ with $L=1,2, \ldots, 2 l_{\text {max }}$.

In some recent papers, with a good statistical base, a phase-shift analysis has been approached through an amplitude analysis. ${ }^{33,37,40}$

The spin correlations for a particular process are customarily described in terms of the helicity amplitudes $H_{\lambda^{\prime} \lambda}$ in the t channel, where λ and λ^{\prime} are the helicities of the nucleon in the initial and final states. For a reaction of the type $\pi N \rightarrow \pi \pi N$ the intensity may be written (for an unpolarized target)

$$
\begin{equation*}
\frac{\mathrm{d}^{\alpha} \sigma}{\mathrm{d} m_{\pi x} \mathrm{~d} \mathrm{~d} \Omega_{\pi x}}=\frac{1}{2} \sum_{x^{\prime}, ~}\left|H_{\lambda \cdot \lambda}\right|^{2} . \tag{22}
\end{equation*}
$$

The complete helicity amplitude is written in terms of the sum of the amplitudes for the production of an intermediate dipion with spin l and helicity m :

$$
\begin{equation*}
H_{2 \cdot \lambda}(\theta, \varphi)=\sum_{i=0}^{\infty} \sum_{m=-l}^{l} \sqrt{2 i+1} H_{\lambda \cdot \times ; ~ m}^{l} d_{m 0}^{l}(\theta) e^{i m \varphi} . \tag{23}
\end{equation*}
$$

In general, for the reaction $a+b \rightarrow c+d$, we have

$$
\begin{equation*}
I_{\lambda_{c} \lambda_{d}:}: \lambda_{a} \lambda_{b}=\eta(-1)^{\sum_{i}\left(l_{i}+i_{l}\right)}{ }_{L_{-\lambda_{\mathrm{c}}-\lambda_{d}} ;-\lambda_{\mathrm{a}}-\lambda_{b}} \tag{24}
\end{equation*}
$$

where η is the product of the internal parities, and l_{i} is the spin. For the reaction $\pi p \rightarrow(\pi \pi) n$ this expression is equivalent to

$$
\begin{equation*}
H_{1,2: m}=(-1)^{\lambda^{\prime}+\lambda+m} H_{-\lambda ;-2 ;-m} \tag{25}
\end{equation*}
$$

It follows from (25) that it is sufficient to know half of the amplitudes, e.g., those with $\lambda^{\prime}=+1 / 2$.

It is convenient to describe exchange reactions by the following combinations of the amplitudes $H_{\lambda^{\prime} \lambda ; m}$, rather than by these amplitudes themselves:

$$
\begin{align*}
& H_{2}^{(1)}, m=\frac{1}{\sqrt{2}}\left[H_{\lambda^{\prime} \mu ; m} \mp(-1)^{m} H_{2}, 2 ;-m\right] \quad \text { for } m \neq 0, \tag{26}
\end{align*}
$$

Cohen-Tannoudji et al. ${ }^{108}$ have shown that exchange with the natural parity is predominant for a fixed t and large values of s for the $H^{(+)}$amplitudes, while exchange with anomalous parity is predominant for $H^{(-)}$. Accordingly, if we single out the $H^{(-)}$amplitudes with $m=0$ we can hope to distinguish the OPE signal, to separate out the background, and then to extrapolate the "pure" OPE components. This method was used in Refs. 33, 37, and 40 . The experimental quantities are usually unnormalized average spherical harmonics $N\left\langle Y_{L}^{m}\right\rangle$:

$$
\begin{equation*}
\frac{d^{d} \sigma}{\mathrm{dtd} \mathrm{~d} \mathrm{~d} \Omega}=N \sum_{L=0}^{L_{\max }}\left[\left\langle Y_{L}^{Q}\right\rangle Y_{L}^{0}(\Omega)+2 \sum_{m=1}^{L}\left\langle\operatorname{Re} Y_{L}^{m}\right\rangle \operatorname{Re} Y_{L}^{m}(\Omega)\right], \tag{27}
\end{equation*}
$$

where N is the number of events in the given interval. The spherical harmonics are related to the partial-wave amplitudes through the Clebsch-Gordan coefficients. For high- exchange processes the pion-pion state has a zero helicity, so that only $\left\langle Y_{L}^{0}\right\rangle$ harmonics should be present.

Figure 9 shows values of $\left\langle Y_{L}^{m}\right\rangle$ from Ref. 39. We see that $\left\langle Y_{L}^{1}\right\rangle \neq 0$, so that the mechanisms involving the exchange of more than one pion are also important. It is for this reason that Estabrooks and Martin ${ }^{37}$ have given preference to an extrapolation of A_{0} amplitudes, rather than spherical harmonics; even $\left\langle Y_{L}^{0}\right\rangle$ is affected by amplitudes with a nonzero helicity, i.e., by mechanisms other than OPE.

Unfortunately, a model-independent determination of the amplitudes for reactions $\pi N \rightarrow \pi \pi N$ is not possible without experiments with a polarized target. In a "poor man's model" which Williams ${ }^{81}$ worked out for the case of an unpolarized target it is assumed that the helicity system in such reactions is dominated by spin-flip processes and that other processes may be ignored. This assumption has apparently been supported by recent work with a polarized target. ${ }^{88}$ Working from this hypothesis, Estabrooks et al. ${ }^{37,}{ }^{109}$ found six unknowns from six observables ($\left\langle Y_{L}^{m}\right\rangle$ for $l \leqslant 2$). These six unknowns are the moduli of the S-wave amplitude, $\left|A_{s}\right|$; the P-wave components $\left|A_{0}\right|,\left|A_{+}\right|$, and $\left|A_{-}\right|$(the subscript gives the helicity of the dipion); the relative phase $\bar{\delta}_{s P}$ between A_{s} and A_{0}; and the relative phase φ_{10} between the P-wave components, as functions of t and m_{rr}. Then the t dependence is parametrized, and the parameters are found in each $m_{r r}$ interval by compari-
son with the experimental values of $\left\langle Y_{L}^{m}\right\rangle$. Different functions have been used for this purpose in different papers. In Refs. 37 and 109, for example,

$$
\begin{equation*}
A_{0}^{l}=\frac{\sqrt{-t}}{\mu^{2}-t} e^{b_{0}^{l} t} T_{l}\left(m_{a x}\right) \tag{28}
\end{equation*}
$$

while for amplitudes with $m=1$

$$
\begin{equation*}
\frac{1}{\sqrt{\overline{2}}}\left(A_{1}^{l}-A_{-1}^{l}\right)=A_{-}^{l}=\frac{C^{l}\left(m_{\pi \pi}\right)}{\sqrt{2} m_{\pi \pi}} e^{b_{-}^{l} t} \sqrt{l(l+1)} T_{l}\left(m_{\pi \pi}\right), \tag{29}
\end{equation*}
$$

where b_{m}^{l} and C^{t} are the slope and absorption parameter for spin l and angular momentum projection m.

The most complete parametrization is that carried out by Hyams et al. ${ }^{40}$ Three types of parameters were sought:

1. absorption parameters which determine the t dependence but which vary only slowly with m_{rr}
2. the parameters of the resonances and the coefficients of the K-matrix for higher-order waves (D and F waves)
3. the phase shifts and inelasticities of the lowerorder waves.

The experimental values of 13 average spherical harmonics were used for the analysis. The experimental results were partitioned into $40-\mathrm{MeV}$ mass intervals, each of which was further partitioned into 19 intervals

FIG. 9. Behavior of $\left\langle Y_{L}^{m}\right\rangle$ as a function of $\boldsymbol{m}_{\pi \pi}$ for the $\pi^{-} \pi^{+}$ state from Ref. 32.
in t. Figure 10 shows four versions of the solutions for δ_{0}^{0} from Ref. 40. The large number of solutions results from the fact that only the cross section, not the amplitude, can be determined experimentally. If we write the amplitude as
$T\left(m_{\pi \pi}, \theta\right)=\sum_{i=0}^{t_{\max }} a_{l}\left(m_{\pi \pi}\right) P_{l}(\cos \theta)=f\left(m_{\pi \pi}\right) \prod_{i=1}^{t_{i=1}^{m}}\left(\cos \theta-z_{i}\right)$,
where θ is the angle through which the pions are scattered, and z are the roots of the polynomial, then

$$
\begin{equation*}
\sigma_{\pi \pi} \sim \prod_{i=1}^{l \max }\left(\cos \theta-z_{i}\right)\left(\cos \theta-z_{i}^{*}\right) \tag{31}
\end{equation*}
$$

It follows from (31) that with $l_{\text {max }}=3$ there are $2^{l_{\text {max }}}$ $=8$ solutions, since we cannot determine from the cross section whether an amplitude has a zero at z_{i} or at z_{i}^{*}. If we assume that the amplitudes for the D_{0} and F_{1} waves are positive and are described well by the Breit-Wigner formulas, then we are left with two possible solutions in the region of the f resonance and four in the region of the g resonance. Although there are no such uncertainties in $\left\langle Y_{\stackrel{m}{l}}^{\boldsymbol{L}}\right\rangle$ for $m \neq 0$, the slow variation of these harmonics with z_{i} prevents a choice.

Energy-independent and energy-dependent methods are ordinarily used together; while the energy-independent method can be used to find structure in the partialwave amplitudes, the energy-dependent method can explain this structure by introducing new resonances and by choosing an appropriate parametrization.

The third type of analysis, the model-dependent analysis, is based on an exact energy dependence of the amplitudes as predicted by some theoretical model.

FIG. 10. Four versions of the behavior of the phase shift δ_{0}^{0} and of the parameter η_{0}^{0} (from Ref. 30).

This approach is ordinarily used for reactions for which only fragmentary experimental data are available. This method is good in that it allows us to test the given model and to examine the mechanisms for the various processes. Methodologically, this approach is similar to the energy-dependent method. Specifically, in both cases one specifies formulas and then chooses parameters-the phase shifts and inelasticities-from a comparison with experiment. The experimental spectra are chosen in different ways; most frequently, they are distributions in $\cos \theta$ and $m_{r r}$. Distributions in t and φ are not very sensitive to the choice of phase shifts, although the use of two-dimensional angular distributions (in $\cos \theta$ and φ) does yield some useful information. ${ }^{110}$ Since there are many adjustable parameters, so that a comparison becomes difficult, some simplifying assumptions are made: The analysis is restricted to a certain number of waves (usually $l \leqslant 2$); the interaction is assumed to be completely elastic; etc. In a model-dependent analysis, the data in the physical region are used, without extrapolation.

Combined analysis methods are sometimes used. Engler et al., ${ }^{34}$ for example, have used a model-dependent, energy-independent analysis. Experimental data on the reaction $\pi^{-} p \rightarrow \pi^{-} \pi^{+} n$ were analyzed by the OPEA model separately in three regions of the dipion mass; a distinct parametrization was used for each region. This method reduces the number of adjustable parameters but it presents difficulties in joining the solutions.

Finally, we note that at present it is difficult to draw the line clearly between model-dependent and energydependent analyses. Papers using amplitude analysis (for example, Refs. 37 and 40) have used the assumptions of the Williams model ${ }^{81}$ that spin-flip processes are predominant, and several papers have used the assumption that the absorption coefficient is independent of m_{ry} (this assumption is evidently at odds with experiment ${ }^{37 \mathrm{~b}}$), so that these papers are not completely model-independent.

7. RESEARCH ON THE $\pi \pi$ INTERACTION AT LOW ENERGIES

There are some distinctive features in research on the $\pi \pi$ interaction near the threshold. Here there are more sources of information-not only reactions of the type $\pi N \rightarrow \pi \pi N$ at a low momentum of the incident pion but also K decays, $\eta \rightarrow 3 \pi$ decays, etc. Furthermore, there is the possibility of extrapolating the resuits of phase-shift analyses at intermediate energy into this region. Work at low energies has its own particular difficulties, however, primarily the small interaction cross section. Because of this small cross section it is difficult to accumulate a large statistical base, and it is frequently necessary to appeal to some model or another. At the same time, it is very important to study the characteristics of $\pi \pi$ interactions near the threshold. For example, the threshold behavior of the scattering amplitude is characterized by a constant called the scattering length:

$$
\begin{equation*}
a_{l}^{I}=\lim _{h \rightarrow 0} \frac{f_{l}^{I}(k)}{k^{2 l+1}} \tag{32}
\end{equation*}
$$

(k is the pion momentum in the rest frame of the dipion). This scattering length is required for problems of general physical interest and also choosing a model in π-condensate calculations. ${ }^{112}$

As Migdal has shown, ${ }^{20,113}$ in strong external fields or in a dense nucleonic medium there should be a restructuring of the pion vacuum of the nature of a phase transition: a pion condensation. The energy released in the phase transition of the pion field may exceed that required to compress the nucleonic matter, so that there is the possibility in principle of finding a second minimum on the energy-density curve; i.e., there is the possibility of ultradense nuclei. When the polarization of the medium under the influence of pions is taken into account it is concluded that a pion condensate may exist in ordinary nuclear matter also, ${ }^{114}$ at a density above the critical density (which may be larger or smaller than the nuclear density). Some interesting new theoretical and experimental problems arise here; they are discussed, for example, in Ref. 21. The choice of the parameters for the pion-condensate theory is determined by the experimental information on the elementary processes, in particular, $\pi \pi$ scattering.

Let us examine in more detail the basic possibilities for studying the $\pi \pi$ interaction near the threshold. The most natural approach would seem to be to analyze reactions of the type $\pi N \rightarrow \pi \pi N$ at a low momentum of the incident pion. Until very recently, however, there had been no study of such reactions in which the statistical base was good enough to extract angular distributions of the secondary pions. ${ }^{4)}$ Essentially all the information on $\pi \pi$ interactions has been extracted from cross sections, and usually on the basis of some model (the isobar model, ${ }^{117-120}$ models incorporating triangle diagrams, ${ }^{121-123}$ etc.). Among these studies we would like to single out one carried out at the Joint Institute for Nuclear Research, which encompassed all channels of the reaction $\pi^{*} p \rightarrow \pi \pi N$ reaction and which was carried out extremely close to the threshold, ${ }^{124}$ at $E_{\mathrm{r}}<300 \mathrm{MeV}$. Isobars cannot be produced at such energies, and the experimental results may be compared directly with the predictions of the models for the low-energy $\pi \pi$ interaction. Figure 11 shows the cross sections for certain reactions and calculations based on various models which take the effective-Lagrangian approach and the currentcommutator approach. The basic conclusion reached in this work is that it is not possible to describe simultaneously the cross sections for all reaction channels in any single version of the models.

Makarov ${ }^{29}$ has attempted to find the $\pi \pi$ scattering phase shifts near the threshold. He worked from the data from several studies of the $\pi \pi$ cross sections obtained by the Chew-Low method for this region. The cross sections were approximated, and then the phase shifts were determined from the resulting averages. The resulting phase shifts cannot be judged very reliable, since they were determined from a combination of data from studies at various energies, carried out with a low statistical base.

[^3]

FIG. 11. Experimental values of $\delta(\pi p \rightarrow \pi \pi n)$ near the threshold from Ref. 124. 1-Calculation from the statistical model of Ref. 172; 2-effective-Lagrangian method with $\xi=0$ (Ref. 174); 3—effective-Lagrangian method with $\xi=1.4$ (Ref. 174); 4-current-commutator method. ${ }^{172}$

Another important source of information on the $\pi \pi$ interaction near the threshold is study of the decays $K^{\star} \rightarrow \pi^{+} \pi^{\boldsymbol{*}} e^{\star} \nu$. As early as 1968 , Pais and Treiman ${ }^{125}$ showed that the $K_{e 4}$ decay is extremely convenient for studying the low-energy $\pi \pi$ interaction. There are no hadrons in the final state of this decay aside from pions; a minimum number of additional assumptions is required; and in principle a completely model-independent analysis is possible. Unfortunately, the cross section for this process is small, and it is very difficult to accumulate an adequate statistical base. It is usually assumed that in decays of the type $K \rightarrow \pi \pi e \nu$ the rule $|\Delta I|$ $=1 / 2$ holds; then only S_{0} and P_{1} waves are possible (the D_{0} and F_{1} waves are of minor importance because of the condition $m_{r r} \leqslant m_{K}=494 \mathrm{MeV}$). This conclusion is completely reasonable, since the rule $|\Delta I|=1 / 2$ holds quite well in most nonlepton decays of hyperons, in $K \rightarrow 2 \pi$ decays, etc. (an exceptional case is the decay $K \rightarrow 3 \pi$, where this rule does not hold and where it is necessary to assume $|\Delta I|=3 / 2$). This analysis is based on a study of the interference between the S_{0} and P_{1} waves, from which one can determine the value of ($\delta_{0}^{0}-\delta_{1}^{1}$).

It was mentioned above that much information on pion-pion interactions is available in the region of large dipion masses ($m_{r r}>500 \mathrm{MeV}$). It seems extremely interesting to use these results to study the low-energy region through an extrapolation to the threshold. Here we need to know the behavior of the $\pi \pi$ scattering phase shifts in the pertinent region. Near the threshold the scattering length can be approximated by

$$
\begin{equation*}
k^{2 l+1} \operatorname{ctg} \delta_{l}^{I}=\frac{1}{a_{l}^{I}} \tag{33}
\end{equation*}
$$

and in a slightly broader region we can use the effec-tive-radius approximation

$$
\begin{equation*}
k^{2^{l+1}} \operatorname{ctg} \delta_{l}^{I}=\frac{1}{a_{l}^{I}}+\frac{1}{2} k^{2} r_{l}^{I} \tag{34}
\end{equation*}
$$

The applicability limit of Eq. (34) can be assumed to be $m_{r y} \sim 700 \mathrm{MeV}$. Then by approximating the phase shifts in the region $500-700 \mathrm{MeV}$ by this expression we can easily find the scattering lengths. Both the ordinary
expression for the effective radius ${ }^{28 b} 55,128-128$ and its relativistic modifications ${ }^{28 b}, 30$ have been adopted widely by experimentalists, but there are some objections to the use of this method. The objections stem from the hypothesis that the real part of the S-wave amplitude, $\operatorname{Re} f_{0}$, goes through zero not far from the physical region, i.e., has a subthreshold zero. In this case a direct extrapolation of the quantity $k \cot \delta_{0}$ from the physical region ignores the sharp increase in this quantity near the zero and leads to an overestimate of the scattering length. This question has been discussed, for example, by Gareevanishvili and Shirkov. ${ }^{129}$
Franklin ${ }^{130}$ took up the theoretical problem of continuing the amplitudes found in the Weinberg model into the low-energy physical region through the use of dispersion relations for scattering into the forward hemisphere. Franklin concluded that the calculated curve agrees well with experimental data at $m_{r r}<550 \mathrm{MeV}$ and that the scattering length found by extrapolating the data from the region above 400 MeV is overestimated.

Two recent experimental papers ${ }^{131,116}$ seem to support this point of view. Bel'kov and Bunyatov ${ }^{131}$ reported a joint description of data from $K_{e 4}$ decay at $m_{r r}<350$ MeV (Ref. 132) and from the reaction $\pi^{-} p-\pi^{-} \pi^{+} n$ at $500 \leqslant m_{7 r} \leqslant 700 \mathrm{MeV}$ (Ref. 137b), by means of an expression which incorporates a subthreshold zero. The value found for χ^{2} by this approach is significantly better than that found by using the expression for the ordinary effective radius. In Ref. 116 Bel'kov et al. found δ_{0}^{0} for $\pi \pi$ scattering from the reaction $\pi^{-} p \rightarrow \pi^{-} \pi^{+} n$ at $m_{\text {rr }}<330 \mathrm{MeV}$ through an extrapolation in the pseudoperipheral approximation. Comparison of these results with data obtained for the region $m_{r r}>450 \mathrm{MeV}$ by the same group by a similar procedure ${ }^{\mathrm{j} 78 \mathrm{~b}}$ reveals a change in the slope of the function $k \cot \delta_{0}^{0}$ (Fig. 12). This slope change may be direct evidence for the existence of a subthreshold zero in the S-wave amplitude near the physical region and also direct evidence that the effec-tive-radius formula cannot be used at $m_{r r}>400 \mathrm{MeV}$.

A powerful method for studying low-energy $\pi \pi$ scattering is to use the properties of analyticity, unitarity, and crossing symmetry. Many attempts have been made to use these properties both for theoretical models and for analyzing experimental data. This work is reviewed, for example, in Refs. 15 and 133.

Particular interest was attracted to this approach after the Indian physicist Roy ${ }^{134}$ derived equations for

FIG. 12. Experimental values of $k \cot \delta_{0}^{0}$ from Ref. 116 (near the threshold) and Ref. 178b. Dashed lines-Approximations by the effective-radius formula in the corresponding regions.
the pion-pion amplitudes which bear his name. A fundamental distinction between these equations and the others available at the time was that they gave partial wave amplitudes which satisfied the conditions of analyticity and crossing symmetry in the region ${ }^{5)}-4 \leqslant s$ $\leqslant 60$, which includes the nonphysical part $-4 \leqslant s \leqslant 4$, in terms of quantities in the physical region. Then it is possible in principle first to construct amplitudes in the low-energy region from a knowledge of their behavior at high energies and then choose among the available experimental data. In particular, it becomes possible to resolve the "up-down" problem and to find the scattering lengths.

In deriving the equations, Roy used dispersion relations with two subtractions at fixed t and then projected them onto partial waves. For the case of charged pions, the Roy equations are
$\operatorname{Re} f_{l}^{I}(s)=\lambda_{l}^{I}(s)+\sum_{I^{\prime}=0}^{2} \sum_{l^{\prime}=0}^{1} \int_{i}^{\infty} K_{l l}^{l^{\prime} I^{\prime}}\left(s, s^{\prime}\right) \operatorname{Im} f_{l^{\prime}}^{I^{\prime}}\left(s^{\prime}\right) \mathrm{d} s^{\prime}+\varphi_{l}^{I}(s) ;$
here $\lambda_{l}^{\prime}(s)$ are subtraction terms, given for the S and P waves by

$$
\begin{aligned}
& \hat{\lambda}_{0}^{0}(s)=a_{0}^{0}+\frac{1}{12}\left(2 a_{0}^{0}-5 a_{0}^{2}\right)(s-4) \\
& \lambda_{0}^{2}(s)=a_{0}^{2}-\frac{1}{24}\left(2 a_{0}^{0}-5 a_{0}^{2}\right)(s-4), \\
& \hat{\lambda}_{1}^{1}(s)=\frac{1}{72}\left(2 a_{0}^{0}-5 a_{0}^{2}\right)(s-4)
\end{aligned}
$$

where a_{0}^{0} and a_{0}^{2} are the S-wave scattering lengths; $\varphi_{l}^{I}(s)$ is the sum of the contributions of higher-order partials with $l \geqslant 2$,

$$
\begin{equation*}
\varphi_{l}^{I}(s)=\sum_{l^{\prime}=0}^{2} \sum_{l^{\prime}=2}^{\infty} \int_{4}^{\infty} K_{l I}^{l^{\prime} I^{\prime}}\left(s, s^{\prime}\right) \operatorname{Im} f_{l^{\prime}}^{l^{\prime}}\left(s^{\prime}\right) \mathrm{d} s^{\prime} \tag{36}
\end{equation*}
$$

and $K_{i f}^{\prime \prime \prime \prime}$ are the kernels of the integral equations, which are quite complicated. Exact expressions for $K_{I}^{t^{\prime} T^{\prime}}$ are given, for example, in Ref. 133. As mentioned above, the region $-4 \leqslant s \leqslant 60$ is considered.

For the practical use of these equations, the integral in (35) is usually broken up into two parts:

$$
\begin{align*}
\operatorname{Re} f_{l}^{I}(s)=\dot{\lambda}_{l}^{I}(s) & +\sum_{I^{\prime}=0}^{2} \sum_{l^{\prime}=0}^{1} \int_{4}^{N} K_{I I}^{l^{\prime} I^{\prime}}\left(s, s^{\prime}\right) \operatorname{In} f_{l^{\prime}}^{I^{\prime}}\left(s^{\prime}\right) \mathrm{d} s^{\prime} \\
& +\sum_{I^{\prime}=0}^{2} \sum_{l^{\prime}=0}^{1} \int_{N}^{\infty} K_{l I}^{I^{\prime} I^{\prime}}\left(s, s^{\prime}\right) \operatorname{I} M f_{l^{\prime}}^{I^{\prime}}\left(s^{\prime}\right) \mathrm{d} s^{\prime}+\Psi_{l}^{I}(s) \tag{37}
\end{align*}
$$

The value of N is chosen such that in the region $N<s$ $<\infty$ the Regge representation can be used; i.e., it can be assumed that the $\pi \pi$ amplitudes do not contain resonances in this region. Comparison of the quantities in Eq. (35) reveals that the integrals for $4<s<N$ and l <2 play a leading role. The terms which incorporate large masses and higher-order waves are small, but it is necessary to determine just how important these terms are. This problem was taken up in Refs. 135 and 136; it was found that for practical purposes a rough estimate of these terms is sufficient at present, but a more detailed study must be made for a future refinement of these results.

There are two basic approaches for using the Roy equations to study $\pi \pi$ interactions, and these approaches

[^4]may be called the "general theoretical" approach and the "calculation-experimental" approach. In the general theoretical approach, the Roy equations are supplemented with the requirement of unitarity (the equations themselves satisfy only the properties of analyticity and crossing symmetry), and a solution of the resulting system of equations is sought. It turns out that a broad class of solutions can be singled out. From this class one selects a subclass containing amplitudes which satisfy well-established experimental results of a general nature. Usually included among these general results are ${ }^{136}$

1. the existence in the P wave of a ρ resonance with $m_{\rho} \approx 770 \mathrm{MeV}$ and $\Gamma_{\rho} \approx 150 \mathrm{MeV}$
2. the absence of resonances in waves with $I=2$ at $m_{r r} \leqslant 1 \mathrm{GeV}$
3. the existence of an inelasticity beginning at the $K \bar{K}$ threshold (and not at $s=16$, where this inelasticity is assumed to be negligibly small).

These completely natural requirements are not enough, however; to reduce the size of the subclass it is necessary to adopt some further requirements, regarding the behavior of the phase shift δ_{0}^{0} : δ_{0}^{0} passes through 180° near the $K \vec{K}$ threshold, and there is no major discrepancy with the data from phase-shift analyses. Basdevant, Froggatt, and Petersen ${ }^{136}$ compared the solutions of the Roy equations with the phase curves from the papers ${ }^{6)}$ by Baton, ${ }^{28 \alpha}$ Protopopescu, ${ }^{55}$ and Estabrooks-Martin. ${ }^{109}$ The one possible set of solutions on the (a_{0}^{0}, a_{0}^{2}) plane (the "universal curve") was found for each of these papers; these curves are shown in Fig. 13. It is not possible to identify a unique solution i.e., a definite point on each of the universal curves. Figure 14, taken from Ref. 17, shows phase curves calculated by this method from the experimental data of Ref. 28a for three values of a_{0}^{0} : $-0.05,0.2$, and $0.6 \mu^{-1}$. Comparison with the experimental values shows that all three curves have approximately the same-and goodvalue of χ^{2}, which does not exceed 2 per degree of freedom. An analogous result was found for other experimental data (see Ref. 136 for a comparison with Refs. 55 and 109). Basdevant, Froggatt, and Petersen ${ }^{136}$ thus conclude that over the interval $500 \leqslant m_{T r} \leqslant 1000 \mathrm{MeV}$, at the present level of experimental accuracy, only a broad range of values can be found for a_{0}^{0} : $-0.5<a_{0}^{0}<0.6 \mu^{-1}$. Correspondingly, for a_{0}^{2} we find the range $-0.10<a_{0}^{2}$ $<0.03 \mu^{-1}$. The value found for a_{1}^{1} is quite stable and approximately equal to that which follows from the Weinberg model: $a_{1}^{1} \sim 0.03 \mu^{-3}$.

In addition to the general theoretical approach, it is also possible to take a "calculation-experimental" approach. In this case some specific experimental data on the phase shifts are adopted. These values are as-

[^5]

FIG. 13. "Universal curve" on the (a_{0}^{0}, a_{0}^{2}) plane. Double lines: Boundaries of the region of possible values from Ref. 136. Dot-dashed line and region between the dashed lines: Results calculated from the same study for the data of Refs. 38 and 28a, respectively. Hatched region: Predictions of the Weinberg model. Experimental points: 1-Ref. 152; 2-Ref. 137; 3Ref. 128; 4-Ref. 128; 5-Ref. 138; 6-Ref. 124; 7-Ref. 152.
sumed to be the actual values, and a search is made for an analytic and unitary continuation to the vicinity of the threshold. This continuation must satisfy the Roy equations. This approach was used, for example, in Ref. 137. The experimental data used there were the S_{0} and P_{1} amplitudes from Ref. 55 and the S_{2} amplitudes from Ref. 43 over the range $500 \leqslant m_{r y} \leqslant 1050 \mathrm{MeV}$. The integral in (35) was broken up into three parts:

1. A near-threshold part for $4<s<10$. The amplitudes in this part were assumed unknown and were varied in the course of the calculation.
2. An experimental part, $10 \leqq s \leqslant 60$. In this region the amplitudes were specified and fixed.
3. The region of large masses, $s>60$. The integral over this region was calculated by means of Regge representations and was assumed constant.

FIG. 14. Ilustrative behavior of the phase shift δ_{0}^{0} from calculations by the Roy-equation method ${ }^{136}$ for the data of Ref. 28a. Curves 1-3-Results calculated for $a_{0}^{0}=-0.05 \mu^{-1}$, and $0.6 \mu^{-1}$, respectively. The results of other phase-shift analyses are shown for comparison.

For each value of a_{0}^{0} an iteration method was used to find a solution which satisfied Eqs. (35) and which agreed best with the experimental points. Then the optimum solution was found by comparing the solutions for various values of a_{0}^{0} in the experimental region on the basis of the χ^{2} test. The scattering lengths found by this method are given in the following section.

In this section we have briefly reviewed the methods ordinarily used to study the low-energy $\pi \pi$ interaction experimentally. The theoretical aspects of the problem are reviewed in Ref. 115.

8. EXPERIMENTAL RESULTS

a) Scattering lengths

Let us examine in more detail the $\pi \pi$ scattering lengths known at present. We will begin with the most important and relatively large S-wave scattering lengths a_{0}^{0} and a_{0}^{2}.

An effort has been made to determine a_{0}^{0} in most studies of the $\pi \pi$ interaction at low energies, but the situation remained unclear for a long time. Most theoretical papers predict values in the range $0.10<a_{0}^{0}$ $<0.25 \mu^{-1}$ (Refs. 138-142), i.e., values approximately the same as those predicted by Weinberg's soft-pion model, ${ }^{143} a_{0}^{0} \sim 0.2 \mu^{-1}$. There are some exceptional cases, however. Daly, ${ }^{144}$ for example, found a dependence of a_{0}^{0} on Γ_{ρ}, working in the Veneziano model. With a ρ-resonance width $\Gamma_{\rho} \sim 150 \mathrm{MeV}$, the value is $a_{0}^{0} \sim 0.4$ μ^{-1}. In a study ${ }^{145}$ based on data on $K \rightarrow 2 \pi$ decays and the Cabibbo structure for the weak-interaction Hamil-

TABLE II.

FIG. 15. Summary of the experimental data on a_{0}^{0} from Refs. $30,35,55,120,122,124 \mathrm{a}, 126-128,131,132,149,150$, 174,175 , and 180. 1-Data on the reaction $\pi N \rightarrow \pi \pi N$ near the threshold; 2-data from K_{8} decays; 3-results of the use of the effective-radius formula.
tonian, the result $a_{0}^{0} \sim 0.6 \mu^{-1}$ was found. Even greater discrepancies were found among the experimental results (Table II and Fig. 15). Even studies carried out by the same procedure frequently yielded contradictory results. It was not too long ago that the range of possible experimental values was so broad ($0.05<a_{0}^{0}<0.8 \mu^{-1}$) that even the sign of a_{0}^{0} was uncertain. Substantial progress has apparently been made recently, because both of improvements in the experimental accuracy and the appearance of studies confirming the existence of a subthreshold zero in the S amplitude near the physical region (Refs. 131 and 116; see Section 7). It has now become clear that the relatively large value found for a_{0}^{0} through the use of the effective-radius formula for phase shifts at $m_{r r}>500 \mathrm{MeV}$ can be attributed to the overestimated scattering length in this method. Most of the studies carried out recently by other methods, on the other hand, yield consistent results. A recent paper on $K_{e 4}$ decay, ${ }^{132}$ a paper in which the dispersion relations are applied to the data from a phase-shift analysis for πN scattering, ${ }^{148}$ a study in which the effective-radius formula was applied to the phase shifts in the threshold region, ${ }^{116} m_{m} \leqslant 320 \mathrm{MeV}$, and calculations based on the equation for a subthreshold zero ${ }^{131}$ all yield values in the range $a_{0}^{0} \sim 0.23-0.28 \mu^{-1}$. Figure 16 compares the experimental values of the difference $\delta_{0}^{0}-\delta_{1}^{1}$ with calculations from the Roy equations. We see that the solution with $a_{0}^{0} \sim 0.25 \mu^{-1}$ seems to be the best. A smaller value is predicted by certain studies of the cross sections for the reaction $\pi N \rightarrow \pi \pi N$ near the threshold, ${ }^{120,123}$ but these studies have generally been model-dependent. The only results which stand out at all are those of a

FIG. 16. Values of the difference $\delta_{0}^{0}-\delta_{1}^{1}$ from Refs. 116 (1) and 132 (2). Solid curves-results calculated in Ref. 136.
series of studies ${ }^{52-54}$ on the reaction $\pi^{-} \pi^{+} \rightarrow \pi^{0} \pi^{0}$ from the reaction $\pi^{-} p \rightarrow \pi^{0} \pi^{0} n$, where large values of δ_{0}^{0} were found near the threshold, which led to large scattering lengths $a_{0}^{0} \sim(0.6-0.8) \mu^{-1}$. This discrepancy can probably be attributed to the difficulties of the corresponding experiments. At any rate, a large δ_{0}^{0} was not observed near the threshold in a similar study. ${ }^{147}$ An accurate experimental study of the $\pi^{0} \pi^{0}$ state at low energies is seen to be one of the most urgent problems in the physics of the $\pi \pi$ interaction.

The S-wave scattering lengths are strongly correlated with each other. At present most physicists accept the "universal curve" for a_{0}^{0} and a_{0}^{2} (see Section 7 and Fig. 13). It follows from this universal curve that $0.2<a_{0}^{0}$ $<0.3 \mu^{-1}$ then a_{0}^{2} must be small and negative. Theoretical predictions based on the soft-pion model yield a_{0}^{2} $\approx(-0.05)-(-0.04) \mu^{-1}$. Analyses based on the dispersion relations expand the possible range of a_{0}^{2} to ${ }^{138}-0.2$ $<a_{0}^{2}<0.03 \mu^{-1}$ or to ${ }^{136}-0.12<a_{0}^{2}<0.04 \mu^{-1}$. As a rule, experimental studies yield negative values of a_{0}^{2}, but there is a rather large scatter (Table II). If the existence of a nearby subthreshold zero in the S_{2} wave is confirmed, then the results of studies based on an effective radius will clearly be unreliable, and it will be necessary to work solely from the results of Refs。131 and 176, the equation for the subthreshold zero, and calculations by the Roy-equation method ${ }^{137}$

At first glance the situation would seem to be best for the P-wave scattering length a_{1}^{1}. Theoretical predictions based on the soft-pion model yield values in the range $0.028<a_{1}^{1}<0.035 \mu^{-3}$. The use of the dispersion relations expands this range to ${ }^{136,138,152} 0.02<a_{1}^{1}<0.05$ μ^{-3}, but there is essentially no change in the average value. The experimental values of a_{1}^{1} found in the effec-tive-radius approximation are also concentrated around the average value $a_{1}^{1} \sim 0.03 \mu^{-3}$ (see, for example, Ref. 30 , where the value $a_{1}^{1}=0.05 \pm 0.03 \mu^{-3}$ was found, and Ref. 128, where $a_{1}^{1}=0.027 \pm 0.002 \mu^{-3}$ was found). The use of an "experimental" method for carrying out calculations from the Roy equations ${ }^{137}$ has yielded the value $a_{1}^{1}=0.036 \pm 0.002 \mu^{-3}$.
At a 1974 conference in Boston, however, Männer ${ }^{166}$ reported that a CERN-Munich group had found a scattering length $a_{1}^{1} \sim 0,10 \mu^{-3}$. Here the usual approximation

FIG. 17. Behavior of the P_{1} wave near the threshold. Experimental values of the function $2 k^{3} \cot \delta_{1}^{1} / m_{\pi} \pi$ from Ref. 126. The hatched region corresponds to $a_{1}^{1}=0.040 \pm 0.003 \mu^{-3}$ from calculations by the Roy-equation method. ${ }^{153}$
of the effective radius was applied to the phase shifts found from a large statistical base on the reaction $\pi^{-} p$ $\rightarrow \pi^{-} \pi^{+} n$ at $p_{\mathrm{r}}=7 \mathrm{GeV} / c$. If we accept this result as correct, then we will have to reexamine the accepted conclusion that the P wave has a smooth behavior near the threshold. Figure 17 shows experimental values of the function $2 k^{3} \cot \delta_{1}^{1} / m_{\text {rr }}$ from the paper by the CERNMunich group ${ }^{126}$ and theoretical curves calculated from the Roy equations. ${ }^{153}$ We see that the experimental points do not agree with the calculations, which predict a sharp decay at small $m_{s i}$. In order to explain this behavior of the P wave near the threshold it is necessary to assume some feature, possibly of the nature of a resonance, near the nonphysical region. New experiments are required to confirm or reject the Männer results. In particular, this question might be clarified by a study of the $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$reaction in the pertinent region near the threshold. For the time being, on the other hand, it is believed that the scattering length is $a_{1}^{1} \sim 0.035 \mu^{-3}$.

The scattering lengths for waves with $l \geqslant 2$ are small. The theoretical values ${ }^{136-138, ~ 141,152}$ are approximately as follows: $a_{2}^{0} \sim 16 \cdot 10^{-4} \mu^{-5}, a_{2}^{2} \sim 2 \times 10^{-4} \mu^{-5}, a_{3}^{1} \sim 10^{-4} \mu^{-7}$. Experimental studies of this question have been few in number and low in accuracy, but on the whole the results are consistent with the theory. As an example, we can give the results calculated by the Roy-equation method for data on $K_{e 4}$ decay ${ }^{154}$: $a_{2}^{0}=(17 \pm 3) \cdot 10^{-4} \mu^{-5}$; $a_{2}^{2}=(1.3 \pm 3) \cdot 10^{-4} \mu^{-5}, a_{3}^{1}=(0.6 \pm 0.2) \cdot 10^{-4} \mu^{-7}$. In addition, we note that the value $a_{2}^{2}=(3.8 \pm 1.4) \cdot 10^{-4} \mu^{-5}$ was recently found ${ }^{176}$ in the effective-radius approximation from data on the reaction $\pi^{+} \pi^{+} \rightarrow \pi^{+} \pi^{+}$. The question of the scattering lengths with $l=2,3$ can be considered answered, although quantitative refinements are of course possible.

b) The elastic-interaction region and scalar resonances

Strictly speaking, the elastic-interaction region is bounded by the 4π threshold: $m_{\mathrm{rr}}=560 \mathrm{MeV}$. In practice, however, it turns out that the $\pi \pi$ interaction can be assumed elastic up to $m_{r r}<1 \mathrm{GeV}$. Protopopescu

FIG. 18. Experimental values of δ_{2}^{0} (a) and δ_{2}^{2} (b). Open symbols: Data on $\pi^{-} \pi^{-}$scattering. 1-Ref. 85; 2-Ref. 59; 3Ref. 62; 4-Ref. 61; 5-Ref. 58. Filled symbols: Data on $\pi^{+} \pi^{+}$scattering. 6 -Ref. 49; 7-Ref. 47; 8-Ref. 48; 9—Ref. 46; 10 - values from an analysis of $\pi^{-} \pi^{0}$ scattering (Ref. 3); 11Data of Ref. 29.
et al., ${ }^{55}$ for example, have estimated the inelasticity for the reaction $\pi^{+} p \rightarrow \pi^{+} \pi^{-} \Delta^{++}$at $m_{\mathrm{rr}}<1 \mathrm{GeV}$ to be $\left|1-\eta_{l}^{I}\right| \leqslant 2 \%$. At the present level of experimental accuracy, effects of this order of magnitude can be ignored, and the interaction in this region can be considered completely elastic.

We will begin our discussion with the waves with I $=2$. The phase shifts for these waves vary smoothly with the dipion mass and are small in absolute value. Information on these phase shifts is extracted from reactions of the type $\pi^{+} p \rightarrow \pi^{+} \pi^{+}$and $\pi^{-} p \rightarrow \pi^{-} \pi^{-} \Delta^{++}$. In most of the analyses it has been assumed that the $\pi \pi$ scattering with $I=2$ is described by elastic S_{2} and D_{2} waves. Inelastic effects should evidently come into play above 1 GeV , but information on this region is scanty at present. Figure 18 shows the experimental values of δ_{0}^{2} and δ_{2}^{2}. We see that the agreement between the data from different studies is satisfactory on the whole. However, since the information on these waves is introduced and fixed in a study of the $\pi^{-} \pi^{+}$interaction (which is the primary and most accurate source of information at present), we would like to know the phase shifts for the S_{2} wave within $\pm 2^{\circ}$ and those for the D_{2} within $\pm 0.5^{\circ}$. Here is it is pertinent to recall that interference effects make it necessary to consider waves with $l=2$ even where the amplitudes of these waves are small, at $m_{r r}<1 \mathrm{GeV}$ (Refs. 37 b and 44). It is interesting to note that the shift δ_{0}^{2} found from an analysis of the $\pi^{-} \pi^{-}$state (the open symbols in Fig. 18a) has smaller values near the threshold and a larger slope than that for the $\pi^{+} \pi^{+}$state (the filled symbols). The difference may result from a systematic error which stems from the different backgrounds for the non-OPE diagrams for the initial reactions.

Figure 19 shows the results on the shift δ_{1}^{1} in the region $500<m_{\mathrm{rr}}<1000 \mathrm{MeV}$. The agreement between the experimental data is seen to be good. The curve here is the result of an energy-dependent analysis with a Breit-Wigner resonance and the background from Ref. 55. The ρ resonance with $m_{\rho}=773 \pm 3 \mathrm{MeV}$ and Γ_{ρ} $=152 \pm 3 \mathrm{MeV}$ (Ref. 155) determines δ_{1}^{1} essentially completely in this region, and it seems that there are no unresolved questions here.

Of primary interest in the phase-shift analysis of the $\pi \pi$ interactions below 1 GeV are the behavior of δ_{0}^{0} and the existence of scalar resonances. For a long time, δ_{0}^{0} could not be found reliably at $2 \mu<m_{r r} \leq 500 \mathrm{MeV}$. After the appearance of studies on the $K_{e 4}$ decay ${ }^{132}$ and

FIG. 19. P_{1}-wave phase shift from Refs. 37 b (1), 55 (2), and 44 (3). Curve-Results of an energy-dependent anaiysis. ${ }^{55}$

FIG. 20. Values of δ_{0}^{0} from threshold to $\boldsymbol{m}_{\pi n}=750 \mathrm{MeV}$ obtained from the reaction $\pi^{-} p \rightarrow \pi^{-} \pi^{+} n$. 1-Values from Ref. 116; 2-from Ref. 178.
a comparison ${ }^{188 \mathrm{~b}}$ of data on the reaction $\pi^{-} p \rightarrow \pi^{-} \pi^{+}$near the threshold and at $p_{\mathrm{r}}=4.5 \mathrm{GeV} / c$, analyzed by a common method, it could be asserted that the near-threshold behavior of δ_{0}^{0} was known (Fig. 20). At larger values of $m_{r y}$, as was mentioned in Section 6, there is an uncertainty of the type $\delta_{0}^{0^{\circ}}=\delta_{1}^{1}+\left(\pi / 2-\delta_{0}^{0}\right)$-the familiar "up-down" problem-because δ_{0}^{0} must be extracted from the coefficient of the isotropic term. Up to $m_{r r} \sim 700$ MeV , this uncertainty is resolved on the basis of data on the cross section $\sigma_{r r}$, but in the vicinity of the ρ resonance, where σ_{p} is much larger than σ_{s}, this method cannot be used. We are left with two possibilities (Fig. 21): the "down" solution, in which δ_{0}^{0} increases slowly from $\sim 80^{\circ}$ at $m_{\text {ri }} \approx 770 \mathrm{MeV}$ to $\sim 90^{\circ}$ at $m_{\text {ri }} \approx 950 \mathrm{MeV}$ and then increases sharply to $\sim 150^{\circ}$ at the $K \bar{K}$ threshold; 2) the "up" solution, in which δ_{0}^{0} increases rapidly from $\sim 60^{\circ}$ at $m_{\mathrm{rr}}=700 \mathrm{MeV}$ to 130° at 800 MeV and then changes slope and increases slowly to $\sim 150^{\circ}$. The second solution leaves us with the possible existence of an $\varepsilon(750)$ resonance in the S_{0} wave.

It cannot be said that the actual solution has been finally resolved. There are papers which give preference to the "down" solution, ${ }^{33,55,37}$ and there are also papers which speak in favor of the "up" solution. ${ }^{25,156,157}$ Recently, however, there is an increasing tendency to

FIG. 21. The phase shift δ_{0}^{0} in the elastic region. 1,2-two solutions from Ref. 55; 3-values from Ref. 38a; dashed curve-energy-dependent solution from Ref. 33; region between solid curves-region of possible values Ref. 37b.
adopt the "down" solution as the physical solution. Let us review the arguments for this conclusion.

As was mentioned earlier, the choice of a solution in the region $m_{r r}<1 \mathrm{GeV}$ is related to the question of whether the $\varepsilon(700)$ meson exists. The problem of whether this meson exists has been under discussion for a long time; in fact, its parameters have been found in certain papers on phase-shift analysis.

In the well-known paper by Baton et al., ${ }^{28}$ for example, the values $m_{\varepsilon}=736 \mathrm{MeV}$ and $\Gamma_{\varepsilon}=181 \mathrm{MeV}$ were found. The particular features of the S_{0} wave in this region have been discussed in detail, for example, at a conference in Philadelphia in 1972. ${ }^{158}$ In studies of the mass spectra of secondary mesons, however, the ε meson was not found (see, for example, Ref. 159). A particularly important study was carried out on the reaction $d+d \rightarrow{ }^{4} \mathrm{He}+X$ by a French-Italian group. ${ }^{160}$ In an accurate study of the pure S_{0} state-there were no admixtures of other waves besides the D_{0} wave-this group found no ε-meson signal. Phase-shift analyses in this region have found a pole at the S_{0} amplitude, but far from the physical axis. ${ }^{33.55}$ In Ref. 55, for example, the value $m_{\varepsilon}=660-i \cdot 320 \mathrm{MeV}$ was found. Although the concept of a resonance has not been rigorously defined (Section 4), if we use the generally accepted meaning of this term we must acknowledge that there is no ε meson in the S_{0} wave near the ρ resonance.

The "up-down" problem might be resolved by data on the $\pi^{0} \pi^{0}$ cross section. Since odd values of l are forbidden for this reaction, we have $\sigma\left(\pi^{-} \pi^{+} \rightarrow \pi^{0} \pi^{0}\right) \sim\left|A_{s}\right|^{2}$ for small values of $m_{r r}$, at which the D wave can be ignored; in other words, δ_{0}^{0} can be determined directly from the cross section. Unfortunately, the present level of experimental accuracy on $\pi^{0} \pi^{0}$ experiments is such that we cannot yet draw any final conclusion. Figure 22 shows experimental values of $C_{0}=\left|A_{s}\right|^{2}$ from Ref. 52 and curves corresponding to the "up" and "down" solutions. David et al. ${ }^{52}$ found the cross sections

FIG. 22. Behavior of $C_{0}\left(m_{\pi}\right)$ from experiments on $\pi^{-} \pi^{+} \rightarrow \pi^{0} \pi^{0}$ scattering. Here C_{0} is determined from $\delta_{\pi \pi}=2 \pi \hbar^{2} C_{0}$; i.e., $C_{0}=\left|A_{S}\right|^{2}$. The figure is taken from Ref. 52 , and the filled symbols show values from the paper.
$\sigma\left(\pi^{-} \pi^{+} \rightarrow \pi^{0} \pi^{0}\right)$ for the region $550<m_{r r}<950 \mathrm{MeV}$ through a Chew-Low extrapolation. The data agree with the results of phase-shift analyses in the region $m_{r r}$ $<750 \mathrm{MeV}$, but at $m_{\mathrm{rr}}>750 \mathrm{MeV}$ the results cannot be described by either the "up" or the "down" solution. Studies by Carroll et al. ${ }^{60}$ and (especially) Apel et al. ${ }^{50}$ do not reveal the sharp change in σ_{s} at $m_{\mathrm{rr}} \approx 700 \mathrm{MeV}$ which follows from the "up" solution.

Most of the energy-dependent ${ }^{55}$ and model-dependent ${ }^{27,34,60}$ analyses give preference to the "down" solution. Pennington and Protopopescu ${ }^{135}$ have shown that attempts to describe the "up" solution in calculations from the Roy equations lead to very large values of χ^{2} and must be abandoned.

The discovery and study of features in the behavior of the S_{0} wave near the $K \bar{K}$ threshold played a special role in the choice of a solution. Figure 8 a shows that $\left\langle Y_{1}^{0}\right\rangle$ for the $\pi^{-} \pi^{*}$ system undergoes a sharp decay, nearly to zero, at the $K \bar{K}$ threshold. In the unnormalized harmonics (Fig. 9) we can clearly see a knee in this region. The harmonic $\left\langle Y_{1}^{0}\right\rangle$ describes an interference of S and P waves. Since there is no decay of $\left\langle Y_{1}^{0}\right\rangle$ for the $\pi^{-} \pi^{0}$ state (Fig. 8b), and there are no distinctive features in $\left\langle Y_{2}^{0}\right\rangle$ describing the P_{1} wave, it is natural to suggest that the structure in $\left\langle Y_{1}^{0}\right\rangle$ for the $\pi^{-} \pi^{+}$system is a consequence of the S_{0} wave. Assuming $\delta_{1}^{1} \approx 160^{\circ}$ (Fig. 19), we easily see that the vanishing of $\left\langle Y_{1}^{0}\right\rangle$ at the $K \bar{K}$ threshold requires $\delta_{0}^{0} \sim 180^{\circ}$ at $m_{r r}=2 m_{K}$, i.e., the "down" solution.

Let us briefly review the basic arguments in favor of the "down" solution:

1. The "up" solution predicts a decay of the cross section for the $\pi^{0} \pi^{0}$ state, and this decay is evidently not confirmed by the experimental data available. ${ }^{50,52,60}$
2. The "down" solution explains the behavior of the S_{0} wave near the $K \bar{K}$ threshold. ${ }^{31,161}$
3. The search for the $\varepsilon(700)$ meson, corresponding to the "up" solution, in the mass spectra has been unsuccessful. ${ }^{159,160}$
4. The "up" solution cannot be described in the Royequation approach ${ }^{137}$; the model-dependent and energydependent analyses yield the "down" solution. ${ }^{27,34,55,60}$

Let us examine in more detail the structure at the $K \bar{K}$ (980) threshold. This structure has been found by essentially all experimentalists working in this region. The anomalous behavior of the S_{0} wave at the $K \vec{K}$ threshold was discussed in most detail in Refs. 106, 161, and 162. The behavior in this region can be summarized as follows:

1. There is a sharp increase in the cross section for $K \bar{K}$ production, and this increase can also be seen in the sharp decrease in the elasticity η_{0}^{0} from 1 to ~ 0.5,

$$
\begin{equation*}
\left.\sigma_{0}^{0}(\pi \pi \rightarrow \mathrm{k} \overline{\mathrm{~K}})=2 \pi \lambda^{2}\left(1-1_{0}^{0}\right)^{0}\right)^{2} . \tag{38}
\end{equation*}
$$

2. The cross section $\sigma_{s^{+}}-$decreases between 900 and 990 MeV , implying that the S_{0} amplitude should be at the vertex of the Argand diagram, i.e., $\delta_{0}^{0} \approx 90^{\circ}$, at $m_{\pi I} \approx 900$ MeV.
3. The quantity $\left\langle Y_{1}^{0}\right\rangle$ vanishes at the $K \bar{K}$ threshold,

TABLE III.

Authors	Year	S^{*} mass, MeV	S^{*} width, $\Gamma=2 \operatorname{Im} E_{R}, \mathrm{MeV}$	Reference
B. Hymis et al.	1973	1007 ± 20	30 ± 10	131
S. D. Protopopesc." et al.	1973	997 ± 5	54 ± 16	30
P. Estabirooks. A. D. Martin	1973	997	10	100
G. Grayer et al.	1973	1012 ± 6	34 ± 10	110
D. M. Binnie et al.	1973	987 ± 7	48 ± 14	161
M. Buttram et al.	1976	970 ± 5	44 ± 10	62
R. J. Leeper et al.	1977	969 ± 5	30 ± 8	${ }^{11}$

implying that δ_{0}^{0} is approximately equal to 180° at $m_{\text {rr }}$ $=2 m_{K}$.

The fact that the phase shift δ_{0}^{0} passes through a singularity (a multiple of 90°), on the one hand, and the resonant behavior of η_{0}^{0}, on the other, forces us to assume that there is some resonance state, an S^{*} meson, below the $K \bar{K}$ threshold or a virtual bound state above $m_{r r}$
$=2 m_{R}$. This region was studied by Leeper et al. ${ }^{41}$ with a large statistical base $\left(\sim 60000 \pi^{+} \pi^{-}\right.$events from the reaction $\pi^{-} p \rightarrow \pi^{-} \pi^{+} n$ and ~ 500 events from the reaction $\pi^{-} p \rightarrow K^{+} K^{-} n$). A sharp increase in the cross section for the reaction $\pi^{-} \pi^{+} \rightarrow K^{+} K^{-}$was clearly seen near the threshold, as was a sharp decay in the $\pi^{+} \pi^{-}$ mass spectrum near 950 MeV . This effect was analyzed
in terms of the parameters of the S^{*} resonance with the help of both the ordinary Breit-Wigner formulas and the K-matrix formalism. The results found by the two methods were in agreement. The parameters of the S^{*} resonance from this and other studies are listed in Table III. Whether the scalar resonances (ε, S^{*}) actually exist has not yet been resolved.

As we will see below, δ_{0}^{0} again passes through a singularity in the vicinity of the f resonance (the ε^{\prime} singularity). The loop on the Argand diagram is not sufficient evidence for the definite conclusion that the ε^{\prime} resonance exists, but the parameters of this feature have nevertheless been found in several studies. Carroll et al. ${ }^{60}$ for example, found $m_{\varepsilon^{\prime}}=1250 \pm 40 \mathrm{MeV}$ and $\Gamma_{\varepsilon^{\prime}}=300 \pm 100 \mathrm{MeV}$. Morgan ${ }^{164}$ has suggested that the passage of δ_{0}^{0} through 90° near 900 MeV and through 270° near 1250 MeV may be evidence of a broad (Γ $\sim 600 \mathrm{MeV}$), elastic ($\eta_{0}^{0} \sim 1$) ε resonance with a mass $\sim 1200 \mathrm{MeV}$, accompanying an $S^{*}(1000)$ meson. This question is discussed in detail in Ref. 17. Achasov et $a l .,^{86}$ from the Institute of Mathematics, Novosibirsk, have recently suggested that S^{*} might be caused by a threshold effect (a "cusp"). In this case δ_{0}^{0} for $\pi \pi$ scattering above the $K \bar{K}$ threshold does not increase sharp-

FIG. 23. Four possible versions of the behavior of the partial-wave amplitudes in the region $1<m_{\pi}<1.8 \mathrm{GeV}$ from Ref. 36 . a-The solution (--); b-the solution (+--); $c-$ the solution (-+-); $d-$ the solution (++-).
ly；instead it continues to remain near $\sim 90^{\circ}$ ，having a spike at $m_{r r}=2 m_{R}$ ．A conclusive interpretation of the behavior of the S_{0} wave in this region must await im－ provements in experimental accuracy．

c）The inelastic－interaction region．Choosing the actual solution．

Inelastic channels cannot be ignored above $m_{r r}=1$ MeV ．Experiments have shown that the reactions $\pi \pi$ $\rightarrow K \bar{K}$ and $\pi \pi \rightarrow 4 \pi$ both have rather large cross sections in this region and must be considered．As a result，the phase－shift analysis becomes much more complicated． It was mentioned in Section 6 that if the analysis is re－ stricted to waves with $l \leqslant 3$ there will be $2^{l \text { max }}=8$ possi－ ble versions of the phase－shift behavior：eight solu－ tions．Half of them can be discarded if we assume that the D_{0} and F_{1} phase shifts are positive and are de－ scribed by Breit－Wigner resonances（for proof，see， for example，Ref．165）．Then we are left with two pos－ sible solutions in the region of the f resonance and four in the region of the g resonance．These solutions were found by Hyams et al．${ }^{40}$ and are shown in Fig．23．The solutions were classified on the basis of the spin of the imaginary part， $\operatorname{Im} Z_{i}\left(m_{\boldsymbol{T r}}\right)$［see Eq。（31）］，at $m_{\text {rr }}=1500$ MeV．Since $\operatorname{Im} Z_{3}<0$ for $m_{r r}<1.8 \mathrm{GeV}$ ，there are four possibilities：$(---),(+--),(-+-)$ ，and $(++-)$ ． Data on the $\pi^{-} p \rightarrow \pi^{-} \pi^{+} n$ reaction obtained by the CERN－Munich group were used in this study．At rough－ ly the same time，Estabrooks and Martin ${ }^{37 c}$ reported results on the same reaction．They also found four pos－ sible solutions（ A, B, C ，and D ），which differ from the solutions reported by Hyams et al．only in details． Estabrooks and Martin concluded that the correct solu－ tion could not be chosen on the sole basis of data on the $\pi^{-} \pi^{+} \rightarrow \pi^{-} \pi^{*}$ reaction，but they did mention that solu－ tions of the type（－－－）appeared slightly more prom－ ising．A reliable choice of solution requires data on other charge channels，primarily $\pi^{+} \pi^{-} \rightarrow \pi^{0} \pi^{0}$ ．As Shimada ${ }^{165}$ has pointed out，comparison of the data ob－ tained by the CERN－IHEP－Karlsruhe－Pisa－Vienna collaboration ${ }^{50 \mathrm{~b}}$ on the $\pi^{-} p \rightarrow \pi^{0} \pi^{0} n$ reaction with the solutions of Hyams et al．and Estabrooks and Martin allows us to discard the solutions（ -+- ）and（ ++- ）

FIG．24．Results of the energy－dependent pahse－shift analy－ sis in the region $1<m_{\pi \pi}<1.8 \mathrm{GeV}$ from Ref． 36.
（ C and D ，respectively）．The critical question for the two remaining solutions is the magnitude of the signal from $\rho^{\prime}(1650) \rightarrow 2 \pi$ ，which is visible in $B(+--)$ but not observed in $A(---)$ ．

In a study of the behavior of the $\pi \pi$－scattering phase shifts at $m_{\mathbf{r r}}>1 \mathrm{GeV}$ ，Froggatt and Petersen ${ }^{36}$ attempted to reduce the number of possible solutions by using a ＂formalism for amplitude analysis with fixed－t ana－ lyticity．＂This technique uses the requirements of analyticity and unitarity，and the experimental data are the coefficients of the Legendre polynomials for the re－ action $\pi^{-} \pi^{+} \rightarrow \pi^{-} \pi^{+}$from the results of Ref． 39 in the s channel and the data of Hoogland et al．${ }^{47}$ for $\pi^{+} \pi^{+}$ $\rightarrow \pi^{*} \pi^{*}$ in the u channel，all extrapolated to the pion pole．It was concluded that the actual solution should contain the $\rho^{\prime}(1600)$ resonance，since this is required by the pronounced forward－backward asymmetry of the imaginary part of the amplitude in the region 1500－1700 MeV ．One solution was found which satisfied all the re－ quirements and described the experimental data．It is a smoother version of solution B of Estabrooks and Martin and solution（＋－－）of Hyams et al．，and it con－ tains a ρ^{\prime} resonance with the parameters $m_{\rho^{\prime}}=1600$ $\pm 50 \mathrm{MeV}$ and $\Gamma_{\rho^{\prime}}=220 \pm 70 \mathrm{MeV}$（Fig．24）．Among earlier studies，the values from the study by Proto－ popescu et al．${ }^{55}$ agree well with this solution．

As mentioned earlier，the ρ^{\prime} meson can be seen in photoproduction ${ }^{163}$ and also in $e^{+} e^{-}$experiments．${ }^{166}$ Alles－Borelli et al．${ }^{167}$ found the probability for decay through the $\rho^{\prime} \rightarrow 2 \pi$ channel from the reaction $\gamma+\mathrm{Be}$ $\rightarrow \mathrm{Be}+\pi^{+} \pi^{-} \pi^{+} \pi^{-}$to be $F \approx 10 \%$ ．The solution shown in Fig． 24 requires $F=35 \pm 10 \%$ ．The experimental ac－ curacy，however，is not good enough to definitely decide whether the photoproduction data agree with the results of the phase－shift analyses．Comparing the behavior of the phase shift for the solutions of Hyams et al．with data on the reaction ${ }^{27} \pi^{-} \pi^{0} \rightarrow \pi^{-} \pi^{0}$ ，Shimada ${ }^{165}$ con－ cluded that the $(+--)$ solution does not correspond to the experimental data．The discrepancies，however，do not seem all that convincing，in view of the low accuracy of the data of Ref．27；we believe that Shimada＇s conclu－ sion is premature．The magnitude of the S wave with respect to the known D wave was recently determined ${ }^{168}$ from a study of the reaction $\pi^{-} p \rightarrow \pi^{0} \pi^{0} n$ at $p_{\pi}=25 \mathrm{GeV} /$ c ．Two solutions were found．In one of them，there is a sharp violation of unitarity above 1200 MeV ．The

TABLE IV．Resonances in the $\pi \pi$ channel．

State	${ }_{j} P C_{I} G$	Mass，McV	Width，MeV	Probability for decay into 2π ，\％
ρ（750）	1－1＊	776 ± 3	158士5	≈ 100
f（1250）	$2^{++} 0^{+}$	1273 干 5	178 ± 20	83 ± 2
g（1680）	3－1＋	1690 ± 20	18 －	2＇t
h （2040）	$4^{++} 0^{+}$	2040 ± 20	193土采	Seen
S＊（980）	$0^{++} 0^{+}$	993 ± 3	40－8	Seen
$\begin{gathered} e(9(10) \\ \varepsilon^{\prime}(1250) \end{gathered}$	$\begin{aligned} & 0^{++0^{+}} \\ & 0^{++} 0^{+} \end{aligned}$	The phase shift δ_{0}° goes through 90° at about 900 McV and through 270° at about 1250 MeV with $\eta_{0}^{c} \approx 1$ ．Interpretation not clear at this point．		
$f^{\prime}(1514)$	$2^{++} 0^{+}$	$1516+12$	67 ± 111	$\approx 0{ }^{*}$ ）
$\rho^{\prime}(1610)$	1^{--1+}	1600	200－6：0	Seen to 4\％

＊Seen in the reaction $\pi^{-} p \rightarrow K^{+} K^{-} n$ ．Not observed in phase－ shift analyses of $\pi \pi \rightarrow \pi \pi$ ．
second solution contains an S_{0} wave which is nearly elastic up to $m_{r y}=1450 \mathrm{MeV}$, with a resonance at about 1300 MeV . This solution is similar to the (---) solution, although there is hardly any firm basis for rejecting the $(+--)$ version. At the moment we can evidently say that we can describe the behavior of the phase-shift curves only up to $m_{\mathbf{m r}} \sim 1400 \mathrm{MeV}$. Beyond this point there are several possible solutions, and at the moment we cannot determine which is correct.

Recent years have seen studies of the region of large $m_{r r}$ on the basis of the annihilation reaction ${ }^{6566} \bar{p} p$ $\rightarrow \pi \pi$. Dulude et al., ${ }^{66}$ for example, carried out an en-ergy-dependent partial-wave analysis of the angular distributions of secondary pions in the reaction $\bar{p} p$ $\rightarrow \pi^{0} \pi^{0}$ and found a resonance with $J^{P}=2^{\star}, m=2.15$ GeV , and $\Gamma=250 \mathrm{MeV}$. In a review of data on the reaction $\bar{p} p \rightarrow \pi^{-} \pi^{+}$, Martin and Morgan ${ }^{16 \theta}$ noted that an amplitude analysis supported by the requirements of analyticity and crossing symmetry leads to the conclusion that resonances with spins $J=0,1,2$, and 3 and a width $\Gamma \sim 200 \mathrm{MeV}$ exist in the region $m_{r x} \approx 2.1-$ 2.3 GeV and that there are possible broad ($\Gamma \sim 400 \mathrm{MeV}$) features with even spin $J=0,2,4$ at $m_{r y} \approx 2.43 \mathrm{GeV}$. All this is of course based on the first results obtained at large dipion masses-results which have not been solidly confirmed as yet. Table IV summarizes the $\pi \pi$ resonances. ${ }^{179}$

9. CONCLUSION

Striking progress has been achieved recently in the physics of pion-pion interactions. The progress can be attributed to improvements in experimental apparatus, the improved accuracy of the experimental data (especially for the $\pi^{-} \pi^{+} \rightarrow \pi^{-} \pi^{+}$channel), the development of new phase-shift analysis methods, and the more general use of the principles of analyticity, unitarity, and crossing symmetry. We can now say that we know a lot about $\pi \pi$ scattering.

The question of scattering lengths has basically been resolved. It can evidently be asserted that we know the behavior of the phase shifts in the elastic region from the threshold up to $m_{r r} \approx 1 \mathrm{GeV}$ within $\sim 15-20 \%$. The basic characteristics are known, and we have the basis for choosing the correct solution in the very complicated region $1<m_{\mathrm{rr}}<1.8 \mathrm{GeV}$. Several resonant formations have been found; their characteristics are listed in Table IV. Study at high energies $m_{r r}>2 \mathrm{GeV}$ has begun, and the first results have been obtained.

There are, of course, some unresolved questions. Among them are an accurate determination of the P wave scattering length a_{1}^{1}, a correct interpretation of the anomalous feature in the S_{0} wave near the $K \bar{K}$ threshold, and a final choice of the solution for 0.7 $<m_{r r}<1.8 \mathrm{GeV}$. We would like to have more accurate values for the phase shifts and elasticities.

How can these problems be approached?

1. It is necessary to improve the reliability with which OPE can be distinguished from other mechanisms. If the phase shifts are to be determined within a few degrees, we must know the contributions of the
background diagrams at various energies and how these contributions distort the results of the phase-shift analysis. This is a particularly important point for studying resonance-free $\pi \pi$ states, i.e., $\pi^{-} \pi^{-}$and $\pi^{*} \pi^{*}$.
2. Experiments with polarized targets are required for reducing the uncertainties and for carrying out a model-independent analysis. Useful information can be obtained from study of reactions of the type $\pi N \rightarrow \pi \pi \Delta^{++}$, accompanied by a study of the angular distributions of the decay products of the Δ^{++}isobar. In principle, such a study can reveal the amplitudes with a definite nucleon helicity; i.e., experiments similar to experiments with polarized targets can be carried out. Such studies are already being carried out, ${ }^{157,170}$ and they should evidently be expanded.
3. Sources of information other than the $\pi^{-} \pi^{+} \rightarrow \pi^{-} \pi^{*}$ channel should be used more extensively. For example, the reaction $\pi^{-} \pi^{+} \rightarrow \pi^{0} \pi^{0}$ can be used to determine the behavior of the δ_{0}^{0} phase shift; the reaction $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$ can be used to study the P_{1} wave; accurate information on the channels $\pi^{*} \pi^{0} \rightarrow \pi^{*} \pi^{0}$ and $\pi^{*} \pi^{*} \rightarrow \pi^{*} \pi^{*}$ will make it possible to resolve the uncertainties in the solutions for the region

$$
1<m_{\pi \pi}<1.8 \mathrm{GeV}
$$

and the annihilation reactions $\bar{p} p \rightarrow \pi \pi$ are necessary for a study of the region of large dipion masses, $m_{r r}>2$ GeV .
4. It would be extremely useful to study inelastic channels such as $\pi \pi \rightarrow 4 \pi, \pi \pi \rightarrow 6 \pi, \pi \pi \rightarrow K \bar{K}, \pi \pi \rightarrow \pi \omega$, etc. We have already said a lot about the importance of the channel $\pi \pi \rightarrow K \bar{K}$. Data on the process $\pi \pi \rightarrow \pi \omega$ may help explain the change in the parameter η_{1}^{1} for the P_{1} wave at $m_{r i} \sim 1100 \mathrm{MeV}$. Study of the "multiple" channels $\pi \pi \rightarrow 4 \pi, \pi \pi \rightarrow 6 \pi$ is important because the results of the phase-shift analyses in the region $m_{r r} \sim 1 \mathrm{GeV}$ are not very stable with respect to the incorporation of these channels. ${ }^{171}$ There is a particular need for information on inelastic $\pi \pi$-scattering channels in order to determine in which solutions unitarity is violated and how.

We are deeply indebted to A. B. Kaidalov for useful advice and comments.
${ }^{1}$ A. A. Ansel' m and V. N. Gribov, Zh. Eksp. Teor. Fiz. 36, 1890 (1959) [Sov. Phys. JETP 9, 1345 (1959)]; 31, 501 [sic].
${ }^{2}$ V. N. Gribov, Zh. Eksp. Teor. Fiz. 41, 1221 (1961) [Sov. Phys. JETP 14, 871 (1962)].
${ }^{3}$ V. V. Anisovich, A. A. Ansel' m, and V. N. Gribov, Zh. Eksp. Teor. Fiz. 42, 224 (1962) [Sov. Phys. JETP 15, 159 (1962)].
${ }^{4}$ V. V. Anisovich and V. V. Ansel' m Usp. Fiz. Nauk 88, 287 (1966) [Sov. Phys. Usp. 9, 117 (1966)].
${ }^{5}$ G. F. Chew and F. E. Low, Phys. Rev. 113, 1640 (1959).
${ }^{6}$ V. V. Anisovich and L. G. Dakhno, Yad. Fiz. 6, 845 (1967) [Sov. J. Nucl. Phys. 6, 614 (1968)].
${ }^{7}$ V. V. Anisovich and P. É. Volkonitskil̆, Yad. Fiz. 14, 1055 (1971) [Sov. J. Nucl. Phys. 14, 591 (1972)].
${ }^{8}$ A. V. Aref'ev et al., Yad. Fiz. 5, 1060 (1967) [Sov. J. Nucl. Phys. 5, 757 (1967)]; 10, 797 (1969) [10, 460 (1970)].
${ }^{9}$ K. G. Boreskov et al., Yad. Fiz. 15, 361 (1972) 557 [Sov, J. Nucl. Phys. 15, 203, 309 (1972)].
${ }^{10}$ K. G. Boreskov, A. B. Kaidalov, and L.A. Ponomarev, Yad. Fiz. 17, 1285 (1972) [Sov. J. Nucl. Phys. 17, 669 (1973)].
${ }^{11}$ K. G. Boreskov, A. B. Kaìdalov, and L. A. Ponomarev, Preprint ITEFF-16, Institute of Theoretical and Experimental Physics, Moscow, 1974.
${ }^{12}$ L. A. Ponomarev, Fiz. Elem. Chastits At. Yadra. 7, 186 (1976) [Sov. J. Part. Nucl. 7, 70 (1976)].
${ }^{13} \mathrm{~J} . \mathrm{D} . \mathrm{Jackson}$, Nuovo Cimento 34, 1644 (1964).
${ }^{14}$ J. D. Jackson, Rev. Mod. Phys. 37, 484 (1965).
${ }^{15}$ J. L. Petersen, Phys. Rept. C2, No. 3 (1971).
${ }^{16} \mathrm{~J}$. L. Petersen, CERN 77-04, 1977.
${ }^{17}$ B. R. Martin, D. Morgan, and G. Shaw, Pion-Pion Interaction in Particle Physics, New York, 1976.
${ }^{18}$ G. A. Leksin, Usp. Fiz. Nauk 102, 387 (1970) [Sov. Phys. Usp. 13, 704 (1971)].
${ }^{19}$ G. Veneziano, Nuovo Cimento, A57, 190 (1968); Phys. Rept. C9, 200 (1974).
${ }^{20}$ A. B. Migdal, Ferminoy i bozony v sil' nykh polyakh (Fermions and Bosons in Strong Fields), Nauka, Moscow, 1978.
${ }^{21}$ V. M. Galitskiǐ, Usp. Fiz. Nauk 120, 138 (1976) [Sov. Phys. Usp. 19, 769 (1976)].
${ }^{22}$ P. Schlein, Phys. Rev. Lett. 19, 1052, (1967); E. Malamud and P. Schlein, Phys. Rev. Lett. 19, 1056 (1967).
${ }^{23}$ P. B. Johnson et al., Phys. Rev. 163, 1497 (1967).
${ }^{24}$ W. Walker et al., Phys. Rev. Lett. 18, 630 (1967).
${ }^{25}$ S. Marateck et al., Phys. Rev. Lett. 21, 1613 (1968).
${ }^{26}$ B. Y. Oh et al., Rev. Lett. 23, 331 (1969).
${ }^{27}$ B. Y. Oh et al., Phys. Rev. D1, 2494 (1970).
${ }^{28}$ J. B. Baton, G. Laurens, and J. Reignier, a) Phys. Lett. B33, 525 (1970); b) Phys. Lett. B25, 419 (1967).
${ }^{29}$ M. M. Makarov etal., Yad. Fiz. 11, 608 (1970) [Sov. J. Nucl. Phys. 11, 342 (1970) J.
${ }^{30}$ J. Scharenguivel et al., Nucl. Phys. B22, 16 (1970).
${ }^{31} \mathrm{M}$. Alston-Garnjost et al., Phys. Lett. B36, 152 (1971); S. M. Flatté et al., 38, 232 (1972).
${ }^{32}$ J. T. Carroll et al., Phys. Rev. Lett. 28, 318 (1972).
${ }^{33}$ B. Hyams et al., Nucl. Phys. B64, 134 (1973).
${ }^{34}$ A. Engler et al., Phys. Rev. D10, 2070 (1974).
${ }^{35} \mathrm{~V}$. Srinivasan et al., Phys. Rev. D12, 681 (1975).
${ }^{36}$ C. D. Froggatt and J. L. Petersen, Nucl. Phys. B91, 454476 (1975).
${ }^{37}$ P. Estabrooks and A. D. Martin, a) Phys. Lett. B41, 350 (1972); b) Nucl. Phys. B79, 301 (1974); c) Nucl. Phys. B95, 322 (1975).
${ }^{38}$ a) A. A. Kartamyshev et al., Pis'ma Zh. Eksp. Teor. Fiz. 23, 478 (1976) [JETP Lett. 23, 432 (1976)]; b) A. A. Kartamyshev et al., Phys. Lett. B44, 310 (1974).
${ }^{39} \mathrm{G}$. Grayer et al., Nucl. Phys. B75, 189 (1975).
${ }^{40}$ B. Hyams etal., Nucl. Phys. B100, 205 (1975).
${ }^{41}$ R. J. Leeper et al., Phys. Rev. D16, 2054 (1977).
${ }^{42}$ M. J. Corden etal., Nucl. Phys. B137, 221 (1978); 157, 250 (1979).
${ }^{43}$ J. P. Baton, G. Laurens, and J. Reignier, Phys. Lett. B25, 419 (1967).
${ }^{44}$ A. A. Kartamyshev etal., Pis' ma Zh. Eksp. Teor. Fiz. 26, 422 (1977) [JETP Lett. 26, 296 (1977)].
${ }^{45}$ F. W. Lott, LBL-7238, 1977.
${ }^{46}$ C. Y. Kennedy et al., Nucl. Phys. B59, 365 (1973).
${ }^{47}$ W. Hoogland et al., Nucl. Phys. B69, 226 (1974); 126, 109 (1977).
${ }^{48}$ J. P. Prukop et al., Phys. Rev. D10, 2055 (1974).
${ }^{49}$ R. D. Baker, Nucl. Phys. B90, 296 (1975).
50w.D. Apel et al., Phys. Lett. a) B41, 542 (1973b) B57, 398 (1975).
${ }^{51}$ A. Skuja et al., Phys. Rev. Lett. 31, 653 (1973).
${ }^{52}$ M. David etal., Phys. Rev. D16, 2027 (1977).
${ }^{53}$ J. F. Grivaz et al., Phys. Lett. B61, 400 (1976).
${ }^{54}$ G. Gorreani et al., Nucl. Phys. B147, 28 (1979).
${ }^{55}$ S. D. Protopopescu et al., Phys. Rev. D7, 1279 (1973).
${ }^{56} \mathrm{H}$. Laven etal., Nucl. Phys. B137, 202 (1978).
${ }^{57}$ C. Caso et al., Nuovo Cimento A57, 699 (1968).
${ }^{58}$ E.Colton et al., Phys. Rev. D3, 2028 (1971).
${ }^{59}$ M. J. Losty et al., Nucl. Phys. B69, 185 (1974).
${ }^{60}$ J. T. Carroll et al., Phys. Rev. D10, 1430 (1974).
${ }^{61}$ N. B. Durusoy et al., Phys. Lett. B45, 517 (1973).
${ }^{62}$ D. Cohen etal., Phys. Rev. D7, 661 (1973).
${ }^{63}$ A. V. Kravtsov etal., Nucl. Phys. B134, 413 (1978).
${ }^{64}$ J. R. Bensinger et al., Phys. Rev. B36, 134 (1971).
${ }^{65}$ A. Berglund etal., Nucl. Phys. B137, 276 (1978).
${ }^{66}$ R. S. Dulude et al., Phys. Lett. B79, 329, 335 (1978).
${ }^{67}$ B. R. Martin and D. Morgan, in: European Symposium on Antinucleon-Nucleon Annihilations, Strasbourg, France, 1978, RZ-78-057.
${ }^{68}$ P. E. Golubnichií et al., At. Energ. 22, 168 (1967); V. L.
Auslander etal., Phys. Lett. B25, 433 (1967).
${ }^{69}$ G. E. Hite and R. J. Jacob, Nucl. Phys. B134, 291 (1978).
${ }^{70}$ K. F. Galloway etal., Phys. Rev. D5, 1097 (1972).
${ }^{71}$ E. Colton et al., Phys. Rev. 7, 3267 (1973).
${ }^{72}$ E. Ferrari and F. Selleri, Phys. Rev. Lett. 7, 387 (1961).
${ }^{73} \mathrm{U}$. Amaldi and F. Selleri, Nuovo Cimento 31, 360 (1964).
${ }^{74}$ H. P. Dürr and H. Pilkuhn, Nuovo Cimento A40, 899 (1965).
${ }^{75}$ J. Benecke and H. P. Dürr, Nuovo Cimento A56, 269, (1968).
${ }^{76}$ G. Wolf, Phys. Rev. 182, 1538 (1969).
${ }^{77}$ Z. Ming Ma etal., Phys. Rev. Lett. 23, 342 (1969).
${ }^{78}$ K. Gottfried and J. D. Jackson, Nuovo Cimento 34, 735 (1964).
${ }^{79}$ L. Curand and Y. T. Shiu, Phys. Rev. B139, 646 (1965).
${ }^{80}$ V. Guzhavin and M. S. Dubovikov, Yad. Fiz. 15, 351 (1972)
[Sov. J. Nucl. Phys. 15, 198 (1972)]; 16, 411 [16, 229 (1973)].
${ }^{81}$ P. K. Williams, Phys. Rev. D1, 1312 (1970).
${ }^{82}$ S. Hagopian etal., Phys. Rev. D7, 1271 (1973).
${ }^{83}$ Yu. A. Batusov et al., Zh.Eksp. Teor. Fiz. 45, 913 (1963) [Sov. Phys. JETP 18, 629 (1964)].
${ }^{84}$ R. E. Cutkosky and B. B. Deo, Phys. Rev. 174, 1859 (1969); S. Ciulli, Nuovo Cimento A61, 787 (1969); A62, 301.
${ }^{85}$ G. V. Beketov etal., Yad. Fiz. 19, 1032 (1974) [Sov. J. Nucl. Phys. 19, 528 (1974)].
${ }^{86}$ J. D. Kimel and J. F. Owens, Nucl. Phys. Ser. B 122, 464 (1977).
${ }^{87} \mathrm{H}$. Becker et al., in: Proc. of Eighteenth Intern. Conference on High Energy Physics, Tbilisi, 1976.
${ }^{88} \mathrm{H}$. Becker etal., Nucl. Phys. B151, 46 (1979).
${ }^{89}$ J. D. Kimel and E. Reya, Nucl. Phys. B58, 513 (1973).
${ }^{30}$ W. Walker, in: AIP Conf. Proc. No. 13, Tallahassee, 1973 , p. 80.
${ }^{91}$ Aachen-Bonn-CERN Collaboration, Cited in Ref. 87.
${ }^{92}$ K. Bösebeck et al., Nucl. Phys. B28, 381 (1971); W. Michael, Phys. Rev. Ser. D 7, 1985 (1973); J. MacNaughton et al., Phys. Rev. D15, 1832 (1977).
${ }^{93}$ P. L. Bastein et al., Phys. Rev. D3, 2047 (1971).
${ }^{94}$ R. J. Jaffe, Phys. Rev. D15, 267 (1977).
${ }^{95}$ D. Robson, Nucl. Phys. B130, 328 (1977).
${ }^{96}$ N. N. Achasov, S. A. Devyanin, and G. N. Shestakov, Preprint TF-109, Novosibirsk, 1980.
${ }^{97}$ A. Donnachie, in: Proc. of the 1970 CERN School of Physics, Loma-Coli, p. 41.
${ }^{98}$ L. Montanet, in: Trudy Mezhdunarodnoì shkoly OIYaI-TsERN po fizike (Proceedings of the JNR-CERN International School of Physics), Alushta, 1975, p. 177.
${ }^{99}$ N. F. Nelipa, Fizika Elementarnykh chastits (Physics of Elementary Particles), Atomizdat, Moscow, 1977.
${ }^{100}$ I. M. Narodetskií and Yu. A. Simonov, Yad. Fiz. 28, 1356 (1978) [Sov. J. Nucl. Phys. 28, 698 (1978)].
${ }^{101}$ R. H. Kalitz and S. F. Tuan, Ann. Phys. 10, 307 (1960).
${ }^{102}$ C. Lovlace, in: Proc. of the Conference on $\pi \pi$ and $K \pi$ Interactions, ANZ, 1969, p. 562.
${ }^{103}$ C. B. Lang, Nucl. Phys. B93, 415 (1975).
${ }^{104}$ C. B. Lang, Nucl. Phys. B93, 429 (1975).
${ }^{105}$ P. K. Williams, in: AIP Conf. Proc. No. 8, Philadelphia, 1972, p. 65.
${ }^{106}$ M. Alston-Garnjost et al., Phys. Lett. B36, 152 (1971).
${ }^{107}$ G. Grayer et al., in: AIP Conf. Proc. No. 13, Tallahassee, 1973, p. 117.
${ }^{108}$ G. Cohen-Tannoudji, Ph. Salin, and A. Morel, Nuovo

Cimento A55, 412 (1968).
${ }^{109}$ P. Estabrooks et al., in: AIP Conf. Proc. No. 13, Tallahassee, 1973, p. 37.
${ }^{110}$ A. A. Kartamyshev et al., Pis' ma Zh. Eksp. Teor. Fiz. 20, 748 (1974) [JETP Lett. 20, 346 (1974)].
${ }^{111}$ P. Jacques etal., in: AIP Conf. Proc. No. 13, Tallahassee, 1973, p. 322.
${ }^{112}$ A. B. Migdal et al., Preprint ITF-1976, UDC 539.143.
${ }^{113}$ A. B. Migdal, Zh. Eksp. Teor. Fiz. 61, 2209 (1971) [Sov. Phys. JETP 34, 1184 (1972)]; Nucl. Phys. A210, 421 (1973).
${ }^{114}$ A. B. Migdal et al., Zh. Eksp. Teor. Fiz. 66, 443 (1974) [Sov. Phys. JETP 39, 212 (1974)]; 72, 1247 (1977) [45, 674 (1977)].
${ }^{115}$ M. K. Volkov and V. N. Pervushin, Usp. Fiz. Nauk 120, 363 (1976) [Sov. Phys. Usp. 19, 894 (1976)].
${ }^{116}$ A. A. Bel' kov et al., Pis'ma Zh. Eksp. Teor. Fiz. 29, 652 (1979) [JETP Lett. 20, 597 (1979)].
${ }^{117}$ M. Olsson and G. B. Yoh, Phys. Rev. 145, 1309 (1966).
${ }^{118}$ B. Deler and G. Valladas, Nuovo Cimento 45, 559 (1966).
${ }^{119}$ J. C. Botke, Nucl. Phys. B23, 253 (1970).
${ }^{120}$ J. A. Jones, W. W. M. Allison, and D. H. Saxon, Nucl. Phys. B83, 93 (1974).
${ }^{121}$ V. V. Anisovich et al., Yad. Fiz. B, 583 (1968) SSov. J. Nucl. Phys. 8, 339 (1969)].
${ }^{122}$ S. A. Bunyatov et al., Yad. Fiz. 16, 1286 (1972) [Sov. J. Nucl. Phys. 16, 709 (1973)]; 22, 871 (1975) [22, 453].
${ }^{123}$ M. M. Makarov et al., Preprint No. 179, Leningrad Institute of Nuclear Physics, Academy of Sciences of the USSR, Leningrad, 1975.
124 a) S. A. Bunyatov and T. R. Gulkanvan, Preprint R1-8401, Joint Institute of Nuclear Research, Dubna, 1974; b) Yu. A. Batusov etal., Yad. Fiz. 21, 308 (1975) [Sov. J. Nucl. Phys. 21, 162]; c) S. A. Bunyatov et al., Yad. Fiz. 25, 325 (1977) [Sov. J. Nucl. Phys. 25, 177 (1977)].
${ }^{125}$ A. Pais and S. B. Treiman, Phys. Rev. 168, 1858 (1968).
${ }^{126}$ W. Manner, in: AIP Conf. Proc. No. 21, Boston, 1974, p. 22.
${ }^{127}$ A. A. Kartamyshev etal., Pis' ma Zh. Eksp. Teor. Fiz. 25, 68 (1977) LJETP Lett. 25, 61 (1977)].
${ }^{128}$ G. Villet etal., in: AIP Conf. Proc. No. 13, Tallahassee, 1973, p. 307.
${ }^{129}$ V. P. Gareevanishvili and D. V. Shirkov, in: Shkola molodkyh po fizike vysokikh Energiĭ (School of Young Scientists on High-Energy Physics), Sukhumi, 1972, p. 249.
${ }^{130}$ J. Franklin, Phys. Rev. D11, 513 (1975).
${ }^{191}$ A. A. Bel' kov and S. A. Bunyatov, Yad. Fiz. 29, 1295 (1979) [Sov. J. Nucl. Phys. 29, 666 (1979)].
${ }^{132}$ L. Rosselet et al., Phys. Rev. D15, 574 (1977).
${ }^{133}$ J. Basdevant, J. C. Le Guillou, and H. Navelt, Nuovo Cimento A7, 363 (1972).
${ }^{134}$ S. M. Roy, Phys. Lett. B36, 353 (1971).
${ }^{135}$ M. R. Pennington and S. D. Protopopescu, Phys. Rev. D7, 2591 (1973).
${ }^{136}$ J. L. Basdevant, C. D. Froggatt, and J. L. Petersen, Nucl. Phys. B72, 413 (1974).
${ }^{137}$ M. R. Pennington and S. D. Protopopescu, Phys. Rev. D7, 1429 (1973).
${ }^{138}$ D. Morgan and G. Shaw, Nucl. Phys. B43, 365 (1972).
${ }^{139}$ J. Hiopoulos, Nuovo Cimento A53, 552 (1968).
${ }^{140}$ C. Lovelace, Phys. Lett. B28, 264 (1968).
${ }^{141}$ M. K. Volkov and V. N. Pervushin, Yad. Fiz. 20, 762 (1974)
[Sov. J. Nucl. Phys. 20, 408 (1975)]; Nuovo Cimento A27, 277 (1975).
 print R2-12646, Joint Institute for Nuclear Research, Dubna, 1979.
${ }^{143}$ S. Weinberg, Phys. Rev. Lett. 17, 616 (1966); 18, 188 (1967).
${ }^{14}{ }^{1}$ L. Daly, Lett. Nuovo Cimento 14, 216 (1975).
${ }^{145}$ P. Pascual and F. J. Yndurain, Nucl. Phys. B83, 362 (1974).
${ }^{146}$ G. E. Hite and R. J. Jacob, Nucl. Phys. B134, 291 (1978).
${ }^{147}$ C. Lovelace et al., Phys. Lett. 22, 332 (1966).
${ }^{148}$ E. A. Alekseeva et al., Pis' ma 2h. Eksp. Teor. Fiz. 29, 109 (1979) [JETP Lett. 29, 100 (1979)].
${ }^{149}$ E. W. Beier et al., Phys. Rev. Lett. 30, 399 (1973).
${ }^{150}$ A. Zylberszteijn et al., Phys. Lett. B38, 457 (1972).
${ }^{151}$ H. Nielsen and G. C. Oades, Nucl. Phys. B49, 586 (1972).
${ }^{152}$ B. Bonnier and P. Gauron, Nucl. Phys. B52, 506 (1973).
${ }^{153}$ J. L. Basdevant et al., Nucl. Phys. 98, 285 (1975).
${ }^{154}$ M. M. Nagels etal., Nucl. Phys. 147, 189 (1979).
${ }^{155}$ Particle Data Group, Rev. Mod. Phys. 48, No. 2, Part II (1976).
${ }^{156}$ L. J. Gutay etal., Nucl. Phys. B27, 486 (1971).
${ }^{157}$ N. Gelfand et al., Nucl. Phys. B138, 365 (1978).
${ }^{158}$ L. Gutay, in: AIP Conf. Proc. No. 8, Philadelphia, 1972, p. 59.
${ }^{159}$ D. M. Binnie et al., Phys. Rev. D8, 2789 (1973).
${ }^{160}$ J. Bannaigs et al., Nucl. Phys. B105, 52 (1976).
${ }^{161}$ D. M. Binnie et al., Phys. Rev. Lett. 31, 1534 (1973).
${ }^{162}$ M. Buttram et al., Phys. Rev. D13, 1153 (1976).
${ }^{163}$ H. H. Bingham et al., Phys. Lett. B41, 635 (1972); M. Davier etal., Nucl. Phys. B58, 31 (1973).
${ }^{164}$ D. Morgan, Phys. Lett. B51, 71 (1974).
${ }^{165}$ T. Shimada, Prog. Theor. Phys. 54, 758 (1975).
${ }^{166}$ C. Bacci etal., Phys. Lett. B38, 551 (1972).
${ }^{167}$ V. Alles-Borelli etal., Nuovo Cimento A30, 136 (1975); Wonyoung Lee, in: Proc. of the Intern. Symposium on Leption and Proton Interactions at High Energies, Stanford, 1975, p. 213.
${ }^{169}$ W. D. Apel et al., in: EPS Conference, Geneva, 1979.
${ }^{169}$ B. R. Martin and D. Morgan, in: European Symposium on Antinucleon-Nucleon Annihilations, Strasbourg, France, 1978, RL-78-057.
${ }^{170}$ J. F. Owens, R. L. Eisner, etal., Nucl. Phys. B112, 514 (1976); J. T. Donohue, et al., Nucl. Phys. B130, 309 (1977).
${ }^{171}$ F. J. Yndurain, Nucl. Phys. B88, 318 (1975).
${ }^{172}$ Kim Tse Peng and W. Zoellner, Nucl. Phys. 34, 491 (1962).
${ }^{113}$ L. Chang, Phys. Rev. 162, 1497 (1967).
${ }^{174}$ M. G. Olsson and L. Turner, Phys. Rev. 181, 2141 (1969).
${ }^{175}$ T. Maung etal., Phys. Lett. B33, 521 (1970).
${ }^{176}$ E. A. Alekseeva etal., Preprint 324/1, I. V. Kurchatov Institute of Atomic Energy, Moscow, 1980.
${ }^{177}$ Particle Data Group, Rev. Mod. Phys. 52, No. 2, Part II (1980).
${ }^{118}$ a) A. A. Kartamyshev etal., Pis' ma Zh. Eksp. Teor. Fiz. 23, 478 (1976) LJETP Lett. 23, 432 (1976)]; b) K. N. Mukhin etal., Pis' ma Zh. Eksp. Teor. Fiz. 32, 616 (1980) [JETP Lett. 32, 601 (1980)].
${ }^{179}$ F. T. Meiere and M. Sugawara, Phys. Rev. 153, 1702 (1967).
${ }^{180}$ K. J. Braun and D. B. Bleine, Phys. Rev. D8, 3794 (1973).
Translated by Dave Parsons

[^0]: ${ }^{1}$ We hope that the reader is familiar with this review and with the terminology used in it.

[^1]: ${ }^{2)}$ In general there may be loops on the Argand diagrams which do not correspond to a resonance. Inelastic channels containing a resonance and a particle may lead to features in the partial amplitude which generate closed loops on the Argand diagrams. In such a case it is useful to compare the diagrams for forward and backward scattering (see, for example, Ref. 100).

[^2]: ${ }^{\text {s) }}$ Here θ is the angle between the primary and secondary pions in the rest frame of the dipion (the so-called Jackson angle).

[^3]: ${ }^{4)}$ The sole exception is Ref. 116, and this paper will be discussed at the end of this section.

[^4]: ${ }^{5)}$ Here and below, $s \equiv m_{\pi}^{2}$ in units of μ^{2}.

[^5]: ${ }^{6)}$ As a rule, the results of other phase-shift analyses agree with one or another of those mentioned here. For example, the results calculated by the CERN-Munich group ${ }^{33}$ agree well with the data of Ref. 55. The values of δ_{0}^{0} from the study by Baton et al. are $5^{\circ}-10^{\circ}$ lower than those reported by Protopopescu et al., which are in turn about the same amount smaller than the values give by Estabrooks and Martinin region $500 \leqslant m_{\text {NT }} \leqslant 900 \mathrm{MeV}$.

