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This review presents a systematic kinetic theory of nonequilibrium phenomena in superconductors with
excess quasiparticles created by electromagnetic or tunnel injection. The energy distributions of excess
quasiparticles and of nonequilibrium phonons, dependence of the order parameter on the power and
frequency (or intensity) of the electromagnetic field, magnetic properties of nonequilibrium superconductors,
I-V curves of superconductor-insulator-superconductor junctions, and other properties are described in
detail. The stability of superconducting states far from thermodynamic equilibrium is investigated and it is
shown that characteristic instabilities leading to the formation of nonuniform states of a new type or phase
transitions of the first kind are inherent to superconductors with excess quasiparticles. The results are
compared with experimental data.
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INTRODUCTION

The study of superconductors in a state far from
equilibrium is attracting increasing interest. One of
the reasons for this is the high sensitivity of the order
parameter to external perturbations. Another reason
is the richness of phenomena in nonequilibrium super-
conductors, resulting from coupling of three subsys-
tems: Cooper pairs, quasiparticles, and phonons, i.e.,
subsystems that reflect the dynamic and kinetic proper-
ties.

The general problem of simultaneously describing the
dynamic and kinetic properties was solved by Keldysh.1

Using Keldysh's technique,1 it was possible to obtain a
system of equations describing the exciton and photon
insulator (semi-conductor in a strong electromagnetic
field)2 and the superconductor.3 Gor'kov and Eliash-
berg4 developed another method with the help of which
Eliashberg obtained a system of equations for a super-
conductor.5

Nonequilibrium states are usually created by the ac-
tion on the superconductor of an electromagnetic or
ultrasonic field of frequency o>, tunnel injection under
a voltage V, a flux of charged particles, and other
methods. Nonequilibrium states can be arbitrarily sep-
arated into two types. The first type arises if the fre-
quency w is less than 2A.U In this case, the field does
not create quasiparticles, but changes their energy dis-
tribution.

The results of detailed investigations of states of this
type, in which stimulation of superconductivity is ob-
served, is presented in Ref. 6.

In the present review, we examine nonequilibrium
states of the second type with excess (in comparison
with thermal) quasiparticles created by fields with co
> 2A (or V> £A).

Creation of quasiparticles in superconductors usually
leads to a decrease in & (however, see Ref. 7 and sec-
tion 2, wherein hypothetical mechanisms leading to an
increase in Tc are examined). Nevertheless, the study
of nonequilibrium states of the second kind is of great
scientific and applied interest.

The point is that most superconducting devices op-
erate under nonequilibrium conditions (low resistance
tunnel junctions, magnet windings in accelerators,
thermonuclear reactors, and others) or make use of
the nonequilibrium nature of the state (Josephson ef-
fect devices, radiation receivers, fast particles detec-
tors, phonon generators, and others). The study of
nonequilibrium processes with excess quasiparticles
(EQ) provides rich information concerning the param-
eters of superconductors,8 which is often not accessible
by other methods.

States with EQ (referred to simply as nonequilibrium
states in what follows) can in their turn be separated in
two groups.

'Here and in what follows we will consider fi, c.and e equal
to unity.

In the first group, the nonequilibrium state is charac-
terized by the quasiparticle distribution function (QDF),
which differs from the equilibrium function, but is
symmetrical relative to the variable | = (/>2/2m) -Ef

(EY is the Fermi energy). This means that the popula-
tion of the electron -like quasiparticle branch ( £ > 0 ) and
the hole-like branch U<0) coincide. Such a state arises
with electromagnetic and ultrasonic pumping, as well as
with symmetrical tunnel injection (superconductor-in-
sulator-superconductor).

If the intensity of the sources is not large, so that the
number of EQ is small in comparison with the thermal
number, then the observed energy distribution of ex-
cess quasiparticles almost coincides with the thermal
distribution. The action of the sources leads to an in-
crease in the effective temperature.8

A considerably different situation occurs with intense
pumping, when the distribution function for excess
quasiparticles (DFEQ) is comparable to unity, while
the order parameter decreases to zero. In this case,
the DFEQ differs from the thermal function, while its
form plays a decisive role and leads to such phenom-
ena as phase transitions of the first kind, a new type
of nonuniform state, and others examined in section 1
of this review.

Excess quasiparticles can lead to even more radical
changes if their energy distribution is inverted.3 Such
a situation is possible if 2A> WD (u^ is the Debye fre-
quency) and, apparently, can be realized in supercon-
ductors with a repulsive interaction. Section 2 of this
review is concerned with this problem.

In the second group of nonequilibrium states, the de-
viation of the QDF from the equilibrium form is an odd
function of £, i.e., the populations of the electron -like
and the hole-like branches do not coincide. Such a
situation is referred to as an unbalance in the popula-
tion of the spectral branches and arises, for example,
with tunnel injection in a S-N junction ( superconductor -
normal metal).

Let us discuss briefly the physical phenomena that
result from the appearance of an odd, relative to the
Fermi momentum, segment in the QDF under nonequi-
librium conditions.

It is well-known that the basic properties super-con-
ductors, ideal diamagnetism (Meissner effect) and per-
fect conductivity, result from the formation of Cooper
pairs of two electrons and their Bose condensation.9

As a result, the spectrum of single -particle excitations
contains a gap A, while the wave function of the excita-
tions with momentum p is a superposition of the wave
functions of an electron <p*v and a hole <pv (Ref. 10):

tp<r = "fpo + WP-p, -a, (l)

where

As a result, the effective charge e* for electronic ex-
citations equals

(2)
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i.e., it depends on the momentum of the excitation and,
generally speaking, is less than the electronic charge
e (the charge of a Cooper pair equals 2e). However, it
is evident from expression (2) that the sum of the ef-
fective charges of two electronic excitations with mo-
menta P! and p2, symmetrical relative to the momen-
tum pF,Pi -PF= -(p2 -PF)> exactly equals the electron-
ic charge e.lna. state with an even distribution func-
tion, the probabilities for populating states with mo-
menta PJ and p2 are equal, so that as a sum they act as
a single excitation with charge e and do not lead to any
singularities.

However, under nonequilibrium conditions when such
an odd QDF appears, the difference between the charge
of a quasiparticle e* and the electron charge e leads to
the appearance of a total excitation charge,11 which,
due to the condition of electrical neutrality, is compen-
sated by an induced charge in the Cooper pair conden-
sate. In this case, the chemical potentials of the pairs
Ht and quasiparticles M, become unequal. As a result,
it is possible for a static longitudinal electric field to
penetrate into a superconductor,12 which permits a con-
sistent description of the transformation of the ohmic
current into a superconducting current at the boundary
between a normal metal and a superconductor. Due to
the nonuniformity of the chemical potential (np, the total
force acting on the superconducting condensate in this
case equals zero. The behavior of superconductors
with weak coupling is also essentially described by this
effect.12

The appearance of a total excited charge, compen-
sated by the charge of the condensate pairs, also leads
to a new type of weakly damped collective excitations
that have a sonic character, which was observed ex-
perimentally (see Ref. 12).

The fact that there is a difference between the chem-
ical potentials of pairs np and of quasiparticles fi,
leads to a new class of thermoelectric phenomena in
superconductors.

The possibility of observing thermoelectricity in
superconductors was first substantiated by V. L. Ginz-
burg,13 who showed that in order for such a phenomenon
to occur nonuniform or anisotropic systems are neces-
sary. At the present time, this problem is being stud-
ied intensively both experimentally and theoretically.14

In Ref. 15, it was shown theoretically and experimen-
tally that the unbalance in the populations of the elec-
tron-like and hole-like branches can be created by the
simultaneous existence of a temperature gradient and
a superconducting current. This phenomenon was in-
vestigated theoretically in greater detail in Ref. 95.

In section 1 of the present review, we have examined
the theory that must explain the following basic exper-
imental facts:

1. the properties of the energy distribution of non-
equilibrium quasiparticles and phonons;

2. instability and hysteresis phenomena;

3. mechanisms for phase transitions of the first
kind, superconductor-normal metal and superconductor

with an order parameter At—superconductor with an
order parameter AS^AI;

4. nature and structure of nonuniform states in
superconductors with optical and tunnel pumping of
quasiparticles.

The purpose of this review is to present a consistent
description of these phenomena from a unified point of
view. The review by no means claims completeness of
the bibliography, since it depends primarily on work
published recently.

Research in this area began after the appearance of
the work by Testardi16 in 1971, in which the author re-
ported on an experimental investigation of the resis-
tance of superconducting films irradiated by pulses of
laser light. Testardi came to the conclusion that the
observed superconductor-normal metal resistive tran-
sition is due not to simple heating, but rather to excess
quasiparticles created by sources.

Later, Sai-Halasz and others,17 Hu and others,18

Golovashkin, Motulevich, and others19 discovered that
the resistance of a superconductor irradiated by light
arises smoothly, beginning with some critical value of
the power j8c, and reaches the normal value over a
quite wide range of 0 (and not discontinuously, as in
the equilibrium case). The authors of Ref. 17-19 sug-
gested the possibility of the existence of a new type of
nonequilibrium intermediate state, in which the con-
ducting and normal phases coexist.

Subsequent investigations of superconductors with
optical20"22 and especially with tunnel injection23"27 con-
firm the existence of a nonuniform state (in particular,
with two gaps25-26) in nonequilibrium superconductors,
as well as an entire series of other phenomena, such
as phase transitions of the first kind,23-24 broadening of
I-V characteristics, hysteresis, and other phenomena.8

It should be noted that these phenomena are observed
in thin films (300-3000 A). The small thickness is
necessary in order to remove nonequilibrium phonons
before the phonons reach equilibrium with the lattice
and quasiparticles. In the latter case, external action
simply leads to heating of the superconductor. The
interpretation of these new phenomena has been wide-
ly discussed (see Refs. 8,28,29) and their close con-
nection to the form of the energy distribution of non-
equilibrium quasiparticles has been understood.

Gradually, a concensus was formed (see, for exam-
ple, Ref. 31) that the thermal distribution function «T

= (eE/r + l)"1, as well as the heuristic quasiparticle dis-
tribution function of the form

ttos = (e(e'~'1*>''r-h I)"1) nT*=i(e*!T* •+•!)-*, / o \
V **/

proposed by Owen and Scalapino (OS)30 /i*> 0,^(0)
>nT(0) and by Parker,31 respectively, are not adequate
for explaining the phenomena in the vicinity of phase
transitions.

The kinetic approach (i.e. finding «/£ with the help of
the solution of kinetic equations) was used by Vardanyan
and Ivlev, who found the corrections to nos for weak
optical pumping.
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The case of strong optical pumping, in which n at-
tained a considerable magnitude, was studied in Refs.
33 and 34. With the help of a solution of the kinetic
equation, it was found that n(£) differs noticeably from
the equilibrium and heuristic functions (3). The prop-
erties of the nonequilibruim n(|) have a general nature
and stem from the effect of the order parameter
(through the coherent factors entering into the proba-
bility) on the recombination and scattering processes for
quasiparticles as they interact with phonons and on the
creation of quasiparticles.

The effect of relaxation processes is most clearly
manifested near the phase transition point A = 0, when
an increase in recombination [~1 +(A 2 /EE') ] leads to a
decrease in the number of quasiparticles near 5 = 0.
The quasiparticles appear as if they were overheated
in comparison to the thermal distribution [n(Q)<nT(0)].
In its turn, this leads to the existence of a gap for
pump powers above some critical value pc (correspond-
ing to the order parameter becoming zero). More pre-
cisely, the dependence of A on ^ and T in some interval
£c < j3 < £m becomes multivalued; in particular, there are
three solutions A! = 0,A2

 an increasing function of /3,A3

a decreasing function of )3.34

In the other limiting case (case of a narrow-band
source,33 w - 2A « A) the order parameter controls the
rate of creation of quasiparticles, since the creation
rate is proportional to w - 2A.

In this case, DFEQ increases with energy,33-36 so
that near threshold37-38 there are three solutions for
A( u>), one of which increases with u> (or with V).

The concepts of the multivalued dependence of A on (3
and w play a determining role in the theory being pre-
sented. An important problem is the problem concern-
ing the stability of uniform states of superconductors
with non-equilibrium quasiparticles. Stability relative
to fast (in comparison to the relaxation times) excita-
tions was investigated in Refs. 34,39-44. It turned out
that the stability criteria are closely related to the
sign of the quantity

.VS= 14-2J^,1?, (4)
u

which has the meaning of the number of superconducting
electrons.48 Positive Ns correspond to stability and
negative Ns correspond to instability.2'

In the early work,41-42 the OS functions,30 which led to
negative values of Ns under certain conditions (which
would formally be equivalent to a negative diffusion
coefficient for quasiparticles), were used. On this
basis, a hypothesis was proposed concerning instabil-
ity,41-42 which was referred to as the diffusion hypothe-
sis. It would arise with a finite value of the wave vec-
tor and would lead to spatial modulation of the order
parameter. We note that due to (4) the superconductor
would simultaneously become a paramagnet.

However, as can be seen from (4), the sign of Ns is
sensitive to the form of n(£). If the DFEQ obtained

from a solution to the kinetic equation, is used to cal-
culate Ns, then Ns turns out to be positive.34 Mathe-
matically, this is related to the slower, in comparison
to nog, changes in the function n for small £ [the prop-
erty n(0)<wr(0)<nos(0)]. This result was confirmed in
subsequent •work.44-45-29

The positiveness of Ns indicates that diffusion of
quasiparticles stabilizes the excitation, and nonequi-
librium super-superconductors remain diamagnets.

Stability relative to slow excitations (of the order of
and less than the relaxation time for energy) was stud-
ied in Refs. 33, 37, 38, 43, and 44. Two instabilities,
characteristic of the non-equilibrium state, the so-
called threshold instability (characteristic of a narrow-
band source) and the coherent instability (characteristic
of a broad-band source and stemming from coherent
factors) were discovered.

The threshold instability, quantitatively predicted in
1974 in Ref. 33, was studied in detail in Refs. 37, 38,
and 46. The coherent instability was found and investi-
gated in Ref. 43, and it was studied by a somewhat dif-
ferent method in the important work by Eckern, Shmid,
Smutz, and Schon.44

The threshold and coherent instabilities are closely
related to the multivalue nature of A(|3) and have a
maximum decrement in growth for uniform excitations,
i.e. the situation has a definite analogy with the Van-
der-Waals theory of real gases. Indeed, as shown in
Refs. 43 and 47, depending on the conditions, transi-
tions of the first kind between phases, overheating and
overcooling phenomena (i.e., hysteresis), and the for-
mation of a nonuniform state are possible. In this mod-
el (the so-called layer model), the inhomogeneous state
consists of an alternating sequence of regions with dif-
ferent values of the order parameter, separated by
transition layers with a length equal to the greater one
of the quantities |0 or L (£, is the coherence length and
L is the diffusion length for quasiparticles). In the case
of the coherent instability, the specimen separates into
regions with superconducting and normal phases,43

while for the threshold instability, the specimen sepa-
rates into regions with different finite gaps.37-38

According to the layer model, the nonuniform state
can be stationary only for one value of /30 (or w0), for
which the energies of the phases become equal. If j3
* j30, then the phase separation boundary moves with a
velocity proportional to & - $0.

43 With electromagnetic
pumping (in particular, optical), if special measures
are not taken for maintaining (3 = /30,

3) the nonuniform
state can only be a nonstationary state,43 and the state
is observed experimentally under pulsed irradia-
tion.16'22

A different situation occurs in superconductors with
tunnel injection, when by fixing the current through the
tunnel junction, it is possible to control the relative
size of the phases (in the Van-der-Waals gas, this is
the volume) and to stabilize the nonuniform state. This

2Under the condition that Z>= J0(l-2n/e3)d£ is positive (see
3, subsection d of section 1 for greater detail).

'Setting /3 = £0 is in principle possible with the help of feed-
back systems.
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circumstance was pointed out in Ref. 47; it was later
confirmed experimentally for large voltages V» A
(Ref. 27) and voltages near threshold 7=2A.25'26

As a whole, the concepts that have been developed
have led to a good description, in many cases quantita-
tive, of the phenomena occurring in superconductors
with electromagnetic and tunnel injection.

1. EXCESS QUASIPARTICLES IN SUPERCONDUCTORS
WITH ATTRACTION BETWEEN ELECTRONS

a) Basic equations
In order to describe nonequilibrium processes in

superconductors, it is necessary to have a system of
equations that describes simultaneously the dynamic
and kinetic properties.1-4 In the weak coupling approx-
imation (small interaction constant), this system re-
duces to an equation for the order parameter and a kin-
etic equation for the quasiparticle and phonon distribu-
tion functions.

1) Equation for the order parameter. The stationary
equation for the order parameter A(r) has the form4-10

dn (p, r. t)
at

dn fa _ dn i f _ _ f dn \ / dn \ i dn \
'it dp dp 3r ~~ \ dt )im \~di~lt ' \~dT ) (9)

(5)
-"D

where X is the electron-phonon interaction constant (X
<0), nf is the quasiparticle distribution function,
which satisfies the kinetic equation (9) (see below);
top is the Debye frequency; here, and in what follows,
A(r) denotes the modulus of the order parameter, "p

and vt are functions that satisfy the Bogolyubov equa-
tions.10 In order to describe nonstationary processes,
it is necessary to have, generally speaking, a time-
dependent equation for A. However, in most cases, it
is possible to limit ourselves to Eq. (5), since the time
for establishing a stationary state in a system of Cooper
pairs is substantially less than the time for establishing
such a state in a system of quasiparticles.

In the spatially uniform case, Eq. (5) takes the form

(6)

The spatial variation of A(r) in a nonequilibrium
superconductor is described by an equation similar to
the Ginz burg -Landau equation:

(7)

(8)

which is obtained43 by expanding the functions MP and
vt in powers of A, assuming that A is small and that A
varies slowly with the coherence length £0; here, £0

is a functional of the QDF of a normal metal

and A is the vector potential.

2) Kinetic equation for quasiparticles. The kinetic
equation for the QDF has the form

where e = V|2 + A2 is the quasiparticle energy, Q is a
source of quasiparticles, and(8w/9/),, (fcz/W).,, and
(8n/8<)lm are the collision integrals describing colli-
sions between quasiparticles and phonons, quasiparti-
cles and impurities, respectively, and in addition, the
last integral can be written in the form

where TO is the relaxation time for collisions with im-
purities.

The equation for the QDF integrated over the
angles w(|,r,t) is obtained from (9) in the usual manner,
using the smallness of TO/T, (T, is the relaxation time for
collisions with phonons):

dn(l, T, i) HI If r 3 / _ _£2-
dt "*" e T, L Sri \ ar,

. _ _
3r, dt

_££._£_/ ^ ___ fo dn \~\
drt 8e \ 9r, drt ~8t I J

The integral describing collisions with phonons,5 writ-
ten taking into account the fact that n( £) is even, has
the form

/ dn \ „ „_ yR 11 n\|-sr). = " —o —S , \1&I

(13)

-(l-B)»'AW'l, (14)

(15)
(16)

Here, JVE is the phonon distribution function, k is an
exponent showing the dependence of the matrix element
for the electron-phonon interaction onq (M2~ qk); 77 is
a parameter that takes on the value +1 for a supercon-
ductor5 and -1 for an exciton or a photon insulator.2

The first two terms in (12) describe the energy relaxa-
tion of quasiparticles (S* denotes arrival, and S" de-
notes departure), while the third term Sfi corresponds
to recombination of quasiparticles with phonon emis-
sion. The coherence factors l±(7jA2/ee') arise due to
the coherence of the interaction of quasiparticles with
phonons and play an extremely important role in the
phenomena examined in what follows.

The form of the collision integrals (8n/9i)e. was found
in Ref. 5. As shown in Refs. 5 and 32, electron-elec-
tron collisions have a weak effect on the form of the
QDF for small values of J; due to the smallness of Cit

the ratio of the electron-electron interaction constant
and the electron-phonon interaction constant (see Table
I and Ref. 29). However, they lead to renormalization
of the quasiparticle source, which is substantial at high
energies.

Integration of (11) with respect to £ gives the conser-
vation law for the number of quasiparticles n(r, t):
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TABLE I. Values of the parameter Cl for some supercon-
ductors.

Parameter

(» <OD)S

' ErTc

Metal

PI)

0.0141

In

0.034

Sn

0.096

Nh

0.133

Al

1.14

Zn

1.12

(17)

(18)

3) Sources of nonequilibrium quasiparticles. Non-
equilibrium states, examined in this review, are
formed by the creation of quasiparticles by external
sources (electromagnetic and ultrasonic fields with w
> 2A, tunnel injection with V> 2A, ionizing particles,
and others). Although the results obtained below are
applicable to a certain extent to all the sources men-
tioned, we will examine in detail only two: Qu, an
electromagnetic pumping source, and Qv, symmetrical
tunnel injection. According to Ref. 5,QW can be repre-
sented in the form

Qa-~-Qi," + Q£' + Q'<2', (19)

; - m) (ne_u - raE) = (
,..,_vl+(»,.,'2)

((O—eJS — A2

EV-L-r
2"!0>2JT (l-™(0

rz _

(20)

(21)

(22)

(23)

where feu = +l, aw is the electromagnetic injection pa-
rameter, L is the quasiparticle diffusion length, y0 is
the electron velocity on the Fermi surface, r, is the
multiplication factor for quasiparticles due to electron-
electron collisions5'32 and r, is the multiplication factor
due to reabsorption of phonons.21'22

It should be noted that expression (22) corresponds to
absorption by free electrons. In some superconduc-
tors, other mechanisms, for example, interband ab-
sorption, can make the dominant contribution. Due to
the fact that the thickness of the film d usually exceeds
the inverse absorption coefficient, its explicit form is
not important and it can be replaced by 1/rf.21'22

A source that creates quasiparticles is strictly de-
scribed by the quantity Qjf ' , while Q^2>3> describe the
redistribution of existing quasiparticles with respect
to energy, since

(24)

For tunnel injection through a symmetrical SiS-junc-
tion expression (19), in which the substitutions w= V,
kv= -1, and au= oty, should be made, is applicable to
Qv (Ref. 50):

2(INT|
de1N (0)

(25)

where aK is the conductivity of the junction in the nor-
mal state, d is the thickness of the film, and JV(0) is

the electron state density. An important difference be-
tween Qv and Qw is the absence of the coherence factor
A2/e in Qr.

Sources can be separated into two classes indepen-
dent of their nature:33 broad-band sources, which
create quasiparticles in a wide energy interval A < E
<e and are realized with optical pumping with o>» 2A,
tunnel injection with F»2A, ionization by high-energy
charged particles, and other means; narrow-band
sources, which create quasiparticles in a small energy
interval e - 2A « A. This classification turned out to
be very convenient for understanding physical phenom-
ena and for the analytical solution of the equations in
the limiting cases of broad-band and narrow-band
sources. The point is that in these cases it is possible
to separate out the effect of the order parameter on the
formation of the QDF.

Indeed, in the case of a broad-band source, A drops
out of the expression for the source Q, i.e.,Q = au6 (w
-E), and it affects only the relaxation processes.
Taking into account the fact that the "density" of the
source action turns out to be low,33 the kinetic equation
can be viewed as homogeneous (it can be assumed that
Q = 0) and it is possible to find the connection between
n( £) and Q from the conservation law for the number of
quasiparticles (17).

In the case of a narrow-band source, the order pa-
rameter has a determining influence on the source. We
note that Q(2> and Q<3> do not play an essential role in
the phenomena being examined for u>> 2A-

For tunnel injection, it is necessary to add an equa-
tion for the external circuit:

f= , A), (26)

(27)

where f is the EMF, R is the external resistance, /
is the current through the junction, and p(e) =

4. Kinetic equation for phonons. The phonon distri-
bution function N(c) can differ from the equilibrium
function

(28)

and is found from the following kinetic equation2

(29)

(30)

where s is the speed of sound. The second term in (29)
takes into account the loss of phonons from the film
into the substrate, and the third and fourth terms taken
into account the creation of phonons by recombination
and scattering of quasiparticles, respectively. Some-
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times, the system (11) and (29) is approximated by a
system of equations for the average values n and N (the
Rotworf and Taylor equations52). However, these equa-
tions are inadequate for describing the phenomena being
examined, since they do not take into account the prop-
erties of the energy distribution of quasiparticles and
phonons.

5) Kinetics of quasiparticles in superconductors. The
energy distribution of excess quasiparticles is formed
by a source and relaxation processes. The action of the
source QQ ) reduces to breaking up a Cooper pair and
creating two quasiparticles. A broad-band source
creates quasiparticles with high energies E » A. The
quasiparticle created gives up its energy to the electron
gas and the lattice. In the first case, the energy of the
quasiparticle is expended on increasing the energy of
existing quasiparticles and the creation of new quasi-
particles by impact ionization through the gap 2 A.
Multiplication of quasiparticles, characterized by a
multiplication factor rt, proceeds in this manner.

In the second case, the energy goes into emission of
nonequilibrium phonons. Quasiparticles finally reach
the bottom of the band and recombine with the emission
of a phonon (A <<c u>Bll), forming a Cooper pair once again.
Nonequilibrium phonons can leave the film within a
time rm or be reabsorbed within a time TB, creating a
pair of quasiparticles (or increasing their energy),
thereby leading to multiplication with a factor rt. The
relative probability for the loss and reabsorption of
phonons is characterized by the parameter y = res/Tz,
whose upper bound is determined by interphonon inter-
action.

The kinetics of quasiparticles in superconductors has
a definite analogy with the kinetics of electrons in semi-
conductors, with the formation of electronhole pairs
in the latter.53 Indeed, 2A plays the role of the width of
the forbidden band Eg and the electrons and holes play
the role of quasiparticles. However, nonequilibrium
processes in superconductors have important differ-
ences:

1. The gap in superconductors 2A is unusually sensi-
tive to the concentration and energy distribution of
quasiparticles and can vary all the way to zero.

2. Due to the smallness of the ratio 2^/0^, scatter-
ing and recombination processes are single photon
processes and proceed approximately at the same
rate.33 This means that the recombination and scatter-
ing times are approximately equal, so that the QDF
must differ from the quasiequilibrium function (occurr-
ing under the condition that the recombination time is
large in comparison with the scattering time).

3. The order parameter has a strong effect on relax-
ation and creation processes for quasiparticles.

der parameter as a function of the pump power, tem-
perature, and the parameter y.

1) Heuristic models for the quasiparticle distribution
functions. Heuristic functions n( £) (not involving the solu-
tion of the kinetic equation) were proposed in Refs . 30 and
31. The function (3)was examined in the well-known work
of Owen and Scalapino (OS),30 which played a consid-
erable stimulating role, and it was assumed that T* co-
incides with the temperature of the lattice, while the
chemical potential of the quasiparticles n*> 0 is re-
lated to the concentration of quasiparticles. Parker31

proposed a modified thermal model, in which the func-
tion (3) with pi* = 0 was used and the effective tempera-
ture T* was determined from balance considerations.
Finally, in later works29 for thick films (y » 1), the
use of a distribution function of the form

n = exp [-(e - n*)/r*l, (31)

was proposed, in which both parameters p* and T*
were found from conservation laws for the number of
quasiparticles and energy.

The models in Refs. 30 and 31 give a satisfactory de-
scription of the experimental data for small pump pow-
ers and become inapplicable near a phase transition,
when the distribution function of excess quasiparticles
attains magnitudes comparable to unity.32'33 The rea-
son is as follows. As is well-known, functions of the
form (3) are a good approximation if the recombination
time for quasiparticles is much larger than the energy
relaxation time. However, in superconductors, re-
combination and relaxation processes for n~ 1 proceed
at the same rate (see subsection 5 in section 1). For
this reason, the relaxation and recombination times
for quasiparticles are of the same order of magni-
tude,54'38'33-55 so that the QDF can differ considerably
from the quasiequilibrium function and in order to find
K(?) it is necessary to solve the kinetic equation. Such
solutions were first found for high pump levels in Refs.
33 and 34. In order to demonstrate clearly the proper-
ties of «(£), it is useful to examine the very simple k
= -l,y = 0, T = 0 model, for which an exact solution ex-
ists.34

2) k=-l,y = 0,T = 0 model. Substituting k = -1 and
NK=Q into (11), we obtain the following equation for

(32)

D

-(!-») \

[we recall that «(£) is an even function of £ and £ is
assumed to be positive] and the normalization condition
is

b) Uniform states of superconductors with a
broad-band source of quasiparticles

In this section, starting from the system of equations
(5), (9), and (29), we will obtain the distribution func-
tions for quasiparticles and phonons, as well as the or-

(33)

We note that in the model being examined A enters into
the equation only as a result of the coherent factors.
For A = 0, the function n0( £)33 is an exact solution of
(32):
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a -- 2\n --: 2 \ «„ (?) d|,

(34)

(35)

representing a monotonically decreasing function of |,
attaining the value 1/2 for £ = 0. It is interesting to
note that for very high values of £/A0, «o *s close to
the thermal value «r(£).56 Substitution of w0(£) into the
equation for the gap (6) allows finding the critical con-
centration of quasiparticles ac = 2AoWc [and the dimen-
sionless critical power from (33)], for which A = 0:33

« C - A O , K = l, «c = 4-. (36)

Near a phase transition point (A/AO* 1), it is possi-
ble to look for a solution of (32) in the form

n ({) = n,, (I) + «!, H! < «„,

where the small correction «[, proportional to A, sat
isfies the equation

(38)

(39)

(40)

The correction wt stems from the presence of coherent
factors. There is an exact solution of (38):

(41)

and in addition, the functions T, P, and $ are obtained
in explicit form:

- I n - (42)
Small values of £~ A, where the coherent addition
njd) is negative, make the main contribution to the
equation for the gap34:

(43)

FIG. 1. Energy dependence of the quasiparticle distribution
function for T- 0 and y = 0.15. The values of the order para-
meter A/A, (and, correspondingly/3) are 0.95 (1), 0.8 (3),
0.6 (5), 0.4 (8), 0.5 (11), and 0.01 (7).

FIG. 2. Dependence of 2« (£, = 0) on the order parameter. 1—
according to the BCS theory: 2—nonequilibrium distribution
function with y = 0 and T/A0 = 0; 3—y =0.15 and T/A0 = 0; 4—
7= 0.15 and T/A0= 0.44.

The decrease in «(|) for small values of £~ A is due to
the increase in the recombination rate for quasiparti-
cles, proportional to 1+(A2/EE'), especially noticeable
for |-0. It follows from (34) and (43) that the distri-
bution function for nonequilibrium quasiparticles has
the property

i.e., the number of nonequilibrium quasiparticles de-
creases for small values of £ in comparison with ther-
mal quasiparticles, so that the distribution becomes
"overheated" (see below, Fig. 2).

This important property of wU) is retained in the gen-
eral case and leads to the existence of a finite gap for
|8> /3C. One other general property of ^U) consists of
its localized nature for £~ A and, therefore, the small-
ness of the integral

0

For this reason, in order to find corrections linear in
A, we can drop the integral terms in the equation for

3) -Energy distribution of nonequilibrium quasiparticles
created by a broad-band source. The results do not
change qualitatively if a more realistic matrix ele-
ment, M2

q~ <i,k= 1, and the finiteness of the temperature
and phonon reabsorption effects are taken into account.
In this case, the additional factors (E±E ' )* + I and terms
with Nc appear in the kinetic equation.

In Refs. 34 and 56, it was shown that in the general
case n(£) can be represented for A/A0

<<: 1 in the form
n (I) --= n (e) + n, (£), ^

where n(s) satisfies the kinetic equation (11) with the
coherent factors equil to zero (rj = 0), while the cor-
rection nt is proportional to the coherent factors. It
turned out that the function «(e) has two important prop-
erties:

1. The expansion of «(E) and its integrals involves
only powers of A2 [as for wr(s)l.

2. The function n(t) for E = 0 equals 1/2 and «(E)
<M(E = 0) = 1/2. The coherent correction n, can be found
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with the use of property (45). As shown in Refs. 34 and
56, HJ, can be represented in the form

A* (47)

(48)

It is easy to see that for k= -1,N=0 (47) changes into
(43). The following properties of ^ follow from (47)-
(49):

1. The sign of the coherent correction n^ is deter-
mined toy the sign of TJ = ±1 in the coherent factors. In
superconductors tj = l, nj<0; in an exciton insulator,
T»=-l,n1>0.

2. The correction «x is proportional to the function
(?(£, £') [see (49)], which is a measure of the degree to
which the system is in nonequilibrium. The function
<p(t,, £') represents a recombination collision integral,
vanishing at equilibrium. The maximum is attained
for T=0, y = 0 and for fe = l equals

Jlai
-&T

0.71 (50)

It is evident that with increasing T and film thickness
(i.e., y) and corresponding decrease in0c, fff increases
and correspondingly <p decreases, approaching zero
while remaining positive. Physically, this is related
to the fact that <p(%, £') is proportional to the resulting
recombination rate for quasiparticles. For 0> 0, the
number of recombining particles is always greater than
the number of created particles, due to the reabsorp-
tion of nonequilibrium phonons and <p > 0. Thus, the
property of overheating (44) follows from the properties
of the functions n(e) and n^

The properties and form of w(£) described above were
completely verified with the help of numerical solution
of the system of equations (6), (12), and (29) on a com-
puter.4''57'58'45 In these works, the functions n(£) and
Nf were found for a wide range of values of /3 (and, cor-
respondingly, A), T and y. Analysis of the results
shows that n( £) is a monotonically decreasing function
of | (£ = 0,1), does not exceed 1/2, and is localized in
the energy range £~ AO. Fig. 1 shows the typical behav-
ior of n(x= £/A0) for different values of /3, T = 0, y
= 0.15, and a>/A0=10.

In order to demonstrate the behavior of the distribu-
tion function for £ = 0, Fig. 2 shows the values of n(0)
as a function of A as well as the values of the thermal
QDF «r(0) [taken with the same y and temperature T(A)
according to BCS] for comparison. As is evident from
Fig. 2, «(0) for arbitrary y and T is less than nT(0) in
accordance with the property (44). It is interesting to
approximate w(|) with the help of the quasiequilibrium
QDF WF = { exp[(e - M*)/r*]+l}-1, treating n* and T* as

FIG. 3. Effective temperature T* and the effective chemical
potential p.* as a function of the source power P. Values of the
parameters are as follows: 1—y = 0, T= 0; 2—y= 0.02, T
= 0; 3—y= 0.15, T- 0: 4—y= 0, T/A0 = 0.44; 5—Y= 0.02, T/\
= 0.44; 6—y = 0.15, T/A = 0.44.

adjustable parameters.5' Above all, it should be noted
that for arbitrary values of n* and T* it is not possible
to superpose «(£) and nr(?) over the entire energy inter-
val (especially large disagreement for y — 0, T— 0).

If the approximation is carried out according to the
minimum of the deviations (n - WF) along the entire en-
ergy interval, then it is possible to find, to within 5-
10%, values of n* and 7* for each set of |3, y, and T.45

The behavior of n* and T* is shown in Fig. 3 as a func-
tion of 0 for different values of T and y.

As can be seen, both parameters differ from zero
(in contrast to the assumptions in Refs. 30 and 31), and
they strongly depend on the pump power; the effective
chemical potential is always negative. Finally, in the
range |30<|3<j3m,
of 0.

T* and /i* are double-valued functions

It is interesting to note that the effective temperature
T* exceeds Tc (the ratio reaches T*/TC=1.55), and at
the same time, the order parameter differs from zero
(A/Ao* 0.3).6> This means that T* loses the signifi-
cance of temperature and clearly indicates (together
with n*<0) overheating of quasiparticles.

^Numerical calculations were also carried out In Ref. 59 for
weak pumping and fixed A.

5) The fact that this is no more than an approximation is
clearly evident from the following example. For T= 0 and
y = 0, n(4) is determined from (12), when not one of the
terms S+, S~, and S* vanishes separately (as should occur
in equilibrium).

6> Overheating of quasiparticles was observed experimentally
in Ref. 61 (see below).
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FIG. 4. Coefficient of ultrasonic absorptionas/aA= 2fe(0) as
a function of the optical pumping power /3. The values of the
parameters y and T/A0 are as follows: 1—0, 0; 2—0.02, 0;
3—0, 0.44; 4—0.02, 0.44; 5—0.15, 0; 6—0.15, 0.44. The
inset shows the experimental results (o) for ultrasonic absorp-
tion in a tin film 3,000 A thickness at T= 1.33 K.60 The solid
line corresponds to 2n(0) a ty= 1 and T= 0.

4) Comparison with experiment. The form of the QDF
was determined experimentally in Refs. 24, 60, and 61.
Lambert and others60 determined the value of «(l = 0)
by measuring the ratio of the ultrasonic absorption co-
efficient in the superconducting as and normal <*„ states

(51)
Fig. 4 compares the computed values of 2n(0) with the
experimental values. It is evident that for y ~ 1 there
is good agreement, and in addition, n(|)<l/2 every-
where. Unfortunately, the authors of Ref. 60 do not
present data on 2w(0) in the interval A/A0<0-3, where,
apparently, the nonuniform state arises.

Important data on the form of n(£) in thin aluminum
films with tunnel injection of quasiparticles were ob-
tained in Ref. 61. The authors analyzed their data with
the help of a function of the form nF(|). They showed
that for a high voltage across the junction (satisfying
the criterion for a broad-band source), n* and T* dif-
fer from zero and depend on V (see Fig. 3). In addi-
tion, the chemical potential is negative, n*<0, while
T* exceeds Tc, so that the ratio T*/TC attains 1.5,
while A/Ao* 0-3. These data agree well with the theo-
retical results34'45 (see subsection 3) and indicate over-
heating of quasiparticles and satisfaction of the property
(44).

5) Order parameter. The order parameter is sensi-
tive to the energy distribution for quasiparticles, es-
pecially for £=0. Overheating of quasiparticles leads,
as was first shown in Ref. 34, to a state with A*0 for
/3> /3C. It is convenient to represent the equation for the
gap (6) in the form

(52)

Let us first find the equation for the gap with the help
of the functions n0 (34) and n^ (43) (the k= -1 model).
Substituting nn and «t into (52), we obtain

(53)

FIG. 5. a) The order parameter A as a function of the pump
power /3; b) energy t/(A) of a nonequilibrium superconductor
as a function of A for pump power (3 >/Sc.

we obtain a solution according to which A = A2 increases
with increasing 0. For A> Am, we have an additional
solution A3 = A, decreasing with increasing /3 and coin-
ciding with the increasing solution for /3 = /3m (Fig. 5a).
Thus, there is a region in which A(£) takes on three
values (together with Al = 0). It should be noted that for
a different sign in the coherent factors the increasing
solution is absent, and A(£) is a single-valued func-
tion.43 The multivaluedness of A(£) is in general re-
tained in a nonequilibrium superconductor. Indeed,
using the properties of n(t), let us find the contribution
from the first two terms in (52) (k = 1) for small A:

i
UT"

l-2n(e) (54)

where 6 = (a^ -aic)/alc, at = /~n0U)£d£, and a is a nu-
merical coefficient of the order of unity (see below).
Finally, substituting wt into (52), we obtain an equation
for the order parameter of a nonequilibrium supercon-
ductor,34-56 (fe = l):

dV A / f i r A 9 A\ n T 7 / A X t A 9 / ^ <?A i CtA8 \ / C C\
= A (0 -f- ctA — A(p) = U, U (A) = + t\ I -^ -n—1 ~f— I V OOJ

(here, A and tp are written in dimensionless form A
= t(>m, <p = <p/<pm). This result was verified in subsequent
works (see, for example, Ref. 44). Eq. (55) differs
from the Ginzburg-Landau equation by the presence of
a term linear in A with the nonequilibrium coefficient </>
(and in the form of the coefficients 6 and a). The solu-
tion of (55) has the form

(56)

i.e.,for <p*0, instead of Ai = 0, there are two solutions:
one solution corresponds to A3, decreasing with in-
creasing /3, and the second, increasing with £, appears

TABLE II. Values of the parameters 0C, Z>, and a.

It is easy to see that for small values of A for /3> /3°,

V

o.o
0.02
0.15
1.00
0.0
0.0
0.0
0.0
0.02
0.15

T*.

0
0
0
0
0.3
0.44
0.5
0.55
0.44
0.44

PC

0.84
0.61
0.21
0.037
0.77
0.52
0.31
0.083
0.39
0.13

b

3 42
3.28
2.67
1.23
2.99
2.76
2.77
3.58
2.52
1.83

a

6.52
6.4
5.87
3.77
5.62
6.21
8.28

23.1
6.15
5.04

t^ _* S= ~
<*c PC

125 Sov. Phys. Usp. 24(2), Feb. 1981 V. F. Elesin and Yu. V. Kopaev 125



FIG. 6. Order parameter as a function of the source power
ft. The values of the parameters y and Tare: 1—0, 0; 2—
0.02, 0; 3—0, 0.44; 4—0.02, 0.44; 5—0.15, 0; 6—0.15, 0.44;
7—1.0, 0.

for 6> 0, or (3> |3C. Both solutions coalesce for 6= 6m

= ̂ >2/4a, so that the interval in which A(£) is double-
valued equals (p2/4a. The coefficients 6 = c(j3-0c)j3c,
a, and <p in general depend on T, y, and k. They were
found in Refs. 45, 57, and 58 and are presented in Table
H. In particular, for y = 0, T= 0, and k = l, it was found
that<p = l, a = 1.9, c = 0.37, and 0 = 0.84;57-58 for y = 0,
T-rc,fe = l, it was found34 that

It is useful to examine also the temperature dependence
of A for |3#0.34 It is easy to see that for

r > r. (i -
the function A(T) becomes double -valued.

The behavior of the order parameter near A = 0 is de-
termined by the derivative

dA
d« (57)

According to subsection 3), cp always remains positive,
which leads to A increasing with 0 for arbitrarily small
values of <p (and nt). This sensitivity of A to nt is ex-
plained by the fact that nt enters into the equation for
the gap alongside the small function l-2n(e),n(0) = l/2.
Numerical calculations enabled the authors of Refs. 45,
58 to obtain A(£) over a wide range of values of /3 and
y, T. The functions A(£) for k = 1, U>/AO = 10 are pre-
sented in Fig. 6. It is evident that for all values of T, y
there exists a branch of the solution A(£) which in-
creases with 0 and which appears for intensities ex-
ceeding a critical value &e(y, T). As T and y increase,
the region in which A(£) is double-valued decreases,
but the slope dA/d/3 always remains positive. The ex-
perimentally observed functions A(£)> in general,
agree well with the theoretical ones, although the ob-
servation of A(£) in the multivalued region is difficult
due to the transition of the superconductor into the non-
uniform state. Such measurements were carried out
for intense pumping in a series of investigations. For

7) In the recent work by Imai,90 it was shown that if the voltage
across the junction is comparatively low, then the order
parameter on the upper branch A(0) attains a value A(0C)/

as

US:
FIG. 7. Temperature dependence
of the critical power f t e .

0.2 0.4 a.f

example, the function A(V) in the previously mentioned
article61 (see Fig. 3) agrees well with the theoretical
function up to A/A0=0.3; for larger values of /3 (or V),
no data are presented, and this, apparently, is related
to the appearance of a transition of the first kind or a
transition into the nonuniform state. It is possible to
extract the function A(/3), which agrees well with the
theoretical one (see Fig. 4), from Ref. 60. The data
are presented for values A/AO* 0-3. The results of
Ref. 24, where a transition of the first kind was ob-
served for A/A0=0.6 disagree somewhat.7' These re-
sults were discussed critically in Ref. 62.

6) Critical power. As shown in Ref. 33 (§ 7), for a
certain critical value of the pump power Wc, the order
parameter vanishes. The relation between WK and the
dimensionless parameter /3C depends on the absorption
mechanism. If the fact that the thickness d usually ex-
ceeds the inverse absorption coefficient in supercon-
ducting films is taken into account, then the absorption
coefficient can be replaced by 1/d. Keeping this in
mind, we obtain for Hf,21-22

c = PC ' ' 4ttrik} 1+Y ' (58)

where j3c is given by (17) with A = 0,n0 = />0Aofn/7r2^3> r

is the multiplication factor for quasiparticles (see sub-
section 3), and fe2 is the coefficient of reflection for the
electromagnetic field.

The temperature dependence of the critical power is
given by the universal function |3C(T). ForT = 0, it
reaches a maximum value equal to 0.84." With in-
creasing T, /3C decreases and for T- Tc> it is described
by the expression34 0c(r) =A(T,. - T). The dependence of
/3C on T and y was found over the entire temperature
range in Ref. 45 and is presented in Fig. 7. This figure
also shows the experimental data obtained in the papers
by Golovaskin, Motulevich, and others,20"22 which agree
well with theoretical results.

Substitution of the characteristic values of the pa-
rameters into (58) gives values of Wc that coincide with
experimental ones (103-104 W/cm2 for lead), although
the magnitude of the multiplication factor r introduces
some uncertainty.

7) Generation of nonequilibrium phonons. Nonequilib-
rium phonons, leaving the film, can be directly ob-
served and are a good indicator of the nonequilibrium
state of the system. The energy distribution of pho-
nons was studied theoretically in Refs. 28, 45, 51, and
63. The function N( for weak pumping was found nu-
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merically in Ref. 28, and it was shown that JV£ has a
maximum for e= 2A. Ne was evaluated using a com-
puter in Ref. 45 over a wide range of values of )3, T,
and y.

Figure 8 shows the typical dependence of the number of
phonons $z = z2Nz (z = £/A, z2 is a quantity that is pro-
portional to the density of phonon states) as a function
of z for T = 0, y = 0.15 The function ^ has a maximum
approximately for 2 = 2 for any |3. A characteristic
property is the presence of a discontinuity in $(z) for
z = 2, stemming from switching on of the recombination
mechanism for generating phonons (for z < 2, phonons
are generated only as a result of the energy relaxation
of quasiparticles). The maximum of the function iKz)
increases monotonically with /3, in contrast to n(£),
which depends uniquely on A (and not /3).

The phonon distribution function has quite a narrow
maximum near z = 2 with a width ~0.5 and is shown in
Fig. 8. There is experimental proof,64"67 that the pho-
non distribution differs strongly from the thermal dis-
tribution, while the function i/>(z) has a maximum for z
= 2.

8) Magnetic properties of nonequilibrium supercon-
ductors. The magnetic properties for small q are
closely related to the number of superconducting elec-
trons JVS.48 In equilibrium superconductors for T— Tc,
Ns ~ &2,NS> O,48 which corresponds to a diamagnetic
contribution to the current.

In the nonequilibrium case, the sign of Ns remained
controversial for a long time. In the early work,41'42

wherein the distribution function from the OS model was
used,30 under certain conditions negative values of Ns

were obtained.

Calculations with the help of nonequilibrium quasi -
particle distribution functions, satisfying the kinetic
equation, lead to positive Ars.

34 Indeed, we obtain Ns

up to terms of order A2, using the general properties
of n(c):

' dn, (E) c (59)

FIG. 8. Number of phonons z*N(z) as a function of the fre-
quency z= o)/A0 at T= 0 and y = 0.15. The values of the pump
power ft and the order parameter A/A0 are: 1—0.0218, 0.95;
3—0.379, 0.8; 5—0.134, 0.6; 7—0.213, 0.01; 8—0.233, 0.4;
11—0.269, 0.2.

In view of the fact that «0(0) = 1/2, the first two terms
in (59) are compensated and Ns is determined only by
the coherent correction nt. Substituting nt into (59),
we finally obtain34'56

Ns = Acp, (60)

i.e., Ns is positive and is linear in A. Similar results
were obtained later in Refs. 44 and 29, as well as in
numerical calculations.45 Thus, superconductors with
a broad-band source of quasiparticles remain diamag-
nets.

We note that the sign of Ns is directly related to the
signs in the coherent factors, for example, in the ex-
citon insulator Ns would be negative.2'34

The effect of a magnetic field H and the current state
on the nature of the phase transition in a superconduc-
tor with a broad-band source of quasiparticles was
studied in Ref. 69. If the film is thin (d«X, |0; X is the
London length) and the magnetic field is parallel to the
film, then the function A(/3) retains its multivalued na-
ture, while the critical value (3C decreases with in-
creasing magnetic field:

where H2 is the "critical" magnetic field, and £ is of
the order of unity. The free energy of a nonequilibrium
superconductor in a magnetic field or in a current
state can be represented in the form ( T = O)43

here, the term v2/2 is added to Fs, where v is the ve-
locity of pairs in dimensionless units V S&l/mv2, and
h2/Bir is the energy of the magnetic field (h in units of
\/ASMO)/0.71). The velocity v is related to the super-
conducting current Jg and the number of superconduct-
ing electrons JVS by the relation

Js = evNs.

Varying (62) and calculating the mean square velocity
averaged over the thickness (see Ref. 68), we obtain
an expression for A (for d/\ « 1):

6 + 2 4 l ^ j J - (62)

From here, it is evident that the function A(/3) has two
solution branches, appearing for j3>/3c(.ff), given by (61).

Similar results are obtained for the current state.
The critical current (for T=Q) decreases with increas-
ing pumping and vanishes for 6= 6m= <p/4a.

9) I-V curves for tunnel junctions. The change in A
due to injection of quasiparticles in tunnel junctions
with quite small resistance can lead to radical changes
in their I-V curves.

The effect of weak injection on the magnitude of the
gap was studied theoretically in Refs. 70 and 51. Ele-
sin and Levchenko examined the case of strong injection
in a SiS-junction, sufficient to make A vanish. For
small injection parameters av, they found that the nec-
essary critical voltage

^r = ̂ -»i (63)An ZOCir * '
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FIG. 9. Three types of /-V curves for super conductor-in-
sulator-superconductor junctions: I, II, HI. The dashed line
corresponds to the unstable branch.

is large in comparison with A, so that tunnel injection
under these conditions is equivalent to the action of a
broad-band source. (We note that the magnitude of Fc

decreases with increasing temperature.) For this rea-
son, for V> Vc, the function &(V) becomes multivalued,
i.e., three solutions appear. The multivaluedness of
A(F), naturally, leads to multivaluedness of the I-V
curves I ( V ) . Depending on the parameters av, r, and
T, there can exist three types of I-V curves, illustrat-
ed in Fig. 9. They can be classified by the relations
between the characteristic values of the currents 7C,
/„, and Ith (Ref. 46):
/„ = / (V,, A = 0), 7. = 7 (Va, A = 0), /,„ = / (Vm, Am), (64)

where Vg is the voltage at which the energies of the
normal and superconducting phases are equals. I-V
curves of the first type satisfy the condition /„> /,, >Jth,
those of the second type satisfy /„> Ith>/c, while those
of the third type satisfy /th>/0> /c. As shown in Ref.
46 (see below, subsection 5, section 1), I-V curves of
the I- and II-type lead to a transition into the nonuni-
form state (with A*0 and A = 0), while I-V curves of
the in-type lead to a transition of the first kind into the
normal state. The conditions for realizing a given type
were obtained in Ref. 46. We note that an increase in
T and y can cause a transition from type III into type
IL

c) Uniform states of superconductors with a narrow-band
quasiparticle source

1) Concentration of quasipar-tides and order param -
eter near the injection threshold A narrow-band
source quasiparticles in a narrow energy interval
w - 2A, so that the quasiparticles appear localized near
e ~ A. The localized nature of n(£) permits finding from
(6) a universal relation between A and n, the concen-
tration of quasiparticles (see, for example, Ref. 56):

A = A0 (1 - 2n). (65)

In order to obtain a closed system for A and » for small
a u, it is enough to make use of the normalization con-
dition (18). Taking into account the localized nature of
n(|), we obtain the relation33 (for 7 = 0)

«2-aa,-^^-e(io-2A), (66)
expressing the equality of the recombination rate of
quasiparticles (left side) and the rate at which quasi-
particles are created by the electromagnetic field [in
view of the smallness of au«(|) in Q they were set equal
to zero]. It is important to note that the creation rate
is proportional to the interval co-2A and strongly de-

FIG. 10. a) Order parameter A as a function of the frequency
a) of a narrow-band source of quasiparticles; b) energy of the
system {/(A) as a function of the order parameter for to = u>0;
c) order parameter as a function of the coordinate (layer sol-
ution) .

pends on A, i.e., in the case of a narrow-band source,
the order parameter determines the rate at which
quasiparticles are created. This circumstance leads,
as shown in Ref. 33, to the characteristic threshold in-
stability (see subsection 2, section 2) and the multi-
valued dependence of A on co.37'38 Indeed, eliminating
A from (65) and (66) we obtain an equation for ns>

the solution of which has the form37

-a0<6<0, (67)

It follows from (67) that in the region - a u < 6< 0,
there are three solutions for n and correspondingly for
A [As= AO, A4.3 - AoU - Si,,,)] (Fig. 10). We note that the
multivalued nature of the function A( w) arises for any
au (there is no intensity threshold), but the width of the
region of multivaluedness is proportional to au.

The existence of three solutions is related to the ef-
fect of A on the quasiparticle creation rate. The solu-
tion nx = 0 corresponds to the case when A = A0 and the
source is switched off ( w< 2A). If n* 0, (A6, A5), then
A decreases and the source creates quasiparticles and
in addition, solutions «3 that increase as well as de-
crease with co are possible.

Qualitatively similar results are also obtained for
tunnel injection ( co— V). Only now, the solution n3

= V iia v/4 is constant, while n2 = (2A0 - V)/4A0 depends
"universally" on V (and does not depend on ar)(Fig. 11),
This difference is related to the absence of coherence
factors in the source for tunnel injection. As is well-
known, the latter circumstance leads in the nonequilib-
rium theory, which does not take into account the effect
of injected quasiparticles, to a discontinuity in the cur-
rent at V= 2A. As shown in Ref. 37, in describing the
junction, the effect of the injection of quasiparticles
cannot be neglected even for small values of a v, and

8) We assume that the use of the same letter <5 for the differ-
ence of the source powers c(fi-Pc) and the frequency of the
source ( w — 20) will not lead to any misunderstandings.
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FIG. 11. a) Order parameter A as a function of the voltage
across the junction for different values of the injection para-
meters Qj ai<a2<a3<ott<as; b) voltage dependence of the
tunnel junction current I(V) for different ai .

therefore, «(£) in the source cannot be neglected. Tak-
ing injection into account makes the switching on of the
source smoother for V> 2 A (the problem of smoothing
the I-V curves for tunnel junctions due to the nonequi-
librium situation was qualitatively discussed in Ref .
72). We emphasize that the solution n2 appears due to
the smooth manner in which the source is switched on.
In the opposite case, strictly speaking, this solution
would not have existed. Indeed, in the recent work by
Shon and Tremblay,38 in which the authors independently
arrived at a qualitatively similar conclusion concern-
ing the existence of three solutions for A ( V ) , it was
also proposed that the discontinuity of the source is
smeared out by some interaction [they solved graphi-
cally the equation for A for T - Tc and do not take into
account the f initeness of «( £) in Q].

The case of finite temperatures was examined in Ref.
46 (analytically for T~ Tc and numerically for finite T).
The effect of stimulating A due to the redistribution of
the energy of quasipar tides by the field (the terms
Q{,2) and Q$>, the Eliashberg mechanism5) was also
taken into account in this case.

Let us present the final results for A in the range of
voltages -or<6(T)<0 (Ref. 46):

-, A3

(68)

where A0(T) is the gap of an equilibrium superconductor
at temperature T, A(T) is the gap taking into account
the stimularion effect, and av is the renormalized in-
jection parameter.

2) Distribution Junctions for quasiparticles in a super-
conductor with a narrow-band source. We will re-
strict ourselves to the case y = 0. The kinetic equation
for a narrow-band source can be greatly simplified if
we take into account the fact that relaxation processes
are strongly suppressed in comparison with recombi-
nation processes due to the factors (e -e')2 and the co-
herent factors 1 -(AZ/EE'). For T = 0, when it is possi-

ble to neglect the terms Q( 2-3 ) , describing the redistri-
bution of quasiparticles with respect to energy, in the
source, we arrive at the equation33'36

i l ' -e (z) 6(1-z), (69)

where

6 =
2A

For tunnel injection, aw must be replaced by av,
vT by 6"1/2 due to the absence of the coherent factor
(see section 3).

An exact solution of (69) was found by Aronov and
Spivak36:

n, = A /54-yT^j) ' (70)

with the coefficient^ satisfying the following normali-
zation condition

i
i v f

J /.(!-.)
A

It is easy to see that n(z) differs from zero in the inter-
val 0 < 2 < 1 and has the values n(0) = 0 and w(l) = l, i.e.
in the case of a narrow -band source the distribution
function differs sharply from the equilibrium function,
has a positive derivative, and can attain the value unity.
The coefficients Au and AY are obtained from the nor-
malization condition and turn out to differ considerably.
Thus, for small au, Au~ JcT^ is small, while Av for
6-0 can be large. For this reason, the QDF for elec-
tromagnetic pumping differs from zero in a narrow
interval near 2 = 1, while for tunnel injection n, is of the
order of unity in almost the entire interval 0 < 2 < 1 (Ref.
37), and it is this fact that eliminates the discontinuity
in switching on the source.

An exact solution has also been found for n, with T
~ Tc and it can be represented in the form

;i = BT + n, + n,

where «2 a smooth function, stemming from the action
of Q( 2 ) , was found in Ref. 78, while the narrow part of
n is given by the expression46

= A-

(71)

The correction term « has the properties of (70).

3) Threshold electromagnetic absorption and I-V
curves for tunnel junctions at threshold voltage. Elec-
tromagnetic absorption for w = 2 A is controlled by the
order parameter, which takes on three values for a
given value of o>. For this reason, the frequency de-
pendence of the absorbed power Qu will be S-shaped:37

-aM<6<0.

An estimate shows that this effect becomes noticeable
for powers of the order of 1-10 W/cm2. The multival-
uedness of A(V) for V~ 2A must lead to multivaluedness
of the function I ( V ) . Indeed, in Refs. 37 and 38, it was
shown that the I-V curve for a SiS-junction is S-shaped
near V=2& (see Fig. lOb). The current I(V) can be
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represented by two terms, I± and 72 [see (25)], of
which /1 corresponds to a current involving breaking
up of Cooper pairs, while /2 corresponds to a current
of available quasipar tides. The negative slope of the
decreasing branch of the I—V curve is due to the cur-
rent 71( which has the following simple form for T- Tc

(Ref. 46):
0, 6(T)<0, (72)
(2A(7-)-V)/2A0, -av<6(r)<0,

( ,

"?J-"M (2
<• a

The current 72 is small for T- 0, but attains a signi-
ficant magnitude for T- Tc (Ref. 46):

f (73)
/, (V, A) = 2av f dep (e) p (e + V) [i»r (e) - nr (e + V)],

and creates a "pedestal" for the total current. It is /2

that makes the largest contribution to the observed
threshold current, which can be determined as
/2[V=2A(T), A = 2L]. /2 increases with increasing tem-
perature, attaining a maximum value near Tc, I2

= ari(r), and then decreases due to decreasing JL(T).
This temperature behavior of / 2 = / t h agrees with that
observed experimentally.25

Fig. lib shows the I-V curve over the entire range of
voltages, obtained with the help of analytical37'47 and
numer precalculations. The second segment of the S-
shaped I-V curve stems from coherent mechanisms
(see subdivision 9, subsection b, in section 1). Quali-
tative considerations concerning the I-V curve with a
negative slope for V= 2& were used in Ref. 26 and in
Ref. 74, an S-shaped I-V curve was observed in short
tin junctions. Usually, it is difficult to observe an S-
shaped I—V curve due to the transition of the supercon-
ductor into the nonuniform state.

d) Instabilities in superconductors with excess
quasiparticles

1) Types of instabilities. Research on instabilities,
has shown that three types of instabilities are charac-
teristic of nonequilibrium superconductors: the so-
called threshold, coherent, and diffusion instabilities.
The threshold and coherent instabilities are realized
in superconductors and explain available experimental
data. The conditions under which the diffusion instabil-
ity can arise apparently are not satisfied in supercon-
ductors with electromagnetic and tunnel injection.9'

2) Threshold instability. In Ref. 33, in 1974, an in-
stability was predicted in a superconductor with a nar-
row-band source of quasiparticles, leading to the tran-
sition out of the state with A = A0 into the state with A
< AO- The instability arises for a frequency w close to
the threshold for pair creation in the following manner.
Assume that initially A = AO, n = 0, and to « 2A0. Then,
fluctuations in n lead to a decrease in A [see (65)] and,
therefore, to an increase in the width of the source
action, proportional to w-2A [see (66)], which in its
turn increases n, and so on. A similar instability can

^ We are not familiar with any work In which the possibility
of realizing the diffusion instability in superconductors was
proved.

arise in superconductors with tunnel injection37-38 for
V« 2A, which was discovered experimentally in Refs.
25 and 26.

The theory of threshold instability in superconductors
with electromagnetic and tunnel pumping was examined
in Refs. 37, 38, and 46. We will restrict ourselves to
the case T= 0, L » |0 and we will follow Ref. 37. The
basic equations for the concentration of quasiparticles

_!L_ T2 n, 6) (74)

-<?.,v), (75)

can be obtained as follows. Taking into account Eq.
(17), the localized nature of n(£) as well as the proper-
ties of the distribution functions of a narrow-band
source n(e = A) = 0 n(t = u - A) = 1 [it can be shown that
these properties are retained in the nonuniform state,
if the kinetic equation is written in the form z(r)
= const], we arrive at equation (74).

Let us examine the stability of the system for fixed
ii) (or V) relative to small perturbations

n (r, t) = n + n' exp (fi + iqr). (76)

Substituting n(r,t) with q = 0 into (74), we obtain the de-
crement y (in dimensionless form):

v= +- (77)

which, as could be expected, is related to the second
derivative of the energy with respect to n. With the
help of expression for J/(75) and the equation SU/dn
= 0, it is convenient to represent y in the form

•- an
(78)

From here, it is evident that the decreasing branch of
of n2 is unstable, while the n^ = 0 and n = n3 branches are
stable. Starting from the general properties of the
equation dn/9t= dU/dn, it can be shown75 that if «>n2(6),
then the solution n(t) changes into n3, and into n = 0 for
n<n2(6). This corresponds to the qualitative picture of
the threshold instability described at the beginning of
this section.

It is useful to analyze the relation of the stability of
the system to properties of the energy U, keeping in
mind (76). It is easy to verify that U has three ex-
trema n^,n2,n^ (A5, A..,, A3) (corresponding to stationary
and uniform solutions), and in addition nt and n3 corre-
spond to minima and w2 to a maximum (see Fig. 10).
The unstable region obtained above corresponds to the
region near the maximum of U. It is evident that dif-
ferent energies can correspond to the stable solutions.
For this reason, one of the states (A5 or A3, depending
on 6) will be metastable, while the other is actually
stable. For some 6= 60, the energy of the states f/(A5)
= U(&3) become equal. As shown in Ref. 44, the time
for a transition out of the metastable state into the sta-
ble state for 6 * 60 is very long in the absence of large
fluctuations and nucleation centers for the stable phase.
For this reason, if 6 is increased, then the state with
A5 remains up to 6 = 0 as a metastable state, and then
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makes a transition of the first kind into the state with
A3. When 6 decreases, beginning with 6 = 0, the state
with A3 persists up to 6= -a^, after which it jumps into
A = A5, i.e., there is hysteresis. In the presence of a
priming region for another phase or large fluctuations,
a transition of the first kind occurs at 6 = 60 (if we neg-
lect the time for filling up the specimen with the new
phase, which will be discussed in what follows).

Let us consider nonuniform excitations with q* 0. In
this case the decrement36

decreases with increasing q2, i.e., diffusion of quasipar-
ticles stabilizes the perturbation.

Threshold instability in superconductors with tunnel
injection. An important difference relative to magnetic
pumping is the possibility of fixing the current47 (some
difference between Uv and Uu does not lead to any qual-
itative changes). In a regime with a given current, Eq.
(24) must be added and it is necessary to take into ac-
count changes in voltage

!'(() = 1" + V c x p (yt).

In this case, the decrement y has the form37

Y= — av («»)"'•
(80)

If R> \dlfdV\~1, then the uniform solution n2 becomes
stable, since Iv>0, d!/dV<0, andy<0. However, the
state n2 on the decreasing branch dI/dV< 0 is unstable
relative to nonuniform perturbations that do not change
the total current J. In this case, the decrement be-
comes positive for sufficiently small q [see (79)] and
nonuniform excitations begin to develop. A clear pic-
ture of the process of the development of the instability
can be obtained with the help of Fig. 9. Assume that a
nonuniform fluctuation A(#) arises in a superconductor
in the state with A = A4(n2) (see Fig. lOc). Due to the
threshold instability (see subsection 2), in the state
with A(#)<A4, the order parameter will decrease to A3,
and in the state with A > A 4 it will increase to A5, i.e.
stratification will occur into regions with different val-
ues of A (A3 and A5). At the same time, the total cur-
rent will not change. This phenomenon of the specimen
separating into layers or filaments in many ways is
similar to the phenomenon of filamentation in semicon-
ductors with S-shaped I-V curves.77

3) Coherent instability. The instability specific to a
superconductor with a broad-band quasiparticle source
was predicted in Ref. 43 and named the coherent insta-
bility, since it is related to the coherence of the inter-
action between quasiparticles and phonons. The insta-
bility arises in the state with A = A2, corresponding to
the increasing solution (see subdivision 5, subsection b
of section 1). The coherent instability was investigated
in Refs. 43 and 44 and, apparently, is the reason for
the transition into the nonuniform state of superconduc-
tors with optical and tunnel (for high V) pumping.

3.1) Kinetic approach. Optical pumping. In order to
describe coherent instabilities, we will investigate the

equation for nU,r ,<) (and not n), since the number of
quasiparticles changes in a narrow energy range £~ A
« A0- If the perturbed values of « and A

n (|, r, t) = n (|) + n © exp (Tf -
A (r, () = A + Aexp (yt + jqr)

«tr), (81)

are substituted into the equation for the gap (7) and the
kinetic equation (11) and the result is solved for n,
then, using this solution, it is possible to obtain the
following expression for y (Ref. 43) [w(£) and A are the
stationary uniform solutions studied in section 2]:

*-, (82)

where Na is given by (4), J0 and T are functionals of
n(|) (see Ref. 43),

(83)

Let us first examine uniform perturbations with q = 0.
Calculation of J0 and D with the functions n(£) found
earlier (subdivisions 2 and 3 of subsection b in section
1), permits representing y in the form

• (4.)- (84)

It is evident from (84) that the increasing solution A2 is
unstable, while A3 is stable (stability of the solution A!
= 0 is discussed below). It is easy to show that for
A(/ = 0)<A2(6) the system goes over into the normal
state, while for A(< = 0)> A2(6) it goes over into the
superconducting state.

The physical significance of the instability consists of
the following. Let the gap in the state on the increasing
branch with A2 decrease somewhat due to fluctuations.
Then, the probability for recombination of quasiparti-
cles ~l+(A2/ee') will decrease and, therefore, the
number of quasiparticles (near £~ A) will increase. As
a result of the equation for A, this leads to the subse-
quent decrease in the gap and so on. It is interesting
to note that with the transition into the normal state
(for fixed (3) an additional number of quasiparticles 6n
is liberated due to the decrease in the recombination
rate. It is useful to relate the criteria for stability to
the properties of £/(A) (55), having obtained from (84)
and the equation 8C//8A = 0 the relation

(-££-)•'. (85)
The energy I/(A) has a structure similar to U(n) (see
Fig. 5b), i.e., there exist three extrema Al; A2, and
A3; A! and A3 correspond to a minimum in {/(A), while
A2 correspond to a maximum. For 6= 60, the energies
are equal: £/(AK>) = £/(A30)- It can be shown (in analogy
to subdivision 2 of subsection d of section 1) that de-
pending on the conditions, the system can undergo a
transition of the first kind with 6 = 60 or with 5 = 6m, 6
= 0, accompanied by hysteresis.

Let us now examine the nonuniform perturbations with
q* 0. In the limit qL » \(uL » £0) (82) changes into the
expression43

7_- ,» i«*£, (86)

which coincides (to within D) with the expressions ob-
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tained in Refs. 34, 39-42, concerned with studying the
stability of relatively fast perturbations (for times less
than the relaxation times).

Thus, the sign of Ns and D determines the stability
of the system relative to fast perturbations and, in the
general case, determines the sign of the contribution to
y in front of the term q2/,2. The quantity Ns was dis-
cussed in section 2, and it was shown that Ns remains
a positive quantity up to A = 0, where Ns = 0.

Thus, diffusion of quasiparticles leads to stabilization
of the instability.43 A similar conclusion was arrived
at in a recent publication44 with the help of a somewhat
different method.

The coherent instability can be realized in supercon-
ductors with tunnel injection for V» A-47 Similarly to
the case of the threshold instability, it can be shown
that for a given current, stratification occurs into re-
gions with normal (AI = O) and superconducting phases
(A3). The picture of the development of stratification
is similar to that examined in subdivision 2 of subsec-
tion d.

Important results on the stability of superconductors,
part of which have already been mentioned, were ob-
tained by Eckern, Shmid, Smutz, and Schon.4* The
authors, using the general properties of n(|), estab-
lished in Ref. 34 (see subdivisions 2 and 3, subsection
b of section 1), formulated a model (EMS) that is very
convenient for describing nonstationary and nonuniform
processes for T — Tc. They propose writing the colli-
sion integral for quasiparticles and phonons in the form

* I SB

separating out the contribution of % from the coherent
factors, proportional to ft. Using these equations, they
obtained a closed equation for A for T— Tc.

In the same way it is possible to obtain a closed equa-
tion for A over a wider temperature range.

3.2) Closed equation for A. H the kinetic equation
(11) is solved for the spatially nonuniform case (see
below), while n(£,r) is substituted into the equation
for the gap (7), then it can be represented in the fol-
lowing form:

tain an equation for A

, dU (A, 6) (88)

where tU0,L) is a differential operator depending on
£0 and L (see below) and U(&, 6) is the energy of the
system. The time derivatives of A (necessary for
studying stability) can be of two types. First of all, the
term (l/TA)8A/8f that takes into account the change in
A with a relaxation time of the parameter of the order
of TA-44 This term is important only for analyzing the
stability of the normal state.' Second, there is the de-
rivative taking into account the change in A due to
changes in the quasiparticle distribution function. In
the general case, the corresponding term is nonlinear
with respect to 8/8f. However, in order to investigate
instability, we are interested in small y (near the sta-
bility boundary), i.e., only in terms that are linear in

t. In this approximation, from (82) and (88), we ob-

For y = 0, T=Q,D = ir&al/a2, Eq. (89) coincides with Ref.
46, and for y = 0, T- rc,D=i7A/4Tc it coincides with the
equation in Ref. 44.

With the help of (89), it is possible to obtain a cri-
terion for stability that coincides with that found in
subdivision 3 of this section, as well as to investigate
the stability of the normal state. Substituting
A(r, t) = A exp(yf + tq- r) into (89) and setting A = 0, £0

«L, we find
(90)

v=-6-q2IJ,

i.e., for 6>0 the normal state A1 = 0 is stable. Diffusion
of the order parameter (second term) leads to addition-
al stabilization. This result was obtained in Ref. 78,
where the dependence of the critical power 0C on q2 was
investigated at the stability threshold (y = 0). For
small values of qt,Q, we obtain from (90) in accordance
with Ref. 78 a decrease in /3c(q)

which indicates stability relative to nonuniform per-
turbations. The decrease in j8c(q) as a function of q
was proved in Ref. 78 for arbitrary £§q2. We note that
the situation being examined differs from the situation
involving the formation of nonuniform states in equilib-
rium superconductors with magnetic impurities.82 In-
deed, the value of the effective magnetic field (analog
of /3C), for which A vanishes, increases with increasing
q. With the help of (89), it is possible to study the sta-
bility of nonuniform solutions

(91)
A (r, t) = A (r) -t- A (r) exp (v«), 6 («) - 6 -4- 6'e*.

In this case for we obtain the equation
(92)

of which the decrement y is an eigenvalue.

4) Diffusion instability. The diffusion instability (DI),
based on the possible anamalous diffusion of quasipar-
ticles, was predicted in Refs. 41 and 42. It is assumed
that the diffusion of quasiparticles occurs from a re-
gion with a large value of the order parameter A (and
therefore, a small concentration of quasiparticles n)
into a region with small values A (and large n).

The instability develops in the following manner. Let
A decrease in some region of space. Then, under the
action of a gradient in A, there arises a flux of quasi-
particles further decreasing A and so on. The condi-
tions for the appearance of the diffusion instability are
determined by the sign of Ns(l) which is a functional of
«(?). As already ndted, the functions in the OS model
satisfying the condition n(0)>nr(0) (overcooled) lead to
ATS<0 and satisfaction of the conditions for the appear-
ance of DI. However, in superconductors, with optical
and tunnel pumping, the quasiparticle distribution is
overheated and Ns> 0. Generally speaking, in nonequi-
librium systems with an order parameter the sign of
Ns is closely related to the sign of the coherent fac-
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tors56'79 (77 = ±1). For this reason, in systems in which
the sign of TJ is opposite to that of a superconductor,
Ns can become negative and DI can arise (according to
Ref. 44, the NEMS model). An example is the exciton
insulator,80 in which the signs of the coherent factors
are opposite to the signs in a superconductor.2 The
possibility for the realization of DI in an exciton insu-
lator was pointed out in Ref. 79, wherein the conditions
for the appearance of the instability and the values of
the wave vector with which spatial changes in A(T) are
modulated, were found.

The possibility of Ns<0 in the case of phonon pumping
were mentioned in Ref. 44. DI was also studied in Ref.
81. Smith81 obtained criteria for DI in the form 8n/8A
> 0. It is easy to see that Smith's criterion agrees with
the analysis performed above, since for a supercon-
ductor 9n/8A<0 (see Ref. 47), while for an exciton in-
sulator 8w/8A>0.

e) Nonuniform states in superconductors with excess
quasiparticles

The coherent, threshold, and diffusion instabilities
can lead to a transition into a nonuniform state. These
states must be described by nonlinear stationary equa-
tions: for a broad-band source by (7), (11), and (89),
and for a narrow-band source, by Eq. (74). As shown
in Refs. 43 and 44, the nonlinear equations (89) and (74)
admit different types of solutions for A(T): Oscillatory,
soliton, monotonic, and a special case of monotonic,
the stratified solution. In order to choose a solution
among the possible stable nonuniform solutions, it is
necessary to investigate their stability using Eq. (92).
Equations of this type has been studied in a number of
papers.77'83'44 The object is to find y by substituting
the nonuniform solution A(T) being studied into U. If
there is at least one y > 0, then the nonuniform state is
unstable. It is easy to verify that for the stratified so-
lution y = 0 and the solutions are stable for any regime.
If 6# 60, then, as shown in Refs. 83 and 44, the oscil-
latory and soliton solutions A(T) are unstable; the stable
solutions are only the monotonic solutions with the ad-
ditional conditions

AI R> (93)

satisfied for a given current.

1) Structure of the nonuniform state of a superconduc-
tor with a broad-band source in the absence of diffu-
sion of quasiparticles. The problem is most simply
understood in the limiting case L « £0, when it is possi-
ble to neglect the diffusion of quasiparticles. In this
case, terms with L2 can be dropped from equations (11)
and «U,r) can be assumed to depend parametrically on
r via A. Equation (7) for A takes the form (for T = 0, y = O)43

KT£=-
U (A, 6)= +.

(94)

(95)

Equation (94) coincides withthe equation of motion of parti-
cles with a coordinate A in a field -U. Equations of
this type arise in plasma theory,84 and in the theory of
superconductors with a negative differential conductiv-
ity.76-77 The potential U(&) for different values of the

parameter 6 is illustrated in Fig. 5b. As 6 varies from
0 to 6m, the potential has three extrema for A = A15 A2,
and A3, corresponding to the three possible uniform
states for given pumping 6. It is simplest to elucidate
the nature of the distribution of A in the one-dimensional
case:

dV_
04

dA I
"37

(96)

where I is the length of the film. The first integral in
(96) is given by the equation

C=-t / (A<»)=-£/(A<») ,

where C is a constant and A U ) (i = 1, 2, 3,4) denote the
roots of the equation

C + U (A i<>) = 0.

Analysis of the trajectories leads to the following pos-
sible spatially nonuniform solutions for A (Ref. 43):

1) oscillatory from A < 2 > to A o > ;

2) narrow layers with A ^ O or with A = 0 (soliton solu-
tions);

3) monotonic solutions.

According to the analysis in Refs. 77 and 83 [see
(93)], the only stable solutions are those with a mono-
tonic variation of A.

Among the monotonic solutions, there is a singular
(connecting two singular points A10 and A30 = A) solution,
which is a called a stratified solution. The stratified
solution is realized for a particular value of 6= 60,
corresponding to phases with equal energies:

C'(A10) = <7(AM). (98)

From (98), taking into account (95), we find 60 and A30

(Ref. 43):

c 2 2
3a ' (99)

The layered solution represents a layer of width £
separating uniform regions with A! = 0 and A = A30:

-*„)] ' (100)

where x0 is the position of the transition boundary
(compare Ref. 49). It is important to note that the
boundary conditions do not fix the position x0.
Monotonic solutions can also be found for 6 # 60.
For large -L/£0, they are expressed in terms of ele-
mentary functions.46 The results obtained are valid for
optical and tunnel injection (V» 2A0)- Using the solu-
tions A(#) that have been found, it is possible to calcu-
late the /- V curves of a nonuniform SiS-junction. The
voltage dependence of the total current 7 is illustrated
in Fig. 12 and has the following properties:

d7 „ d/
"3V" V<VC -* ' AV (101)

where V0 is the voltage (corresponding to 60) at which
the energies of the two phases are equal. It is evident
from Fig. 12 and (101) that 7 at first decreases with
V decreasing below Vc, and then sharply increases for
V— V0, approaching a vertical asymptote.
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FIG. 12. I-V curve for a SiS junction. The dashed line cor-
responds to the I-V curve in the uniform state; the dot-dash
line corresponds to the nonuniform unstable state; the solid
line corresponds to the nonuniform state stable and observed
experimentally.

It is useful to note that Eq. (95) can be obtained by
varying the functional *,

(102)

In the two-dimensional and three-dimensional cases,
the same qualitative results are obtained, while the
quantity 60 increases somewhat.43

2) Structure of the nonuniform state of a superconduc-
tor taking into account the diffusion of quasiparticles.
In the general case the system (7.11) is characterized
by two parameters £0 and L. It is important to take
into account diffusion of quasiparticles since usually in
superconductors L » £0. It was shown in Refs. 43 and
44 that taking into account diffusion of quasiparticles
does not qualitatively change the structure of the non-
uniform state. The width of the transition layer is re-
placed by L, and 60 changes insignificantly. The con-
siderable mathematical complexity of solving the non-
linear integrodifferential kinetic equation for w(|,r)
should be noted. Assuming that &(r) varies slowly, an
equation was obtained in Ref. 43 for any r)

where

fe(A) = -

(103)

(104)

We note that the numerical coefficient in the function
fc(A) is corrected compared to that in Ref. 43 (5/4 is
replaced by 2). Since the singular solutions of the
equation 8&/8A = 0 coincide with 8J7/8A = 0, while the
term with (vA)2 is quadratic (and does not give rise to
"true friction"), the results are qualitatively similar
to the case of L «|0.

The stable solution is the stratified solution passing
through the singular points A = 0 and A3. This solution
is realized under the following conditions43:

tv
SA

= 0,

From here we obtain for $0 the value

(105)

which does not differ significantly from 60 (99). Re-
cently, an equation was obtained for A, without as-
suming slow variation of A.44 This can be done due to

the fact that the kinetic equation (11) is transformed
into a representation in which the diffusion of
quasiparticles occurs under the condition that
c(r) = const (the importance of this condition was pointed
out by Smith81).

The kinetic equation (11) in this representation takes
the form

The solution (106) can be represented in the form

n,(r)= \ K(r — r') if (A (r')) dV, (107)

where K(r-r') is the Green's function for the equation

,, PK

Substituting nt(r) into the equation for the gap (7), after
several transformations, we obtain (88) with the op-
erator given by

Equation (88) coincides with the equation obtained in Ref. 44
for T— Te by a somewhat different method.

In the one-dimensional case and for L » £0, the first
integral of (88) has the form

W- = c- (109)

The solution passing through the singular points AL = 0
and A3 is realized under the conditions

dU = 0,

from which we find the value 60=15/64a,44 coinciding
with (105).

3) Nonuniform states of a superconductor with a nar-
row-band source of quasiparticles. The equation that
describes the change in the quasiparticle density is
given by (74)

^---Tr1- (no)
This equation and the singularities of U(n) are similar
to the equation for and singularities of U(A) for a
broad-band source and for this reason we will not re-
peat the analysis given in subdivision 1 of this section.
We will only present the final results.37

The stable nonuniform solution is the layered solu-
tion, which separates uniform regions with ̂  = 0 (AS

= AO) and n3* 0 (A30) and is realized at a certain fre-
quency ti>0 or voltage V0. For the electromagnetic field
the layered solution has the form (T = 0)

J (i-*,-4V2/aJ'
\ _ r /--—-
U,,,th*j/-5f-

(Ill)

where C2 = l/2, xa is the coordinate of the transition
boundary

— 3 A — Ag0 0)0 . J (112)

Quasiparticles are created in the phase A30, since u0

- 2A30 = 9/2aw> 0. On the other hand, quasiparticles
cannot be created in the A0 phase, since the frequency
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w0< 2A0. Qualitatively similar results are also obtained
with tunnel injection. In particular, the quantities V0

and A30 are given (for T= 0) by the equations37

Vg __ i -./" nay - = }'' nav (113)

Since the SiS-junction is symmetrical, in the phase with
the smallest A30 the gap on both sides of the junction
equals A30 and the difference V0 - 2A0 = AC/ff«7>0, i.e.
in this region quasiparticles are injected; in the re-
gion with A5 = A0 there is no injection, since the voltage
V0 is less than 2&0.

It is easy to find the monotonic solutions of (110) for
V= V0 and with their help to compute the I-V curve
for the nonuniform junction. The voltage dependence of
the total current 7 is similar to the dependence for a
broad-band source (see subdivision 2 of this subsection;
see Fig. 12) and has the properties46

d/
ill'

d/
AV (114)

4) Nonstationary nonuniform intermediate state. In
superconductors with optical pumping the frequency
w (R = 0!) is fixed. For this reason, according to (94),
the stationary nonuniform solution exists for a single
value of the pump power 60. For 6 * 60>tne phase separation
boundary will move with a velocity proportional to the
difference 6 - 60.

43 In particular, for L « £0, the ve-
locity of motion of the phases equals

_ 6-6, 3;0 /6,

(115)

Indeed, we seek a solution of (89) in the form of a
traveling wave A(X -vct). The equation for A(* -vci)
will differ from (96) by the term (ycrA/?o)(8A/a*), which has
the effect of a frictional force. Multiplying the modi-
fied equation by d&/dx and integrating along the trajec-
tory of motion, we find the velocity given by (115). For
6>60, there is a stationary wave, transforming the
specimen from the superconducting into the normal
phase. On the other hand, for 6< 60, the wave trans-
forms the normal phase into the superconducting phase.
In both cases, the final uniform state corresponds to
the absolute minimum of the potential * = —U.

In the opposite limiting case L » £0, the phase sepa-
ration boundary moves with a velocity43

S-1- (116)

The motion of the boundaries is to some degree simi-
lar to the motion of the boundary of a combustion wave
in gas mixtures.85 Indeed, on the phase separation
boundary, due to the instability of the state with A< Am

(for 6> 60), a transition into the normal phase occurs
accompanied by liberation of excess quasiparticles
(see subdivision 2 in subsection b of section 1), which
is the analog of a thermal reaction. Excess quasipar-
ticles diffuse into a neighboring region and decrease
the gap in it to A< Am. In this region, a transition into
the normal phase occurs again and so on, i.e., the
"combustion" wave of the superconducting phase travels
with a velocity ~L/rf. It is evident that after the pas-
sage of some time the sample is filled by a single

phase and for this reason the intermediate nonuniform
state is observed with optical pumping in the stationary
regime. In all the experiments with which we are fa-
miliar,16"22 the nonuniform state is observed (for ex-
ample, from a smooth increase in resistance) in the
pulsed, i.e. nonstationary, regime. In this case, the
pulse duration T is of the order of the filling time. For
this reason, it was proposed in Ref. 43 that the ob-
served smooth transition in the resistance (and other
phenomena) be interpreted with the help of the model
of the nonstationary nonuniform state. According to
this model, the resistance appears after the appearance
of a region with a normal phase (overlapping the film
along the width b), the size of which increases with ve-
locity vc (116). The total resistance of the film flt

toward the end of the pulse can be written in the form

•"' 25A fe' (117)

where R^ is the resistance of the film in the normal
state, I is the length of the film, and /30 = (l + 60)

20c. It
is evident from (117) that the resistance appears for
powers exceeding ]§0 (almost coinciding with )3c, since
60« 1) and increases linearly with /3 in agreement with
experiment. The temperature dependence of /30(T) and
its absolute magnitude were studied in detail experi-
mentally20"21 and agree well with theoretical results
(see subdivision 6 in subsection b of section 1). The
observed delay in the voltage pulse can be related to
the time TCT it takes to cover the normal phase of the
film along the width: rcv

Kb/v^.

It should be noted that the nonstationary nonuniform
state can be observed with electromagnetic pumping
with w& 2A, and with tunnel injection at fixed voltage.
The effect of the motion of the boundary separating the
insulator-metal phases in a nonequilibrium state was
recently predicted by Keldysh in Ref. 86.

5) Stationary nonuniform state in superconductors
with tunnel injection.3'''** For a given current (R~»),
the monotonic distribution of A(X) is stable when the
conditions (93) are satisfied. Let us first examine the
structure of the nonuniform state with a voltage close
to threshold V= 2A. When the current through the SiS-
junction is increased to a value for which dI/dV<Q (on
the decreasing branch of I ( V ) for V^ 2A0), threshold
instability arises. A s a result of the development of
the instability, stratification into phases (filaments)
with AS and A3 occurs. According to (114), the I-V
curve for a nonuniform junction has a positive slope
for V<2A0, dI/dV>0, which in accordance with the
criterion (93) indicates an instability of the nonuniform
state. For this reason, there is a discontinuous de-
crease in voltage almost to V0, at which the nonuniform
state becomes stable, since dI/dV\VfV <0 (while the
voltage is fixed neai V0) and the layered solution that
separates the phases with A50= A0 and A30 is formed.
The position of the phase separation boundary x0 is
fixed by the current 7 passing through the junction.

If the current is increased further, then the volume of
the phase with A30 increases (the boundary XQ moves
in the direction of the AS phase), while the values of
A50 and A30 in the phases and the voltage across the
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junction remain constant and equal to (113). The in-
crease in current continues until the specimen is com-
pletely filled with the A30 phase. Further increase in
current is accompanied by an increase in the voltage V
and a decrease in A3 (see Fig. 12). For finite tempera-
tures the structure of the nonuniform state remains as
before, only the values of the order parameters in the
phases A5 and A3 [see (68)] and the voltage V0 change.
It should be noted that for T- T0, A50 = A0(T) is greater
than A0(r), due to the effect of stimulated superconduc-
tivity (see Ref. 46).73

The model of the nonuniform state for V= 2A exam-
ined above agrees well with experimental data on the
observation of a double-gap state in superconductors
with tunnel injection (for details see below, subdivision
7).25-26 For high voltages (V» A), which attain the cri-
tical value V,. (63), conditions for the onset of coherent
instability are satisfied. In view of the analogy between
the properties of states with V= Vc and V= 2A, the I-V
curves for a nonuniform junction and the structure of
the state with V= Ve are similar to the I-V curves with
V= 2A (see Fig. 12). In particular, the I-V curve has
a vertical segment with V= V0< Fc, the sample sepa-
rates into phases with AI = 0 and A30- The expressions
for V0, A,., and A30 are given by (99). As the current
increases, the phase A]. = 0 increases, until the speci-
men is completely transformed into the normal state.
Apparently, such a state, predicted in Ref. 47, was re-
cently observed experimentally by Mitsen.27 The tran-
sition into the nonuniform state for high voltages is
possible only for I-V curves of the first and second
type (see subdivision 9, subsection b, section 1). For
I-V curves of the third type, the system passes into
the normal state (therefore, uniform) before the voltage
across the junction attains the value of V0, since /th

> /„. For this reason, for I-V curves of the third type,
the specimen makes the transition from the uniform
superconducting state into the uniform normal state via
a transition of the first kind.

6) Comparison with experiment. Experiments with
tunnel junctions with high voltages (V» A), where
phase transitions of the first kind and transition to the
nonuniform state were observed, can be explained with
the help of the model with the coherent mechanism (see
subdivision 5 of this section). We recall that if the
junction I-V curve is of the third type, then a transi-
tion of the first kind to the normal state occurs. I-V
curves of the first and second kind lead to a transition
to the nonuniform state. It is characterized by a verti-
cal segment of the I-V curve of the generator with
fixed V0, by a discontinuity in the voltage Vm - V0 at the
transition, by an I-V curve for the detector with two
gaps. The type of I-V curve depends on av, T, and y.
For example, a sharp change in y as T passes through
the X-point in helium can transform type 2 into type 3.
We assume that this mechanism is related to the phe-
nomena discovered by Iguchi.23-63 For a temperature
above 7\, he observed a nonuniform state (from the
smooth change in resistance). As T decreased below
7\ (and, therefore, y decreased), the transition to the
normal state occurred discontinuously for some criti-

cal value of the current.10' A similar phase transition
of the first kind was observed by Fuch and his cowork-
ers24 in Sn-I-Sn-I-Pb junctions.

Recently, the transition into the nonuniform state was
observed in Sn-I-Sn.27 The high value of V0, the nature
of the dependence of V0 on av, the temperature depen-
dence of /th, and other characteristics indicate the co-
herent mechanism for the transition from I-V curves-1
and I-V curves-2.

The threshold mechanism for the nonuniform state
apparently was realized in the experiments by Dynes,
Narayanamurti, and Carno25 (A1-I-A1) and especially
clearly in those by Gray and Willemsen.26 In this work,
quasiparticles were injected into thin aluminum films
(d~ 300 A) with V~ 2A (generator), and the double-gap
nonuniform state was studied with the use of an addi-
tional contact (detector). The authors identified and
described the basic properties of the nonuniform state,
and the I-V curves of the generator and detector, in
particular:

1. The instability and transition to the nonuniform
state do not require critical concentration of quasipar-
ticles, i.e., they occur for any av and over the entire
temperature range.

2. The large gap almost does not change, while the
small gap depends on the resistance of the junction ac-
cording to the law

3. The vertical segment of the I-V curve of the gen-
erator (V= V0) is related to the growth of the phase with
small A.

These and other properties [in particular, the tem-
perature dependence of /th (Ref. 25)] are completely de-
scribed by the threshold model [see subdivisions 3 and
5 of this section, formula (117)] and, in addition, the
values of V0 and A30 [see (113)] agree quantitatively
with experimental data.

7) Structure of the nonuniform state in the diffusion
model. Recently there have appeared publications47'44'79

in which the stationary nonuniform state, arising after
the completion of the development of DI, was exam-
ined. In Ref. 87, a model with a postulated negative
diffusion coefficient was examined; in Ref. 44, the
NEMS model was examined; and, in Ref. 79 a model of
the exciton insulator (A << WD) was examined.

In these investigations, it was shown that beginning
with some threshold power spatial modulation of the or-
der parameter

A (r) = A + A cos qmr

with finite wave vector qm and amplitude A occurs. The
quantities A and qm were computed for specific models,

10) In the work by Hida,87 Iguchi' s experiments are interpreted
from the point of view of the diffusion instability, assuming
that it exists. Hida87 also noted that according to the model
of Ref. 88 the diffusion instability must be absent for
T>0.6 Tc, while the effects of Ref. 23 remain up to Tc.
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and in addition <7m~(£oL)~1 / 2 everywhere. The expres-
sion presented above is strictly applicable for small
distances above threshold. However, it may be ex-
pected that for intense pumping the depth of modulation
becomes of the order of unity, since regions with the
normal phase appear.

2. SUPERCONDUCTORS WITH AN INVERTED
QUASIPARTICLE DISTRIBUTION

a) Superconducting pairing in systems with repulsion

Up to this point, we have examined the effect of ex-
cess quasiparticles on the state of superconductors that
are superconducting and in the equilibrium states due
to attraction between electrons. As was shown above,
superconductivity in this case is suppressed as the de-
gree of disequilibrium increases.

On the other hand, it is evident from Eq. (6) for the
order parameter A that formally this equation can have
a solution with A* 0 in the case of a repulsive interac-
tion (X> 0), if in some range of energies the QDF n(e)
exceeds the value 1/2, i.e. if their distribution becomes
inverted in the energy range E < JLI. The solution for A
has in this case, when n(e) = 1 for E < y. and n(c) = 0 for
e> n, the following form:

. 2u° _,.,
A =— e ' ' (118)

where o> is of the order of the plasma frequency of the
system. Thus, with increasing pump power and, there-
fore, with an increase in the magnitude of fi, the order
parameter A increases.

As is well-known,89 the basis for introducing the or-
der parameter A, described by Eq. (6), is the analysis
of the electron-electron scattering amplitude in the nor-
mal state. It turns out that this amplitude contains an
imaginary pole at the temperature T = 0, which indicates
the instability of the normal phase relative to pairing
of electrons near the Fermi surface in the case of ar-
bitrarily weak attraction.

Let us examine the analogous question in the case
when a part of the electronic states in a layer of fi be-
low the Fermi energy Ef is transferred to the state of "
a layer of M above the Fermi energy (Fig. 13). For
such an inverted population, there are three discon-
tinuities in the distribution function. It is easy to verify
(see Ref. 3) that in this case an imaginary pole arises
in the electron-electron scattering amplitude for ar-
bitrarily weak interelectron repulsion which indicates
pairing of electrons and the appearance of a gap A near
the Fermi level EF (point 2 in Fig. 13). This indicates
the fact that in such a superconducting state there are
electronic excitations above the gap and hole excita-
tions below the gap.

FIG. 13. Electron distribution
function of energy.

b) Creation of an inverted quasiparticle distribution

The basic problem here is to obtain an inverted dis-
tribution. As shown in section 2, in the case of super-
conductors with a gap A< WD, as, and especially, in the
case of a normal metal (A = 0), the magnitude of nU)
< 1/2, i.e., an inverted distribution turns out to be im-
possible. In order to solve this problem, in Ref. 91 a
model was proposed for a stratified semiconductor
with a nonrectilinear forbidden band Eg. In order to
obtain an inverted distribution the following condition is
necessary: Eg> WD. In this case, due to the impossi-
bility of single-phonon recombination through the gap
Eg, the electron and hole distribution functions will be
quasi-Fermi functions, i.e., it is possible to achieve an
inverted distribution.

However, the presence of the forbidden band leads to
the fact that in the self-consistency equation for £ the
interval Eg near the Fermi level drops out in the course
of integration with respect to £. As a result, the solu-
tion for A has the form

A=l /A 0 (A 0 -2E e ) , A0 = ̂ exp[-^ [,
\n.yj

where the parameter AO corresponds to the magnitude
of the superconducting gap for £g = 0 and to the given
magnitude of the inverted population IL. N(0) is the
density of states near the conduction and valence band
edges, which is assumed to be independent of energy,
this being valid for a stratified system; the interaction
constants X0 and X1 characterize the interelectronic
intraband and interband interactions of a repulsive
type.

It is evident from expression (119) that there exists a
critical pump power nc equal to

E,-p EF ff+p 5
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and superconducting pairing is realized for JLI> /ic.

It turns out that pairing with repulsive interaction and
simultaneously an inverted quasiparticle distribution
are also possible in the metallic model.92 It follows
from an analysis of the system of equations for A (6)
and the kinetic equation (9) that there exists a nontrivial
self-sustaining solution (A*0) for the inverted distri-
bution (n(E)> 1/2) in the layer 2>x under the condition
that

2A>co D ,

where A = (2/j.2/wf)exp(-l/Ar(0)X) and X is the interelec-
tronic interaction constant.

One of the methods for bringing the system from the
state with A = 0,n(|)< 1/2 to a superconducting state
(A*0,wU)> 1/2) was examined in Ref. 92. It consists
of creating a priming gap with the help of a resonant
electromagnetic fielu.71

We note that the magnitude of A is always less than
the degree of inverted population ̂ . Since the function
W(E) is smeared out with increasing temperature in the
range T near the quasi-Fermi levels of electrons and
holes at distances /j. from A, the temperature for the
transition to the normal state is determined not by the
magnitude of A for T= 0, as in the case of attraction,
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but rather by the magnitude of pi, i.e. such supercon-
ductivity must be high-temperature superconductivity.

c) Investigation of the stability of a superconductor
with an inverted distribution

A distinguishing feature of superconducting systems
with repulsion in the case of an inverted population is
the monotonic increase of A with increasing pump pow-
er, i.e., the magnitude of /i. It is easy to verify that in
this case the uniform state is stable without taking into
account electrical and magnetic fields.78 If in some re-
gion the parameter A decreases as a result of fluctua-
tions, then the concentration of excitations will in-
crease due to diffusion from neighboring regions.
Since the magnitude of A increases with increasing
number of excitations, this diffusion will lead to an
increase in A. Thus, the fluctuation is damped. This
follows formally from the expression for the damping
decrement y (86). As shown in Ref. 92, the quantity Ns

is negative. In this case, the parameter D [determined
by (83)] is also negative, since the basic contribution
to it is made by £~ A, for which n> 1/2. Therefore, y
is negative, which corresponds to stability relative to
fast perturbations. It is easy to verify that stability
relative to slow (in comparison with the relaxation time
for quasiparticles) perturbations follows from the gen-
eral expression for y (82).

Superconductivity in the case being examined can
exist only in the presence of quasiparticles, which are
continuously being excited by a source and which re-
combine. The recombination process destroys the co-
herence of the superconducting state. It may appear
that it plays the same role as, for example, scattering
by a magnetic impurity with a characteristic time ra,
leading to breaking up of electron pairs. In the latter
case, as is well-known, superconductivity exists until
T8A0

> 1 (AS is the parameter in the absence of impuri-
ties),93 i.e., until the pairing time for particles A"1

turns out to be less than the time for pair break-up TS.
The recombination time TR, in contrast to TS, charac-
terizes the time for quasiparticles, and not pairs, to
leave the coherent state. The recovery time for the
coherent state is TQ, the time for recovery of the popu-
lation of the electron-like and the hole-like branches
of the excitations.94 The point is that the pumping
source continuously excites particles and holes with
amplitude ut and vt [see (1)] which are equal to zero or
unity (limiting unbalance of the branches). The wave
functions of the excitations are tuned to the coherent
state within a time TQ.

The superconducting state with repulsion will occur if
the time TQ is less than the recombination time TR (for
a more detailed discussion see Ref. 94). In the limit
TQ/TR«I, the unbalance of the branches can be neg-
lected. The time TQ can be quite small in the case of
large concentrations of a nonmagnetic impurity.95

d) Electromagnetic properties

Let us now go on to the problem of the behavior in
external electric and magnetic fields of systems with
superconducting pairing with repulsive interaction.

We will first examine the problem of the possibility of the
existence of undamped currents in the presence of
scattering in such a system. For this purpose, it is
necessary to find the current in an alternating electric
field E(t) = E0e

iut taking into account, for example,
elastic scattering by impurities. With the help of
Keldysh's technique,1 an expression is obtained for the
current that coincides with the corresponding expres-
sion for the equilibrium case,96 but with the nonequi-
librium QDF «(|), satisfying the kinetic equation and
appearing as a quasi-Fermi function in the case that
we are considering. In the static limit, w-0, the ex-
pression for the current has the form3-92

J W = E W a N ( 2 + -^-), (121)

where CTN = 2e2n0vFl/3m is the normal conductivity and
J, is the mean free path length.

It is evident from (121) that the system can be de-
scribed by the two-fluid model of superconductivity.
In this case, the first term corresponds to the normal
component and stems from scattering of quasiparticles
near quasi-Fermi levels ±ji. On the other hand, the
conductivity of the superfluid component (second term)
becomes infinite even in the presence of scattering.
We note that the sign of the second term is opposite to
the sign of the corresponding term in the current of an
equilibrium superconductor.

Standard calculations93 of the linear response to a
static magnetic field H lead to the following expression
for the current:3-92

where rot A =H. For a quasi-Fermi distribution n, we
obtain from (122)

i.e., the current equals the current in an equilibrium
superconductor, but with opposite sign. This means
that the system being examined has an anomalous para-
magnetism, while the Meissner effect is absent.

For a more detailed analysis of the behavior of such
a system in an arbitrary (not weak) magnetic field, it
is possible to obtain Ginz burg -Landau equations for
the semiconductor model. From expression (119) for
the gap A with pump power close to some critical val-
ue, when (n- fic)/Vc«l, we obtain

/ -Vs-- <123>
Thus, the dependence of the order parameter A on \j.
near /ic has the same form as the temperature depen-
dence near the critical Tc for an equilibrium supercon-
ductor. A procedure similar to that carried out by
Gor'kov for the equilibrium case leads to the following
system of equations:97

(124)
(125)

*
Equation (124) for A is completely analogous to the Ginz-
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burg-Landau equation. It should be noted that due to
the positive sign of the coefficient in front of the term
with the derivative with respect to r, the uniform state
without taking into account the magnetic field is stable.
This agrees with the conclusion arrived at on the basis
of the criterion (83) for the diffusion instability. The
expression for the current (125) has the opposite sign
compared to the equilibrium case, which also agrees
with the result (122) for the linear response.

In order to clarify the behavior of such a supercon-
ductor in a magnetic field, we consider the fact that
Eqs. (124) and (125) transform into the equilibrium
equations if the penetration depth X = Vwzpic/16?re2 is re-
placed by the imaginary quantity i\. In doing so, a
similar substitution must be carried out for all vari-
ables expressed in terms of X, i.e., the parameter x
= A./So must be replaced by in, r must be replaced by- ir,
and H must be replaced by t'H. Such a substitution cor-
responds to the appearance of trigonometric functions
of the coordinate r in the solutions instead of hyperbolic
functions in the equilibrium case. As a result, the
phase transition in a magnetic field for thin films in
the case being examined always turns out to be a phase
transition of the second kind instead of the first kind
for equilibrium superconductors. For a half-space, the
coordinate dependences of the magnetic field and the
parameter i/> contain oscillating factors and, in addition,
the period of oscillations of the field equals 2w\, while
the period of the parameter ip equals97 irX;

,,.=-. 1-^1(1—1 //a V :
(126)

where H0 is the external field at the boundary of the
specimen and parallel to its surface, H= 2-vrifn/T)(l

(/i - MC)/MC, and z is the distance from the boundary.
The maxima of the parameter A coincide with the max-
ima of the field H. This is explained by the fact that
superconductivity is destroyed directly not by the mag-
netic field, but by currents that are induced in the
superconductor by the magnetic field. The difference
in this sense with respect to the equilibrium super-
conductor, where in regions with maximum values of
the field the magnitude of A is minimum, is related to
the change in sign in the expression for the current
(122).

These results are obtained assuming that the mag-
netic field corrections to the parameter A are small.
Taking into account these corrections in Maxwell's
equations, leads to the appearance of a correction to
the field H linear in the coordinate z (Ref. 97):

H = H,(coa^- + 4|i4-sin-i-). (127)

This indicates instability relative to magnetic fluctua-
tions (see also Ref. 99). It is evident from expression
(127) that the magnetic field increases as the distance
from the boundary increases, which in accordance
with expression (126) for $ must lead to the disappear-
ance of superconductivity at some distance from the
boundary. Since, on the other hand, in the region of
the nonsuperconducting phase far away from the bound-

ary the field H will equal the external field H0, which
is assumed to be small, the nonsuperconducting state
is unstable. As a result, the system must transform
into some vortical state.

We will now show that for a reason analogous to the
change in sign in the electric field dependence of the
nondissipative part of the current [see (121)] an elec-
tric instability occurs in such superconductors. Using
Maxwell's equations and the expression for the current
(121), we obtain an equation for the charge density p:

0/2 ' 5f 1 * \'*-*1^/

The decrement y in the solution p~ exp(yt) is given by
the expression

(129)

It follows from (129) that there exists a positive value
of y that corresponds to the instability mentioned above.

Thus, for the case of a uniform parameter A, an
electric field that will accelerate the superconducting
condensate to critical velocities must arise spontan-
eously in the system. As a result, superconductivity
should vanish. On the other hand, in the normal state
(A = 0) the electric instability does not occur; for this
reason, such a state (A = 0, E = 0) is unstable relative
to the appearance of superconducting pairing.

Apparently, states with nonuniform A and E must be
stable. The characteristic scale for the nonuniformity
must be determined by the penetration depth /E of a
longitudinal electric field into the superconductor,12

which, as noted in the introduction, arises as a result
of unbalance of the electron-like and hole-like quasi-
particle branches. The detailed structure of the non-
equilibrium state must be built up taking into account
simultaneously both electric and magnetic instabilities.

CONCLUSIONS

At the present time, it may be assumed as being
firmly established that the wide range of new phenom-
ena in superconductors with excess quasiparticles is
closely related to the properties of the quasiparticle
energy distribution. Depending on the form of the
quasiparticle distribution function, the following types
of nonuniform states are possible in nonequilibrium
superconductors.

The first type is characterized by an overheated
quasiparticle distribution, multivalued dependence of
the order parameter on the source parameters, transi-
tion to a nonuniform stratified state due to the develop-
ment of the coherent or threshold instabilities. Diffu-
sion of quasiparticles inhibits the development of in-
stabilities, while the critical source power j3c de-
creases with increasing wave vector. This type ap-
parently is realized in superconductors with tunnel and
optical pumping.

The second type is characterized by an overcooled
quasiparticle distribution, single-valued order param-
eter, and presence of the diffusion instability, leading
to a nonuniform state (diffusion model). Diffusion of
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quasiparticles leads to the development of an instabil-
ity, while the critical power decreases with increasing
wave vector. This type can be realized in systems with
electronhole pairing79 for & « WD. Electronhole corre-
lations turn out to be responsible for the metal-semi-
conductor phase transition80, for structural,101 ferro-
electric,102 antiferromagnetic,103 and ferromagnetic104

phase transitions.

The third type relates to systems with electronhole
pairing for 2^> o>D.78 In systems of this type, the
quasiparticle distribution is quasi-Fermi, the order
parameter is a multivalued function, and the nonuni-
form state is characterized by a nonzero pair vector.
The critical power increases with the wave vector.
All three types are stable relative to electric and mag-
netic excitations.

The fourth type can be realized in superconductors
with repulsive interaction between electrons and with
an inverted quasiparticle distribution. This type is
characterized by an order parameter A (2^> WD),
which increases monotonically with the pump power,
and by the absence of diffusion and coherent instabili-
ties. Systems of the fourth type are unstable relative
to spontaneous excitation in them of magnetic and elec-
tric fields, as a result of which an intermediate type
nonuniform state can be formed.

Besides systems with purely superconducting and
electronhole pairing, there exist systems in which
superconducting and dielectric pairing7 can exist which
can lead to the presence of structural or antiferromag-
netic phase transitions near the superconducting tran-
sition temperature Te.

Coherent factors in this case can give rise to tem-
perature and frequency singularities in such kinetic
phenomena as light absorption,105 ultrasonic absorp-
tion, and the intensity of nuclear magnetic resonance.106

In the last reference, an attempt is made to explain
from this point of view the experimental results for
compounds of the A15 group, which undergo a struc-
tural transformation near Tc.

For such systems, the description of the phase tran-
sition under nonequilibrium conditions, presented in
the present review, must be supplemented by including
superconducting and dielectric correlations simultan-
eously. This can lead to an entirely new series of ef-
fects and, for this reason, it is of great interest to
perform experiments on such substances for the pur-
pose of studying a phase transition under nonequilib-
rium conditions.

It should be noted that the study of nonequilibrium
states in the usual superconductors cannot be consid-
ered as complete. In particular, it is necessary to
have a detailed experimental verification of the theory
of the nonuniform state with optical pumping and with
tunnel injection at high voltages, to determine the
multiplication factors for quasiparticles, to study the
effect of electron-electron collisions on the energy
distribution of quasiparticles, and so on.
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