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The review deals with new results in the theory of electron localization in disordered systems and with
experiments which have been stimulated by these results. An elementary scaling theory of localization and its
consequences are discussed. Attention is concentrated on the phenomenon of localization in two-dimensional
systems. The main experiments on the conductivity of thin metal wires and films, demonstrating qualitatively
new behavior associated with localization, are discussed. The review concludes with a brief look at the
problems of deriving a self-consistent scaling theory of critical behavior at a mobility edge.
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INTRODUCTION

The concept of electron localization in disordered sys-
tems is central to the modern theory of such systems:
the main ideas on the energy spectrum, and on the
transport and other electron properties of disordered
systems are based on this concept.1>2 The concept was
first formulated in the cornerstone paper of Anderson3

and later, after a period of neglect, it was developed
qualitatively by Mott, who used it to formulate the main
laws of the electron theory of disordered systems.l>t

Several good reviews4"7 have recently been devoted to
the phenomenon of localization and its fundamentals are
now well known. Moreover, in spite of its importance,
the problem of localization is still far from the state of a
fully satisfactory solution. This applies particularly to
our ideas on the behavior of electron states near what
is known as the mobility edge and the associated prob-
lem of the physical properties of a system in which the
electron Fermi level lies in the vicinity of a mobility
edge. Difficulties in the understanding of these proper-
ties are related to the extreme mathematical difficulty
of the problem under discussion and due to the fact that
experimental evidence on electron localization is fairly
indirect.1>2>5

The present review describes briefly the progress
made in the last few years, both in the theoretical re-
spect and in the formulation of new experiments. We
shall concentrate on those theoretical results which re-
late to the "critical" behavior of a system in the vicinity
of a mobility edge, using a certain analogy which clear-
ly exists between such behavior and the usual critical
behavior in the vicinity of a second-order phase transi-
tion; we shall also discuss new experiments on the con-
ductivity of thin metallic wires and films in which the
phenomenon of localization (and the corresponding criti-

cal behavior) should be manifested most clearly. The
special attention currently given to two-dimensional
disordered systems is due to the circumstance that
practically all the devices used in modern microelec-
tronics are examples of such systems. However, we
shall ignore completely the problems and experiments
relating to the localization in quasione-dimensional sys-
tems (for details see Refs. 8-11).

We shall proceed as follows. We shall begin by re-
calling the main ideas of the theory of localization and
the relevant terminology. We shall then consider ele-
mentary scaling theory of localization based mainly on
the ideas of Thouless,4 including newest developments
of his results and their applications to the description
of the conductivity of thin metallic wires and two-di-
mensional metallic systems. Next, we shall discuss
the main experiments aimed to verify these ideas. We
shall conclude with a brief review of the attempts to
construct a rigorous scaling theory of localization on
the basis of the above-mentioned analogy with the con-
ventional critical phenomena.

1. ANDERSON MODEL AND MINIMUM METALLIC
CONDUCTIVITY

We shall recall the main results of the theory of lo-
calization. This is usually done on the basis of the
Anderson model3 in which one electron propagating in
a regular lattice of sites in a rf-dimensional space is
considered; at each site there is a random energy level
Ej (j is the number of the lattice site). It is also as-
sumed that there is a definite amplitude of the probabil-
ity Vu of a transition from a jth to an ith site. It is
usually postulated3'12>13 that this transition amplitude
differs from zero and is equal to a certain constant V
for transitions between the nearest neighbors. We
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shall not consider the role of "nondiagonal" disorder of
the matrix elements Vif (for details see Ref. 14).

The Hamiltonian of the model is therefore

(1.1)

where at and a] are, respectively, the usual operators
of annihilation and creation of an electron at a site j.
The energy levels Es are assumed to be distributed in-
dependently from one another at different sites. The
distribution at a given site is usually assumed to be3

for |£.]<-Lvi'.

0 for
(1.2)

i. e. , it is assumed to be uniform in a certain range of
energies of width W. Qualitative results are clearly
independent of the nature of the distribution P(Ej) and
instead of Eq. (1. 2) we can use any other distribution
with an effective width W.

If there is no disorder in the system (W=0), the solu-
tion of the problem of the electron spectrum of the
Hamiltonian (1. 1) is elementary. Electron states form
a band of width B = 2ZV (for a simple cubic lattice with
Z nearest neighbors) and the wave function of each of
the states in a band is represented by a Bloch wave,
i. e. , it is shared equally by all the lattice sites. If
W*Q, the situation changes and the dimensionality of
space d has a considerable influence. For example, if
d = l (a one- dimensional disordered chain), an infinite-
simally small value of W is sufficient to alter complete-
ly the nature of the electron states: they all become
localized, i. e. , their wave functions decrease expo-
nentially in the coordinate space and at T = 0 the static
conductivity of the system vanishes.8"11 Two-dimen-
sional systems (d = 2) represent clearly a special case
and are discussed in detail below. If d> 2, it has been
established reliably3"7-12"13 that for high values of the
ratio W/V> (W/V) (i.e., in the case of sufficiently
strong disorder) all the electron states in a band are
again localized. Typical values of this ratio are (W/V)..
= 8-15 (for three-dimensional lattices).3"6

The physical meaning of localization is fairly simple.
Quantum tunneling from site to site can occur only be-
tween sites with identical (degenerate) energy levels.
In a random system the probability of such degeneracy
is generally small for sites sufficiently close in coordi-
nate space and if the disorder W is sufficiently strong,
this probability vanishes. 3-15>16

If W/V< (W/V)C, electron states become localized at
the band edges, whereas at the center of a band the
states remain delocalized. This gives rise to critical
energies E, and £'„•, which separate the regions of lo-
calized and delocalized states, usually called mobility
edges. This is illustrated in Fig. 1. The term "mo-
bility edge" is due to the fact that localized states make
no contribution to the static conductivity at absolute
zero (T=0). If at T = 0 the fermi level EF of a many-
electron system lies in the energy range corresponding
to localized states, the system is an insulator: conduc-
tion is possible only at T* 0 or when electrons are ex-
cited by an alternating electromagnetic field. Conduc-

FIG. 1. Density of states in an Anderson lattice. The shaded
regions are the localized states. Here, £,. and£c' are the
mobility thresholds.

tion then takes place by the hopping mechanism.1>?>1T

However, if the Fermi level lies in the region of delo-
calized states, conduction is metallic. This metal-in-
sulator transition, which occurs when the Fermi level
crosses a mobility edge, is usually called the Anderson
transition.

One of the central problems in the theory under dis-
cussion is the nature of changes in the metallic (static,
at T = 0) conductivity that take place when the Fermi
level Ef crosses a mobility edge. Possible alternative
representations are shown in Fig. 2. The conductivity
may abruptly vanish after reaching a certain minimum
value am „., which denotes the minimum metallic con-
ductivity (maximum metallic resistivity). This behav-
ior has been suggested by Molt1'2 on the basis of a qual-
itative analysis of the conduction process in the Ander-
son model, and also on the basis of an analysis of some
experimental data. We can logically expect also a con-
tinuous decrease of the conductivity to zero and in this
case <Jm-m retains in a sense the meaning of a charac-
teristic measure of the conductivity beginning from
which the conductivity decreases quite rapidly to zero.
This alternative model was put forward by Cohen18 us-
ing basically an analogy between localization and per-
colation. 7>1T Clearly, both alternatives can have the
same experimental consequences (at T#0), but this
does not solve the corresponding theoretical problem.

An estimate of the value of am ir can be obtained quite
simply.l!2'5 In fact, this estimate is based on the ideas
put forward some time ago by loffe and Regel,19 accord-
ing to whom the mean free path of an electron / in a
metallic system cannot be less than the interatomic
distance a. It then follows from the usual Drude for-
mula a=(ne*/m)r (n is the electron density, T is the
mean free time between collisions, and m is the elec-
tron mass) and from the expressions relating the elec-

FIG. 2. Changes in the metallic conductivity when the Fermi
level passes through a mobility edge: 1) according to Mott1'2;
2) according to Cohen.18
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tron density and the Fermi momentum to the interatom-
ic distance (n&a*, pF°^K/a, T<^lm/pr^am/pF':cmai/fl)
that

<lm. m« const— o2^. (1.3)

According to Mott,1-2-5 the constant in Eq. (1.3) is de-
termined by the dimensionless ratio (W/V)C and lies in
the range 0. 025-0. 06 for d = 3, which gives o".m.n,~ U-5)
xlO^JT1 cm"1 for typical values a~2-3 A.

It is clear already from Eq. (1.3) that d = 2 is a spe-
cial case: the minimum metallic conductivity is gov-
erned only by the fundamental physical constants and
the characteristics of a system exhibiting such con-
ductivity affect only the fairly universal dimensionless
ratio (W/V)C. The question arises: is this true?
Moreover, a detailed understanding of the changes oc-
curring in the wave functions near a mobility edge is
important: how does the localization radius of a wave
function change: does it diverge in the limit E — Ec on
the localized state side? Are the wave functions of lo-
calized states necessarily exponential or can we expect
a fairly rapid (ensuring normalization to unity) power-
law fall in the coordinate space? Can these problems
be considered by analogy with the problem of phase
transitions and is not the behavior near a mobility edge
a characteristic "critical" phenomenon? Finally, what
is the role of the electron-electron interaction (corre-
lation) in the phenomenon of localization? Our review
will, to a greater or lesser extent, try to answer these
questions; we shall consider the current level of under-
standing of these problems and some of the experiments
stimulated by their formulation.

2. ELEMENTARY SCALING THEORY OF
LOCALIZATION

Behavior of a system in the vicinity of a mobility edge
can be understood by a scaling analysis similar to that
employed in the theory of critical phenomena20'21 or, to
use the modern language, by constructing some variant
of transformations of the renormalization group.22"24

The main physical idea behind this approach is the
gradual transition from small cells (or scales) of a
system in the coordinate space, for which the problem
can be solved (at least approximately!), to larger cells
(scales) which are described tentatively in terms of the
same physical variables as the small-scale cells. The
chain of formulas performing this transition from small
to large scales is known as the transformations of the
renormalization group in real space23'24 and they are

/f sites

modern variants of the Kadanoff scaling transforma-
tions. 20 In the theory of critical phenomena the con-
struction of such transformations is usually motivat-
ed20"24 by an increase in the correlation length of fluctu-
ations of the order parameter in the vicinity of a criti-
cal point. An analog of this phenomenon in the theory
of localization is the increase in the localization radius
on approach to a mobility edge from the localized- state
side. However, it should be stressed that in the range
of delocalized states an analog of such a diverging
length is not known1' Oust as the "order parameter" as-
sociated with the Anderson transition is not known),
which limits seriously this analogy and makes it diffi-
cult to carry out a simple qualitative analysis.

We shall now present a variant of scaling transforma-
tions proposed for the Anderson problem by Thouless
et oZ.4>25"29 We shall consider an Anderson lattice with
the period a. We shall make a transition from a cell of
side a to a new cell of side L, containing N sites of the
original lattice. Then, the original lattice can be de-
scribed as consisting of new cells, each of which has a
set of N random levels (Fig. 3). We shall consider a
lattice constructed by periodic repetition of one such
cell. Then any one of the N levels in a cell spreads in-
to a band of width 2A£. The quantity AE is defined in
Refs. 25-29 numerically by a shift of the levels on
transition from the periodic to antiperiodic boundary
conditions for wave functions at the boundary of the
cell L. Although the lattice formed by such continua-
tion is not identical with the scaling-transformed An-
derson lattice, in a qualitative analysis we can assume
that the effective coupling2' between electrons at two
levels in neighboring cells of the Anderson lattice
(i. e., an analog of the overlap integral V for a system
constructed from the new cells) is of the order of

(2.1)

since each such coupling or bond produces a band of
width 2AJE1 when the cell is continued periodically. The
average scatter of the levels in the neighboring cells is
governed by the reciprocal of the density of states cal-
culated per unit volume in the original lattice and by
the cell size L:

WL w (E). (2.2)

If we consider one of the N energy bands in the new lat-
tice, we can regard WL as an analog of the parameter
W of the original lattice. In this way we make the
transition from the original Anderson problem with the
ratio W/V to a new (scaling-transformed) problem of
the same type with an "effective" Hamiltonian charac-
terized by a new ratio WL/VL. The process of such

FIG. 3. Analog of the Kadanoff construction in the Anderson
problem, plotted in accordance with the Licciardello—Thouless
treatment.

*) See, however, a discussion of this question in a recent
paper.135

2) The quantity VL ~ A£ is a measure of the mutual influence
of the wave functions in neighboring cells. If the states are
localized, they are practically insensitive to a change in the
boundary conditions in a large cell [see Eq. (2.3)1. On the
other hand, delocalized states are sensitive to changes in
the boundary conditions and this results in a considerable
shift A£ of the levels25"29 [seeEq. (2.4)].
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scaling transformations can be continued along the
chain L -~2L —41, — ... or, in general, we can make
the transformation L~bL going over to increasingly
larger cells containing more and more of the sites in
the original lattice.

If a given state of energy E is localized, then

VL a e-*E»; (2. 3)

where o ( E ) = R ^ O C ( E ) is the reciprocal of the localization
radius of a given state. Consequently, in this case the
ratio VL/WL also decreases exponentially on increase
in L. If we assume the existence of mobility edges,
then for any value of E in the original band there is a
maximum ratio (VL/WL)mu, for which such exponential
decrease is still valid. Such a localization criterion
has been used25"29 to determine numerically the posi-
tions of mobility edges in the original energy band.

In a system of cells of size L» I , where I is the mean
free path, a delocalized electron can equiprobably be-
come displaced (can diffuse) from one cell to a neigh-
boring one3' in a time rL~K/VL. It follows from ele-
mentary transport theory that the coefficient of such
diffusion is DL~L2/TL, so that we obtain

\\ » (2.4)

where DL(E) is the diffusion coefficient of an electron
of energy E. Then, in the case of delocalized states,
we have

(2.5)

where o(E) = 2e*D(E)N(E) is the electrical conductivity
of the system expressed in terms of the diffusion co-
efficient and the density of states, which follows from
the general Einstein relationship30 o- = e2Z>dn/dfi (^ is
the chemical potential) at T = 0. A more rigorous
derivation of Eq. (2. 5) is given in the original pa-
pers. 4-25-28

It is clear from Eq. (2. 5) that if d = 2, the universal
minimum metallic conductivity does exist if scaling
transformations of (VL/WL)max give a certain universal
constant. A numerical analysis carried out by Licciar-
dello and Thouless27-28 showed that such a universal
(independent of the nature of the original lattice) con-
stant does exist (in Ref. 27, they considered a hexa-
gonal honeycomb lattice, as well as triangular and
square lattices for N= 64, 100, 144, and 196). Lucci-
ardello and Thouless obtained the following expression
for the metallic conductivity in the d — 2 case:

aB,m = ̂ (£)ntt = (0.12±0.03)4*3.10-.n-'. (2.6)

However, later numerical calculations of the same
authors29 gave somewhat unexpected results. Roughly
speaking, they found that the value of o-,,, m decreases as
the dimensions L of the system increase. This raised

3> The quantity VL defines, as mentioned above, the effective
coupling of electrons occupying random levels in neighbor-
ing cells. This coupling or interaction results in broadening
of the levels, i.e., it is responsible for the finite (of the
order of TL) lifetime of electrons in a given cell.

doubts about the existence of c r m , , for d = 2 and led Lic-
ciardello and Thouless29 to the hypothesis that in the
case of two-dimensional systems there may be complete
localization even in the case of infinite simally weak
disorder (by analogy with the one- dimensional case).
On the other hand, the results of Ref. 31 confirmed the
earlier results of Licciardello and Thouless. 27 Numer-
ical calculations of three-dimensional systems are far
too indefinite in Refs. 25-29; the fullest analysis of the
three-dimensional case can be found in Ref. 32 for a
diamond- type lattice.

Considerable progress in our understanding of the
phenomenon of localization was made4 ' by Abrahams,
Anderson, Licciardello, and Ramakrishnan. 33 It was
found that a simple qualitative analysis can be made of
the behavior of the function g(L) defined by Eq. (2. 5) by
postulating the simplest renormalization group equation
for this function [this equation gives the change in g(L)
due to the transition L — &L]S)

At this stage the most important assumption is that the
function &d(g) on the right-hand side depends only on the
variable g(L), which is known as one-parameter scal-
ing. Equation (2. 7) is an analog of the well-known
Gell-Mann-Low equation [the function fid(g) is an analog
of the Gell-Mann-Low function] in the renormalization
group used in quantum field theory. 34"36 The behavior
of the function ^(g) is easily understood from simple
physical considerations. It is clear from the definition
(2. 5) that g(L)^oLLdJi, i. e. , that this quantity is pro-
portional to the total conductance (and not specific con-
ductivity!) of the system (which is a cube of side L).
In the case of large values of g (weak disorder, VL/WL

»1), we should obtain the static metallic conductivity
ffi,» = cr, i.e., the following condition should be satis-
fied:

limp,, *- 2, (2.8)

since it follows from d lng(L)/d lnZ, = rf-2 that g(L)
= const • Li4 and the constant of integration is simply
(K/2e2)v. At low values of g(VL/WL «1), we should ob-
tain exponential localization, i.e., g(L)=g!.(d)exp(-aL)
[compare with Eq. (2. 3)]. Then,

rt^ln-isr. (2.9)

since it follows from ln^ = lng-c- aL that dln^(L)/dlnL
= -a di/dlni = -aL =ln(g/g,.).

We shall now assume the existence of two "perturba-
tion theory" expansions:

) - In - (2.10)

4) These authors have been called collectively as the "gang of
four."

5) Equation (2.7) is a differential variant of the postulated
general scaling transformation of variables in the problem in
question: g(bL)=f(b,g(L)). The differential form of Eq.
(2.7) is most convenient for a qualitative analysis and it
implies a transition from cells of side L to cells of side

where dZ,/£ = A —0.
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M*-><»)="l-2 —b-+... . (2.11)
K

Arguments are given in Ref. 33 to show that a > 0, 6 > 0.
Using the asymptotic expressions given by Eqs. (2.8)
and (2.9), and the expansion represented by Eqs. (2.10)
and (2.11), we can easily deduce the behavior of pd(g)
throughout the range of g (on the assumption that it is
monotonic and continuous!). The behavior of this func-
tion is shown in Fig. 4. We can see that ftt(g) does not
have zeros for d< 2. If the expansion (2.11) is valid,
there is no zero either for d = 2. If d> 2, the function
pd(g) definitely has a zero, Pd(gc) = 0, but its position
cannot be found in such a simple way as above (obvi-
ously, ge~l). The existence of this zero implies the
existence of an unstable fixed point for Eq. (2.7). We
shall mention in this connection that in the theory of
critical phenomena the scaling behavior is usually gov-
erned by stable fixed points of the renormalization
group equations.21~M Near gc, we can use the approxi-
mation (shown by circles in Fig. 4)

, (2.12)

where v< 1, because a> 0 in Eq. (2.10). Then, if Eq.
(2.7) is integrated beginning from g0 *gc [g(L = a) =£„,
where a is a distance of the order of the lattice period],
then for L — °° the value of aL will exhibit the following
asymptotic behavior6':

-*Jv _
for #0 > ffc»

(2.13)

where A = const-1. Clearly, the existence of a fixed
point implies the existence of a mobility edge and the
behavior of &d(g) near absolute zero determines the
critical behavior at the mobility edge. Under these as-
sumptions, the conductivity decreases continuously to
zero in the limit g-0 -*gc and the quantity e^/Kcf'2 (the
Mott value of ffm.m) is simply a characteristic conduc-
tivity scale. In this sense the results of Ref. 33 con-
firm, to some extent, the Cohen variant. A Mott con-
ductivity jump can be obtained at a mobility edge if the
function Pt(g) behaves as shown by the dashed curve in
Fig. 4 (in the case when d=2). According to the
authors of Ref. 33, such behavior is not very likely be-
cause it is in conflict with the expansion (2.11). How-
ever, it should be stressed that the existence of such
an expansion is an assumption made in the theory.7>

6)Strictly speaking, integration in Eq. (2.7) subject to the
indicated initial conditions and with Eq. (2.12) on the right-
hand side gives

—

Since because of the instability of the fixed point in the limit
L — • °°, we reach the range g »1, where the true function
P*(#) reaches the constatn value d-2, the factor in the braces
reduces to the constant A of Eq. (2.13) in the limit L — °°.
The dependence on the initial conditions in Eq. (2.13) is gov-
erned by the function Pt(g) linearized near the fixed point.

7) The existence of such an expansion can be justified by con-
sidering the region of weak disorder on the basis of the con-
ventional perturbation theory, 38~40 which becomes inapplic-
able for g~gc-

FIG. 4. Qualitative form of the Cell-Mann-Low function for
various values of d. The dashed lines are used to represent
the behavior needed to ensure a conductivity jump at a mobil-
ity edge in the d= 2 case.

Similarly, we can show that integration of Eq. (2. 7)
from the initial point g0

 sgc gives (for large values of
D

g « ge exp \ — A | In -

Hence, [compare with Eq. (2.3)] it follows that
D .\lt-h |-"Ri«c~a\—-—\ ,

(2.14)

(2.15)

i. e., v plays the role of the critical index of the local-
ization radius.8'

If d 12, it follows from Ref. 33 that fit(g) < 0 through-
out the range of g. Then, aceg(L — °°) — 0 for any initial
conditions, there is no mobility edge, and all the states
are localized (the static conductivity of an infinite sys-
tem vanishes'). For d = l, this agrees with the known
exact results. 8"u Ford = 2, this is a completely new
result (although suspected earlier29). Subject to the ini-
tial condition g$(L - a) in the range of sufficiently large
values of g where the expansion (2.11) is valid (for d
= 2 the first term of this expansion vanishes), we obtain
from Eq. (2.7)

g(L)«g0-&In4»-^-°L, (2.16)

i. e., the conductivity OL decreases on increase in L
because of a logarithmic correction, until the correc-
tion term becomes of the same order as the main term;
then, the reduction in the conductivity becomes expo-

8) An attempt has been made135 to give a physical meaning to
the effective length £ ~a[(g-ge)/gc]~v also in the range
g&gf We can easily see that Eq. (2.13) can be written in
the form a f=Ael/K^ ~2 so that the length £ describes the be-
havior of the conductivity farily close to a mobility edge in
a situation when { becomes much larger than the interatomic
distance or the mean free path in the case of inelastic scat-
tering processes. According to Ref. 135, this length governs
the scale for which the conductivity becomes "ohmic" in the
sense that the resistance of a cube (d=3) of side L decreases
proportionally to L"1. Near a mobility edge only samples of
increasing dimensions (£—•«>) can be regarded as macroscopic
and in the limit L<f,aL they depend on L, It is possible that
these considerations allow us to give a definite physical mean-
ing to the diverging length in the region of delocalized states
which occur in the scaling pattern. In Ref. 135, this is used
to propose an original explanation of the negative temperature
coefficient of the resistance, which is exhibited by many
poorly conducting metallic systems.
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nential. The existence of a weak logarithmic depend-
ence in Eq. (2.16) has the effect that the behavior of the
conductivity can indeed be close to that expected in the
case of existence of an abrupt mobility edge. We can
observe experimentally a logarithmic tendency of the
"metallic" phase to become insulating (at high tempera-
tures), followed by a fairly rapid drop of the conductiv-
ity in the vicinity of CT,,,.:I, in accordance with Eq. (2. 6).
The processes which determine the effective lengths L,
which govern the experimentally observed conductivity,
are discussed below (Sec. 3).

The result (2.16) can be justified33 by direct perturba-
tion theory calculations. We have to consider (for d
= 2) a series of Feynman graphs for a two-particle
Green function introduced some time ago by Langer and
Neal.3? This sequence of graphs predominates in the d
= 2 case and gives rise to a logarithmic correction in
Eq. (2.16). A similar result is obtained also in Ref.
38, where summation of the Langer-Neal graphs gives
the following expression for the coefficient of two-di-
mensional diffusion in an external field of frequency 01:

D»D o(l_^l n_i-) , (2.17)

where D0 = v*T/2 is the usual transport formula for the
two-dimensional diffusion coefficient (v is the electron
velocity, E is the electron energy, and T is the mean
free time; it is assumed that ET» 1). We can see that
in the limit w — 0, the correction reduces the diffusion
coefficient and this may indicate complete localization
in a two-dimensional system. It should be stressed
that Eq. (2.17) is valid as long as the correction is
small compared with the main term. In the case of a
finite sample in the frequency range D0L~2» u»H/mLi,
Eq. (2.17) reduces to a result of the type given by Eq.
(2.16) (Ref. 33). Generalization of the analysis given
in Ref. 38 to the case when allowance is made for the
scattering accompanied by spin flipping, and also for
the effect of a weak external magnetic field,39'40 shows
that these processes suppress the logarithmic correc-
tion in Eq. (2.17), i. e., they destroy the two-dimen-
sional localization. Allowance for the spin-orbit in-
teraction of an electron with impurities alters the sign
of the logarithmic correction to the conductivity,41 i. e".,
it gives rise to a conductivity that becomes infinite in
the limit co — 0. It is at present difficult to give a
quantitative interpretation of these unexpected results.9'

The above simple description of the effects near a
mobility edge has not yet been proven. Moreover, after
the appearance of the work of Abrahams, Anderson,
Licciardello, and Ramakrishnan,33 a numerical calcula-
tion of the conductivity was made by Lee42 using the
Anderson model and this calculation was in a sense
similar to an analysis of the Kondo problem carried out
by Wilson.23 Without going into details, we shall simply
point out that because of the special scheme of scaling
transformations (renormalization group) in real space,
Lee was able to calculate the conductivity for "compu-

FIG. 5. Cell-Mann-Low function P<t=z(g) found numerically by
Lee.42

ter" samples of much larger dimensions than in Ref s.
25-29. In his calculations the effective number of sites
wasAr = 25S2! Nevertheless, these calculations repro-
duced almost exactly the results of earlier studies.27>28

According to Lee,42 the minimum metallic conductivity
does exist in the d = 2 case and the constant in Eq. (2.6)
is 0.13. Moreover, Lee was able—in a sense—to cal-
culate also the "Gell-Mann-Low function" |3i=2(g-). His
results are given in Fig. 5. We can see that there is a
clear tendency for a kink and intersection of the abscis-
sa, and this is followed by /3i=2(^) = 0, i. e., "nonphysi-
cal" behavior predicted and this is represented by the
dashed curve in Fig. 4; this behavior ensures the ex-
istence of minimal metallic conductivity.10'

The question whether the one-parameter scaling
scheme of Abrahams, Anderson, Licciardello, and
Ramakrishnan33 is valid is thus still open. It is equally
unclear whether the renormalization group of Lee, as-
sociated with a numerical calculation, can reveal such
fine logarithmic effects which result in complete local-
ization in a two-dimensional space. In this connection,
we should mention an earlier investigation,43 where a
different scheme of numerical calculations yielded a
continuous metal-insulator transition for A — I, contra-
dicting the existence of the minimum metallic conductiv-
ity. However, no indications were obtained there for a
complete localization in a two-dimensional space.
Stein and Krey32 also found mobility edges in two-di-
mensional lattices but they pointed out that the precision
of their calculations was clearly insufficient to detect
weak logarithmic effects. In a later investigation,136

the same authors made detailed numerical calculations
of the conductivity of two-dimensional lattices and of a
three-dimensional lattice of the diamond type. Their
calculations were made by direct application of the Ku-
bo formula for the conductivity expressed in terms of
exact wave functions of an electron in an Anderson lat-
tice, employing a recurrent algorithm proposed in Ref.
137. The results obtained supported the existence of
the minimum metallic conductivity in the d = 2 and d = 3
cases. For d = 2, Stein and Krey136 obtained a universal
value a,,,„, = (0.11 ± 0. Q2)el/H, whereas for d-3 they
found that a,,,.,,, =(0. 07 ± 0. Ql)e2/Ka, where a is the lat-
tice constant. Stein and Krey136 made an attempt to de-
tect a logarithmic dependence of the conductivity on the
dimensions of the investigated system in the quasi-
metallic region assuming that d = 2, which was postu-
lated in Ref. 33. Such a dependence was not observed

9) The influence of these processes was also considered in a
recent study, 142 where similar results were obtained.

10) The work of Lee42 begins with the slogan "Down with the
gang of four!"
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within the limits of precision of the numerical method
as the dimensions of the system were increased from
50X50 to 100x100. However, this did not exclude com-
pletely the possibility that a logarithmic dependence
may be observed for large systems."'

Haydock138 used a recurrent method137 in an analytic
study of the behavior of the wave functions of systems
with a weak disorder. In the d = 2 case he found that
complete localization was possible for any disorder no
matter how weak. Interesting suggestions were made
concerning a possible physical meaning of the mobility
edges obtained in the majority of numerical and analytic
calculations for d = 2. In the d = 2 case these edges
probably separated regions of exponentially localized
states distributed, for example, at the band edges,
from regions of localized states with a power-law at-
tenuation of the wave functions with distance.26 Com-
plete localization is then retained for d = 2 but the tran-
sition to the quasimetallic region acquires a clearer
meaning, which should help in removing some of the
contradictions mentioned above.

3. CONDUCTIVITY OF THIN WIRES AND FILMS

We shall now consider the experimental manifesta-
tions of the localization effect. The recent progress
has been to predict a number of pronounced effects in
which localization plays the dominant role and these ef-
fects differ from fairly indirect manifestations of local-
ization considered earlier.1>2>5 One of such pronounced
effects permitting direct experimental verification is
the prediction27 of a universal minimum of metallic con-
ductivity for two-dimensional systems of Eq. (2.6).

Another remarkable result was obtained by Thouless44

in an analysis of the conductivity of thin metallic wires44

(similar ideas were also put forward by Adkins).45 This
result was extremely simple: in any metallic wire with
transverse dimensions much smaller than the length
and with an extrinsic resistance exceeding about 10-20
tel all the electron states are localized. Thus, any
sufficiently long metallic wire is "effectively" an insu-
lator (in the meaning of the ground state, i. e., at T
= 0)! In lact, we must now return to Eq. (2.5). We
have pointed out earlier that the right-hand side of Eq.
(2.5) is proportional to the conductance (reciprocal of
the resistance) of a finite system, i. e., the resistance
of this system is

V^. (3-D

l
L' JV (E)

JLJL/iJ __ L. '' M''-
2** L LA N (E) ~ to* RL

In the case of an ordinary metallic wire we have RL

= (L/a)L/A (L is the length of the wire and A is its
cross section), which is proportional to its length.
Then, (l/H)VL <xD/L2 represents the reciprocal of the
diffusion time of an electron along the whole length of
the wire. Hence, we find that [N(E) is the density of
states per unit volume]

which gives Eq. (3. 1). Therefore, it we select a suf-
ficiently long wire, we can easily satisfy the condition
WL/VL > (VL/WL)^, i- e- » we can achieve complete
localization. Beginning from this length, the resist-
ance increases exponentially with an increase in the
length of the wire. The length in question is governed
by the condition RL > const 'H/e1, where the constant
is44 ~2-4, i.e. , RL> 8-16 kSl. This surprising result
requires an explanation. One must point out the condi-
tions when the effect can become observable. Natural-
ly, if the temperature is sufficiently high, the localiza-
tion of electron states is unimportant because scatter-
ing by phonons (and other forms of inelastic scattering)
results in transitions between localized states well be-
fore an electron diffuses over a distance of the order of
the localization length and "learns" that it is localized.
However, cooling freezes out the inelastic scattering
processes. The localization length in our case is of
the order of the length of a wire whose resistance ex-
ceeds 2K/e2. If we use the Drude formula a = (nei/m)r
= (e^/K)pfl/3ir2 (pv is the Fermi momentum of an elec-
tron), it follows directly from this condition that

(3.2)

(3.3)

An electron diffuses over this distance in a time

ilht is pointed out in Ref. 143 that in the one-dimensional case
one should treat with caution the average Kubo formula for
the conductivity; further discussions of this problem are
given in Refs. 144 and 145.

where the diffusion coefficient is D~ (/4/3w2)r. Lo-
calization of electron states becomes manifest if

Tlnel > Tai!ti w. 4)

where l/TlOTl is the frequency of the inelastic scattering
events. This frequency is usually proportional to some
power of the temperature T* (p is an integer). For ex-
ample, the frequency of electron-phonon collisions in
contaminated samples is proportional to T4, whereas in
the electron-electron scattering case we have propor-
tionality to T2 (Ref. 44). It then follows from Eqs.
0.3) and (3.4) that the temperature at which localiza-
tion becomes manifest is inversely-proportional to VA
in the case when scattering by phonons predominates,
and inversely proportional to A when the electron-
electron scattering processes are more important.
Below the relevant temperature an electron may diffuse
over a distance of the order of R^, but not further as
long as a phonon (or another electron) does not produce
a transition to a different state. Consequently, in this
range of temperatures the resistance increases as a
result of cooling proportionally to some reciprocal of
the power of temperature: T"*/2 (Ref. 44). Cooling to
temperatures corresponding to the energy separating
random electron levels results in a transition to an ex-
ponential temperature dependence of the conductivity.
However, the estimates of Thouless for a wire of A
~2.5xlO"u cm2 cross section, an impurity-controlled
mean free path Z-5X10"8 cm, and/>F/7z=1.2xl08 cm"1

give Rlot,~ 0. 012 mm, and the condition (3.4) is already
satisfied at temperatures of the order of 1 °K for rea-
sonable estimates of the inelastic scattering frequen-
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cies. 12)

We shall now discuss a two-dimensional case when
again complete localization occurs according to Ref. 33,
i. e., when the static conductivity vanishes at T = 0.
The conductivity at T* 0 is discussed in Ref. 46. We
shall again carry out a qualitative analysis in the spirit
of Thouless.44 At T#0, an electron subject to inelastic
scattering processes may diffuse over a distance13'

L- ex Dr c = — II ( 3 5 )

where Zinel is the mean free path governed by inelastic
processes. Over a distance given by Eq. (3. 5) the co-
herence of electron states is lost (an electron loses in-
formation on its own state). This length can be regard-
ed as the effective length governing the conductivity
given by the two-dimensional formula (2.16) valid at
finite temperatures. It is possible that some other dis-
tance is the effective length.46 In fact, the processes
of inelastic scattering result in broadening of electron
levels by an amount of the order of #/i~tMl. Then, the
discrete nature of the levels with WLccN~l(E) [see Eq.
(2. 2) for d = 2] is unimportant when WLccK/Tlael and this
determines the length:

LI—L TlnelAr-i (E). (3.6)

The lengths Lt and L2 are proportional but not equal:
(L1/i2)

2cccr^/e2. Bearing in mind that Tlnel oc T~*, we
find from both estimates that L\n <x X"* and it follows
from Eq. (2.16) that the temperature dependence of the
conductivity of a two-dimensional film is46

Aa (T) ~ cojist ~ In -j-, (3.7)

i. e., the conductivity decreases logarithmically as a
result of cooling. Similar behavior follows from gen-
eralization of the work in Ref. 38 to the case of finite
temperatures. Further cooling should result in a tran-
sition from the logarithmic dependence (3. 7) in the
"metallic" region to the exponential temperature de-
pendence of the conductivity in the "insulating" region.

We shall now review the experiments designed delib-
erately to check these theoretical predictions. We shall
begin by considering evidence in favor of 30000 fi/n is
the maximum resistance of a metallic film.n The first
indication of the existence of such a limit was in fact
obtained back in 1914 (Ref. 47). A study was then made
of the resistance of platinum films as a function of their
thickness, governed by the duration of evaporation.
The resistance increased on reduction in the thickness
(reduction in the deposition time) and in all cases did
not exceed a value of about 28 000 Q/a, which was fol-
lowed by an abrupt increase to more than 109 O/D.
These results were later rediscovered by Licciardello48

and interpreted by him as supporting Eq. (2. 6). Simi-
lar results were obtained more recently.49-50 In par-

12) These estimates have been found to be over-optimistic146:
in the case of real systems the values of Tinel are consider-
ably smaller.

13) The length L 4 <* i"}/|] x T~p /2 determines, according to
Thouless,44 the above-mentioned temperature dependence of
the resistance of a one-dimensional wire: ccj>-*'/2

3
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FIG. 6. Dependence of the conductivity of a Bi film on its
thickness.49

ticular, Liang et oZ.49 studied the conductance of Bi
films; the dependence of the conductance of the film
thickness is plotted in Fig. 6. We can see that there is
a jump in the conductance in the region of 10"4 fi"1.
Similar results were also obtained by Anderson50 for
Au films.

One of the first investigations designed deliberately to
check the predictions of Ref. 27 was reported by Vul
et al. ,51 who studied conduction in thin high- conductivity
layers formed at grain boundaries in germanium bi-
crystals. 14) A two-dimensional network of edge disloca-
tions formed on these boundaries and such a network
represented (in germanium) a negatively charged sur-
face of partly filled bonds with adjoining layers with p-
type conduction and a thickness of a few tens of ang-
stroms. The electrical conductance of such layers was
investigated by Vul et a/.51 as a function of the grain
misorientation angle. A transition from the metallic to
the activated conduction was observed at o m _ m ~ 4 x l O ~ 5

SJ"1, in agreement with the estimates of Ref. 27.

The most thorough investigation of the conductance of
metallic films carried out with the aim of checking the
predictions of Ref. 27 was reported by Dynes, Garno,
and Rowell. 52 They studied films prepared by the
evaporation of Pb, Sn, Au, Al, or Cu on a substrate
whose temperature was kept near 4. 2 °K. The con-
ductance was measured directly in the apparatus used
to evaporate the films, which made it possible to in-
crease gradually the film thickness until it exhibited

FIG. 7. Temperature dependences of the resistance of thin
copper and gold films. The results demonstrate a transition
from the activated to the metallic conduction near 30 000 £2
(Ref. 52).
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FIG. 8. Field-effect transistor with an n-type channel. An
inversion layer is produced by applying an external potential to
the gate electrode.

metallic conduction. The transition from the activated
to the metallic conduction mechanism occurred near a
resistance of 30000 Si/a. Typical data obtained in
Ref. 52 are reproduced in Fig. 7. In the region of
activated conduction the resistance of Sn films varied
as exp(l/T), whereas in the case of Au and Cu films
the dependence was exp(l/-\Tr). Dynes et a/.52 pointed
out that films with such a high resistance could hardly
be homogeneous, i. e., they probably consisted of metal
"islands" linked by narrow channels or separated by
tunnel barriers. The predictions of Ref. 27 are gener-
ally applicable to a homogeneous system, but according
to the ideas put forward in Ref. 48, they are valid also
in the case of inhomogeneous systems.

Another system which would seem to be ideally suited
for investigating two-dimensional conduction is a
metal-oxide-semiconductor field-effect transistor
(MOSFET) with an inversion layer of carriers (Fig. 8).
This layer is created by the application of an external
potential to the gate electrode and the conductance of
the layer is measured directly between the source and
sink. Variation of the gate voltage makes it possible to
alter (within wide limits) the properties of the inversion
layer and, in particular, the carrier density in the lay-
er. An important property of such a system is the fact
that the carrier density can be found from electrostatic
calculations and it does not have to be deduced from,
for example, the Hall effect. A detailed review of the
experiments and physical phenomena in inversion layers
was published by Adkins,53 and we shall not discuss
them in detail. We shall simply mention that the re-
sults of such experiments generally disagree with the
predictions of the theory of localization in general and
with the conclusions of Ref. 27 in particular. The
transition from the activated to the metallic conduction
may occur at conductance values considerably higher

r,°K

FIG. 10. Behavior of the conductance of inversion layers with
low electron densities.53

than 3X10"6 JT1 (Fig. 9). However, results in agree-
ment with Ref. 27 are sometimes obtained (Fig. 10).
Clearly, these contradictory results arise from the fact
that the role of the electron-electron correlations in
inversion layers is important48-53 and this, in particu-
lar, gives rise to phenomena of the Wigner crystalliza-
tion type.53 Therefore, it is possible that inversion
layers are not a very convenient object for verifying the
theory of localization, which unfortunately does not al-
low for the role of the electron-electron interaction.

The first experimental investigations designed delib-
erately to test the predictions of Thouless44 on the con-
ductivity of thin metallic wires have appeared recently.
The very first studies54-55 failed to observe the effect.
The most convincing evidence in support of the localiza-
tion in wires was obtained by Giordano, Gilson, and
Prober.56 They prepared samples by an original litho-
graphic method (Fig. 11). A glass substrate, half-
covered by a metal film [Fig. 11 (a)], was bombarded
with Ar+ ions and this produced a step in the glass [Fig.
ll(b)]; then, the metal film was removed by chemical
means [Fig. ll(c)]. Next, a new metal film was evap-
orated [Fig. 11 (d)] and then the sample was subjected
again to the bombardment with Ar+ ions incident at an
angle such that the metal behind the step remained in
the shadow [Fig. ll(d)]. This produced a thin "wire"
[Fig. ll(e)]. An investigation of such wires with a
scanning electron microscope showed that they were
continuous strips of uniform cross section. The wires
used in that investigation were made of Au60Pd4o films
formed by two different evaporation methods, which
yielded films with a resistivity 3.7x 10"4 n. cm (and ra-
tio of the resistances at room temperature and at 12 °K
amounting to 1. 03), which were referred to as "con-
taminated" films, as well as films with a resistivity of

Metal film
-Glen

FIG. 9. Typical temperture dependences of the conductance of
an inversion layer.53 The different dependences correspond to
different electron densitites in the inversion layer. FIG. 11. Method of preparation of thin wires.56
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FIG. 12. Temperature dependences of the resistance of wires
of different cross sections. The results given for each sample
are normalized to the resistance at 10°K. The numbers above
the curves give the values ofjA. The lowest curve shows the
behavior of a continuous film.56

1. OxlO"4 n. cm (and a resistance ratio 1. 06), which
were referred to as "pure" films. The cross sections
of the wires varied from 1 x 10"11 cm2 to 3 x 10'10 cm2.
The values of the cross section A were deduced from
the known lengths and resistances of the wires and the
values of A found in this way were in good agreement
with those expected from the known heights of the steps
and film thicknesses. The At^Pd^ films had thickness-
es from 200 to 1000 A before the Ar+ bombardment.
The resistance of the wires was from 15 to 500 ktl and
their length was from 90 to 450 fi.

Figure 12 shows the temperature dependences of the
resistance of various contaminated wires with different
cross sections. Figure 13 demonstrates how the resis-
tance rises (at a fixed temperature T = l. 5°K) as a func-
tion of the cross section A in the case of contaminated
and pure wires. The increase in the resistance of a
continuous film is subtracted here (the origin of this in-
crease is not clear and it may even be due to two-di-
mensional localization).15) We can see that the resis-
tance increases in accordance with the law A'1 and that
the resistance is higher for the contaminated wires.
Thus, the results obtained are in qualitative agreement
with the predictions of the theory of Thouless.44

The temperature dependence of the resistance of a
typical wire is shown in Fig. 14. Here again the effect
of a continuous film is subtracted. We can see that the
temperature dependence is approximately logarithmic

200 SCO

FIG. 13. Resistance plotted as a function of the cross section
for contaminated (black dots) and pure (open circles) samples.
The curves are proportional to-A"' (Ref. 56).

15) This is confirmed by recent Investigations.146
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FIG. 14. Resistance plotted as a function of the logarithm of
the temperature of a contaminated wire with A = 3.6* 10"u

cm2 (/A = 590 A).56

although, according to Ref. 56, we cannot exclude the
possibility that the dependence is of the 71'1'2 type.
This behavior is not in agreement with the power-law
increase in the resistance (of the T~2 type due to the
scattering by phonons) as a result of cooling, predicted
in Ref. 44. This disagreement may reflect insufficient
understanding of the inelastic scattering processes and
not shortcomings of the theory of localization, especial-
ly as the dependence of the effect on the geometric di-
mensions (cross section A) clearly supports the theory.
It should be stressed that the ideas of Thouless on the
power-law rise of the resistance are somewhat qualita-
tive. 16)

We shall now consider the results obtained in another
investigation57 designed deliberately to check the pre-
dictions of Thouless.44 "Wires" studied in Ref. 57
were actually thin films of length L, width B, and thick-
ness C, where L»B»C.il} Such samples should
either exhibit one-dimensional behavior predicted by
Thouless44 or two-dimensional behavior predicted by
Abrahams, Anderson, Licciardello, and Ramakrish-
nan.33 Dolan and Osheroff57 investigated films whose
resistance was Rc < 30 000 ft/a (known as the Licciar-
dello-Thouless limit27). The behavior of these films
should be two-dimensional if the resistance is below
this limit (metallic region) but Z,t °c ̂ Drlml < B and/or
Li" V TlMl/K/J~N(E) < B [compare with Eqs. (3. 4), (3.5),
and Ref, 46], i. e., under the conditions such that an
electron "does not know" that it is in a "one-dimension-
al" wire.

Films of the composition 58 wt.% Au and 42 wt.%
were prepared on substrates which were mostly made
of polished sapphire (and kept at room temperature).
Long and narrow strips were obtained by a modification
of the lithographic method suggested in Refs. 58 and 59.
The film thicknesses were (2-4)xlO~' cm and, there-
fore, they almost certainly consisted of separate metal
islands, the resistance being governed by the tunneling
between these islands.52 This inhomogeneity was un-
important provided the films were homogeneous over
distances of the order of Rlac of Eq. (3. 2), as well as
LI, L2, and B. Measurements were carried out down
to temperatures of ~10x 10"3 °K. Nonmetallic behavior
was exhibited by the temperature dependences of the

16) As pointed out earlier, simple estimates44 clearly exag-
gerate the value of Tinei, which explains the relative dif-
ficulty of observation of the localization effects and their
small magnitude.146

17) Samples withi = 2-7 mm, B = 0.1-1^, and C « 3xio~7 cm
were investigated.
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resistance and by the nonlinear dependence of the re-
sistance on an external electric field (voltage). These
resistance dependences could be described by the fol-
lowing formulas:

g)(l_SrlnJL) (3.8)

(3.9)

in the case of low fields E, and

R(T, E) = R(T, B0)l-Svln-~

in the case of low values of T, where T0 and £0 are
arbitrary normalization points, and Sr and Sv are ex-
perimentally determined parameters.

Figures 15 and 16 give the experimental results ob-
tained for one of the samples in Ref. 57.

This behavior was interpreted in Ref. 57 in the spirit
of predictions of Abrahams, Anderson, Licciardello,
and Ramakrishnan,33 i. e., as associated with complete
localization in a two-dimensional system [compare with
Eq. (3.7)]. It was concluded that the investigated sam-
ples which exhibited behavior of the type described by
Eqs. (3.8) and (3.9) were two-dimensional. The non-
linear dependence on the field of Eq. (3.9) was ex-
plained in Ref. 46 by a mechanism involving electron
heating. It should be pointed out that no nonlinear de-
pendences on the external field were observed in Ref.
56; it was concluded there that this difference was due
to inhomogeneities of the samples in Ref. 57. A sur-
prising result reported in Ref. 57 was the saturation of
the logarithmic dependence of R(T, 0) at temperatures
below 70X10"3 °K. This could not be explained theo-
retically on the basis of the interpretation of Abrahams
et oZ.33 The effect in question could be due to quite dif-
ferent factors (for example, the role of electron-elec-
tron correlations).

The results discussed above were obtained for films
with a resistance of 1000-5000 SJ/o and a width of the
order of 1 n. In the case of two samples with a resis-
tance exceeding 10 fcO/n and several samples with a
lower resistance but a width of the order of 0.1 pt the
resistance R(T, 0) increased exponentially with 1/T, but
saturation was again observed in the region of 70
x 10"8 °K. An exponential dependence of the localization
at such very low resistances was another aspect that

-/ -0.6 -0.2 0.2 a.s t.o W
loglVM mVI

FIG. 15. Dependence of Afi = KV/D-R^] /flc on the logarithm
of an external voltage In V plotted for different temperatures.
Here, / is the current, V is the voltage, and fl0 is the resis-
tance of a sample at T= 1°K (Hef. 57).

-0.4 -0.2 O.2 0.4
lj (T/I'K)

FIG. 16. Dependence of the resistance at low values of V,
deduced from Fig. 15, on InT (Ref. 57).

could not be explained from the theoretical point of
view.

There have been preliminary reports60 of observa-
tions of the logarithmic temperature dependence of the
resistance of inversion layers in field-effect transis-
tors.18> According to Ref. 60, an additional analysis of
the results of Dynes et a/." obtained for the "metallic"
region revealed a similar logarithmic dependence.
This slight rise of the resistance on cooling was not ex-
plained earlier, because the results were plotted on a
logarithmic scale (of the conductance; see Fig. 7).

It is thus clear that the available experimental data
indicate a qualitative agreement with the predictions of
the theory of localization, but—in our opinion—these
results are insufficient for reliable selection of a spe-
cific theoretical model. We cannot exclude also the
possibility of a different interpretation. We should
mention in this connection the work of Al'tshuler and
Aronov61 proposing an original mechanism of the in-
crease in the resistance as a result of cooling, associ-
ated with interference between the Coulomb interaction
of electrons and the impurity scattering. Generaliza-
tion of the treatment given there to the d = 2 case gives
rise to corrections to the conductance, which are loga-
rithmic functions of temperature of the same type as
the effects of two-dimensional localization.62>63 This
demonstrates the need for further theoretical analysis
and new experiments. In particular, it would be very
useful to carry out measurements in a magnetic field,
including those of the Hall effect in the "metallic" range
of two-dimensional films. Measurements of the Hall
effect in inversion layers have in fact stimulated a
proposal for a new interpretation of the phenomena in
such systems.53 The negative magnetoresistance ex-
hibited by these systems64 has been attributed41 to the
suppression of two-dimensional localization by an ex-
ternal magnetic field and by the effects of the spin-
orbit scattering as well as the scattering accompanied
by spin flipping.39"11 We should mention, however, a
recent investigation139 of the resistance of wires made
of an amorphous W-Re alloy. These wires were pro-
duced from amorphous W-Re films of 50 A thickness
by electron-beam lithography. 14° The wires were di-
vided into two groups in accordance with their width;
from 700 to 5000 A and 2X10"3 cm. A detailed investi-

18> The results of experiments on inversion layers in Si were
reported in detail in Ref. 141. They were very similar to
the results given in Ref. 57.
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gation confirmed in practice all the results of Ref. 56
and demonstrated a nonmetallic temperature dependence
of the conductance of these wires19' as well as a depend-
ence of the conductance on the wire cross section for
samples whose resistance considerably exceeded 10
k£l. Measurements in an external magnetic field gave
particularly interesting results. Application of a 4
x 104 G field (either parallel or perpendicular to a wire)
resulted at T< 20°K (i. e., in the range of temperatures
where the localization effects appeared) in a fairly
strong rise of the resistance. The effect of a perpen-
dicular field was greater. These results supported the
conclusion that an external magnetic field aids the man-
ifestation of localization effects.20)

4. DOES SCALING EXIST AT A MOBILITY EDGE?

The presentation of the theory in the preceding sec-
tions was fairly elementary. We will try to avoid a
false impression that the theory of localization is sim-
ple by reviewing briefly attempts to construct a "consis-
tent" scaling theory of localization in the vicinity of a
mobility edge and by reviewing the problems encoun-
tered in this approach. A scaling theory is understood
to be a consistent derivation and verification (or re-
jection) of assumptions of the elementary theory pre- .
sented in Sec. 2, calculation of the critical index of the
localization radius and of other critical indices de-
scribing the behavior of the correlation functions of the
electron system (if such indices can be introduced at
all), calculation of such functions (Green's functions),
etc. In other words, it would be desirable to "raise"
the scaling theory of localization from the qualitative
level of the Kadanoff constructions20 to the level of a
quantitative theory and to the level of the modern theory
of critical phenomena.21"24 We shall show that this
task is far from being complete and this is due to the
fact that difficulties of fundamental nature are encoun-
tered.

The ideas for a consistent scaling description of a
mobility edge were put forward soon after the appear-
ance of the modern theory of critical phenomena and
were formulated practically simultaneously by a number
of authors.65"72-24 There is now an extensive literature
on various aspects of this problem. 73~86

There are two alternative ways of constructing a the-
ory of localization rigorously. One of them (used until
recently to obtain all the main conclusions) is based on
the pioneering work of Anderson3 (Anderson approach).
The main feature of this approach is its familiar de-
parture from tradition involving a discussion of random
configurations of the Green's function system of an
electron in the model of (1.1) not averaged over an en-
semble. In a sense, this approach considers the *nost
probable Green's function.15>16 This is due to the fact

19) A subsequent investigation of W-Re wires in the super-
conducting state148 made it possible to determine directly the
value of Tlnel, which agreed well with the localization ef-
fect.

2°) A similar result was obtained in Ref. 146 for films, but no
influence of a magnetic field on wires was detected.

that a one-particle averaged Green's function does not
(as is well known3"6-12-15-18) give, in principle, any in-
formation on a possible localization of electrons, but
we can study localization by considering the divergence
of a stochastic perturbation theory series for a non-
averaged one-particle Green's function.3'12 The condi-
tion for convergence of this series determines, in par-
ticular, the position of the mobility edges in a
band. 3"6>12>13 This condition is so far the only way of
determining the mobility edges analytically (a somewhat
different method proposed in Refs. 87 and 88 is related
genetically to the same original Anderson approach).

Another approach to a theory of localization, put for-
ward in the well-known paper of Edwards89 (Edwards
approach), uses Green's functions averaged over an
ensemble of random configurations of a system. The
advantage of this approach is its familiar "automatism"
(availability of the diagram technique). Averaged
Green's functions determine, in principle, all the phys-
ical quantities in the theory (this is not true of the most
probable Green's function in the Anderson approach),
but in order to investigate localization (static conductiv-
ity at T = 0) we have to find the averaged two-particle
Green's function of an electron.89-90 This immediately
makes the problem very complex. It has been solved
only for the one-dimensional case.10'11 Nevertheless,
the traditional nature and convenience of this approach
makes it a favorite with the majority of theoreti-
cians.21' Recent investigations91-92 carried out using a
self-consistent variant of the traditional method have
yielded a number of interesting results (including com-
plete localization in the d = 2 case). However, some of
these conclusions (such as the presence of a gap in the
absorption spectrum at low frequencies) have met with
objections.

The Anderson approach allows us to obtain quite sim-
ply scaling at a mobility edge68 in the sense of the usual
theory of critical phenomena.21"24 This is because the
spatial behavior of the Anderson most probable Green's
function is governed entirely by the statistics of inter-
section-free paths in the investigated lattice,3'12>93'94

i.e., it is a purely geometric problem. This is related
to a summation of the perturbation theory series for V
in the case of the Green's function of the Hamiltonian
(1.1) allowing for multiple scattering processes.3-12

The main approximation made after this summation is
the restriction of the discussion to just one initial
Green's function, although one of the results of the
summation is an infinite number of similar series for
the auxiliary Green's functions.3-12 This is due to the
assumption of identical stochastic properties of all
these series. The higher approximations3-12> 13 relating
to the statistical properties of a series and various
ways of estimating its convergence clearly influence
only the positions of the mobility edges in a band and
are unimportant in our case. Consequently, a nondiag-
onal (with respect to the lattice sites) matrix element of

21) This duality in the theory of disordered systems is re-
flected in the dialogue between the "author" and "a theore-
tician" in the review by Efros.6
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a one-electron Green's function can be represented in
the form93-68

Gts(E)~ 2 Zx(Rt-R1)K-NFN(E, •£), (4.1)

where F(E, W/V) is the localization function determin-
ing the position of mobility edges in the band:12'13

F(EC, £) = i, (4.2)
and ZKfa.f- P.J) is the number of intersection-free paths
consisting of N steps connecting a site i to a site ;'; K
is the connectivity constant of the lattice InK
= lim^. N"1 In ZH, ZK is the total number of intersec-
tion-free paths consisting of N steps. The values
ZK(EI - Ry) obtained as a result of computer calcula-
tions were used in Ref. 93. The main idea of Ref. 68
was to deal with Eq. (4.1) by applying an analytic theo-
ry of intersection-free paths based on the theory of cri-
tical phenomena proposed by de Gennes95 and des Cloiz-

96eaux. "• According to Refs. 95 and 96,

ZW(R,-R,) (4.3)

i. e. , this quantity is found by inverse Laplace trans-
formation of G(R,- R^;T) which is a correlation
(Green's) function in the theory of critical phenomena,
governed by the usual fluctuation-free Landau energy
with an n-component order parameter22"24:

- 0 « > < 2 ; (4.4)

here, g§ > 0, which corresponds to "repulsion" of in-
tersection-free paths and a is the lattice constant. The
statistics of intersection-free paths is derived from
Eqs. (4. 3)- (4. 4) by going to the limit n — 0 (Refs. 95
and 96). This eliminates loop graphs, which do not oc-
cur in the problem of intersection-free paths. Using
Eq. (4.3), we obtain directly from Eq. (4. 1)

Gij(E)\ -G R ,— R,
(4.5)

i. e. , the spatial behavior of the Anderson Green's func-
tion in the theory of localization is governed by the cor-
relation function of the standard theory of critical phe-
nomena (4.4) (with « = 0) and the mobility edge corre-
sponds to the phase transition point. Near the mobility
edge [i. e. , for W/V & (W/V)C or for E s Ec] the Green's
function decreases exponentially with the distance:

G , , o c e x p ( — -

where the localization radius is

*,oc~ of-

fer localization at the center of a band and
c-E \ -v

(4.6)

(4.7)

(4.8)

for localization in the E-&EC case. The critical index
of the localization radius v is identical with the critical
index of the correlation length in the theory of critical
phenomena. In terms of the Wilson e expansion22 (d = 4

- e, n = 0) we have
1 . e , 15e« . for " = l (d=*=3) . (4.9)

A numerical calculation of the statistics of intersection-
free paths gives i<*0.6 (Ref. 93). For W/V=(W/V)
or E=EC, we have

Gtl ~ | R; - R, |-("-^i), (4. 10)

where the index TJ obtained within the framework of the
e expansion (d = 4- e, w = 0) is22

for e = l(cf = 3). (4.11)

Such very small values of r\ mean, in particular, that
the power-law localization68 proposed for the Anderson
model in Ref. 26 is impossible. The values of the in-
dex v can also be very important. According to Mott,97

a conductivity jump at a mobility edge (i. e, , the mini-
mum metallic conductivity) can occur if the inequality
v> 2/d is satisfied. It follows from Eq. (4.10) that
v < 2/d; this may mean a continuous fall of the conduc-
tivity to zero, analogous to that discussed in connection
withEq. (2.13).

Unfortunately, since the Anderson Green's function
does not determine (as pointed out above) physical quan-
tities such as the density of states or the conductivity,
we cannot go far beyond the results obtained. More-
over, although the localization radius does occur in
several formulas (for hopping conduction, high-fre-
quency conduction between localized states, etc. )/ it is
not very clear whether there are direct experimental
methods for determining it and the index v\ this applies
even more to TJ. It should be mentioned only that an in-
crease in Rloc on approach to a mobility edge may affect
the diamagnetic susceptibility of a system. 98

We can find directly the most important physical
quantities by turning to the calculation of the averaged
Green's functions (Edwards approach). By way of ex-
ample of the problems encountered here we can de-
scribe the familiar model of an electron in a Gaussian
random field (see, for example, Refs. 99-102), which
proceeds from the usual problem of an electron in a
system of randomly distributed point scatterers in the
limit p — • «°, 7— 0, pV2 — const, where p is the density of
the scatterers and V is the scattering amplitude. 1C1 It
is easy to formulate this model in terms of a
language similar to the theory of critical phenome-
^24,67,68.70-72.75, 76 Qr> more exactlyj simiiar to the un-
stable field theory of a specific type. The main con-
clusions reached in these investigations largely overlap
and we shall follow the treatment in Refs. 70 and 76.
It is found that the averaged Green's function of an elec-
tron in a Gaussian random field (with a "white noise"
correlation function) can be defined as the Green's func-
tion of a Euclidean scalar field theory with the following
Lagrangian [compare with Eq. (4. 4)]

E' = E ± 16,

where m is the mass of an electron and E is its energy.
The number of field components approaches the limit

108 Sov. Phys. Usp. 24(2), Feb. 1981 M. V. Sadovskii 108



n — 0, which again excludes "loop" graphs which do not
occur in the Edwards diagram technique. 89 It should be
pointed out that Eq. (4. 12) does not contain random pa-
rameters. This is an "effective" Lagrangian, which
yields directly the diagram technique for the averaged
Green's functions. A Green's function is defined by the
functional integral

G (r- r' Iff = -

where

) = _-*- Hm -1 £ \
n-*0 . . «*

(4.13)

S [d>] = f A*rX (r) (4. 14)

is the action in the field theory in Eq. (4.13) and

Z = J {6<I> (r)} e-s[*l. (4. 15)

The functional integral (4.13), corresponding to the La-
grangian (4.12), diverges in the case of formal calcula-
tion because of the "incorrect" sign of the coupling con-
stant g = -pVl < 0 (attraction!). This reflects the fa-
miliar instability of the ground state in field theory LEq.
(4.12)].103 Therefore, the functional integral should be
regarded as an analytic continuation with respect to the
coupling constant from arbitrary values g> 0 to g
= -pV2 < 0. Analytic properties of the Green's func-
tions in the field theory gvs4 in the complex plane of the
coupling constant are given by the following dispersion
relationship applicable to this constant:104"106

JL ? di-ia. (4.16)

where

2i

i. e., the Green's functions in this theory are analytic
with respect to the coupling constant in the complex
plane with a cut along the negative part of the real axis
and &(g) is a discontinuity at the cut (which differs from
zero for g<0) which in this approach governs all the
principal properties of the Green's functions.

The functional integral (4.14) can be analyzed by the
steepest-descent method.108"110 This can be done by
considering first the classical field equations corre-
sponding to the Lagrangian (4.13):

i
2m

1 / vn \
/ 1 2~P J\^ 'I' (4.18)

In the method of steepest descent we shall be interested
in the solutions of Eq. (4.18) with finite action (4.14)
(instantons).106"110 In this problem the important solu-
tions of Eq. (4.18) are spherically symmetric of the
type

(D, (r) = CD0 (r) u, (4. 19)

where u2 =1 is a unit vector in "isotopic" spin space of
the O(M)-symmetric field theory under discussion. In
this model such solutions exist for d< 4 if E< 0 (Refs.
75 and 76). These solutions have the form

(4. 20)

where x and t are dimensionless variables. The ex-
plicit form of xW is known only for d = l but it is easy
to show that

(4.21)

If £ > 0 there is only a trivial solution of Eq. (4.18)
with a finite (equal to zero!) action $0W = 0. Therefore,
the steepest-descent method of calculation of the func-
tional integral (4.13) reduces in this case to the conven-
tional perturbation theory. In the space with <f = 4- e
dimensions there is a dominant sequence of diagrams
known as the parquet pattern.lu-112 if we analyze the
problem in this parquet approximation,70 we find that be-
cause of the incorrect sign of the coupling constant the
effective vertex (a "four-leg" vertex) has an apparent
pole in the theory under discussion and this pole corre-
sponds to the inapplicability of perturbation theory in
the energy range (#=1)

«<«--=T(CT)AI"). (4.22)
where « = (w2/2ir2)py2a4":! is a dimensionless interaction
constant and a is a constant with dimensions of length
(the shortest length in the problem, corresponding to
the correlation radius of a random field70-76). The
quantity EK is an exact analog of the "Ginzburg" critical
range in the theory of phase transitions.24-113 The ex-
istence of such a range in the problem of an electron in
a random field was first pointed out in Ref. 65. How-
ever, in contrast to the theory of critical phenomena,
the transition to this energy range does not result in
weakening22"14 but in enhancement of the effective inter-
action70 (transition to the tight binding range). The per-
turbation theory parameter is the dimensionless ratio
(£/£sc)

(i"l)r2 and in the limit E ~ 0 we find that pertur-
bation theory is no longer valid and its formal applica-
tion gives nonphysical results.70'71 This has been
pointed out already in Ref. 68 and was expressed in
Ref. 72 in terms of the recurrent formulas of Wil-
son,22-23 because of the absence of fixed points of these
equations in the problem under discussion.

In the range E < 0 an important role is played by non-
linear solutions (instantons) given by Eq. (4. 20). The
occurrence of these solutions gives rise, in the calcula-
tion of the functional integral by the steepest-descent
method,75-76 to the appearance of contributions which
are nonanalytic with respect to the coupling constant
and are of the type (Ad = const)

,,-rf/!

\E\ (4.23)

first obtained by Zittartz and Langer.114 In particular,
in the momentum representation, we have

(4. 24)
•where C(£p) is some function of E and p independent of
the coupling constant and the power of the coupling con-
stant in the preexponential factor is governed by the
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number of "zeroth modes" of the instanton solution. 75'76

Knowing ImG^pl-pV2), which represents the jump
across a cut, we can reconstruct the real part from
Eq. (4. 16). The method of calculation of C(Ep) based
on the use of the dispersion relationship for the coupling
constant (4. 16) and on the correspondence with the the-
ory of critical phenomena is proposed in Ref. 76. The
form of this function is determined in Ref. 75 from di-
mensional considerations. I f d = l, both methods give
the result for the density of states identical with the ex-
act solution of Halperin. 115 If d> 1, the results for the
preexponential factor given in Refs. 75 and 76 are dif-
ferent.22'

The criterion of validity of the results of the (4. 24)
type is the large value of the argument of the exponen-
tial function, which again reduces to the condition IE I
»EM (Refs. 70, 71, 75, and 76), which should be com-
pared with Eq. (4. 22). Thus, a "Ginzburg" critical
range appears also on the negative energy side. It is
the range l£l«E8C that is of interest from the point of
view of the scaling theory of localization (the mobility
edge of the problem in question is located there), but an
analysis of the phenomena in this range of strong (or
intermediate) coupling is inaccessible to the current
theory. A hypothesis of the possibility of the conven-
tional scaling behavior of the theory in this range of en-
ergies (in spite of the "incorrect" sign of the coupling
constant) is put forward in Ref. 76 on the basis of the
universality of a jump across a cut in the dispersion re-
lationship (4. 16) [the same function A(z,£p) governs
the behavior of the correlation function in the problem
of an electron in a random field corresponding to g< 0
in Eq. (4. 16) for l£l«£,c and the usual scaling behav-
ior of the correlation function in the theory of critical
phenomena corresponding to g> 0 in Eq. (4. 16)]. This
would lead, in particular, to the usual values for the
critical indices (4.9) and (4. 11). Then, the derivative
of the density of states with respect to the energy ac-
quires a singularity of the type encountered in the spe-
cific heat76 in the theory of phase transitions. However,
Wegner84 suggested that such values of the indices are
in conflict with the inequalities that follow from analytic
properties of the Green's functions.23'

The problem of calculating the conductivity (two-par-
ticle averaged Green's function) requires an analysis
not of Eq. (4. 12) but of a different effective Lagrangian
of two interacting zero- component (n — -0, m — 0)
fields72- 75 (E'=E + f 6, E"=E- f 6):

= -T S [sr T- 2 [^(

(4>25)

22' See also a discussion of the problem of the preexponentiat
factor in Ref. 149,

Z3) The author of the present review does not agree fully (see
Ref. 150) with the arguments in Ref. 84, but the assumptions
in Ref. 76 remain unproven and should be regarded as a
hypothesis.

where o> is the frequency of an external field [we are
speaking here of the conductivity <r(<*>)]. This Lagrangi-
an yields directly (for n — 0, m — 0) a sequence of di-
agrams that determine conductivity in the Edwards
problem. 89'9a The expression (4.25) has the O(n)xo(w)
symmetry in the isotopic spin space. In the limit co — 0
this symmetry reduces to the O(m + n) symmetry.116

The importance of this circumstance for an electron in
a random field was recently stressed by Wegner81'8Z

(see below).

Unfortunately, the use of perturbation theory in the
problem (4. 25) gives rise, as indicated by a direct gen-
eralization of the results of Ref. 116, in the parquet
approximation for n — 0 and m — 0 to the same nonphys-
ical singularities in the vertex parts as in the case of
the simpler problem (4.12) with the one-electron
Green's function, which again indicates that perturba-
tion theory is inapplicable. This result was obtained in
Ref. 72 in terms of the recurrent Wilson formulas.

The range E < 0, IE l» Eac for Eq. (4.25) was consid-
ered in Ref. 75, where electron localization was demon-
strated for this range but the conclusions were basically
preliminary. It is interesting to note that the localiza-
tion is associated with the appearance of zeroth modes
of the instanton solution.

We can envisage also a different approach to the prob-
lem of calculation of a two-particle averaged Green's
function (conductivity) based on the use of a different
effective Lagrangian and of an analogy between local-
ization and a transition to a spin glass state.m"119 A
"fluctuating field" ("order parameter") is then of tensor
(matrix) nature. Unfortunately, when variants of this
approach are used, the direct link to the usual Edwards
diagram technique89 is lost, contrary to the case when
the effective Lagrangians (4.12) and (4. 25) are used and
this link is retained. The renormalization group analy-
sis of the tensor Lagrangian proposed in Ref. 73 dem-
onstrated the existence of a stable fixed point in the re-
current formulas corresponding to the usual critical
Wilson indices (n = 0) of Eqs. (4.9) and (4.11), but this
point is inaccessible by physical variation of the pa-
rameters of the system.

It is pointed out in Ref. 74 that the effective Lagran-
gian73 does not include all the possible invariants of the
corresponding tensor field. An attempt is made in
Ref. 74 to relate the problem of conduction in the two-
dimensional Anderson model to the critical behavior of
a planar XY model. 12° In particular, a conductivity
jump at a mobility edge is obtained there and for the
d = 2 case it is given by

e' K(TC) 1 «!
 n .n. t* /, OR\

°mm = -jr—^—=~^~r »u-iui-s-t I«.^D;

which is in good agreement with the Licciardello-Thou-
less result of Eq. (2.6) (Ref. 27). Such a jump is as-
sociated in Ref. 74 with the universal jump of the coef-
ficient of spin-wave rigidity ff(Tc) = 2/7r in the two-di-
mensional XY model, discovered by Nelson and Koster-
litz. m However, it should be pointed out that the ar-
guments used in Ref. 74 are fairly approximate and the
result (4.26) is obtained from calculated estimates.
The attainment of the relevant fixed point in the XY
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model is not demonstrated in Ref. 74. Moreover, there
are some doubts about the validity of the results of Nel-
son and Kosterlitz (see Ref. 122). Qualitative argu-
ments in favor of the scaling law (2.13) for the conduc-
tivity in the d> 2 case are also given in Ref. 74.

An original approach to the problem in question not
based on perturbation theory is proposed in Refs. 77
and 78. A detailed presentation of the proposed method
is given in Ref. 123, where it is applied to statistics of
polymer chains. In these investigations it is also point-
ed out that there is a region of strong coupling of the
ESC type given by Eq. (4.22). Moreover, inequalities
are obtained there for the critical index of the conducti-
vity in the law (2.13). These inequalities admit77 the
existence of a minimal metallic conductivity in the case
of d = 2 but not d = 3.

Wegner69 was the first to derive the scaling law for
the conductivity (2.13). He developed an analytic
scheme for transformation of the renormalization group
in real space applicable to the Anderson model and
analogous to the Thouless scheme.4'25"29 Two alterna-
tive types of critical behavior are proposed in Ref. 69,
but the selection between them cannot be made by the
methods discussed in that paper. The scaling law
(2.13) is obtained in both variants but in what is known
as the inhomogeneous case the derivative of the density
of states has a singularity at a mobility edge and this
singularity is of the same type as that encountered in
the specific heat in the theory of critical phenomena
(compare with Ref. 76). In the homogeneous case the
density of states has no singularity at a mobility edge;
for this reason in more recent papers81"83 Wegner pre-
fers this variant of critical behavior. However, it
should be pointed out that there are no rigorous theo-
rems (see Ref. 4) which would forbid a weak singularity
in the density of states at a mobility edge, although
most authors regard the occurrence of this, singularity
as not very likely. A method for calculating the critical
indices is not given in Ref. 69 and there is no proof that
the corresponding fixed points of the equations of the
renormalization group are attainable.

In recent investigations79'80 Wegner discussed an in-
teresting model of an electron in a random lattice with"
n levels at each site. For each site there are n eigen-
functions Ija) (a= 1,2, — , n), where n is regarded as
large and l/n is the small parameter of the theory.
The intention is to construct an analog of the 1/w ex-
pansion in the theory of critical phenomena24 and apply
it to the problem of localization.

The Hamiltonian of the model is

>*. # i <•« (4. 27)

a
where the matrix elements /'ja_ je are regarded as inde-
pendent Gaussian random variables satisfying the condi-
tion of symmetry and reality: fta.1it=f£iJg=fina.
Their average values are regarded as zero and the vari-
ance is given by

The Hamiltonian (4.27) represents a generalization of
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the Anderson model and it includes, not only n orbitals
per site, but also disorder in the transport integrals.

Since the matrix elements/(a^6 are independent and
have a symmetric distribution, the probability of finding
a system with the specific Hamiltonian given by Eq.
(4. 27) is equal to the probability of finding a system
with

(4. 29)

where S(0 =±1. If *0(j) is an eigenfunction of Eq.
(4. 27), then Siaya(j) is an eigenfunction of Eq. (4. 29).
The system is invariant under local changes in the sign
of the wave functions at a site. This variant of the
model discussed in Refs. 80 and 81 is known as a local
gauge-invariant model. The local gauge invariance im-
parts the following property to the Green's functions:

(f • (F'\} c o. //"* . (/?\ \ (A ^ (\\

which shows that

<G,.a, ^ (E)) = G (E) 60-6ap; (4. 31)

here, the angular brackets represent averaging over
random variables of the system. Thus, in this model
a one-particle Green's function is of the "point" type
because of random fluctuations of the phases of the wave
functions. Similarly, a two-particle Green's function
vanishes if the four sites defining it are not pairwise
coincident.

In the limit n = <° the model has an exact solution80 and
the results of this solution are identical with the results
of application of the coherent potential approximation124

to this model. In this case there are no mobility edges
and the density of states is

f_2_
) = •[»**'•

[EKE,,,
\E\>Et,

(4.32)

where £o = 4£^A/i_j, i.e., the density of states is pro-
portional to the variance of the matrix elements of the
Hamiltonian (4. 28), and z;0 is the volume of a unit cell.
The static conductivity (at T = 0) is

-£), (4-33)

where R1='%lR*uMMflllMM represents the radius of
action of random correlations and a is the lattice con-
stant. The last equality in Eq. (4.33) applies to the
case of the "short-range" variance of the matrix ele-
ments R ~ a. Thus, the conductivity vanishes at a band
edge.

If we begin from the exact solution for n = °°, we can
develop a systematic (although cumbersome) procedure
for calculating the corrections in powers of 1/w (Ref.
80). This gives rise to an interesting but not fully un-
derstood analogy of the behavior of two-particle
Green's functions in this model with the behavior of the
longitudinal and transverse susceptibilities of an iso-
tropic ferromagnet below the phase transition point.80'82

The conductivity may be represented by the following
series in powers of 1/n:
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where the coefficients vt are finite for d> 2 and diverge
no faster than (d- 2)"* in the limit d —2. If we retain in
Eq. (4.34) only the most diverging terms of the order of
n~'(d- 2)"* and ignore terms of the order of n~*(d- 2)"'
with t' < t, we find that

(1 — 2v + 0 (v3)),

where

T =

(4.35)

(4.36)

This expansion is valid in the range of delocalized
states [this is the zeroth approximation for Eq. (4. 33)].
A mobility edge should appear at some value r = yc,
when the static conductivity vanishes; the metallic re-
gion corresponds to y < yc. Clearly, in view of the con-
vergence of Eq. (4.36) in the limit if — 2, the latter in-
equality is never satisfied in the two-dimensional case.
This is in agreement with the results of Ref . 33. If we
assume that

o.w^l-JL)1, (4.37)

we find that a comparison with Eq. (4. 35) gives rc = 1/2
and the critical index of the conductivity is

i = 1. (4. 38)

If, following Ref s. 33 and 69, we assume that s = (d
- 2)c, we find that the critical index is

v=7^, (4.39)

which is identical with the first term of the expansion
(d = 2 + e) for an isotropic ferromagnet. us-m However,
as pointed out earlier, the reason for this analogy is
not understood.

In Refs. 81-83, Wegner draws attention to the cir-
cumstance, mentioned above in connection with the ef-
fective Lagrangian (4. 25), that the frequency of an ex-
ternal field u> in the conductivity problem acts as a
source ("field") which disturbs the O(n + m) symmetry
of the problem and

= 1 [G (rr, E+ ifi) -G (rr, £_ *6)] =-y »0 N(E),

(4.40)

i. e. , the density of states acts as the "order parame-
ter" which disturbs this symmetry. This analogy is
unusual, since it is normally assumed that the density
of states N(E) remains finite at the mobility thresh-
old81-82 in contrast to the order parameter at the phase
transition point. Then, assuming that the critical in-
dex 0 of the order parameter vanishes and employing
the usual scaling relationship 0 = (v/2) (d - 2 + TJ) = 0 in
the case when v*Q, Wegner obtains

1=2 -,*. (4.41)

He established this analogy using a somewhat differ-
ent formalism based on the matrix model81'81 of the
type employed in Refs. 73 and 74. Wegner suggested
a matrix effective Lagrangian for the description of the

mobility edge allowing for the above symmetry breaking
and representing a generalization of the so-called non-
linear cr model. In this model there is no mobility edge
ford = 2, in agreement with Ref. 33. Renormalization
group calculations based on these models were reported
in Ref. 127. These calculations give e expansions for
the critical indices (d = 2 + e) whose zeroth terms coin-
cide with Eqs. (4.38) and (4.39) in the case of a prob-
lem symmetric relative to the orthogonal transforma-
tions of a fluctuating matrix field. In a second variant
of the same model (invariant under unitary transforma-
tions) the indices are different. At present it is not
clear which physical situations correspond to these two
variants of critical behavior (however, see Refs. 40
and 41).24) This is clearly associated with the fact that
in the Wegner model,81"83 as well as in earlier matrix
models,73-74 there is no direct correspondence with the
standard apparatus for calculating the averaged Green's
functions of an electron in a random system,89-90 which
makes it difficult to obtain specific physical results and
to make comparisons with the known simple approxima-
tions to the theory. In this sense, the formalism based
on the effective Lagrangians of the (4.12) and (4.25)
type seems to be preferable. At present it is not clear
either how the above difficulties associated with the in-
applicability of perturbation theory can be avoided in
the matrix formalism. It is likely that these difficul-
ties are indeed avoided when the problem is considered
near the "lower" critical dimensionality d = 2, whereas
we have considered above—in connection with Refs.
68-73, 75-78—the vicinity of the "upper" critical di-
mensionality d = 4. It should be mentioned that in re-
cent papers there have been some arguments to suggest
that the "upper" critical dimensionality in the localiza-
tion problem is d = 8 (Refs. 85 and 88). However, it
seems to us that these conclusions are premature.

This review of various investigations of scaling at a
mobility edge gives a somewhat checkered pattern in
which the final and reliable results are difficult to iden-
tify. Only one thing is certain: the problem of justify-
ing scaling at a mobility edge is much more difficult
than the corresponding problem in the conventional the-
ory of critical phenomena. In the mobility edge case
we are encountering such obstacles as the need to use
an unstable theory of fields, inapplicability of perturba-
tion theory, etc. The absence of universal methods for
solving problems of this kind is familiar. Therefore,
the problem in question may require development of
basically new approaches and methods.

We shall conclude this section by mentioning one other
extremely important theoretical problem for a discus-
sion of which we simply have no space. This is allow-
ance for the Coulomb correlations in connection with
the problem of localization or the so-called theory of
Fermi glasses.15> 128~130 This problem is of fundamental
importance, but so far only the first and frequently
contradictory results have been obtained.81-128"134

Clearly, the next important stage in the development of

24) Further developments of this subject can be found in re-
cent interesting papers.142'161"153
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the theory will involve this direction. However, the re-
view of the results published so far and especially for-
mulation of some overview of the problem would be, in
our opinion, even more premature than the correspond-
ing procedure in the case of the theory of critical be-
havior at a mobility edge discussed above.

CONCLUSIONS

We have discussed new results obtained recently in
the theory of electron localization in disordered systems
and a number of experiments stimulated by these re-
sults. In the main, the reviewed ideas on the physics of
disordered systems have been developed by the applica-
tion of ideas and methods taken from the theory of criti-
cal phenomena. This approach has been found to be
quite successful and has given a number of new and un-
expected results, such as transition of long metallic
wires to the insulating state and complete localization in
two-dimensional systems. From this point of view, any
sufficiently long metallic wire is strictly speaking a
nonmetal. Similarly, there are serious grounds for
expecting nonmetallic properties in the case of two-di-
mensional films prepared by the evaporation of metals,
although in this case the theoretical and experimental
situations are still fairly contradictory. In this sense
one can speak of a macroscopic manifestation of the
quantum phenomenon of electron localization in disor-
dered systems. Experimental observations of these
effects are, however, only possible at very low tem-
peratures and on very small samples. The very possi-
bility of investigating such systems has arisen only be-
cause of the developments in microelectronics and
technology of large integrated systems, which has re-
quired suitable lithographic methods. Therefore, there
is no need to stress the importance of the new results
from the point of view of microelectronics itself.

We have also tried to demonstrate the incompleteness
of the results obtained and to stress the unresolved
problems. The theory is s,till far from complete clari-
ty and this applies to such fundamental problems as the
very existence or otherwise of the minimum metallic
conductivity. This situation is primarily due to the
fact that the problem of localization and the description
of behavior of electron states near a mobility edge is a
much more complex problem than the corresponding
tasks in the theory of phase transitions. A complete
solution of these problems may require the development
of new theoretical methods and formulation of subtle
experiments whose importance may go beyond the prob-
lem under consideration. Although at present it is dif-
ficult to make definite forecasts, there is no doubt that
a deeper understanding of the problem of electron lo-
calization in disordered systems will foster further
theoretical and experimental studies of disordered sys-
tems, and practical applications of these systems.
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