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A review is given of the phenomenon of backbending which is observed in the rotational spectra of deformed
nuclei. The phenomenon is interpreted in terms of superconducting-type pairing correlations. This model was
previously successful in the description of the low-lying rotational states. Analysis of high-spin rotational
states in the backbending region has established a similarity between pairing correlations in nuclei and in
superconductors of small linear dimensions. In view of this, low-lying quasiparticle terms of the subshell with
high angular momentum j on the Fermi surface assume particular importance (through the dependence of
quasiparticle energy on the nuclear rotational frequency). The importance of quasiparticle terms in the
analysis of the structure of deformed nuclei is noted. The review covers the period up to the beginning of
1980.
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1. INTRODUCTION

Rotational motion is a unique collective excitation of
the nucleus that has attracted the attention of experi-
menters and theorists for almost 30 years. Nuclear ro-
tational excitation was predicted by Bohr and Mottelson
in 1952 and was discovered with the aid of Coulomb ex-
citation in 1953.' Rotational spectra have now been re-
corded for a large number of nuclei, ranging from the-
lightest to the transuranic elements.

Nuclear rotational states form a regular spin sequence
and are grouped in rotational bands. Each band is char-
acterized by strong (of the order of 100 single-particle
transitions) E2 transitions between neighboring levels,
and a specific dependence of excitation energy on the
nuclear spin / (we shall take H= 1)

(D

where f is the nuclear moment of inertia. Rotational
excitations are relatively pure even for high spin values,
i.e. they contain only a small admixture of states of dif-
ferent origin but the same spin. The energies and tran-
sition probabilities within a band are described by a
small set of collective parameters such as the moment
of inertia, the quadrupole moment, and so on, which
vary smoothly from nucleus to nucleus and, in a given
nucleus, from one band to another. The collective pa-

rameters begin to depend on level spin as the energy of
rotational excitation increases. This behavior of col-
lective terms can serve as a very useful source of in-
formation on the structure of the nucleus.

Early studies of the energy and spin of rotational
states in a band relied on Coulomb excitation. This
method is being rapidly developed for modern heavy-
ion accelerators. Xe126 and Pb208 ions are being used
in Coulomb-excitation experiments in which rotational
levels up to /= 24 can be excited. This particularly
pure method of exciting rotational bands is used for the
nuclei of transuranic elements.

The rapid development of research on the rotational
states of nuclei began with the discovery of a new meth-
od whereby rotational bands are excited in heavy-ion
reactions of the form (HI, xri). This method was first
introduced in 1963 when Morinaga and Gugelot2 used the
(Q, 2w) and (o,4n) reactions with 52-MeV a-particles.
They succeeded in producing rotational states with spins
up to 10-12. In 1964, the Stephens group in Berkeley3

used B11, N14, and F19 ions for the excitation of rota-
tional states. Because of the use of heavier ions, and
of the Ge(Li) detector to record the resulting y rays,
they were able to raise the spin upper limit to 18-20.
In 1967, this group began4 to use Ar40 ion beams with
an energy of about 160 MeV. These heavier ions enabled
them not only to increase the spin but also to measure
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the lifetime of rotational states. By 1968, all the basic
methods for studying the nuclear rotational states in
heavy-ion reactions had been developed.

The (HI, AT») reaction proceeds in three stages. In the
first stage, the heavy-ion energy exceeds the height of
the Coulomb barrier, and a compound nucleus is pro-
duced with angular momentum up to 80 and excitation
energy up to 200 MeV (all the numbers given below re-
fer to reactions involving Ar40 ions on nuclei with mass
number .A-120). Neutrons are evaporated from the
heated nucleus during the second stage. This is the
most probable process for the nuclei of rare-earth ele-
ments. In the case of lighter nuclei with a lower Cou-
lomb barrier, the emission of protons and a-particles
is a competing process. The fission channel which sup-
presses the yield of high-spin excited states becomes
important in the region of transuranic elements.

Each neutron carries away little angular momentum
(1.5 on average). After the evaporation of neutrons,
therefore, the nucleus remains in an excited state with
an angular momentum of about 60 and energy of about
30 MeV. In the third stage of the reaction, the nucleus
is de-excited from this state through three y-ray cas-
cades. The first to occur is the statistical cascade of
mainly £1 transitions with an average energy of 10
MeV, which takes the nucleus to excited states, usually
referred to as the yrast levels. These are levels with
the lowest energy for given spin. The statistical cas-
cade carries a small amount of angular momentum, so
that the yrast states have spins of about 35 and energy
of about 10 MeV. Next to proceed is the yrast cascade,
consisting of y rays due to £2 transitions between levels
within the yrast band. This cascade carries off both
energy and angular momentum.

At spins of about 20 and energies of about 5 MeV,
yrast levels transform into levels in the ground-state
band. The third cascade of y rays due to E2 transitions
in this band begins at this point. The time interval be-
tween the formation of the compound nucleus and the end
of the population of levels in the ground-state band is,
on average, 10 ps. We have outlined the most probable
decay mode of the compound nucleus (through the emis-
sion of y rays). Other decay modes take the nucleus to
levels in the ground-state band through states in side
bands. The population of the latter reduces the intensity
of high-spin transitions and impedes the observation of
the upper levels in the ground-state band. High spin
yrast levels much be populated to avoid this difficulty.
However, increasing the energy or the mass of the bom-
barding ions does not always have the desired result.
The production of high-spin states may be prevented by
the structure of the nuclear spectrum near the point
where the yrast band crosses the ground-state band.
Thus, in the (C13, 5n) reaction,5 the maximum spin ob-
tained in the ground-state band of Erleo is 24, whereas
the maximum spin obtained in Er158 at the same energy
of the C13 ions is 30. This record spin value was
achieved in the ground-state band. The yrast band of
Dy152 has been investigated6 up to the level with spin of
37 and energy of 12.7 MeV with the aid of the (S32,4n)
reaction. The mechanism responsible for the population

of rotational levels has not so far been adequately in-
vestigated.

In view of the foregoing, it is interesting to consider
a new type of nuclear reaction, namely, (HI;a,#n),
which can be used to excite the rotational states of rare-
earth nuclei.7 This is a direct reaction because the a-
particle is emitted in the forward direction with an en-
ergy of 35-41 MeV for an incident-ion energy of 75-151
MeV (B10, C12,NU, F19,Nea). The striking feature of the
y-ray spectrum emitted by the nuclei produced in this
reaction is that the intensities due to £2 transitions are
practically constant for states with 10 « /« 20, which
suggests that the population of the bands is different
from that in the case of the (HI, xn) reaction.

The observed y-ray spectrum consists of a
continuum due to statistical and yrast cascades,
and discrete lines on the continuum, which correspond
to transitions within the ground-state band. The con-
tinuous spectrum contains information on yrast levels
with spins / > 30. A description and interpretation of
the spectrum can be found in the review by Lieder and
Ryde.8

The third y-ray cascade carries information that can
be used to establish level energies and spins in the
band. The angular momentum of the compound nucleus
is oriented in the plane perpendicular to the incident
beam, which produces angular anisotropy in the emitted
radiation that amounts to 0.8-0.9 for the upper levels of
the ground-state band. The level spins and transition
multipolarities can be determined by recording the
angular distribution of the emitted y rays.

A special method has been developed for measuring
the lifetimes of rotational states, which amount to s 1
ps. Ar40 nuclei and heavier ions have sufficient momen-
tum to knock out compound nuclei from the thin target
into the vacuum, where their velocity may be up to
0.02c. The y rays emitted by these nuclei will there-
fore experience Doppler shifts. The absorber is placed
in the path of the recoil nuclei, so that if a nucleus
emits a y ray after entering the absorber, the y ray will
not exhibit the Doppler shift. By measuring the fraction
of unshifted y rays and by moving the absorber, i.e., by
measuring the time of flight of the recoil nuclei, one
can construct the decay curve and hence determine the
level lifetime.

The advent of the new generation of heavy-ion accel-
erators has meant that it is now possible to use the re-
verse reaction in which the Mg24 target is lighter than
the incident Xe136 ion.9 This has resulted in more ac-
curate measurements of the lifetimes of rotational
states. The reaction produces a well-collimated beam
of Dy156 recoil nuclei with velocities of 0.07c, so that
the lifetime in the ground-state band can be determined
with higher precision, and the lifetimes of levels in side
bands can also be measured. Such measurements are
exceedingly important since they produce information on
the variation of the quadrupole moment within ground-
state and side bands.

In early work on the excitation of rotational states in
heavy-ion reactions, the sequence of y transitions in a
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cascade was established in accordance with the spin de-
pendence given by (1) and by the empirical rule de-
scribing the reduction in the transition intensity with in-
creasing spin. The increase in the sensitivity of Ge(Li)
detectors led, in 1970, to the development of a new
method of determining the sequence of y transitions,
which was based on the y-y coincidence technique. The
coincidence spectra give the sequence of y transitions
in time, and this can then be used to deduce the level
scheme for the excited bands.

In 1971, Johnson10 used this method with the (a,xn)
reaction and discovered a considerable departure of the
transition energies within the ground state band of Dy160

from the /(/+!) rule. In the course of the next few
years, similar anomalies were discovered in the rota-
tional spectra of a large number of rare- earth nuclei.
The essence of the phenomenon is that the y- transition
energies do not increase monotonically with increasing
/within the spin range 12-16, but remain constant or
may even fall, which is equivalent to a sharp increase
in the nuclear moment of inertia in these states. The
latter fact is used as a convenient way of visualizing the
effect, since it is not a simple matter to identify the
anomaly in the rotational spectrum by plotting the func-
tion &(I) (Fig. 1). Bohr and Mottelson suggested that
one should plot the moment of inertia in a band against
the square of the nuclear angular frequency H. This
function can be deduced from experimental values of
rotational energies in a band of an even- even nucleus
by using the formulas

As can be seen from the figure, the result is the char-
acteristic S- shaped curve (hence the designation "back-
bending").

These rotational anomalies can be explained in terms
of an exceedingly simple phenomenon, namely, band
crossing. Let us consider the crossing of two rotational
bands, 1 and 2, with constant moments of inertia ft < /i.
At the crossing point, Oj> J12, so that the function /(O)
exhibits the characteristic S- shape shown in Fig. 2 for

g, MeV

0 S!; B, ft

FIG. 2. Moment of inertia as a function of rotational frequen-
cy in the lowest band formed by two crossing interacting (sol-
id lines) and noninteracting (broken lines) bands.

the lower parts of the crossing bands. The interaction
between the bands gives rise to their separation, and
the function f(Sl) is smoothed out. Backbending vanishes
as the interaction increases.

Thus, the rotational band of Er182 (Fig. 1) actually con-
sists of two crossing bands. The upper parts of these
bands have not been detected because of the particular
way in which rotational states are excited in the (HI, ATM)
reaction. The probability of an E2 transition is propor-
tional to the fifth power of the transition energy, so that
lower-lying levels are preferentially populated. The
upper parts are populated only when the angle between
the crossing bands is small, for example, in Gd156,
Dy156, and Er164, in which levels corresponding to the
upper and lower parts of the crossing bands have been
found.

The above anomalies in the rotational spectra of nu-
clei are thus a consequence of band crossing, which has
also been seen in molecular spectra.14 As an illustra-
tion, Fig. 3 shows the function f(&2) for the lowest-
lying band formed as a result of the crossing of two
bands corresponding to different electronic terms of
the AgH molecule (the experimental data are taken from
Ref. 15). The result resembles the S-shaped spin de-
pendence of the nuclear moment of inertia.

The band crossing the nuclear ground-state band is
usually referred to as the superband (SB). This band
is not always of the same origin in all the nuclei in
which rotational anomalies have been observed. In soft
nuclei in the transition region, the SB is more likely to
correspond to an excited state in which the shape of the
nucleus has undergone a sharp change. This appears to

0 S K 2*t I

FIG. 1. Anomaly in the rotational spectrum of Er162 (taken
from Ref. 11).

FIG. 3. Anomaly in the rotational spectrum of the AgH mole-
cule.
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be indicated by the strong attenuation of E2 transitions
in the region of the anomaly, which has been seen in
Bale and Ce17, and in certain isotopes of platinum and
mercury (shape isomerism). The microscopic phe-
nomenon responsible for the rotational anomalies in de-
formed nuclei resembles gapless superconductivity in a
superconductor that is small in comparison with the
size of the Cooper pair in a magnetic field. The super-
band in such nuclei has its origin in the specific two-
quasiparticle excitation, which is a consequence of the
effect of Coriolis forces in the rotating nucleus. The
angular momentum of this excitation lies along the nu-
clear axis of rotation, which produces an overlap be-
tween the ground- and excited- state wave functions. The
interaction between the SB and the ground- state band,
determined from the ratio of reduced £2 probabilities
near the band crossing point, is lower by roughly two
orders of magnitude than the interaction between the
ground- state band and the 0-vibrational and y-vibra-
tional or two-quasiparticle bands in the same nuclei.18

It is precisely the fact that this interaction is small
that is responsible for the S- shaped dependence of the
moment of inertia on JJ2.

2. PROPERTIES OF THE ROTATIONAL BANDS
OF AXIALLY DEFORMED NUCLEI

A. Rotational levels with /< 10

We begin with the adiabatic approximation in which
the motion of the nucleus can be divided into internal
motion, described by the coordinates q of the nucleons
in the frame x',y',z' attached to the nucleus, and rota-
tion. The latter is described by the three Euler angles
9, tp, and 4> that define the orientation of the primed
frame relative to the laboratory frame x,y,z. In the
adiabatic approximation, the nuclear wave function is

where M is the z component of nuclear angular momen-
tum. The internal state ^XJr of the nucleus is charac-
terized by the component K of the resultant angular mo-
mentum of the nucleons along the symmetry axis z' of
the nucleus, the parity ff, and certain other quantum
numbers. Bach internal state has its own rotational
band.

The axial symmetry leads to invariance under 180°
rotation about any axis perpendicular to the nuclear
symmetry axis. Consider a rotation £?x> around the x'
axis. The internal state of the even- even nucleus with
K=0 corresponds to eigenvalues of the operator &j
equal to ± 1. On the other hand, the rotation which we
are considering is equivalent to inversion of the sym-
metry axis (6 — TT- e, <p — it + <p), and hence

Consequently, states that are even under the 3? trans-
formation (e states) correspond to the rotational band
with even spins, whereas odd states (o states) corre-
spond to odd spins. Single- quasiparticle excitations in
an odd nucleus are characterized, in addition to K and
it, by the three further asymptotic quantum numbers,
N, nt, and A. In the rotational band based on this ex-
citation, the e states correspond to even values of /

- £, whereas the o states correspond to odd values of
this difference. In a band of an even-even nucleus,
based on the two-quasiparticle excitation, states with
opposite 3?-parity correspond to even spins, whereas
those with the same parity correspond to odd spins. We
note that the eigenvalue a of the operator $tj is some-
times referred to as the signature.

The adiabatic property of rotation is violated already
at the beginning of the band. However, the departure
from the adiabatic approximation is small if the nuclear
spin is low. For example, the energy in the rotational
band of an even-even nucleus with K = Q can be satis-
factorily described by

g = M (i + i) - m- (i + i)2, (2)
if /<10. For the rare-earth nuclei, s/~lQ keV and 39
~ 10 eV. The magnitude of these constants is quite sen-
sitive to nuclear structure.

In 1959, Belyaev and Migdal showed that supercon-
ducting-type pairing correlations had a very consider-
able effect on the moment of inertia (d= 1/2/). In a de-
formed nucleus, such pairs consist of nucleons with op-
posite components m of the angular momentum along the
symmetry axis. In even-even nuclei, pairing correla-
tions lead to the characteristic spectrum of excitations
with a gap of 2A (where A is the correlation energy of
the pair). Pairing correlations produce a reduction in
the nuclear moment of inertia by a factor of roughly two
as compared with the rigid-body value. They have a
greater influence on 38. To understand the essence of
this, let us consider the forces acting on a nucleon in a
rotating deformed nucleus.

Above all, a nucleon interacts with the deformation.
For a nucleon on the Fermi surface, the energy of this
interaction is VB~ frtf, where ft is the nuclear deforma-
tion parameter which is of the order of A~i/s for a well-
deformed nucleus, A is the number of nucleons in the
nucleus, and CF is the Fermi energy. In addition, the
nucleon experiences the Coriolis force. The energy
associated with the Coriolis interaction is Vc= (!• ])/
f ~ £ l j f t where j is the single-particle angular momen-
tum of the nucleon andjf ~Al/* is the maximum value
of this angular momentum on the Fermi surface. Hence-
forth, we shall consider rotational bands for spins /
< /c, so that the pairing correlations will still be unaf-
fected by rotation.

The critical spin /c ~AV* (see below) corresponds to
the rotational frequency Q~tf/A and the Coriolis en-
ergy Vc ~ef A~i/3. The Coriolis force is more impor-
tant in the nucleus than in terrestrial applications or
even in molecular spectra. In deformed nuclei, the
Coriolis energy is of the order of the pairing correla-
tion energy A. The parameter

VC /?Q /q\
a* = -S-~lT V>

is of the order of unity for /~/c. The interaction be-
tween rotation and deformation is characterized by the
parameter

which is lower by a factor of Al/3 than OA in the case of
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well-deformed nuclei. This parameter is of the order
of unity for spin Is ~A, for which one would expect a
change in nuclear deformation due to rotation. Since
ae is small, one can neglect the dependence of the self-
consistent nuclear field on rotation if /</c. The inter-
action between rotation and vibration degrees of free-
dom is described by the parameter

<x = Vc .--• <j> Q -.. °w G> (o (a '

where u> is the frequency of /3 or y oscillations, which
is of the order of A. It is readily seen that Qu is also
lower by a factor of A1'3 than aA.

It is clear from the foregoing that the coefficient !% is
due to pairing correlations. One can readily obtain an
estimate for this quantity, which depends on the reduc-
tion in A with rotation: SB ~ cfA~3, The contribution to
$ due to the interaction between rotation and vibration
is lower by a factor of A2/3. Nuclear rotational bands
are thus seen to differ from molecular rotational bands
for which the coefficient $ in the expansion given by (2)
is connected with the interaction between rotation and
vibration. This phenomenon was discovered in the
1960's by the present author and Grin'.;;0 Much later,
calculations of Marshalek,21 Zelevinskii and Shtokman,22

and Mikhailov et aZ.23 confirmed this result.

B. High-spin states and anomalies of rotational bands

The effect of the Coriolis force in the nucleus is
analogous to the effect of a magnetic field that removes
pairing correlation in a superconductor (Meissner ef-
fect). Consequently, by increasing the nuclear rotation
frequency, i.e., by moving upward within the rotational
band, one can eventually reach a level above which
there is no pairing correlation. The spin I, of this level
is the phase transition point from the macroscopic point
of view.

If the rotational bands of the nucleus are represented
by the Regge trajectories gp(7), the spin /cwill corre-
spond to the crossing point between the ground- state
band (A *o, moment of inertia f ) and the band based on
the normal state with energy pF A2/2, where pF is the
level density at the Fermi surface. The pairing corre-
lation energy is zero within this band and corresponds
to a rigid- body moment of inertia /T> f • Tne sPm A.
can be estimated very approximately from the formu-
la24

I n A 2+PF '
Since A ~ F F A'2/3 and/~/r~A5/3/EF, we find that/c
~A2/3.

There have been many attempts to calculate / since
the publication of the paper of Mottelson and Valatin,,24

The calculations reported by Krumlinde,26 which were
based on the method of Chan and Valatin,25 show that the
spin / ^at which neutron pairing correlations vanish,
lies in the range 16 < /cn <20 for rare- earth nuclei, and
in the range 20 < /cn < 25 for actinides. The correspon-
ding figure for proton correlations is /cP*1.5/cn. These
results must be regarded as only preliminary because
the Chan- Valatin method does not take into account the

change in quasiparticles in the rotating nucleus. On the
other hand, perturbation theory calculations have shown
that this is one of the most important effects. Modern
numerical solutions of the Hartree-Fock-Bogolyubov
equations yield the correct solution of this problem.
However, no systematic calculations of IL. have been
carried out so far.

Experimenters have begun to use the Bohr- Mottelson
method described in the Introduction as a way of detec-
ting the phase transition in the rotational band. It is
not surprising, therefore, that the rotational anomalies
discovered by Johnson were initially interpreted as
being due to the disappearance of pairing under the in-
fluence of rotation. These anomalies lie somewhat be-
low the critical spin Ic calculated theoretically.

However, theorists have found a way of reducing /c,
and it would appear that the phase transition point has
been found in the nucleus, but we are still some way off
the final success of the theory. In fact, evidence has
gradually accumulated, indicating that certain facts are
either difficult or impossible to fit into the phase tran-
sition picture. They include the following:

1. The nuclear moment of inertia beyond the region
of the anomaly is lower than the rigid-body value. This
is not a very strong argument because one can imagine
that the phase transition has taken place only in the
neutron system.

2. The upper parts of crossing bands have been found
in Gd154 and Dy156. This is a much stronger argument
against the phase transition, but it can be answered by
pointing out that band crossing in these nuclei has
nothing to do with the phase transition observed in most
other nuclei.

3. Electromagnetic transitions between normal and
superfluid nuclear states must be weaker by a factor of
exp(- p F A)~lCT 2 . However, no evidence of hindered
E2 transitions has been found in the region of the anom-
alies, although the accuracy of these measurements
was low.

4. The strongest argument against the phase transi-
tion was put forward as a result of the experiments per-
formed by the Stephens group.2T It is well known that an
odd particle reduces the phase volume and weakens the
pairing correlation in the nucleus. The phase transi-
tion in the rotational band of an odd nucleus should,
therefore, be observed for lower spin values than in an
even nucleus. However, the rotational anomalies in the
bands of the neutron-odd Er'5r and Er159 were not de-
tected for the same spins for which they were observed
in the ground-state band of the neighboring even-even
nuclei (Fig. 4).

Experiments with odd nuclei have turned out to be
decisive for the understanding of the rotational anomaly.
They have resulted in the identification of the origin of
the phenomenon. It turns out that the odd proton in
Ho157'159'161 has no effect on the anomalies. The back-
bending of the moment of inertia in bands based on
single-particle excitations of these nuclei is observed
for the same rotational frequencies as in the neigh-
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FIG. 4. Moments of inertia of the rotational bands of the even
and odd isotopes of Er.

boring even-even Er nuclei. The Er157'159 bands are
based on the excited state of the odd neutron from the
in/2 subshelL These are the so-called decoupled bands
which are highly distorted by the Coriolis interaction.
Unfortunately, it has not been possible to excite other
high-spin bands in these nuclei. However, in odd iso-
topes of tungsten, normal bands are excited in addition
to decoupled bands. For example, in the bands of W175

based on the l/2~[ 521] state, the backbending of the
moment of inertia was found at somewhat lower fre-
quencies than in W174, whereas, in the decoupled band
based on the 7/2*[633] state in the i13/2 subshell, there
is no backbending.28

An analogous picture is observed in W179, in which
two bands have been excited, namely, the decoupled
band on the 9/2* [624] state from the z'13/2 subshell and
the ordinary 7/2~[ 514] band.29 It is interesting that, in
the case of W173, the anomaly has not been observed
either in the 7/2*[633] decoupled band or the l/2'[ 521]
ordinary band.28 Nor has it been seen in the ground-
state band of the even-even nucleus W172.

The decoupled bands are based on states belonging
to a subshell with high angular momentum j. The Corio-
lis interaction is at a maximum in these states. For the
rare-earth nuclei, this is the il3/2 subshell for neutrons
and the A9/2 subshell for protons. The latter is respon-
sible for the rotational anomalies in Os isotopes. The
rotational bands of Os183 and Re181 were investigated in
Ref. 30. It was found that, in the band based on the
state from the »13/2 subshell (probably, 9/2*[624]) of
Os183, the backbending of the moment of inertia is ob-
served at approximately the same rotational frequency
as in the neighboring Os182. The same occurs in bands
based on the 5/2*[402] and 9/2" [514] states of Re181.
However, the anomaly was not found in the decoupled
band from the fe9/2 subshell of this nucleus. One could
therefore formulate the following empirical rule: the
rotational anomaly does not occur in the decoupled band
of an odd nucleus belonging to the subshell with high
angular momentum j that is responsible for the phe-
nomenon. We shall see later that this is not a rigorous
rule. However, the connection between the rotational
anomaly and decoupled bands can be regarded as ex-
perimentally confirmed with a reasonable degree of
reliability.

C. Decoupled bands

Let us consider in greater detail the interaction be-
tween an odd nucleon, on the one hand, and deformation
and rotation, on the other. We shall use for this pur-
pose the widely used model of a particle coupled to an
axially deformed nuclear core. The Hamiltonian for
this system is

(5)

where #„„„ is the spherically symmetric mean field and
V is the energy of interaction between the nucleon and
the deformation, which is proportional to /3. In the
strong coupling approximation, in which the Coriolis
interaction is small in comparison with V, the nuclear
energy is given by

where tlf is the energy of a nucleon in the subshell j of
the deformed core. It is clear from the scheme shown
in Fig. 5a that the component K is conserved in this
case.

In the other limiting case in which V« (I- \)/f , the
Coriolis force decouples the angular momentum of the
nucleus from the axis of symmetry and tends to align
it with the axis of rotation. The result is a change in
the addition scheme for the angular momenta (Fig. 5b).
The total spin of the nucleus is now I = R + j, where R
is the angular momentum of the core. A similar phe-
nomenon is observed in molecular spectra in which the
phenomenon is restricted to the decoupling of only the
electron spin, in accordance with Hund's rule.31 The
energy levels in the decoupled band are degenerate
since the angular momentum R in the expression for
the energy & = R(R + l)/2/ is determined from the addi-
tion rule for the angular momenta. The result is a sys-
tem of bands (Fig. 6) in which the angular momentum j
of the lowest band is either parallel to R(I=R+j) or
antiparallel to it (/= j - R). The first band is called
favoured and the second antifavoured. The angular mo-
mentum j occupies an intermediate position in the other
bands. The conserved quantity for this coupling scheme
is the component a of the nucleon angular momentum
along the rotational axis of the nucleus.

Rigorous diagonalization of the Hamiltonian (5) has
been carried out by Vogel32 and by Stephens.33 The in-
teraction between the nucleon and the deformation dis-
torts the above picture of complete decoupling and the
distortion increases with decreasing a. It follows that
the favored and antifavored bands of odd nuclei with

b)

FIG. 5. Two ways of combining the angular momenta of a
nucleon and a core.
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FIG. 6. Decoupled bands for the j= 13/2 subshell,

moderate spins (/s20) can exist when the Coriolis in-
teraction is strong. The necessary condition for this is
that the nuclear deformation should be as small as pos-
sible and the odd nucleon should be in a state with large
j and small component of the angular momentum along
the nuclear symmetry axis. Such nuclei are encoun-
tered among the lanthanum isotopes (£ so.2), in which
protons begin to fill the fc9/2 subshell, or among the
light isotopes of gadolinium, dysprosium, and europium
(/3 =0.2), in which neutrons begin to fill the z'(3/2 sub-
shell. The favored bands of odd isotopes of these ele-
ments have, in fact, been seen in the experiments per-
formed by the Stephens group.34 The separations be-
tween neighboring levels in these bands are the same
as the corresponding separations in the ground-state
band of the even-even nucleus. Analysis of the favored
bands of odd nuclei in terms of the model involving a
particle coupled to an axially deformed core has been
given by Pyatov et al.K

The decoupled bands are observed in some intermedi-
ate nuclei between rare-earth elements and lead. For
example, the favored band of Ir187 is based on the par-
ticle state of a proton from the fe9/2 subshell. In Hg193,
it is based on the hole state of a neutron from the z'j3/2

subshell and, in Aum, on the hole state of a proton
from the hti/2 subshell. Meyer- ter-Vehn36 and Faes-
sler37 have analyzed these bands in terms of a model
involving a particle coupled to a nonaxial core.

The favored band may exist in even nuclei as well. -
The angular momentum j is then equal to the angular
momentum of the two-quasiparticle excitation. The
favored band in even-even nuclei of rare-earth elements
must, therefore, begin with spin /= 12 and energy 2A
= 2 MeV. The rotational anomalies are observed for
such spins and energies. Stephens and Simon38 have
therefore suggested that the superband is a favored band
based on a two-quasiparticle excitation. The Stephens-
Simon model is very simple and, therefore, exceedingly
attractive to experimenters who have put forward ex-
periments based upon this model. However, the model
has some weak points as well. Despite the fact that the
favored bands exist only in nuclei with small deforma-
tions, in which there are levels with large j and small
K near the Fermi surface, the rotational anomalies are
observed in Hf and W isotopes in which the t ) 3 / 2 sub-
shell is completely filled. The favored bands have not
been seen in odd isotopes of these elements. From the
theoretical point of view, this model is essentially a

single-particle approach to the two particles coupled
to the core, and does not take into account the difference
between the quasiparticles in the rotating and resting
nuclei.

3. MICROSCOPIC THEORIES OF ANOMALY IN
ROTATIONAL SPECTRA

A. Methods of describing rotational excitations in
deformed nuclei

We shall now try to approach the problem of the rota-
tional anomaly from a more general point of view. Ro-
tation is a collective excitation of the nucleus and there
is a number of microscopic models that can be used to
describe it. All such models rely on the description of
a nucleus as a system of nucleons moving in a self-con-
sistent potential and interacting with one another
through the residual interaction.

The forced rotation model, put forward in the early
1950's by Inglis,39 is the most widely used. Here, the
nucleus rotates classically with an angular velocity fi.
To calculate the rotational energy, we must transform
to the rotating coordinate frame. The Hamiltonian for
the axially deformed nucleus in this system is

IT, rr on IR}n *= n—l><:/i:v , \v t

where H is the Hamiltonian for the nucleus at rest and
R%> is the component of the angular momentum of the
nucleus along the x' axis which is perpendicular to the
symmetry axis (2'). The eigenvalue i"(O) of the Hamil-
tonian given by (6) is the energy of the nucleus in the
rotating coordinate frame, and can be used to determine
its energy in the laboratory frame, namely, % — %'

for given average angular momentum

(7)

Thus, in the forced rotation model, the angular momen-
tum of the nucleus is not a conserved quantity. The
eigenfunction of H' is therefore a superposition of wave
functions with different angular momenta.

For a relatively long period of time, the condition for
the validity of the Inglis model was considered to be the
quasiclassical nature of the rotation, i.e., high /. How-
ever, the generalized density matrix method developed
by Belyaev,40 in which rotation is described in such a
way that the conservation of angular momentum is taken
into account, has led to a more rigorous criterion for
the validity of this model. It turns out that an important
condition is the requirement that the nucleus be axial.
Although it is possible, at least in principle, to con-
sider a Hamiltonian such as that given by (6) even in
the case of a nonaxial nucleus, Belyaev41 has shown
that, in the limit, the quantized rotation of the nucleus
becomes identical for large values of / with the forced
rotation model, but only for axial deformation. For an
axial nucleus, the range of validity of the model is not
restricted to the condition /» 1, since it is valid for
small / by virtue of the fact that the rotation is adia-
batic.
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B. HFB equations for a rotating nucleus and methods for
their solution

A simple pairing interaction for which the correlation
energy A is constant throughout the nucleus (homo-
geneous pairing) is usually employed in the case of de-
formed nuclei. Numerical calculations have shown that
the degree of pairing inhomogeneity in the ground state
of a deformed nucleus does not exceed 5-7%, which
agrees with the estimate l/(pf A) ~A~l/3. In this ap-
proximation, the Hamiltonian is
H = V(El_eF)aJa,

&_ 1 v , ,. „ dEv (13)

- T S
?.. t.1

- vi. !v>.! = i; (8)

where a^ and ax are the creation and annihilation opera-
tors for nucleons in the state X in the self- consistent
field h with energy ct, X is the state conjugate in time,
and G is the pairing interaction constant.

The HFB approximation42 is commonly used to calcu-
late the energy of a rotating nucleus in the forced rota-
tion model. This is done by introducing the creation and
annihilation operators at and av for quasiparticles
through the transformation

if (r) = S {uv (r) av — ̂ /;>y» (r) aj},
V

where ip(r) is the nucleon annihilation operator in sec-
ond quantization and &y> = exp(- z'ff/,0 is the operator
representing the rotation of the proper coordinate
frame. The transformation amplitudes u and v are then
determined from the equations

f (h — £F — Q;V) uv (r) — Ayv (r) = £vuv (r) ,

( (h — EF + fi/«.)Mr) + Auv(r)= -E,v,(r),

where Ev is the quasiparticle energy and jj is the nu-
cleon angular momentum operator.

(9)

The collective parameters of the nucleus, such as the
Fermi energy e,, the deformation, the correlation en-
ergy A, and the angular momentum, are self-consistent
quantities, i.e., they are determined from equations
containing the amplitudes u and v. The fact that ae in
(4) is small for rotation frequency JiSejrM enables us
to neglect changes in the deformation and CF under the
influence of rotation because these quantities are deter-
mined in an energy range much greater than A. The
function A(fl) is found from the equation

(10)

which can be used43 to determine the energy of the nu-
cleus in the rotating coordinate frame

>. V

where nv is the quasiparticle occupation number. In the
ensuing analysis, we shall require the expression for
the expectation value of the angular momentum of the
quasiparticle excitation along the nuclear axis of rota-
tion:

The function
aid of (7).

can be determined from this with the

- u!(r)/J I .i-v(r)1dr= --

The total angular momentum of the nucleus is

(12)

The equations given by (9) are invariant under the
transformations tftj and T$y, (T is the time reversal
operator). The former invariance enables us to char-
acterize the state of a particle by the signature a,
which, as noted by Goodman,44 reduces the dimen-
sionality of the basis space in the diagonalization of (9)
by a factor of two. The invariance under the trans-
formation T<%yi leads to the following expression for
the quasiparticle energies:

E,., = -KV.-,. (14)

Since the model involving a superfluid nucleus with
the Hamiltonian given by (8) provides a good description
of the low- lying rotational states, it is natural to try to
extend it to higher angular momenta in order to explain
the above rotational anomalies. This is an exceedingly
complicated problem because the parameter QA in (3)
is small for /< 10, but is of the order of unity for high
spins. The nonlinear HFB equations must be solved
without introducing perturbation theory. Some qualita-
tive results can be obtained from a rigorous solution of
these equations for some model systems.45"47

The absence of a small parameter in the case of high-
spin states forces us to seek numerical methods for the
solution of the HFB equations. In 1973, Mang and Ring48

found a solution of these equations, which had some
similarity with the favored band of the Stephens- Simon
model. The crossing of this band by the ground- state
band corresponds to the vanishing of the energy of the
two-quasiparticle excitation at the rotational frequency
for which pairing correlation is still nonzero. The cal-
culations of Mang and Ring were repeated by Goodman,49

but not until 1976. Mang and Ring used the Kumar-
Baranger Hamiltonian with homogeneous pairing and
quadrupole-quadrupole interaction in the case of Er162

and Yb14'*188'1™. Similar calculations were performed
by Faessler50 for Er162. Goodman used the residual in-
teraction of a more general form with the Reid poten-
tial. In recent calculations by Mang and Ring,51 the resi-
dual Skyrme interaction was used for Yb162 and Er164.
These calculations are in good agreement with each
other and, qualitatively, with experiment, although
their complexity restricts the number of nuclei that
could be treated. Moreover, none of the calculations
has succeeded in reproducing the observed S-shaped
dependence of the moment of inertia.

Despite these shortcomings, the numerical calcula-
tions have reproduced the main effect, namely, the
vanishing of the energy of the quasiparticle excitation.
This phenomenon resembles gapless superconductivity
in superconductors of small size.52 Qualitative con-
siderations supporting the possibility of this phenome-
non in a rotating nucleus have been reported by Lin
et al. and by Grin'.53 The physical picture of the phe-
nomenon can be understood in terms of the isolated j-
level model,54 which can be solved analytically and is
quite realistic.
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C. Isolated /-level model

The strength of the Coriolis force acting on a nucleon
in a rotating nucleus is proportional to the single- par-
ticle angular momentum j. Nucleons that experience
the strongest coupling to rotation are those occupying
levels with maximum j near the Fermi surface (for
example, z'13/2 subshells for neutrons and ht/2 for pro-
tons in the rare- earth nuclei). These levels are dis-
tinguished from other states in the shell being filled by
their parity. It follows that j is a good quantum num-
ber for such states, since the admixture of states with
other values of j, due to deformation and rotation, cor-
responds to transitions to a neighboring shell. Conse-
quently, states in the subshell with maximum j may be
looked upon as isolated.

For rotational frequencies &~ef/A, rotational per-
turbation theory cannot be used for states in the sub-
shell with maximum j near the Fermi surface. On the
other hand, coupling between rotation and nucleons in
other levels may be treated in terms of perturbation
theory, since they have low values of j or lie well away
from the Fermi surface. In the latter case, pairing can
be neglected, and the perturbation theory parameter is
ag (4). Thus, the problem of solving the HFB equations
in the space of all the single- particle states of the nu-
cleus reduces to the much simpler problem of solving
these equations in the space of a single subshell.

We shall now find the solutions of the HFB equations
for an isolated j-level, taking the hexadecapole deforma-
tion into account. If we suppose that the self- consistent
field of the nucleus is in the form of a potential well
with infinite walls, the ./'-level splitting due to second-
and fourth- order deformations is

3m'-/(J + l)
- -, , „ ,

!-- Pi |/ w

where j32 and /34 are the quadrupole and hexadecapole
deformation parameters and tnll is the energy of the
./-level in a spherical field:

3 -] 14-39x?,, (15)

where xnj is the root of the corresponding Bessel func-
tion and x. = 0.37 MeV is the spin-orbit coupling con-
stant. The expression for cnjlm enables us to write the
HFB equations (9) for the isolated j-level in the fol-
lowing form:

(16)
1 (Ej + 6)1- - 46';1- + Qj,.) v-r&u = - £y.

The parameters in these equations are as follows:

128/n {/-l)i(;+ !)(/ +2) '

(17)

The equations given by (16) contain the large param-
eter j~Ai/s. The quasiclassical approximation must
therefore be used to solve them. We shall use the one-

FIG. 7. Quasiparticle levels <77=4E/362, | = 4n/362) in a ro-
tating nucleus for j= 13/2, ey=04= 0, A/S2= 5. M Figures on
the left represent the asymptotic number K; figures on the
right are the values of the quantum number v of the quasi-
particle excitation. Solid line—accurate solutions, broken
lines—quasiclassical calculations, dot-dash lines—pertur-
bation theory.

dimensional complex realization of the group SU(2) for
this purpose.55 The angular momentum operators in
this representation depend on a single complex vari-
able. The set of partial differential equations in (16)
therefore reduces to an ordinary differential equation,
whose solution can be found by the method described in
Ref. 54. It relies on quantization conditions that can be
used to determine the quasiparticle excitations in the
subshell, depending on the parameters |32, Pt,cf, O and
the pairing correlation energy A. The resulting solu-
tions will be discussed at the beginning of the next Sec-
tion. The isolated j-level model will be compared with
experiment at the end of Section 4.

The dependence of the quasiparticle excitations in the
z'13/2 subshell on n at constant A is shown in Fig. 7.
The quantity A can itself depend on the rotational fre-
quency although this dependence is relatively weak for
n s e F /A. The function A (n) can therefore be found
from perturbation theory. We shall use the results of
numerical calculations to illustrate the adequacy of per-
turbation theory in this connection. The maximum ro-
tational frequency observed in Dy158 and Er164 is 360 keV
(7=22). The reduction in A relative to the value A0 at
O = 0 is not more than 18%. The average maximum
value for the rare-earth elements is (A0 - A)/A0 =0.11.

4. QUASIPARTICLE EXCITATIONS IN THE
ROTATING NUCLEUS

We must now analyze the solution of the HFB equations
for the rotating nucleus. As already stated, this solu-
tion can be used to determine the rotational spectrum of
the nucleus and, consequently, the function /^O2) which
is usually compared with experiment. However, the
phenomenon of rotational anomaly is dominated by
quasiparticle excitations from the high-j shell near the
Fermi surface. As the rotational frequency of the nu-
cleus increases, the energy of the low-lying excitations
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in this subshell is found to fall, which is characteristic
for a small superconductor. This reduction in the ener-
gy of the quasiparticle excitation enables us to explain
the crossing of the ground- state band by the two- quasi-
particle band.

In view of the foregoing, we shall compare experi-
mental data with the energy £„ of the low- lying quasi-
particle excitations as a function of the nuclear rota-
tional frequency JJ. This will distinguish our approach
from the traditional method of describing rotational
anomalies. We note that this approach to the role of
quasiparticle excitations in the backbending phenomenon
was used independently in Refs. 56 and 57. We shall
show at the end of this section that quasiparticle ex-
citations in the rotating nucleus are of independent in-
terest in the study of the structure of deformed nuclei.

A. Properties of quasiparticle terms

We shall refer to the quasiparticle energy £„(£}) as
the quasiparticle term. In the qualitative analysis of
the behavior of quasiparticle terms, we shall assume
that A is constant. Quasiparticle excitations in the de-
formed nucleus can be characterized by quantum num-
bers K T[NntA] . Neither the component of the angular
momentum along the nuclear symmetry axis nor the
asymptotic quantum numbers N,ne,A are good quantum
numbers in the rotating nucleus. Only two quantities
are conserved in this case, namely, the spatial parity
v and the &x-- parity represented by the quantum num-
ber ff. Other quantum numbers can occasionally be
usefully employed as asymptotic quantum numbers cor-
responding to the quasiparticle in the nonrotating nu-
cleus. Moreover, in accordance with our discussion in
the last Section, we can use the quantum number j to
characterize the quasiparticle excitation. We shall see
below that all quantum numbers in the quasiparticle
term are determined by the single- particle level on
which the rotational band in the odd nucleus is based.

The characteristic feature of the function Ev(Sl) is that
the energy of the lowest quasiparticle excitation is equal
to zero for a certain value of the nuclear rotation fre-
quency. We have already noted that a similar phenome-
non is observed in superconductors of small linear di-
mensions. The Coriolis force in the nucleus tends to
orient the angular momenta of nucleons in a pair along
the rotational axis. The attendant reduction in the cor-
relation energy is compensated by an increase in the
energy associated with the Coriolis interaction. The
energy of the lowest quasiparticle excitation is there-
fore given by

The quantity ( j j ) increases with increasing j and de-
creasing K, so that the quasiparticle energy vanishes
at lower rotational frequency.

This is essentially the end of the analogy between the
phenomena in a rotating nucleus and gapless supercon-
ductivity. At the point fy, at which £ie=0, the quasi-
particle vacuum in the superconductor must be modi-
fied. Unless this is done, the quasiparticle energy will
become negative for O> fy. The quasiparticle excita-

tion to the right of 0,, can be formed with the aid of (14).
The particle is then replaced by a hole or vice versa,
so that the total number of particles changes by one.
Since the properties of odd and even nuclei are funda-
mentally different, we must not mix the states of these
nuclei. The even nucleus can support only two quasi-
particle excitations, and we are interested in the change
in the sign of this excitation. A change in the sign of a
one-quasiparticle excitation in the nucleus does not lead
to any physical consequences because of the conserva-
tion of the parity of the number of particles.

Rotation splits the quasiparticle terms with opposite
^-parity. The splitting increases with increasing fi
and decreasing asymptotic quantum number K. This can
be understood by noting that the wave function of a nu-
cleon with particular ^-parity in the nonrotating nu-
cleus is

1,-K)).

The operator^, mixes the states ^/a, and $!/&,. Con-
sequently, states with K=l/2 split in first-order per-
turbation theory, those with K=3/2 split in the second
order, and so on. As the asymptotic quantum number
K increases, the term splitting becomes smaller. It
therefore decreases as EF increases at constant /3 and
A, so that states with large K are found near the Fermi
surface. Negative hexadecapole deformation will par-
tially compensate this effect. We shall consider this
later.

The expectation value of the angular momentum of a
quasiparticle excitation along the nuclear axis of rota-
tion is given by (12). It can be shown that ( j j ) ~ j for
the low-lying quasiparticle states if K is small. Thus,
the angular momentum of the quasiparticle excitation
is favored along the rotational axis for nuclei in which
subshells with high j begin to be filled. This limit cor-
responds to the Stephens-Simon model. It is important
to note that the range of validity of (12) is restricted on
the side of low values of f2 because we are using the
forced rotation model. Moreover, this expression is
not valid in the region of the anomalies where states
with different < j,»> are mixed.

The crossing of quasiparticle terms corresponds to
the crossing of rotational bands. It is therefore ex-
ceedingly important to understand what happens near
these crossing points. It is clear from Fig. 7 (points
B and B') that rigorous calculations lead to an interac-
tion between quasiparticle terms with the same #-
parity, as expected. For lower-lying terms, this in-
teraction is small because of the slight overlap between
the wave functions of the favored states.

In the quasiclassical approximation, the interaction
between the terms is exponentially small, and need not
be taken into account accurately. The quantization con-
dition from which the spectrum of quasiparticle ener-
gies Ev(Sl) is determined has the following form when
the exponentially small terms are neglected:

§p(x,E,Q) Ax =-n (v + v). (18)

Hybridization of the terms occurs when they interact,
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i.e., a term with quantum number v up to the crossing
point is converted into a term with quantum number v'
beyond this point. The quasiclassical condition given by
(18) cannot describe this phenomenon because the left-
hand side is an adiabatic invariant and each level is
characterized by quantum number i/, which is indepen-
dent of JJ. In the quasiclassical approximation, there-
fore, the terms can only cross.

B. Crossing of rotational bands

The dependence of quasiparticle energies on the nu-
clear rotational frequency enables us to understand the
reason for the anomaly of the rotational spectrum. We
shall consider that the subshell with large j lies near the
Fermi surface. In the expression for the energy of the
nucleus in the rotating coordinate frame, given by (11),
the term - j£,, Ev can be conveniently interpreted as the
quasiparticle vacuum corresponding to the filling of all
the quasiparticle levels with negative energy in the
ground state of the even- even nucleus. A band based
on this state will be the fundamental band.

Let us now form the lowest two-quasiparticle excita-
tion from the subshell with large j in the even-even nu-
cleus (Fig. 8). To do this, we must transfer two quasi-
particles from the higher-lying vacuum states to the
lower quasiparticle states. The band based on this
state will be the two- quasiparticle superband. Its ener-
gy will differ from the ground- state band by the amount
Eie + Eio which decreases with increasing rotational fre-
quency. It vanishes for fl = n0. At this point, the
ground-state band V?. (Q,) crosses the superband ^(O).
Since, in each band, there is a unique relationship be-
tween spin and frequency, which is given by (7), the ob-
served bands £%,(/) and &2(I) will cross.

The ground-state band and the superband have dif-
ferent internal structures. The component of the angu-
lar momentum of nucleons in the former band will be
smaller since the terms in the sum 'Zjv(SEv/Sfl) in (13)
tend to cancel out. The angular momentum in the direc-
tion of the rotational axis in the second band is largely
connected with the two quasiparticles. This is the
favored band. The overlap integral between the wave
functions of the two bands is small, and this should lead
to the observed weak coupling between the bands.

Each two-quasiparticle excitation in the subshell with

anomalous parity in the even nucleus corresponds to its
own superband. According to the general rule, it con-
tains even or odd spins, depending on whether the #-
parities of the quasiparticle excitations are different or
the same. This distinguishes the superband from the
band based on the usual two-quasiparticle excitation
with particular K and even or odd /. The favored part
of the superband begins with 7=2j- 1, and its states
are characterized by small values of K or, more pre-
cisely, (Rt>), since K is not a good quantum number.
This is why transitions between the SB levels and the
ground- state band should not be forbidden.

Only the lower parts of the crossing bands have been
detected for the majority of nuclei for which anomalies
of the rotational spectrum have been observed. There
are three exceptions. In Dy156, the SB is crossed by the
/3-band for /= 10 and by the ground-state band for /
= 16.9'58 A similar band-crossing picture is observed
in Gd154, except that the SB crosses the ground-state
band for /= 18.59 Three superbands have been seen60

in Er164. The lowest lying corresponds to the excitation
Eie+Eio and is associated with the t ls /2 subshell; it has
been identified for spins in the range 12-24. It crosses
the ground-state band for /= 14. The odd-/ superband
corresponding to the excitation Elf.+ E.tean.d the even-/
superband corresponding to the excitation Eie + E10

cross the y-band for /~14. The maximum spin re-
corded in these bands is 21 and 18, respectively. In
addition to these superbands, the rare-earth nuclei ex-
hibit negative-parity bands based on excitations from
the z'i3/2 subshell and another subshell with a lower j
and opposite parity. These bands will be considered be-
low.

Recent experiments61'62 have established the existence
of a second backbending of the moment of inertia in the
ground-state band of Er158 and Yb160 for /~28. It is
possible that this is connected with a superband based
on the proton two-quasiparticle excitation from the sub-
shell /z9/2. The second anomaly in Er158 has been ex-
plained63 by the repeated crossing of the ground-state
band by the SB.

Consider an odd nucleus in which the odd particle is
in. the lowest quasiparticle excitation from the subshell
with anomalous parity. This means that the lo level
with negative energy is free, whereas le with positive
energy is occupied (Fig. 9). The band based on this

FIG. 8. Filling of quasiparticle levels for the groundstate
band (a ) and SB (b) in an even-even nucleus.

FIG. 9. Filling of quasiparticle levels for crossing bands of
an odd nucleus.
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state will have even values of /- 1/2. The band based
on the lowest three-particle excitation corresponds to
the lowest SB in the odd nucleus. The energy of this SB
differs from the energy of the original band by the
amount fijj, + E^, which vanishes at frequency Oj > J^.
Rotational anomalies in odd nuclei should therefore be
observed for high spins.

' If the odd particle occupies the state from another
subshell, all the negative-energy quasiparticle levels
belonging to the subshell with the anomalous parity are
filled. The lowest SB can therefore be constructed
from the lowest quasiparticle excitations le and 10.
Consequently, rotational anomalies in this band should
be observed for the same spins as in the even nucleus.
This explains the empirical rule stated in the previous
Section. Departures from this rule have been observed
both in anomalous parity bands and in ordinary bands.
For example, in Yb161'163, the anomaly in the band
based on the excitation from the subshell i13/2 has been
seen at somewhat higher frequencies than in the neigh-
boring isotopes Yb160'162. The same nuclei show the
anomaly in the 5/2"[ 523] band, but the anomaly is not
present in the 3/2'[ 521] band of Yb*3'164. ln Yb165'167,
the anomaly is absent from the band associated with the
subshell ti3/2, whereas, in the 5/2~[ 523] band, it has
been seen64 at the same frequencies as in the neigh-
boring Yb164'166. However, in Lu167(Yble6 +proton), the
anomaly has not been seen in the favored band
l/2~{ 541], which is associated with the proton subshell
fe9/2, whereas, in the 7/2*[404] band, it was observed
at the same frequency as in Yb166'165. In Tm165(Yb16e

- proton), the anomalies have been seen in the 7/2~[523]
(favored band from the hn/l subshell), 7/2*[404], and
1/2*[411] bands at the same frequencies as in the
ground-state band of Er164. However, the anomalies
are not present in the l/2"[ 541] favored band from the
ht/2 subshell.68 Finally, in the 1/2~[541] band (proton
subshell fcj/j) of Ir183, anomalies are present but, in
Ir185, they are not.67 These departures correspond to
transition nuclei and nuclei close to them. The most
likely explanation is that the odd particle produces an
appreciable change in the internal structure of some
states.

The crossing of the SB by the ground-state band is
due to the crossing of the quasiparticle terms with the
same signature. Consequently, the interaction between
the bands is due to the interaction between the terms.
When the HFB equations are rigorously diagonalized,
this interaction leads to the hybridization of rotational
bands at constant rotational frequency and not of the
nuclear angular momentum. This is why there is a
large fluctuation in the angular momentum in the
crossing region, since different angular momenta ap-
pear in different bands at the same frequencies. This
was first pointed out by Hamamoto68 and was subse-
quently examined in detail by Marshalek,69 Faessler,70

and Goodman.71 It follows that the HFB approximation
cannot be used in the hybridization region. New meth-
ods that take into account the conservation of angular
momentum must be introduced in this region.

Band hybridization does not occur in the isolated j-

level model based on the quasiclassical approximation
because there is no interaction between the quasipar-
ticle terms. In this sense, the model is more satis-
factory, especially since the absence of the interaction
has practically no effect on the precision of the calcu-
lated energies of levels in crossing bands because the
interaction is so small that the perturbed energies differ
from the unperturbed energies only for two states on
either side of the crossing point.

Nevertheless, the interaction between the bands is
important if we are to achieve the correct description
of the shape of the /(O2) curve in the band hybridization
region, and if the backbending phenomenon is to be cor-
rectly predicted. This interaction is not constant. Esti-
mates72 show that the interaction between the ground-
state band and the superband oscillates, depending on
the degree of filling of the subshell. It is possible that
this effect explains the absence of rotational anomalies
in nuclei with neutron number N= 98. However, this
problem lies outside the scope of the forced rotation
model.

C. Experimental and theoretical values of quasiparticle
terms

The dependence of the quasiparticle excitation energy
on the nuclear rotational frequency can be deduced from
the observed rotational band energies. To do this, let
us transform g?(7) into g"(fl) with the aid of the fol-
lowing formulas:

»(/)-»(7-2)

(19)
-2)

Rt.(I) + 1) -</?!->.

Naturally, a given value of /will correspond to dif-
ferent n in different bands.

Let us consider an odd nucleus formed from an even-
even nucleus with N neutrons (protons) by adding one
particle to the state A in the subshell with anomalous
parity. If gf. 0 are the level energies in a band with a
particular spin sequence (even or odd /- 1/2), mea-
sured from the energy of the state X, and g\, is the
level energy in the ground- state band of the even- even
nucleus, the energy of the quasi- particle excitations
can be found from the following expressions:

£,e = £x + g;(Q)-^,(Q), £10 = £i + go(fi)-g6s(fi). (20)

The quantities §f ' and n are given by (19) with <#/.)
=K2, and £x is the quasiparticle energy at n = 0. If the
band is based on an excited state of the odd nucleus with
gfx then £x = E^ + gPx. The energy of the quasiparticle
corresponding to the ground state can be deduced from
the nuclear binding energy73

In calculations, it is best to replace p.(N) by the av-
erage over neighboring nuclei with AAf=2.

Thus, two quasiparticle terms can be extracted from
each band of the odd nucleus. The expressions given by
(20) contain the energies of the even and odd nuclei.
When experimental and theoretical energies of quasi-
particle excitations are compared, it is necessary to
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remember that these nuclei may have different values
of collective parameters such as deformation, pairing,
and so on. If we neglect this difference, the single-
quasiparticle excitations will be identical in the even and
odd nuclei.

Multi-quasiparticle excitations can naturally be looked
upon, in the first approximation, as superpositions of
noninteracting quasiparticles. They can be extracted
from the rotational bands of even or odd nuclei, since
the number of quasiparticles is even or odd. Thus, the
energy of the two-quasiparticle excitation is given by

£ _ g' (Q\ g' /Q\ (21)

where &' is obtained from the level energies in the SB
with particular parity of the spin /.

A. Bohr has pointed out56 that experiments will also
yield the angular momentum of the quasiparticle excita-
tion in the direction of the nuclear axis of rotation

</x-> = fix- (S) — RX'g, (£3)- (22)

where #„• is the component of the nuclear angular mo-
mentum along the axis of rotation for the band based on
the quasi-particle excitation and Rjfs is the correspon-
ding component for the ground-state band of the even-
even nucleus.

To compare the theoretical values of the quasipar-
ticle terms calculated in the isolated j-level model with
experimental values, we must know A0, CF, P2, and pt.
These model parameters must be determined from ex-
periment. The pairing correlation energy A0 in the
ground state is determined from the nuclear binding
energies. In calculations, one uses not the Fermi ener-
gy but the quantity ey (17), which is deduced from the
excitation energy £x, as follows:

€. -_ (23)

where the positive sign corresponds to particle and the
negative sign to hole excitation. The expression given
by (23) is incorrect when K is not a good quantum num-
ber for the excitation A. The energy tF can then be
roughly estimated from the occupation of the single-
particle levels (cf. the nucleus Dy'57). Experimental
values of these deformation parameters are used in cal-
culations. If the hexadecapole deformation is not known,
theoretical values of /32 and /34 are taken. The theory
does not, therefore, have any free parameters. The
blocking effect and the change in deformation between
even and odd nuclei are not taken into account. Single-
quasiparticle excitations are therefore ascribed to even
nuclei.

The splitting of levels in a subshell, which is deter-
mined by 6 and 6' in (17), depends on the shape of the
self-consistent field in the nucleus. All calculations
have been performed for an infinite, rectangular, po-
tential well. The j-level energy tnlt in a spherically
symmetric potential, which appears in 6 and 6', can be
calculated from (15). We note that the contribution of
spin-orbit splitting to €„„ does not exceed 4%. For the
Saxon-Woods potential, the parameters 6 and 6' are, on
the average, lower by 30% as compared with the rec-
tangular well.

UO 200 100 O,keV 100 200 NJOT SJkeV

o-/, «-2

FIG. 10. Single-quasiparticle neutron term 5/2*(642). The
experimental points were deduced from the odd-nucleus band:

1—7-1/2-even; 2—/-1/2-odd.

D. Quasiparticle terms and the structure of deformed
nuclei of rare-earth elements

Comparison of experimental and theoretical values of
quasiparticle terms enables us to understand some of
the structural features of deformed nuclei. Let us il-
lustrate this by considering the example of neutron
quasiparticle excitations in rare-earth nuclei.

We shall begin with more or less well-known facts.
Figure 10 shows theoretical (solid lines) and experi-
mental values of the 5/2*[642] quasiparticle terms in
the Zi3 / 2 subshell. The exception is Dy156, for which
there is a K = 3/2 excitation. Table 1 lists the param-
eter values, used in the calculation, and a characteriza-
tion of the base level in the rotational band of the neigh-
boring odd nucleus, used to determine the quasiparticle
energy. It is clear from Fig. 10 that the energy Eie of
the lowest excitation in Dy'M'158 does become equal to
zero.

This is a direct experimental confirmation of the fact
that the nucleus is a superconductor of small size. The
curves of Fig. 10 reproduce all the features of quasi-
particle terms noted in Subsection A, above. We note

TABLE I.

Nu-
cleus

I)v '»'
»v «
I)v »
Et' "-
Er1 4

Yb •«

A,,. MeV

1.14
•1.00
0.97
1.06
1.01
1.12

P!

0.30
0.33
0.33
0.32
0.31
0.30

f t i

0
0
0
0
0
0

Band

3/2* 235 keV, ])Ti"
5/2* (642) 178 keV , Hv1-9

5/2* [642] pa Dy1"
5/2* [642] 69 keV , Fr1M

5/2* [642] 47 keV, Fr'«;'
5/2* [642] 30 keV Yb"7
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FIG. 11. Slngle-quasiparticle neutron terms 7/2* [633]. The
notation is the same as in Fig. 10.

that the agreement between theory and experiment is
worse for dysptosium than for the heavier nuclei. The
smaller experimental slope of the quasiparticle terms
can be explained by the admixture of states from the
rf3/2 subshell of the #=4 shell to the «13/2 subshell of
the tf=6 shell.

The component of the angular momentum of the quasi-
particle excitation along the axis of rotation of these nu-
clei, determined in accordance with (22), is 40-50% of
the magnitude of j, and is greater for the ^-even ex-
citations. The theoretical values of this quantity, cal-
culated from (12), are in good agreement with experi-
ment.

The single-particle state 7/2*[633] is observed in
heavier nuclei of the rare-earth elements (Fig. 11). If
the theoretical curves are calculated as for the excita-
tions with K =5/2, assuming /34 = 0, they are found to
lie above the experimental points. This discrepancy is
due to the negative hexadecapole deformation (Table II).

The hexadecapole deformation of the rare-earth nuclei
is positive at the beginning of the region and zero for
the Er and Yb isotopes. It becomes negative towards
the end of the region. The negative hexadecapole de-
formation modifies the splitting of the j- level by re-
ducing the energy of states with moderate m. The mag-

TABLE II.

Nu-
deus

Yb»»
Yb"°
Hfiio
Hf1"
Hfl'«
W1"

io. MeV

0.95
0.81
1.02
0.94
0.74
0.92

Hi

0.26
0.26
0.28
0.29
0.30
0.25

Oi

0'«
—0.02'
-0.01 '
—0.01 '
—0.02'
—0.02'

7/2* [633
7/2* f633
7/2* [633
7/2* [633
7/2* [633
7/2* [633

Band

as, Yb1"
95 keV , Yb1"
gs Hf"1

197 keV , Hf "'
207 keV, Hf1"
235 keV, W1'6

nitude of the energy splitting in a subshell is practically
unaltered thereby. The contribution of states with low
values of m to the energy of the lowest quasiparticle ex-
citation is therefore increased.

The hexadecapole deformation is still greater in nu-
clei in which the 9/2* [624] state is observed. The slope
of the quasiparticle terms and their splitting is not,
therefore, very different from that obtained for K=T/2.

An appreciable discrepancy between theory and ex-
periment is obtained for Hf 172«m and W174'178-18°. The
first and the simplest explanation of this discrepancy is
that incorrect deformation parameters were used in the
calculations. The experimentally determined hexadeca-
pole deformation for these nuclei is unknown, so that
theoretical values of /32 and /34, taken from Refs. 77 and
78, had to be used. The second explanation is more in-
teresting. It suggests that even and odd nuclei have dif-
ferent deformations.1} This hypothesis is exceedingly
simple to verify. All that is needed is to compare the
sum of quasiparticle excitations le and lo with the two-
quasiparticle excitation E^ + Elo deduced from the SB
of the even-even nucleus. When these two experimental
values do not agree, the odd particle must modify the
nuclear deformation. Still greater discrepancy between
theory and experiment has been obtained for the quasi-
particle term 11/2*[615] of Os186.

Calculations of the equilibrium deformation of the
above nuclei77'78 show that the isotopes Hf172'176 are well-
deformed nuclei. The isotopes w178'180 lie nearer to the
transition region. Finally, W174 and Os186 are soft to
quadrupole deformation. It would appear, therefore,
that the concept of static deformation does not apply to
these nuclei.

Figure 12 shows the two-quasiparticle excitations for
nuclei for which the SB's are well known. When the
quasiparticle energies were determined from (21), the
result was corrected for the interaction between the
bands to ensure that the experimental points corre-
sponded to the noninteracting bands. For comparison,
the figure also shows the lowest single-quasiparticle
excitations.

There is one further type of band from which two-
quasiparticle excitations can be deduced. These are the
negative-parity bands with even or odd spin sequence,
which have been seen both in deformed and transition
nuclei. In the rare-earth nuclei, these bands are based
on two-quasiparticle excitations from subshells with
different spatial parity: i13/2 and h9/2 (or/7/2) for neu-
trons and fe9/2

 anc* ^5/2 f°r protons. Alternatively, these
rotational bands can be described as octupole bands.
For light rare-earth nuclei, octupole vibrations with
K= 1,2,3 lie well above vibrations with K = Q. This can
explain the preferential population of negative- parity
bands with odd spin sequences in these nuclei.

The quasiparticle terms enable us to elucidate the

"The difference between the values of A0 for odd and even
nuclei is small and cannot explain the discrepancy because
the quasiparticle terms are slowly-varying functions of the
pairing energy.
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F; MeV

FIG. 12. Two-quasiparticle neutron excitations in Dy and
Er164. The experimental points were determined from bands
of (a) odd nucleus: 1—/-1/2-even, 2—/-1/2-odd and (b) ev-
en nucleus: 3—lowest SB, 7-even, 4—SB with odd/.

nature of the negative-parity bands. For example, the
theoretical two-quasiparticle terms in the neighboring
neutron subshells z't3/2 and fe9/2 of Dy156 and Er162 have
a much greater slope than the experimental terms. Con-
sequently, these bands are based on a collective excita-
tion. The average angular momentum of this type of ex-
citation is much smaller than jf, which means that the
excitation energy is not very dependent on Ji. A com-
pletely different picture is observed in Er156 which has
two bands with odd spins and ir = ± 1. The corresponding
quasiparticle terms are close to the neutron two-quasi-
particle excitations from the z'i3/2 subshell and the i\$/2
(it- + 1) and hg/2 ("=- 1) subshells. Vogel's calcula-
tions79 support the quasiparticle origin of the negative-
parity band of Er156.

5. CONCLUSIONS

During the six years between 1971, when the anomaly
of the rotational spectrum was discovered, and 1977,
when the second backbending region was found in the
ground-state band of Er158, the attention of the majority
of nuclear physicists was drawn to rotational excita-
tions of atomic nuclei. The original phase transition
hypothesis, which was the starting point of work on
high-spin rotational states, has had to be rejected and
replaced by the Stephens-Simon hypothesis about the
existence of quasiparticle excitations in even nuclei,
whose angular momenta lie along the nuclear axis of
rotation.

This semiquantitative theory has been widely used by

experimenters. On the other hand, theoreticians have
sought solutions of the HFB equations corresponding to
the Stephens-Simon model. Such solutions were first
found by Mang and Ring by numerical integration of
these equations. Analytic solutions were found later.
It turns out that the Stephens-Simon model is a limiting
case of highly favored angular momentum of quasipar-
ticle excitations. Up to this point in time, this approach
has led to the elucidation of the main features of the
phenomenon (although there are other explanations of
the rotational anomaly based on the catastrophe theory80

or on a phase transition to a more symmetric coupling
scheme for the quasiparticle angular momentum81).
However, there are several unresolved problems to
which attention must be drawn. They are:

1) The reason for the departures from the general be-
havior in certain bands of odd nuclei, which are de-
scribed in Sec. 4b, remains unclear; if these departures
are connected with a change in the deformation or some
other collective parameters of the nucleus in the excited
state, the anomalies may help in the investigation of this
phenomenon.

2) The reason for the appearance of the second back-
bending in the function f(&2) is not clear.

3) The rotational anomalies have not been detected in
the actinides although the J i 5 / 2 subshell begins to be
filled in these nuclei; new experimental techniques for
the excitation of rotational bands are necessary in this
region.

So far, there is no quantitative theory of the S-shaped
behavior of the moment of inertia or of the criterion for
its existence. Modern theory is unable to describe the
probabilities of transitions between high-spin states in a
given band or between bands. The nature of rotational
anomalies in transition nuclei is still less understood.
Because of the softness of these nuclei, rotational and
quasiparticle excitations are accompanied by other col-
lective phenomena. Finally, we note that studies of ro-
tational anomalies began with the question whether a
phase transition from the superfluid state to the normal
state occurs in the rotational band of deformed nuclei.
This remains an open question.
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