V. A. Kuz'min. Quarks and cosmology. Unified Gauge
Theories (UGT)"'? of strong, weak, and electromagnetic
interactions have recently undergone considerable de-
velopment. The gigantic scale on which all “low-ener-
gy” interactions (10'4 —10'® GeV) are unified means that
the Universe at the early stages in its expansion—at ¢
~10"% sec and temperatures 7~ 10'* GeV—was a natu-
ral “testing grounds” for the theory of the grand unifi-
cation.

Study of the phase transitions®™® that take place in the
UGTs as the Universe cools from its original singular
state are of special interest from the cosmological
standpoint. Critical phenomena in which the gauge-in-
variance group changes may strongly influence the evo-
lution of the Universe. Their dynamics may determine
the concentration of magnetic monopoles in the Uni-
verse %€ and the magnitude of its baryonic asymme-
try.? Already in the minimal UGT based on the SU(5)
group'’ the phase-transition picture is quite varied,
changing with the renormalized coupling constants of
the original Lagrangian. The following variants of vac-
uum-symmetry evolution are possible:

1. The “standard” variant.'° At a certain tempera-
ture T, during cooling of the Universe, the vacuum av-
erage first appears in the & field. The following phase
transitions may occur in this case?’:

a) The system may go from the SU(5) symmetric-
phase to the SU(3) XSU(2) XU(1) phase, either directly:

SU(5) —> SU@) x SU@) x U (1),
b) or through the intermediate SU(4) X U(1) phase:

T T,
SU(5) —>SU(4) x U (1) —>SU (3) x SU (2) x U (1).

¢) Finally, even within the framework of the scheme
considered here (when the Higgs 24-plot acquires the
vacuum average before the quintet), we may have a
nonstandard and extremely interesting variant of the
development of the Universe in which domains with dif-
ferent gauge-invariance groups may exist simultane-
ously in different regions of space at a certain stage in
the evolution of the Universe:!°

T, [SUGXUW®
SU (5 —’{

Ty
domains } —> SU (3) X SU (2) x U (1).
SU@B)XSU@)xU{)

We note that, first of all, the domains with vacuums
SU(4) x U(1) and SU(3) XSU(2) XU(1) expand differently,
i.e., the SU(4) XU(1) domains expand more rapidly;

l)I.e., the theory with two representations of the Higgs fields:
a 24-plet ® with a vacuum average V.~ 10!* GeV and a quint-

et H with v~ 100 GeV.
2)Before the appearance of the vacuum average in the H field.
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secondly, no baryon excess forms in SU(4) XU(1) do-
mains, while the formation of the baryonic asymmetry
proceeds as usual in SU(3) XSU(2) XU(1) domains.® This

‘results in nonuniform distribution of matter in the Uni-

verse and perhaps eventually in the formation of galax-
ies and clusters of galaxies. Latent heat is released
during the phase transitions; for instance the vanishing
of domains with SU(4) XU(1) symmetry may be accom-
panied by local explosions of certain regions of space.
Therefore the existence of domains may also have re-
sulted in thermal inhomogeneity of the Universe.

In this evolutionary scheme, the magnitude of the
BAU (Baryonic Asymmetry of the Universe) generated
in the minimal SU(5) is A~107!¢ (A=n5/n7, wherengand
n, are the baryon and photon concentrations, respec-
tively), and the Higgs sector must expand to two quin-
tets. ™

2. The other, “unusual,” variant was found by this
author together with I. I. Tkachev and M, E, Shaposhni-
kov and consists of the following. In a certain (“natu-
ral”) range of values of the coupling constants, the vac-
uum average appears first in the quintet as the system
cools, and then in the 24-plet. In this case, the elec-
trically weak SU(2),, group is ultrastrongly violated at
T~10" to 10'° GeV, i.e., the masses of the W* Z bo-
sons and fermions are ~10' GeV, and BAU generation
occurs in the SU(3) XU(1) phase. Here the minimal
SU(5) model predicts ng/n,~ 107, which is quite satis-
factory considering the dilution that follows.

As the temperature drops further, the SU(2), group
is restored, but it is violated again at 7~ 100 GeV (see
Fig. 1). In this case the evolution of the symmetry
group looks like this:

Ty T, T, Tsu
SU (5) — SU (4) —> SU (3) x U (1) — SU (3) X SU (2) X U (1) ——>8U (3) X U (1).

In any evolutionary variant, domains with different
symmetry groups must vanish by time T =0, otherwise
the existence of the walls between domains would con-
tradict observational data.!? Therefore the baryonically
symmetric cosmology with macroscopic matter and
antimatter domains in the Universe, which arises on
spontaneous violation of CP parity (BAU of the opposite
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FIG. 1. a) Schematic temperature dependence of vacuum av-
erages of 24 and 5 fields; b) schematic time dependence of
temperature,
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sign is generated in domains with different CP pari-
ties'®), can obtain only if the walls between domains
vanish at a certain early stage in the evolution of the
Universe.

The mechanism by which the CP walls vanish may be
a phase transition'* in which the complex vacuum av-
erage that ensures spontaneous violation of CP at high
temperatures disappears. Then at all T (including T
=0), CP parity must be violated explicitly (this require-
ment is satisfied naturally in the Unified Gauge The-
ories). Depending on the relation between explicit and
spontaneous CP violation in a theory with vanishing CP
walls at low temperatures, we arrive either at an is-
land structure of the Universe with domains of matter
and antimatter or at inhomogeneities in the distribution
of matter in the Universe.'*
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