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1. INTRODUCTION

Besides his investigations into electromagnetism, an
important part of Maxwell's scientific work was his in-
vestigations into molecular physics, which he began in
1859 with a study of problems in the kinetic theory of
gases. In his first and fundamental study of these ques-
tions, "Illustrations of the dynamical theory of gases,"1

Maxwell applied the methods of probability theory to
the disordered motions of colliding gas molecules, re-
garded as perfectly elastic spheres. He found for such
spheres the equilibrium distribution function of their
velocities—the famous Maxwell distribution, which laid
the foundation for the development of the methods of
statistical physics. On the basis of this model of a gas,
Maxwell provided for the first time, using the concept
of the mean free path introduced earlier by Clausius,
an elementary theory of transport processes, namely,
internal friction, diffusion, and heat conduction in gas-
es. This theory stimulated further experimental and
theoretical study of these irreversible processes.

In the following years, Maxwell made a number of in-
vestigations in molecular physics and continued to de-
velop statistical methods. Of great importance was his
major paper "On the dynamical theory of gases,"2 in
1866, in which he gave a new derivation of the velocity
distribution function of molecules based on a consider-
ation of direct and inverse collisions of the molecules.
In this paper, Maxwell developed transport theory in a
very general form without using the concept of the mean
free path, and he then applied the theory to the process-
es of diffusion, internal friction, and heat conduction.

He also considered a gas in the field of a gravity force,
which subsequently led him to the solution to the prob-
lem of the energy distribution function of molecules in
an arbitrary force field. In a short paper in 1873, "On
a final state of a system of molecules in motion subject
to forces of any kind,"3 Maxwell gave a simple deriva-
tion of this function (the Maxwell-Boltzmann distribu-
tion function, including the Boltzmann factor). In the
same year he published the paper "On Loschmidt's ex-
periments on diffusion in relation to the kinetic theory
of gases,"4 in which he calculated the diameters of
molecules for a number of gases from the data of ex-
periments on diffusion. In 1879—the last year of his
life—he published two large fundamental papers: "On
stresses in rarefied gases arising from inequalities of
temperature,"5 and "On Boltzmann's theorem on the
average distribution of energy in a system of material
points."6 In the first of these papers, general transport
theory was applied to rarefied gases. The second paper
was also very important. In it, statistical methods
were generalized and applied to arbitrary systems of
interacting particles and not only to gases, which pre-
pared the way for the investigations of Gibbs in statisti-
cal mechanics.

In the above fundamental studies and in a number of
papers and notes, Maxwell examined many problems
of molecular physics. His textbook Theory of Heat7

was published in 1871; the major part of it is devoted
to a phenomenological study of thermal phenomena.
Five editions of this textbook were published during his
life. Considerable attention is paid to thermodynamics,
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and in the final chapter, which is of particular interest,
a "Maxwell demon" appears for the first time in the
section on the limits of applicability of the second law
of thermodynamics. Maxwell's slender volume Matter
and Motion8 (1873) contains an exposition of his physical
and philosophical views on the nature of molecular mo-
tion.

Maxwell successfully combined fundamental studies
of basic questions of molecular physics with active pop-
ularization of atomic and molecular teaching. In a
number of papers (in particular, in the Encyclopedia
Britannica, in public appearances and lectures, in book
reviews, and in brief notes in Nature, Maxwell ex-
plained his views on the nature and properties of atoms
and molecules and justified the introduction of statisti-
cal methods for studying molecular systems.

More than 30 papers by Maxwell, both the pure re-
search papers as well as those of a pedagogical and
popular nature, are devoted either fully or in part to
problems of molecular physics and allied questions. It
is very important to consider Maxwell's papers as a
whole and taking into account the development of his
ideas over the period of 20 years during which he
worked on these questions (1859-1879). Unfortunately,
it is often the case that only individual papers of his,
generally the first,1 are considered (and then only in
part); this does not enable one to form a sufficiently
complete judgement about the fundamental contribution
of Maxwell to molecular physics and the part he played
in the development of statistical methods.

The aim of the present paper is to acquaint the read-
er with the contents of Maxwell's original papers and
on the basis of a systematic analysis of them give a
true estimate of the contribution made by Maxwell to
molecular physics and statistical mechanics.

Most of the papers we consider appeared in the two-
volume edition of his scientific papers,9 which included
his papers Refs. 1-6, some other papers on molecular
physics and allied questions, and papers and lectures
of a general nature important for understanding his
views. We have also used papers and notes published
by Maxwell in periodicals of that time not included in
Ref. 9 and, in addition, some papers that were not pub-
lished by him during his life and appeared only fully or
in part after his death. Only the paper Ref. 1 and some
popular papers and lectures have been translated into
Russian; these are contained mainly in the collection of
Ref. 10.

In the analysis of Maxwell's papers, it is important
to know details of his life and work. The first and full-
est biography of Maxwell was written by Campbell and
Garnett11; among the later studies, we should mention
the bibliographical papers of Everitt12 (who gives a
large section on Maxwell's studies in statistical and
molecular physics; his paper gives numerous refer-
ences to the literature on Maxwell), Jones,13 and the de-
tailed biography of Maxwell written by Kartsev14 (who
has also written the interesting paper Ref. 15).

Maxwell's letters, including those published in Ref.
11 and his letters to Stokes16 and to Tait,11 also contain

important material.

Among the historicoscientific investigations devoted
to the papers of Maxwell in which we are interested,
we should mention those of Brush18-19 (the second in
collaboration with Everitt) and particularly Ref. 20,
and also the papers of Garber.21"23 In the book The Kind
of Motion We Call Heat,24 which contains much well-
arranged material, Brush considers Maxwell's papers
on the kinetic theory of gases and allied subjects from
the point of view of the development of this theory in
the 19th century (see also Brush's book on kinetic theo-
ry25). In their papers Refs. 26 and 27, Klein and Hei-
mann analyze some ideas advanced by Maxwell.

Individual papers of Maxwell have been considered in
Soviet and non-Soviet courses on the history of phys-
ics,28"33 and also in Gel'fer's book34 on the history of
thermodynamics and statistical physics.

Some papers about Maxwell and the significance of
his studies are included in the book of Ref. 10, which
contains a useful bibliography.

2. SOURCES OF MAXWELL'S INVESTIGATIONS ON
THE MOLECULAR-KINETIC THEORY OF GASES

Already at an early stage in the development of the
study of heat two directions appeared. The first was
based on a theory of heat as a particular substance—
caloric, or thermogen; the second, the molecular-kin-
etic direction, was based on the idea of heat as a kind
of motion of particles of a body.

At the very beginning of his first paper on the molec-
ular-kinetic theory of gases,1 Maxwell wrote: "So many
of the properties of matter, especially when in the gas-
eous form, can be deduced from the hypothesis that
their minute parts are in rapid motion, the velocity in-
creasing with the temperature, that the precise nature
of this motion becomes a subject of rational curiosity,"
(Ref. 1, p.19 in Phil. Mag.).

Maxwell then referred to the investigations of "Dan-
iel Bernoulli, Herapath, Joule, Kronig, Clausius,
etc."1'

As is well known, the basic ideas of the molecular-
kinetic theory of gases were formulated as early as
1738 by the Swiss scientist Daniel Bernoulli in the tenth
chapter, entitled "On the properties and motions of
elastic fluid media, in particular air," of his book on
hydrodynamics.35 According to Bernoulli, elastic fluid
bodies—gases—consist of an infinitely large number of
very small particles moving "extremely rapidly in dif-
ferent directions and possessing gravity" (Ref. 35, p.
282). Heat is associated with the motion of these par-
ticles, "since it is known that when the internal motion
of particles increases everywhere the heat increases"
(Ref. 35, p. 285). Bernoulli formulates the theorem
that "in every air of any density but possessing the
same degree of heat the elasticities are proportional to

" Maxwell did not know about Lomonosov' s work; the papers
of Waterston were published after Maxwell" s death (see
the book Ref. 24 for a discussion of Waterston's papers).
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the densities, and therefore the increments of the elas-
ticity due to equal increases in heat are proportional to
the densities" (Ref. 35, p. 286).

In the first half of the 19th century, the ideas of the
kinetic theory of gases were developed by the English
physicist Herapath.36'37 In 1847, he explained his ideas
in Mathematical Physics28 (Maxwell subsequently re-
ferred to this book in Refs. 2 and 39). Herapath ex-
plained the laws of ideal gases, diffusion phenomena,
and the propagation of sound in gases on the basis of
the hypothesis of motion and collisions of particles of
gas regarded as elastic spheres. The gas particles
are displaced constantly with high velocity along sec-
tions of straight lines. A consequence of this type of
motion is the pressure which a gas exerts on any sur-
face placed in the path of the particles. However,
Herapath obtained an incorrect result: the gas pres-
sure is not proportional to the absolute temperature
but to its square (see the book Ref. 24 for more details
of Herapath's work).

In 1848, Joule, who had been occupied with questions
of the theory of heat, gave a lecture to the Manchester
Literary and Philosophical Society that became his best
known work: "Some remarks on heat and the constitu-
tion of elastic fluids."40 Joule bases his calculations on
Herapath's model, which appears to him "somewhat
simpler" than the hypothesis of heat as a rotational mo-
tion of particles, although the latter "accords equally
well with the phenomena" (Ref. 40, p. 36 in Philos.
Mag.). By means of this model, Joule calculated for
the first time the velocity of hydrogen molecules.

To calculate the velocity of hydrogen particles, Joule
considers "an envelope of the size and shape of a cubic
foot to be filled with hydrogen gas," which at normal at-
mospheric and room temperature has a definite weight.
Assuming "the above quantity to be divided into three
equal and indefinitely small particles," each having 1/3
of the total weight of the particles, "and further, that
each of these particles vibrates between opposite sides
of the cube, and maintains a uniform velocity except at
the instant of impact," Joule finds the velocity with
which each such particle must move in order to com-
pensate the atmospheric pressure on each side of the
cube. The obtained velocity will be able "to produce
the atmospheric pressure, whether the particles strike
each other before they arrive at the sides of the cubical
vessel, whether they strike the sides obliquely, . ..."
Assuming further that the particles of hydrogen do not
have an appreciable size, Joule obtains for the hydro-
gen molecules a velocity equal to 6225 feet per second
(1897 m/sec).

In 1856, the German physicist Kronig, who at that
time was fairly well known in Germany, published a
short (eight pages) paper entitled "Grundztige einer
Theorie der Case."41 According to Kr&'nig's hypothesis,
gases consist of atoms which behave as rigid, perfectly
elastic spheres moving with a definite velocity within
an empty space. They interact with each other only in
collisions. Kr'Onig considers a gas in a vessel having
the shape of a parallelepiped, and assumes that the
atoms move parallel to the edges of the vessel along the

directions +x,-x,+y,-y,+z,-z, one sixth of the total
number of atoms moving in each direction. The velocity
c of all the atoms is assumed to be the same. Compar-
ing the obtained expression for the pressure (propor-
tional to me2, where m is the mass of an atom) with
Clapeyron's equation, Kronig concludes that "the
vis viva of an atom is nothing else but the temperature
measured from the absolute zero" (Ref. 41, p. 318).

In 1873, Maxwell wrote: "The further development
of the theory is generally supposed to have begun with
a paper by KrSnig, which does not, however, so far as
I can see, contain any improvement on what had gone
before. It seems, however, to have drawn the attention
of Professor Clausius to the subject, and to him we owe
a very large part of what has been since accomplished,"
(Ref. 39, p.75). It should be noted that during this peri-
od (up to 1873) Maxwell himself had already made a
very appreciable contribution to the kinetic theory of
gases in his Refs. 1 and 2 (see the following section).

In 1857, Clausius published the very important paper
"Uber die Art der Bewegung, welche wir Warme nen-
nen."42 This paper of Clausius laid the foundation of
the modern development of the kinetic theory of gas-
es.2' Clausius, like Kronig, whose paper he quotes,
considers the translational motion of gas particles,
but, in contrast to KrOnig, he speaks of molecules, and
not atoms. He also points out the possibility of rota-
tional and vibrational motion of molecules, which will
influence the "total heat contained in a gas" and will be
"particularly important for gases of complicated chemi-
cal composition, for which there are many atoms in a
molecule" (Ref. 42, p. 355). Clausius assumes that by
virtue of the large number of collisions a definite dis-
tribution of the energies is established on the average
for the molecules between the translational and rota-
tional motion and that "with regard to the translational
motion the molecules satisfy the ordinary laws of elas-
ticity." Clausius explains the pressure of its gas and
its dependence on the volume and temperature "as was
done by Krbnig" by considering elastic collisions with a
wall of a large number of molecules in translational
motion. In the mathematical appendix to the paper,
Clausius makes the corresponding calculation without
assuming that one third of the molecules moves at right
angles to the wall. He takes into account the equal
probability of the directions of motion of the molecules.
He assumes that the momentum transferred to the wall
is 2wMCosa, where m is the mass of a molecule, u is
its velocity, and 3 is the angle between the direction of
the velocity of the molecule and the normal to the wall,
and he integrates over the angles. Clausius assumes
that the velocity of all the molecules is the same and
equal to some mean velocity. In this connection, he
writes: "... in reality, of course, there is a very great
variety in the velocities of the individual molecules.
However, in calculations one can ascribe a certain
mean velocity to all the molecules. As is clear from
the following formulas, to obtain the same pressure

2) Brush took the title of this paper as the title of his book24 on
the history of the kinetic theory of gases in the 19th century.
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this mean velocity must be chosen such that the vis viva
of all the molecules at the mean velocity is the same
as at the actually occurring velocities" (Ref. 42, p.
372). It was only Maxwell who was subsequently able
to find the law of the distribution of the molecules with
respect to the velocities (see below). Clausius calculat-
ed the velocity of the molecules of oxygen, nitrogen,
and hydrogen at the freezing point of water and obtained
the values 461 m/sec, 422 m/sec, and 1844 m/sec, re-
spectively (Ref. 42, p. 370).

Clausius considers the conditions of strict validity of
the "law of Mariotte and the law of Gay-Lussac and the
laws associated with them." Three conditions must be
satisfied: the actual volume of the molecules must be
small compared with the total volume of the gas, the
time of a collision must be short compared with the
time between two collisions, and the influence of the
molecular forces must be negligibly small. Otherwise,
"there are various deviations from the simple gas
laws, and these are the larger, the less the molecular
state of the gas corresponds to these conditions" (Ref.
42, p. 358).

Clausius also considers the question of how, from
the point of view of the molecular-kinetic theory, the
solid state differs from the liquid, and he discusses
the question of the evaporation and density of saturated
vapors together with other questions.

Clausius's paper stimulated a number of objections.
In particular, Bays-Ballot43 pointed out that the high
velocity of the molecules does not correspond to ob-
served phenomena, namely, the slow diffusion of gases,
the slow movement of smoke, and the existence of an
edge of the atmosphere. Continuing to develop his the-
ory, Clausius dealt with these objections in his follow-
ing paper, which was devoted to the mean free path of
gas molecules.44

To calculate the mean free path, Clausius introduced
into the theory the concept of the sphere of influence of
molecules. He points out that in the absence of chemi-
cal affinity it is necessary to distinguish two kinds of
molecular forces, "namely, when two molecules ap-
proach, a force of attraction begins to act, this becom-
ing appreciable at a certain distance and increasing
with decreasing distance, but when the molecules are
in the immediate proximity of each other a force arises
which tends to separate them" (Ref. 44, p. 241). As a
result, in the case of impact distances (using the mod-
ern terminology) greater than some mean distance p,
there will be only a curving of the paths of the mole-
cules, whereas at impact parameters less than p the
molecules will rebound from each other. This latter
case Clausius regards as a collision, and he defines
the sphere of influence of a molecule as a sphere of
radius p described around the center of gravity of the
molecule. He then finds the mean free path, "the mean
length of the path between two such collisions," which
he expresses in terms of p and the length X, which is
equal to the distance between the nearest molecules
when they are uniformly distributed in the volume of
the gas. Under the assumption that only one molecule
moves, with a certain mean velocity v, and that the re-

maining molecules are fixed, Clausius obtains for the
mean free path the formula I' = X3/?rp2. When allowance
is made for the mean relative velocity of the mole-
cules, which, according to Clausius, is 4i>/3, the mean
free path is I = 3/'/4= 3X3/47rp2. Considering the ratio
of the volume of the gas X3 per molecule to the volume
(4/3)7rp3 of a sphere of radius p, Clausius assumes that
this ratio is equal to 1000,3' whence A/p= 16.12, /
= 1000p= 6U (Ref. 44, pp. 249-250). Accordingly, we
find that the mean free path exceeds the length X by not
more than two orders of magnitude, i.e., it is a dis-
tance much less than observable distances.

It is important to emphasize that in deriving his for-
mula for the mean free path of molecules Clausius
used arguments from the theory of probability.

At the beginning of the 19th century, when Laplace's
famous paper was published,40 probability was regarded
as either a purely philosophical or a purely mathemati-
cal subject. In 1843, Mill discussed the logic of the
theory of probability in his book A System of Logic.46

However, the methods of probability theory were ap-
plied mainly to the description of social phenomena. In
1849, Adolph Quetelet47 published a book on the use of
probability methods in politics and the theory of games.

On the basis of Laplace's paper a theory of errors
was created, and this laid the foundations for the use
of probability methods in physics. In 1849, Clausius
used probability ideas in his paper "Uber die Natur
derjenigen Bestand theile der Erdatmosph'are, durch
welche Lichtreflexion an derselban bewirkt wird."48

However, examples of the use of probability methods
were few and unrelated.

Probability arguments were invoked by KrBnig in his
paper of Ref. 41 discussed above. In analyzing the mo-
tion of gas particles, Kr'onig used the idea of the ran-
domness of this motion. He wrote: "for the atoms of a
gas, a smooth wall must be regarded as very uneven,
and therefore the trajectory of each atom must be so
disordered as to preclude any calculation. However, in
accordance with the laws of the theory of probabilities,
complete order can be assumed in place of this com-
plete disorder" (Ref. 41, p. 318).

Already in 1857 Clausius used probability ideas in
Ref. 42: Whatever the individual motions of the atoms
and molecules, the final results will contain statistical
mean values. Although the individual collisions of the
molecules can take place in accordance with any law,
"in the investigation of the combined influence of a large
number of molecules, it is possible to ignore the ir-
regularities of the individual collisions and assume that
with regard to the translational motion the molecules
follow the general laws of elasticity" (Ref. 42, p. 356).

It should be noted that in introducing probability ideas
into kinetic theory Clausius regarded them only as ob-
vious and more convenient mathematical devices that
strongly simplify the calculations. It is therefore evi-

'' That is, equal in order of magnitude to the ratio of the density
of the liquid to the density of the gas.
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dent why, in giving the final expression for the mean
free path, Clausius did not regard it as necessary to
give a derivation based on probability arguments of the
coefficient 3/4, but simply included this value of the
coefficient in the final result. In his early papers,
Clausius did not see important differences between mi-
croscopic and macroscopic processes, all the phenom-
ena of nature satisfying for him mechanical laws.
Therefore, "in deriving general expressions, we do not
need to take into account at all random differences. It
is only in numerical calculations that we must remem-
ber that the mean value can change" (Ref. 34, p. 366).

Clausius was the immediate predecessor of Maxwell
in developing the kinetic theory of gases. Clausius's
investigations had a great influence of forming Max-
well's interest in this theory. It was after he became
acquainted with the English translation of Clausius's
paper, published in February 1859 in the Philosophical
Magazine,44 that Maxwell, as he recognized in Ref. 2,
occupied himself with the kinetic theory of gases.4'

Maxwell wrote of Clausius: "After reading his inves-
tigation (Philos. Mag. Feb. 1859) of the distance de-
scribed by each molecule between successive collisions,
I published some propositions ("Illustrations of the Dy-
namical Theory of Gases," Philos. Mag. 1860, January
and July) on the motions and collisions of perfectly
elastic spheres, and deduced several properties of
gases, . . ."(Ref. 2, p. 29).

It is interesting to note that, as can be seen from
Maxwell's letter to Stokes on May 31, 1859 (Ref. 16,
p. 8-10), he originally intended to refute Clausius's
theory, regarding its consequences as contradicting
experience. However, already in Ref. 1 Maxwell
adopted Clausius's ideas, in particular the mean free
path. Subsequently, Maxwell regarded highly Clausius's
contribution to the development of the molecular-kinetic
theory. In Ref. 2, he emphasized: "It is to Professor
Clausius, of Zurich, that we owe the most complete dy-
namical theory of gases."

In a letter of 1871, found in the papers of Thomson
(Lord Kelvin), Maxwell wrote about Clausius's contri-
bution as follows:

"10. The great development of the theory is due to
Clausius.

a. The arrangement of the molecules at any instant
is perfectly general.

/3. The impacts of the molecules against each other
are taken fully into account.

y. The relation between their diameter, the number in
a given space and the mean length of path is determined.

5. Mathematical methods are introduced for dealing
statistically with immense numbers of molecules by ar-

4) The tradition preserved at Cambridge that Maxwell first
derived the velocity distribution law for molecules in an
examination by Stokes in 1854 can hardly correspond to re-
ality. He evidently derived Stokes' s famous theorem, which
had only just been discovered by Stokes and which was in-
cluded among the problems posed for the examination (see
Kefs. 13 and 14).

ranging them in groups according to their directions,
velocities, etc.

s. The slowness of diffusion is accounted for, and
steps taken towards a complete theory.

£. Theory of evaporation and maximum density of
vapours.

77. Theory of the change of partners among the mole-
cules of compound bodies and the theory of electrolytic
conduction under the smallest electromotive force, etc.,
etc.

6. Internal energy of molecules." (Ref. 49, p. 211).

3. GENERAL REVIEW OF MAXWELL'S
INVESTIGATIONS OF MOLECULAR PHYSICS AND
ALLIED SUBJECTS

The first and best known of Maxwell's papers on the
molecular-kinetic theory of gases1 (which at that time
he called a dynamical theory5') was presented by him
on September 21, 1859 at the annual meeting of the
British Association for the Advancement of Science,
which was held at Aberdeen, where Maxwell at that
time held a chair at the University.

In his paper, a central position is occupied by a
study of transport phenomena using the ideas about the
mean free path introduced earlier by Clausius.44 Max-
well writes that these phenomena "... seem to indicate
the possibility of determining accurately the mean
length of path which a particle describes between two
successive collisions." Maxwell bases his treatment
on a model in which a gas consists of moving "small,
hard, and perfectly elastic spheres acting on one
another only during impact."

Maxwell refers to a different model of a gas which
leads "to the same results." According to this model
the particles of the gas are "centres of force, of which
the action is insensible except at a certain small dis-
tance, when it suddenly appears as a repulsive force of
very great intensity." Maxwell subsequently used such
a model in 1866 in Ref. 2, which we shall discuss be-
low.

Maxwell's paper is written in a traditional style. It
consists of three parts and contains 23 clearly formu-
lated "propositions," in each of which a definite prob-
lem is posed and solved.

In the first and particularly important part of this
paper, which carries the title "On the motion and col-
lision of perfectly elastic spheres," Maxwell considers
two-body collisions of spheres having different masses
and radii (which corresponds to the presence in the gas
of molecules of different species). In Proposition III,
Maxwell poses the problem: "Given the direction and
magnitude of the velocities of two spheres before im-
pact, and the line of centres at impact; to find the vel-
ocities after impact," (Ref. 1, p. 21 in Philos. Mag.).

5' On the subject of Maxwell' a terminology, see Ref. 27, pp.
119-202.
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He solves this problem by means of an original geo-
metrical construction (in the velocity space) and shows
that for each sphere "the velocity after impact is com-
pounded of the velocity of the centre of gravity, and of
a velocity equal to the velocity of the sphere relative to
the centre of gravity," which may with equal probability
be in any direction whatever" (this equality of the
probabilities was proved in advance by Maxwell in
Proposition II).

Figure 1 shows Maxwell's construction (Ref. 1, p.
190). OA and OB are the velocities of the spheres be-
fore the collision, OG is the velocity of the center of
mass, GN is parallel to the line of the centers at the
moment of collision and necessarily lies in the plane
OAB, Ga and Gb are the velocities of the spheres after
the collision with respect to the center of mass, and
Oa and Ob are their total velocities after the collision.

This construction for elastic two-body collisions
satisfying the laws of conservation of energy and mo-
mentum is also valid for particles for which the inter-
action forces depend (in accordance with any law) on the
distance between their centers. It was used subse-
quently by Maxwell himself, by Boltzmann, and by
other scientists and became a common and familiar
construction. It is characteristic of the way of thinking
of Maxwell, who made wide use of perspicuous geo-
metrical representations.

Maxwell draws the following fundamental conclusion:
"If a great many equal spherical particles were in mo-
tion in a perfectly elastic vessel, collisions would take
place among the particles, and their velocities would
be altered at every collision; so that after a certain
time the vis viva will be divided among the particles
according to some regular law, the average number of
particles whose velocity lies between certain limits be-
ing ascertainable, though the velocity of each particle
changes at every collision" (Ref. 1, p. 22). Therefore,
according to Maxwell, an equilibrium characterized by
a quite definite steady velocity distribution function of
the particles is established in a gas. In Proposition IV
(which we shall consider separately in the section The
Development by Maxwell of Statistical Methods), Max-
well finds the distribution function

/(*)=- (1)

by means of which one determines the number of parti-
cles whose velocity component in a given direction lies
between x and x + Ax. (In this paper, Maxwell denotes
the velocity components along three mutually per-
pendicular axes by x,y,z; a is a constant.)

By means of this function, Maxwell also obtains re-
sults important for the consideration of transport phe-

nomena: The number of particles with velocities be-
tween v and v + dv is N(4/a2VlTiv2 exp(-v2/a2), where N
is the total number of particles, and the mean value of
the velocity_is W= 2a/VT and the mean square of the
velocity is v2= (3/2)a2. He points out that v2 ( v ) 2 , "as
it ought to be."

Maxwell then solves a number of problems (Proposi-
tions V-DC) which, in particular, concern the relative
velocities of particles and the approach of particles to
a distance that does not exceed a given distance. In
Proposition VI, Maxwell obtains an important result:
For a mixture of two gases, equality of the mean kine-
tic energies must be established. In Proposition X,
Maxwell, using the distribution function, finds the
"mean distance travelled by each particle before strik-
ing," which is equal to 1= \/j2vs2N, where s is the
distance between the centers of the particles at the time
of the collision, and N is the number of particles in unit
volume (as we have seen above, Clausius44 obtained a
mean free path equal to / = 3X3/47rp2, from which, since
X3= l/N and p= s, we obtain Z = 3/47rs2Ar6)).

Maxwell also determined the mean free path of two
species of particle in a mixture of gases (Proposition
XI).

In Proposition XII, Maxwell solved the following
problem: "To find the pressure on unit of area of the
side of the vessel due to the impact of the particles
upon it;" he obtained the well-known formula />=_£!/
3)MNl?, where M is the mass of a particle and v2 is
the mean square of the velocity. This result does not
depend on the mean free path I , which is used in the in-
termediate stage of the calculation. Since, as was
proved earlier, the mean kinetic energies of particles
of different gases at the same temperature are equal,
Maxwell concludes that "the number of particles in unit
of volume, is the same for all gases at the same pres-
sure and temperature. This result agrees with the
chemical law, that equal volumes of gases are chemi-
cally equivalent." (Ref. 9, II, p. 390).

At the end of part I, Maxwell poses the very impor-
tant problem of the experimental determination of "the
mean length of the path of a particle between consecu-
tive collisions" and draws attention to the investigation
of internal friction as the "most direct way of doing
this."

Maxwell writes: "The explanation of gaseous fric-
tion, according to our hypothesis, is, that particles
having the mean velocity of translation belonging to one
layer of the gas, pass out of it into another layer hav-
ing different velocity of translation; and by striking
against the particles of the second layer, exert upon it
a tangential force which constitutes the internal friction
of the gas. The whole friction between the two portions
of gas separated by a plane surface, depends upon the
total action between all the layers on the one side of

FIG. 1.

6) It should be noted that in Ref. 50 Clausius did not agree with
Maxwell concerning the value of the coefficient (J2~ instead
of 4/3) and only many years later recognized the correctness
of this coefficient in Ref. 51.
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that surface upon all the layers on the other side."
(Ref. 9, H, p. 390).

In Proposition XIII, Maxwell formulates the following
problem: "To find the internal friction in a system of
moving particles." He solves this problem by consid-
ering the transport of momentum by the particles
through the plane xy, which separates layers moving
along the x axis with velocity u parallel to this plane
and varying linearly along the normal to it directed
along the z axis. The transport depends on the mean
free path. Applying the formula obtained previously for
the number of particles traversing after collision the
distance along the z axis from nl to (n + An)l, Maxwell
obtains (after integration over n from n = 0 to n = °°)
for the force of internal friction the formula F = /
dz, where the coefficient of internal friction,

(2)

is expressed in terms of the gas density p, the mean
free path I , and the mean velocity ~v = 2a/iT. From the
values of V jit/p measured by Stokes for air, and using
formula (2), Maxwell found for the first time the value
of I , which was equal to 1/44700 inch (5.68x 10"6 cm),
which has the correct order of magnitude.

Because the mean free path I is inversely proportion-
al to the density, Eq. (2) leads us, as Maxwell writes,
to "a remarkable result. . . if this explanation of gaseous
friction be true, the coefficient of friction is indepen-
dent of the density." Maxwell regards this conslusion
as "very startling."

Maxwell says that "the only experiment I have met
with on the subject does not seem to confirm it." He is
here evidently referring to Stokes' explanation52 of an
experiment performed by Sabine as early as 1829. Ac-
cording to the model proposed by Stokes, the viscosity
of the gas changes with the density. As is correctly
noted in the book of Ref. 24 (Book 1, p. 190-191), the
correct interpretation of such experiments was given
only on the basis of Maxwell's theory. The experi-
ments made subsequently, some of them by Maxwell
himself, confirmed that the coefficient of internal fric-
tion of gases does not depend on the density (see below).

In the second part of Ref. 1, "On the process of dif-
fusion of two of more kinds of moving particles among
one another," which contains Propositions XIV-XXI,
Maxwell developed a theory of diffusion in gases based,
like the theory of internal friction, on the notion of a
mean free path, and also (in the final Proposition XXI
of the second part) a theory of heat conduction. Thus,
Maxwell provides a unified theory of all three transport
processes, whereas in Ref. 44 Clausius gave only a
qualitative explanation of the slowness of diffusion (in
Ref. 44, Clausius did not consider heat conduction or
internal friction).

Maxwell found the law of diffusion for the case "of
two gases diffusing into each other through a plug made
of a porous material" (Proposition XIX) as well as for
the case of "two vessels connected by a tube" (Proposi-
tion XX). From Graham's data on experiments on the

diffusion of ethylene in air,7) Maxwell obtained the value
Z«l/389000 inch (6.53x 10'6 cm), which, as Maxwell's
noted at the end of Ref. 1, "is not very different from
that deduced from experiments on friction" (Ref. 1, p.
220). In the case of heat conduction, Maxwell concludes
that "resistance of air to the conduction of heat is
10000000 times that of copper."

This chapter of Ref. 1 of Maxwell was the subject of
criticism by Clausius, the correctness of which was
recognized by Maxwell (see below).

In the third and final part of Ref. 1, "On the collision
of perfectly elastic bodies of any form," Maxwell con-
sidered not only the translational motion of particles
but also their rotational motion, treating the particles
as rigid bodies with three principal moments of iner-
tia. He assumes that a distribution function of the type
(1) applies to the rotation around each of the three
axes. Maxwell determines the motion after collision of
two perfectly elastic bodies of any form if their motion
before the collision and the line of the collision are giv-
en (Proposition XXII). Finally, Maxwell solves the fol-
lowing problem (Proposition XXIII): "To find the rela-
tions between the average velocities of translation and
rotation after many collisions among bodies." He ob-
tains the result that "the final state, therefore, of any
number of systems of moving particles of any form is
that in which the average vis viva of translation along
each of the three axes is the same in all the systems,
and equal to the average vis viva of rotation about each
of the three principal axes of each particle." Thus,
Maxwell obtained for the first time the law of equipar-
tition of the kinetic energy between the translational
and rotational degrees of freedom.

The expression "degree of freedom" appears much
later in Maxwell's writings, in Ref. 6, in a study of the
more general question of the average distribution of
energy in a system of material points; see below.

Maxwell introduces the ratio p of the "whole vis viva
to the vis viva of translation," i.e., the ratio of the
total mean kinetic energy of the particle (translational
and rotational) to the mean kinetic energy of the trans-
lational motion. He derives the formula j3 = 2/3(>-- 1),
according to which this ratio must be expressible in
terms of y = c!>/ca ("the ratio of the specific heat at
constant volume"). On the basis of the experimental
value y= 1.408 ("well-known fact"), Maxwell obtains
the value |3= 1.634, and, since £ = 2 according to his
hypothesis, he regards it as proven that the proposed
model of a system of particles of any shape "could not
possibly satisfy the known relation between the two spe-
cific heats of all gases." With this conclusion, Max-
well concludes Ref. 1.

The formula p= 2/3(y- 1) corresponds to equiparti-
tion of the energy of a molecule between n degrees of
freedom, three of which correspond to translational
motion (T = CP/CV= (n + 2)/n, and /3= «/3, which gives
this formula). For diatomic molecules with allowance

7) The British chemist Graham (see Ref. 53) was the first who
investigated in detail the mutual diffusion of gases.
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for only rotational and translational motions and for
frozen vibrational motion, w = 5 , y= 7/5 = 1.400, and
j3= 5/3 = 1.667, which agrees approximately with the
experimental data mentioned by Maxwell. Subsequently,
Maxwell repeatedly returned to the difficulties of the
theory of the specific heats of gases.

The paper of Ref. 1 served as the beginning of Max-
well's subsequent investigations on molecular physics,
including experimental studies. He was particularly
interested in transport phenomena. Maxwell's paper on
the kinetic theory of gases in June 1860 at the meeting
of the British Association, held that year in Oxford,
was entitled: "On the results of Bernoulli's theory of
gases as applied to their internal friction, their diffu-
sion, and their conductivity for heat."54

Note that in the summary of this paper Maxwell
speaks even more clearly about the contradictions in
the theory of the specific heats of gases than at the end
of Ref. 1: "This result of the dynamical theory, being
at variance with experiment, overturns the whole hy-
pothesis, however satisfactory the other results may
be." However, despite the opinion held at that time that
a single incorrect result can invalidate an entire hy-
pothesis, Maxwell did not hold for long to such an opin-
ion and subsequently continued to develop other conse-
quences of the kinetic theory of gases.

In 1860, Maxwell transferred from Aberdeen (where
he lost his chair as a result of the merging of two small
universities) to London, to be professor of natural
philosophy at King's College. At the start of his teach-
ing at King's College, Maxwell gave an inaugural lec-
ture55 that reflects his broad and deep approach to the
problems of physics.

The lecture indicates, in particular, Maxwell's in-
terest in the explanation of heat as a form of mechani-
cal motion. Maxwell writes: " . . . and though we cannot
be said as yet to know scientifically the exact kind of
motion to which such phenomena as heat and electricity
are due, yet we have sufficient evidence to show that
any labour we bestow in investigating such subjects by
the aid of mechanical ideas will not be in vain" (Ref.
55, p.929).

Maxwell lived in London for five years, until 1865.
During this period he did particularly fruitful work, in
parallel with pioneering investigations on electromag-
netism, on aspects of molecular physics. He regarded
it as necessary to make not only theoretical but also
experimental investigations and did experiments to test
the "very startling" conclusion which follows from (2)
for the coefficient of internal friction p.. He measured
p. for air and gave the results in his paper "Cn the vis-
cosity or internal friction of air and other gases."56

Maxwell found that for air the value of p. at a given
temperature remains constant over a wide range of
pressures from 0.5 to 30 inches (from 12 to 760 mm) of
mercury. At the same time, he found that p. is propor-
tional to the absolute temperature 0. This contradicted
formula (2), according to which p. is proportional to
/0 (because •/£) is proportional to the mean velocity

Maxwell made his experiments, which cost him much
effort, by means of a specially constructed instrument,
which made it possible to determine the damping of the
torsional vibrations of parallel horizontal disks in air
(the damping depends on the viscosity of the air, and
the method was proposed by Coulomb as early as 1803).
Maxwell made these experiments with his wife; subse-
quently, in 1877, he wrote about this in a post-card to
Tait (see Ref. 12, p. 220): "My better i, who did all
the real work of the kinetic theory is at present en-
gaged in other researches. When she is done I will let
you know her answer to your enquiry [about experimen-
tal data]." Maxwell is here referring to the participa-
tion of his wife in the experimental work on the viscos-
ity of gases.

An experimental determination of the coefficient of
internal friction of air was made independently of Max-
well in Germany by Meyer, who, in his paper "Uber die
innere Reibung der Case," concluded that "the coeffi-
cient of friction changes much less rapidly with de-
creasing density than the density does. Therefore,
Maxwell's law is at least approximately correct" (Ref.
57, p. 853). Thus, Maxwell's theory was confirmed.

Later, in 1890, in a review of the just published two-
volume edition of Maxwell's scientific papers,9 Ray-
leigh wrote: " . . . in the whole range of science there is
no more beautiful or telling discovery than that gaseous
viscosity is the same at all densities. Maxwell antici-
pated from theory, and afterward verified experimen-
tally, that the retarding effect of the air upon a body
vibrating in a confined space is the same at atmospher-
ic pressure and in the best vacuum of an ordinary air-
pump." (Ref. 58, p. 26).

In 1862, Clausius published a major theoretical pa-
per, "Uber W'armeleitung gasfOrmiger Korper,"59 in
which he expressed a high estimation of Maxwell's Ref.
1. However, he did criticize individual propositions of
Ref. 1, particularly those relating to the theory of the
heat conduction of gases. Clausius also discovered a
mistake of Maxwell in determining the numerical value
of the ratio of the thermal resistivities of air and cop-
per. He obtained the value 7000 instead of the
10000000 of Maxwell, who made an error on the tran-
sition from one set of units to another. Maxwell agreed
with Clausius' criticism of his Ref. 1 and subsequently
wrote (Ref. 2, p. 29): "I also gave a theory of diffusion
of gases, which I now know to be erroneous, and there
were several errors in my theory of the conduction of
heat in gases which M. Clausius has pointed out in an
elaborate memoir on that subject" (Maxwell gave a
reference to Clausius' paper Ref. 59). It should be
emphasized that Maxwell always paid attention to criti-
cism that he recognized as correct.

In the unpublished paper "On heat conduction in gas-
es" (see Ref. 22), written as an immediate answer to
Clausius, Maxwell wrote: "Clausius recently pub-
lished an investigation of a special case of heat conduc-
tion in a gas which was treated very inadequately by me
in the paper (1860) to which reference has been made.
I have reexamined it and have found some errors,
whose influence extends to other parts of my investiga-
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tion. I therefore present here my modified results only
to the extent needed for understanding the necessary
corrections, and I preserve the methods used in my
previous paper except for the cases when I must com-
pare them with Clausius' methods." (Ref. 22, p. 311;
retranslated from the Russian because Ref. 22 is cur-
rently unavailable.)

Maxwell did not publish the corrected theory of heat
conduction, presumably because he concluded that the
method based on the concept of the mean free path is
not applicable for the general theory of transport pro-
cesses.

In 1866, in Ref. 2, Maxwell gave a more general
theory of transport processes, this being no longer
based on the idea of a mean free path. This is an ex-
ceptionally important and the longest of Maxwell's pa-
pers on the kinetic theory of gases. This work was
done at the family estate Glenlair of the Maxwells in
Scotland after he had left London in 1865. This paper,
Ref. 2, was presented to the Royal Society (received
May, 16, 1866 and presented on May 31), and it was
then published in 1867.

Right at the start of the paper, Maxwell writes:
"Theories of the constitution of bodies suppose them
either to be continuous and homogeneous, or to be
composed of a finite number of distinct particles or
molecules." Distinguishing between the static and dy-
namic molecular theories, Maxwell gives preference
to the latter, according to which bodies consist of mov-
ing molecules, "even while the body is apparently at
rest." This enables him to formulate very clearly the
difference between solids, liquids, and gases:

"The dynamical theory supposes that the molecules
of solid bodies oscillate about their positions of equi-
librium, but do not travel from one position to another
in the body. In fluids the molecules are supposed to be
constantly moving into new relative positions, so that
the same molecule may travel from one part of the flu-
id to any other part. In liquids the molecules are sup-
posed to be always under the action of the forces due
to neighbouring molecules throughout their course, but
in gases the greater part of the path of each molecule
is supposed to be sensibly rectilinear and beyond the
sphere of sensible action of the neighbouring mole-
cules" (Ref. 2, p. 27).

In the paper Maxwell proposes "to apply this theory
to the explanation of various properties of gases," in-
cluding "the diffusion of one gas through another, the
internal friction of a gas, and the conduction of heat
through gases."

Maxwell briefly reviews the history of the problem,
beginning with "the theories of Democritus as modified
by Epicurus" and expounded by Lucretius. He charac-
terizes the work of Le Sage, Prevost, Herapath (who
gave "a more extensive application of the theory of
moving molecules"), and Joule (here he does not men-
tion Kronig). Maxwell especially emphasizes the sig-
nificance of Clausius' work, stating "... his memoirs
On the kind of motion we call heat, are a complete ex-
position of the molecular theory adopted in this paper."

Maxwell then speaks of his own work (Ref. 1), noting
his errors (as quoted above), and, finally, mentions
the work of Meyer, who "has also investigated the the-
ory of internal friction on the hypothesis of hard elas-
tic molecules" (Ref. 2, p. 29).

We may mention that in his historical comments
Maxwell draws attention to the part of Clausius' paper
Ref. 59 which lists the names of a number of scientists
with whose work Clausius became acquainted after the
publication of his papers Refs. 42 and 44.

Quite generally, Maxwell accorded great importance
to questions of the history of science. In particular,
he emphasized their importance in his inaugural lec-
ture of Ref. 55. It is well known that in the last years
of his life Maxwell devoted much time to the prepara-
tion for publication of the manuscripts of the great 18th
century physicist Henry Cavendish. The world-famous
experimental laboratory at Cambridge, whose first di-
rector Maxwell became in 1871, was subsequently
called the Cavendish Laboratory (see, for example,
Ref. 14, p. 252).

Turning to the exposition of the main material of his
paper, Maxwell characterizes as follows the model of
a gas which he adopts: "In the present paper I propose
to consider the molecules of a gas, not as elastic
spheres of definite radius, but as small bodies or
groups of smaller molecules8' repelling one another
with a force whose direction always passes very nearly
through the centres of gravity of the molecules, and
whose magnitude is represented very nearly by some
function of the distance of the centres of gravity. I
have made this modification of the theory in conse-
quence of the results of my experiments on the viscos-
ity of air at different temperatures, and I have deduced
from these experiments that the repulsion is inversely
as the fifth power of the distance" (Ref. 2, p. 29).

It can be seen from this what great importance Max-
well attached to his experiments on the measurement of
the viscosity of air (described in Ref. 56, see above).
In the experimental investigation of internal friction,
he saw a means of verifying the concepts of the molecu-
lar-kinetic theory ("dynamical theory of gases") and of
obtaining information about the interaction processes of
moving and colliding molecules and the properties of
the molecules themselves. Maxwell points out that in a
gas "the pressures in all directions are perfectly equal-
ized only in the case of a gas at rest, but when the gas
is in a state of motion, the want of perfect equality in
the pressures gives rise to the phenomena of viscosity
or internal friction."

Maxwell shows how "the phenomena of viscosity in
all bodies may be described, independently of hypothe-
sis," i.e., phenomenologically.

Maxwell writes the connection between the stress F
and some kind of strain S in the form F= ES, where E
is the "coefficient of elasticity for that particular kind
of strain." In a solid, in the absence of viscosity, F is

884 Sov. Phys. Usp. 24(11), Nov. 1981

8> This reference is to the atoms that compose the molecule.

M. A. El'yashevich and T. S. Prot'ko 884



equal to ES and dF/dt = EdS/dt. In a viscous body, un-
der the assumption that the rate of decrease of F is
proportional to F, we obtain

df , dS

and for constant S

F =

(3)

(4)

from which it can be seen that "F gradually disappears,
so that if the body is left to itself it gradually loses any
internal stress, and the pressures are finally distribut-
ed as in a fluid at rest."

If dS/dt is constant, "that is, if there is a steady mo-
tion of the body which continually increases the dis-
placement,"

F = ET^jr + Ce-'/r, (5)

from which it can be seen that "F tends to a constant
value depending on the rate of displacement."9' Max-
well points out that ET, by which it is necessary to
multiply the displacement velocity to find the force,
can be called the coefficient of viscosity. This coeffi-
cient is "the product of a coefficient of elasticity, E,
and a time T, which may be called the "time of relaxa-
tion" of the elastic force." Here, we have the appear-
ance for the first time of the fundamental concept of the
relaxation time as the time required for the establish-
ment of equilibrium; it has found use in the most var-
ied branches of physics.

Maxwell notes that in "mobile fluids," i.e., in gases,
"T is a very small fraction of a second, and E is not
easily determined experimentally. In viscous solids T
may be several hours or days, and then E is easily
measured" (Ref. 2, p.31).

For a gas "there is also a resistance to change of
form, constituting what may be called the linear elas-
ticity, or "rigidity" of the gas, but this resistance
gives way and diminishes at a rate depending on the
amount of the force and on the nature of the gas." Con-
sidering for a gas enclosed in a rectangular vessel with
perfectly elastic walls the change in the pressure due
to small changes in the lengths of the sides of the ves-
sel, Maxwell shows that the coefficient of "rigidity" E
is equal to the pressure p of the gas. "This rigidity,
however, cannot be directly observed, because the
molecules continually deflect each other from their
rectilinear courses, and so equalize the pressure in all
directions. The rate at which this equalization takes
place is great, but not infinite; and therefore there re-
mains a certain inequality of pressure which constitutes
the phenomenon of viscosity." Referring to the results
of his experiments (see above), according to which the
coefficient of viscosity of a gas p. = ET= pT "is inde-
pendent of the density, and proportional to the absolute

The constant C, about which Maxwell says nothing, can be
determined from the condition F= 0 at t= 0, which gives
C=-ETdS/dt, ie.,

temperature," i.e., proportional top/p, Maxwell con-
cludes that the time of relaxation T is inversely pro-
portional to the density and does not depend on the tem-
perature (Ref. 2, p. 32).

It should be noted straight away that subsequent ex-
perimental investigations did not confirm proportional-
ity of the coefficient of internal friction p. to the abso-
lute temperature 0 (we use Maxwell's notation in Ref.
2); it was found to be proportional to ©r, where r
= 0.65-0.96 for different gases (see Ref. 24, Book 2, p.
441). Maxwell himself subsequently recognized that r
is smaller than 1 and, probably, equal to 0.77 (Ref. 5,
p. 692). Nevertheless, he still continued to use a mod-
el of molecules that repel each other with a force pro-
portional to the fifth power of the distance, since this
model, which leads to ju.~0, significantly simplified
the calculations (see below).

Further, Maxwell emphasizes that ".. .the dynamical
theory affords the explanation of the 'law of equivalent
volumes'10' in gases" and that "this result is true in
the case of molecules acting as centres of force."
Speaking of molecules as the portions of a gas "which
move about as a simple body," Maxwell says "we may
suppose them to be small solid bodies of a determinate
form; but in this case we must assume a new set of
forces binding the parts of these small bodies together,
and so introduce a molecular theory of the second or-
der." Here, Maxwell develops ideas about the struc-
ture of molecules to which he frequently subsequently
returned. He also speaks of the possibility of not only
rotation of the molecules as a whole but also "vibra-
tions of various kinds" if the "parts of the body are not
rigidly joined." As in Ref. 1, Maxwell uses the ratio
j3 of the total mean energy of a molecule to the mean
energy of its translational motion.

The method of investigation adopted by Maxwell con-
sists of determining the mean values of "functions of
the velocity of all the molecules of a given kind within
an element of volume" (Ref. 2, p. 34). Maxwell con-
siders for these molecules three types of mean value:
(a), the mean values of the velocity components £ ,?? ,£
along the coordinate axes; (/3), the mean values of
quadratic ("two-dimensional") functions of £ , 7 J , £ (for
example, |2, £,rj); (y), the mean values of cubic ("three-
dimensional") functions of £ , T J , f (for example, |3, £rf).

Such mean values are encountered in the theories of
diffusion (type a), the pressure of a gas and internal
friction (type ft), and heat conduction (type y).

Subsequently, Maxwell determines the changes in the
mean values of functions of the velocity "due, 1st, to
the encounters of the molecules with others of the same
system or of a different system; 2nd, to the action of
external forces such as gravity; and 3rd, to the pass-
age of molecules through the boundary of the element of
volume." He applies his calculations "to the determina-
tion of the statistical cases of the final distribution of
two gases under the action of gravity, the equilibrium
of temperature between two gases, and the distribution
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of temperature in a vertical column." Maxwell empha-
sizes that these results are independent of the force law
of the interaction of the molecules. He also considers
transport processes: ".. .the dynamical cases of dif-
fusion, viscosity, and conduction of heat, which involve
the law of force between the molecules" (Ref. 2, pp. 34-
35).

The main part of Maxwell's paper is devoted to a de-
tailed exposition, using the appropriate mathematical
formalism, of the listed problems, and it is hard to
overestimate its significance. In his well-known stud-
ies, summarized in his "Vorlesungen Uber Gas the o-
rie,"60 Boltzmann proceeded from the methods develop-
ed by Maxwell in this paper. In what follows, we shall
describe the most important problems analyzed by Max-
well from his unified point of view.

In the section "On the mutual action of two mole-
cules," Maxwell considers the motion with respect to
the center of mass of two molecules which interact in a
collision ("as simple centres of force") with masses
Mt and M2 and initial Cartesian velocity components 51(

7jlt £j and £2, T?2, £2. After the collision of the mole-
cules, these components change, but the relative vel-
ocity V remains unchanged in magnitude, the direction
being merely changed through the angle 26. The mag-
nitude of this angle (0 can take on values from 0 to JT/
2) depends on the distance b to which the molecules
would approach in the absence of an interaction between
them (the impact parameter in modern terminology).

Somewhat later, Maxwell calculates for the case of a
repulsive force inversely proportional to the fifth pow-
er of the distance the trajectory of a molecule with re-
spect to the force center for different values of b,
gives a table, and a corresponding diagram (Fig. 2).
The "impact distances" are equal to the distances be-
tween the vertical line drawn through S and the vertical
asymptotes of the trajectories (these trajectories in the
case of a repulsive force inversely proportional to the
square of the distance are, of course, hyperbolas) (Ref.
2, p. 42).

To characterize the collisions, Maxwell introduces
besides b the angle <p between the plane containing V
and b (the plane of the drawing in Fig. 2) and a fixed

plane passing through V and parallel to the Cartesian
axis x (the vertical plane passing through S and making
an angle (p with the plane of the drawing) (Ref. 2, p. 38).

In the section "On the mutual action of two systems of
moving molecules," Maxwell considers the interaction
of molecules "of the first kind" with mass M± with mol-
ecules "of the second kind" with mass M2. From the
N! molecules of the first kind in a unit volume he con-
siders the dNt molecules with velocity components be-
tween £j and £j + dlj, between j]i and r}t + dijlt and be-
tween £i and £j + d£1( and from the N2 molecules of the
second kind in unit volume the dJV-j molecules with vel-
ocity components between £2 and |2+ d£2, between r)2

and 7j2+ d7j2, and between £2 and £2+ d£2. For the Mx

molecules, Maxwell considers the variation 6Q in time
5t of any of its properties Q (which could be a velocity
component or a function of the velocity components;
see above) due to its interaction with an M2 molecule.
He shows that the total variation 5QdN^ of the quantities
Q per unit time for the dA^ molecules of the first kind
is equal to (Q' - Q)Vbdbd<pdNidN2, where Q' is the value
of Q for a molecule of the first kind after its interac-
tion with a molecule of the second kind, V is the rela-
tive velocity (the same for all interacting pairs of Mt

and M2 molecules), the values of b are in the interval
from 6 to b+ db, and the values of <p are in the interval
from (ft to (f>+ dtp. The finding of the mean change in Q
for all the Mi molecules reduces to integrations, first
with respect to <p from 0 to 2n and with respect to b
from 0 to °°, and then with respect to dN2 = f2(£2, rj2,
£2)d£2d7)2d£2 and dAT1 =/1(41,7]1, fjd^dr^d^ (/2 and/! are
the velocity distribution functions of the molecules of
the first and second kind). This can be done if the in-
teraction force of the molecules is a known function of
the distance r between them. Under the assumption of
a repulsive force inversely proportional to r", the in-
tegration over 6 of an expression of the type (Q'
- Q)VbdbdN,dN2 leads to the appearance of the factor
yipf, which for n = 5(and only then) is equal to unity,
the dependence on V then disappearing. This strongly
simplifies all the further calculations when one is con-
sidering transport processes, and in the subsequent in-
tegration over dN2 the integral of the type

reduces to the integral

f J J £/,(!*, n,, « dl, drfe dk=<W2,

where Q is the result of averaging of Q with respect to
the N2 molecules of the second kind. A similar result
is obtained from the integration with respect to dA^.

FIG. 2.

It should be emphasized that we have here the first
appearance of the collision integral that was subse-
quently considered in detail and generalized by Boltz-
mann.

Before turning to the further study of the changes in
Q, Maxwell gives a new and very important derivation
of his velocity distribution law (1) in the special section
"On the final distribution of velocity among the mole-
cules of two systems acting on one another according to
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any law of force." We shall consider Maxwell's new
proof in the section "The development by Maxwell of
statistical methods," and mention here that Maxwell
finds simultaneously the functions/x and/2 for the mol-
ecules with masses ML and M2, which immediately gives
equality of the mean kinetic energies of the two kinds of
molecules.

Returning in the section "Variation of functions of the
velocity due to encounters between the molecules" to
the determination of the variations 6Q/6t of the mean
values, Maxwell subsequently restricts himself to the
case n = 5, "since it is not only free from mathematical
difficulty, but is the only case which is consistent with
the laws of viscosity of gases." Although, as became
clear subsequently, this assertion is incorrect and it
was necessary to give up the assumption «= 5 (the laws
of interaction of molecules are more complicated and
are not universal), Maxwell's general approach was
very fruitful and is of considerable interest. Consider-
ing for Q the changes in the mean values due to the mol-
ecules of the first and second kind (51Q/6t and 52Q/5t)
and an external force (53Q/8t), Maxwell considers sep-
arately examples of the variations of quantities of the
type a, |3, and y. For transport processes, it is ne-
cessary to cons'ider general motion of all molecules,
and in the section "Theory of a medium composed of
moving molecules," Maxwell represents the velocity
components of each molecule in the form (changing the
notation)

where u,v,w are the components of the mean velocity
of all molecules in a given element of volume at a given
time, and |, rj, £ are the components of the relative vel-
ocity of this molecule.

Maxwell then considers the transport of the quantities
Q through a plane, first in general form, and then
separately for the transport of mass, momentum, and
energy (cases a, /3, and y). In the resulting equations,
the velocity components £, r\, £ and the functions of
them are averaged, which gives macroscopic equations
(in particular, the continuity equation), which are com-
pared with the ordinary equations of hydrodynamics.

For the case of viscosity, Maxwell obtains the hy-
drodynamic Navier-Stokes equation

du d-u d2u d I du An du \ -TF

where p is the density, p is the pressure, and u and X
are the components of the mean velocity and the exter-
nal force along the x axis. Maxwell points out that "the
ratio of the third and fourth terms agrees with that giv-
en by Professor Stokes," referring to Stokes' Ref. 61.
Maxwell considers relaxation processes, representing
the coefficient of viscosity ji in the form pT (see above).

In analyzing transport processes, Maxwell pays
great attention to the diffusion of gases, carrying
through the calculations to concrete results, and deter-
mines, on the basis of the experimental data of Graham,
the coefficients of diffusion of various gases in air
(Ref. 2, p. 61).

In connection with experimental data on viscosity,
Maxwell refers to his own Ref. 56 and the work of
Meyer,57 and also Graham,62 stating that these studies
confirm p. to be independent of the density and propor-
tional to the absolute temperature (the latter was not
confirmed). From the data of his experiments on the
viscosity of air at normal atmospheric pressure, Max-
well finds a relaxation time T equal to 1/5099100000
second (i.e., »2x 10"10 sec), noting that this time is
"exceedingly small" (Ref. 2, p. 71).

At the end of the paper, Maxwell considers the coef-
ficient of thermal conductivity C and finds its relation
to the coefficient of viscosity p.:

i-, (?)3(7-1) poeo s '

where y = ct>/cy, s is the specific weight of the investi-
gated gas, and pa, pa, and 60 are the pressure, densi-
ty, and temperature of a standard gas (Ref. 2, p. 77).
If 5/3 is replaced by 5/2 (the need for which was sub-
sequently pointed out by Boltzmann), this formula gives
good results for monatomic gases (see Ref. 25, Vol.
Ill, pp. 16, 114, 182).

In an addendum dated December 17, 1866, "Final
equilibrium of temperature," Maxwell corrects a pre-
vious error [in the section "Conduction of heat in a
single medium (y)"] and shows that a vertical column
of gas "when in thermal equilibrium, has the same
temperature throughout." Maxwell emphasizes that a
dependence of the temperature on the height would con-
tradict the second law of thermodynamics (Ref. 2, p.
76).

This question subsequently became the subject of a
discussion between Maxwell and Gutrie (see below).

Maxwell's error was_in failing_to take into account
the difference between £4 and £2£2. It follows from the
velocity distribution law of the molecules that |4

= 3£2!2, and the correct result is obtained—the tem-
perature does not depend on the height. In this connec-
tion, Maxwell wrote: "We may therefore regard this
law of temperature, if true, as in some measure a
confirmation of the law of distribution of velocities."
(Ref. 2, p. 76).

This paper of Maxwell was the most important stage
in his investigations into the kinetic theory of gases. In
the following years, he remained interested in this the-
ory, in its experimental verification, and, more gen-
erally, in questions of molecular physics and the theory
of heat.

In September 1870, Maxwell gave an address to the
meeting of the British Association at Liverpool on the
relationship between physics and mathematics63 (as the
chairman of section A—Mathematics and Physics—of
the Association). In his lecture, he paid great attention
to molecular physics and the nature of molecules them-
selves. In particular, he said: "One of the most re-
markable results of the progress of molecular science
is the light it has thrown on the nature of irreversible
processes" (Ref. 9, II, p. 225).

In 1871, Maxwell transferred to Cambridge, to which
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he was invited as one of the leading physicists in Great
Britain (at that time he was regarded as the second,
after W. Thomson) to be director of the experimental
physics laboratory of the Cambridge University (Caven-
dish Laboratory). There, Maxwell continued his inves-
tigations, combining theory with experiment. It should
be emphasized that Maxwell was a skilled experimen-
talist.

He was also involved with teaching, in which he paid
particular attention to problems of molecular physics
and thermal phenomena. In October 1871, Maxwell
gave an introductory lecture on experimental physics,64

in which he said that in the coming term he intended to
lecture on heat and to present "some of the evidence for
the existence of molecules, considered as individual
bodies having definite properties. The molecule, as it
is presented to the scientific imagination, is a very
different body from any of those which experience has
hitherto made us acquainted" (Ref. 9, H, p. 253).

The year 1871 saw the first edition of Maxwell's text-
book Theory of Heat,7 in which he presented the science
of thermal phenomena. The book begins with thermom-
etry and calorimetry, and a major part of it is devoted
to phenomenological theory, including thermodynamics.
In the final chapter, he considers the "molecular theory
of the structure of bodies" and there is a section in
which "Maxwell's demon" appears (for more detail, see
below). Maxwell systematized a great deal of material,
striving to present it in a concise and elementary form
without the use of higher mathematics.

After the death of Maxwell, Taitu) wrote the follow-
ing about the Theory of Heat in a paper65 devoted to
Maxwell's scientific work: "One of the few knowable
things which Clerk-Maxwell did not know, was the dis-
tinction which most men readily perceive between what
is easy and what is hard. What he called hard, others
would be inclined to call altogether unintelligible. In
the little book we are discussing there is matter enough
to fill two or three large volumes without undue dilution
(perhaps we should rather say, with the necessary dilu-
tion) of its varied contents" (Ref. 65, p. 320).

Maxwell's views on the molecular structure of bodies
and the role of statistical methods, and on atoms and
molecules were developed in his papers "Molecules"39

and "On the dynamical evidence of the molecular con-
stitution of bodies,"66 in papers in the Encyclopedia
Britannica ("Atom"67 and "Constitution of bodies"68),
and in reviews69'70 of books by Watson71 and Tait.72

In 1875, Maxwell published a paper4 in connection with
Loschmidt's experiments73 on the determination of the
coefficients of mutual diffusion for ten pairs of gases.
He regarded these experiments as "most valuable and
accurate." Maxwell used a theory based on a model of

,the collision of elastic spheres "using, however, the
methods of my paper on the dynamical theory of gases
(Philos. Trans. 1866) rather than those of my first pa-

per in the Philos. Mag., 1860, which are more difficult
of application" (Ref. 4, p. 345). On the basis of Los-
chmidt's experimental data, Maxwell determined the
mean free path I for a number of gases under normal
conditions. He obtained for H2, O2, CO2, and CO the
values/= 9.65, 5.60, 4.82, and 4.30 (in units of 10"6

cm). Then Maxwell made "a few steps on more hazard-
ous ground" and found, following Loschmidt's well-
known paper "Zur Grosse der Luftmolectlle,"74 the di-
ameters of the molecules of these gases, obtaining the
values 5.8, 7.6, 8.3, and 9.3 (in units of 10'" cm). The
mass of a molecule of hydrogen was found to be 4.6
x 10'24 g (instead of 3.3 x 10'24 g) and the number of
molecules in 1 cm3 (the Loschmidt number) was found
to be 1.9x 1019 (instead of 2.9x 1019), which at that time
was a good result.

In the seventies, Maxwell published a number of
other papers devoted to particular concrete problems
of molecular physics.

In connection with the temperature of a vertical col-
umn of gas in equilibrium, which Maxwell had consid-
ered in Ref. 2 (see above), a discussion arose between
Maxwell and Gutrie.75"77 The latter did not agree with
Maxwell's conclusion in Ref. 2 (repeated in the Theory
of Heat; see Ref. 7, p. 33012>) to the effect that the
temperature of the column should not change with
height. This discussion prompted Maxwell to give a
new and simple proof of the general law of the Maxwell-
Boltzmann distribution (in the paper Ref. 3), as a re-
sult of which the thermal equilibrium of a vertical col-
umn of gas followed as a special case. We may men-
tion that there was also a discussion between Maxwell
and Gutrie on the subject of direct and inverse colli-
sions in a gas in equilibrium78-79 (for more detail, see
Ref. 24, Book 2, p. 346).

Maxwell was very interested in problems of diffusion.
In 1876, he published the short note "Diffusion of gases
through absorbing substances,"81 in which, on the basis
of molecular ideas, he analyzed diffusion in both gases
and liquids.

Maxwell's response to new ideas was always lively
and, in particular, he published in Nature a long re-
view82 of van der Waals' dissertation83 on the continuity
of the gaseous and the liquid states. Maxwell rated this
investigation very high and wrote of the young scientist
that "there can be no doubt that his name will soon be
among the foremost in molecular science" (Ref. 9, II,
p. 409). However, this did not prevent Maxwell from
criticizing the manner in which van der Waals used
"the very remarkable theorem of Clausius"—the virial
theorem.84 Maxwell also mentioned van der Waals in
the paper of Ref. 66. In this paper, he proved for the
first time that on the pV curve for the transition be-
tween the gaseous and liquid state the straight line cor-
responding to the transition region cuts off equal areas
above and below (this rule is sometimes called Max-
well's rule).

u) Peter Tait was a British physicist, a friend of Maxwell,
and the author of a textbook on thermodynamics which enjoy-
ed popularity at that time.

12) The references refer to the pagination of the 1891 edition
and subsequent reprintings.
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FIG. 3.

Maxwell gives the graph shown in Fig. 3 and, on the
basis of the fact that at constant temperature heat can-
not be transformed into work, proves that the areas of
FDE and BCD must be equal (Ref. 66, pp. 105-106).

Maxwell showed very great interest in the work of
Gibbs on thermodynamics. After he had become ac-
quainted in 1873 (as he wrote to Tait; see Ref. 21) with
Gibbs' papers Refs. 86 and 87 on the use of geometrical
methods in thermodynamics, Maxwell made a major
revision of the section on thermodynamics in Theory of
Heat. In the new (4th) edition of this book, published in
1875,7 he wrote: "Professor J. Willard Gibbs, of Yale
College, U.S., to whom we are indebted for a careful
examination of the different methods of representing
thermodynamic relations by plane diagrams, has intro-
duced an exceedingly valuable method of studying the
properties of a substance by means of a surface."
(Ref. 7, p. 195). (It should be emphasized that geo-
metrical methods particularly appealed to Maxwell, and
he used them widely in the Theory of Heat.) On the ba-
sis of Gibbs' papers, Maxwell gave a correct interpret-
ation of entropy.

In a comment on the section "Available energy,"
Maxwell writes: "In former editions of this book the
meaning of the term Entropy, as introduced by Clausi-
us, was erroneously stated to be that part of the energy
which cannot be converted into work. The book then
proceeded to use the term as equivalent to the available
energy; thus introducing great confusion into the lang-
uage of thermodynamics. In this edition I have endeav-
oured to use the word Entropy according to its original
definition by Clausius" (Ref. 7, p. 189).

Applying the geometrical method in the chapter "On
the relations between the physical properties of a sub-
stance" (Ref. 7, p. 165), Maxwell considers the inter-
section of two isotherms with two adiabatic curves and
derives the four thermodynamic relations that bear his
name. He formulates these relations in the main text,
and in a note writes them "in the language of differen-
tial calculus" (which he does not use in the Theory of
Heat) in the form

(8)

where 0 is the temperature and $ the entropy. As is
well known, the four relations (8) correspond to equal-
ity of the mixed derivatives for increments of the four
thermodynamic functions (thermodynamic potential, en-

thalpy, free energy, internal energy).

It was already after the 4th edition of the Theory of
Heat that Maxwell became acquainted with Gibbs' next
paper on thermodynamics. This was the famous paper
"On the equilibrium of heterogeneous substances"77

(the first part was published in 1875). Maxwell wrote a
special report of this paper,88 in which he said "the
methods adopted by Professor J. Willard Gibbs... seem
to me to throw a new light on Thermodynamics." Max-
well gives the Gibbs condition of stable equilibrium in
two of its forms (for the variation of the entropy and
for the variation of the energy; see Ref. 87, p. 96).
Later, Maxwell wrote a further paper89 on Gibbs' paper
Ref. 87, and in it he dwelt in more detail on Gibbs'
concept of potentials (which we now call chemical poten-
tials) as the derivatives of the energy with respect to
the masses of the componenets.

It should be especially emphasized that it was in Ref.
87 that Gibbs considered the important problem of the
behavior of the entropy when two identical gases and
two different gases are mixed (Ref. 87, p. 227). When
two different gases are mixed by diffusion, the entropy
must increase, but when the gases are identical it must
remain constant. However, on the basis of Avogadro's
law, Gibbs concludes that the increase in the entropy is
entirely determined by the number of molecules of the
mixed gases "irrespective of their dynamical state and
the degree of difference between them." This result,
which surprised physicists, is known as the Gibbs par-
adox. It has been the subject of investigations right up
to the present day (see the book of Ref. 90). It is very
interesting that at the end of his paper on diffusion81

Maxwell considers the problem of the behavior of the
entropy in the case of the mutual diffusion of two identi-
cal gases and two different gases in connection with the
problem of reversibility. Although there is no refer-
ence to Gibbs, there is no doubt that it was the reading
of his paper which attracted Maxwell's attention to this
question. Maxwell also analyzes the case of two gases
"hitherto supposed to be the same," but "hereafter
found to be different," and writes that in this case "the
process of interdiffusion which we had formerly sup-
posed not to be an instance of dissipation of energy
would now be recognized as such an instance" (Ref. 81,
pp. 645-646). Thus, Maxwell regards entropy (which
increases as energy is dissipated) as a property of the
system which depends on our knowledge of this system.
Here, Maxwell anticipates the modern interpretation of
entropy in information theory (for more detail, see Ref.
24, Book 2, p. 592).

Regarding Gibbs' work highly, Maxwell also made
active propaganda for it (see Ref. 21). We may mention
that in 1878, in the paper "Diagrams"91 in the Encyclo-
pedia Britannica, Maxwell mentioned the geometrical
methods of Gibbs, which were so close to his heart.
Maxwell prepared models of thermodynamic surfaces
and sent one of them to Gibbs. Maxwell's opinion on
Gibbs' papers was also very important for Gibbs him-
self (see Ref. 92). Reviewing Maxwell's work in the
seventies on questions relating to molecular physics,
we must mention his important paper "Capillary ac-
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tion"93 in the Encyclopedia Britannica, and also his
short experimental paper on birefringence in a stream
of viscous fluid.94

Maxwell's lectures and papers on molecular physics
and allied questions published after 1870 contained
much important material. However, the most impor-
tant studies made by Maxwell at the end of the seven-
ties, during the last two years of his life (1878 and
1879), are the fundamental papers of Refs. 5 and 6.

The first of these papers was devoted to the theory of
transport processes in rarefied gases and laid the
foundation of the theory of inhomogeneous rarefied gas-
es.

A sufficiently detailed analysis of Ref. 5 with its com-
plicated mathematical formalism and applications to
the effects of the interaction between a rarefied gas and
a surface would require a separate paper, and we shall
restrict ourselves to giving a general characterization
of this very interesting paper.

At the start of Ref. 5, which was published in 1879
(a brief exposition95 appeared earlier in 1878), Maxwell
writes: "In this paper I have followed the method given
in my paper "On the dynamical theory of gases" (Phil-
os. Trans., 1867, p. 49). I have shown that when in-
equalities of temperature exist in a gas, the pressure
at a given point is not the same in all directions, and
that the difference between the maximum and the mini-
mum pressure at a point may be of considerable mag-
nitude when the density of the gas is small enough, and
when the inequalities of temperature are produced by
small * solid bodies at a higher or lower temperature
than the vessel containing the gas." A very important
footnote is indicated by the asterisk, in which it is
stated that "the dimensions of the bodies must be of the
same order of magnitude as a certain length A which
may be defined as the distance travelled by a molecule
with its mean velocity during the time of relaxation of
the medium." "The time of relaxation—writes Maxwell
further—is the time in which inequalities of stress
would disappear if the rate at which they diminish were
to continue constant" (see above), and he gives the for-
mula A= 2p.(2/irpp)l/2. "On the hypothesis that the en-
counters between the molecules resemble those between
"rigid elastic" spheres," Maxwell obtains the formula
Z= (3i7/8)A.= 1.178A for the mean free path and concludes
that I can be taken "as representing what we mean by
"small"." At the end of the footnote, Maxwell empha-
sizes: "If the force between the molecules is supposed
to be a continuous function of the distance, the free
path of a molecule has no longer a definite meaning,
and we must fall back on the quantity A, as defined
above."

In the main part of Ref. 5, Maxwell considers, by the
method developed in Ref. 2 (see above) the variations
in time of mean values of functions of the velocity com-
ponents of the molecules caused by collisions. He de-
termines these mean values by means of a distribution
function which takes into account deviations from spher-
ical symmetry (see below). Further, Maxwell takes
into account external forces, introduces, as in Ref. 2,

the velocity components of the macroscopic motion,
and obtains equations for such motion. He finds an
equation for the amounts by which the pressure of the
gas along the x,y,z axes exceeds the "mean hydrostatic
pressure" p. These amounts depend on the coefficient
of viscosity p. and contain terms with the second deriva-
tives of the temperature 0 with respect to the coordi-
nates, which determine "the part of the stress which
arises from inequality of temperature, which is the
special subject of this paper." (Ref. 6, p. 700). The
normal stress along the x axis has the form

du

d*e (d=e
"37="

d=9
' ~i—T "dy-

fi=e

and the tangential stress in the x,y plane is

(9a)

(9b)

[here, a and j3 are coefficients that characterize the
asymmetry of the distribution function; see below,
Eq. (17)].

It should be noted that in the addenda to the main text
made later, in May 1879 (the paper was presented to
the Royal Society in April 1878), Maxwell gave an ef-
fective method of "applying spherical functions in the
theory of gases." This method was subsequently used
by Boltzmann (see Ref. 60, p. 210).

Very important is the long appendix to the paper, al-
so dated May 1878. It is devoted to the effects of in-
teraction of a rarefied gas with the surface of a solid
which were first investigated by Crookes and then Rey-
nolds (see Ref. 96; for more details, see Ref. 24, Book
1, p. 210, and also Ref. 97). Maxwell gives a theory of
these effects associated with slipping of the gas along
the surface and absorption on it of a fraction/ of the
molecules. The fraction 1 -/ of the molecules is re-
flected, and the absorbed fraction/ is then evaporated,
taking the temperature of the surface. Subsequently,
the coefficient/ introduced by Maxwell was called the
accommodation coefficient. Maxwell obtains equations
that describe the interaction of a rarefield gas with a
surface, and analyzes them.

Maxwell's second fundamental paper,6 which was
written shortly before his death (Maxwell died on No-
vember 5, 1879), considers Boltzmann's paper "Studi-
en Uber das Gleichgewicht der lebendigen Kraft zwis-
chen bewegten materiallen Punkten."98 This is indicat-
ed by the title of Ref. 6: "On Boltzmann's theorem on
the average distribution of energy in a system of ma-
terial points." The main, first part of this paper will
be considered in detail below. We shall merely men-
tion here that at the end of the second part of the paper
(devoted to the properties of a free system with a large
number of degrees of freedom) Maxwell considers for
a vessel containing a mixture of gases and rotating a-
round a vertical axis the change in the distribution of
these gases under the influence of centrifugal forces,
i.e., he gives a theory of the centrifuge.
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4. THE DEVELOPMENT BY MAXWELL OF
STATISTICAL METHODS

Maxwell's studies on the application of statistical
methods in physics had an exceptionally great impor-
tance. They laid the foundations of the development of
a new physical theory—statistical mechanics—and
helped to form modern ideas about the nature of causal-
ity in the microscopic world.

The sources of Maxwell's interest in statistical
methods are particularly important, since they help to
illuminate the direction in which statistical ideas de-
velop in Maxwell's studies.

We have already mentioned the influence on Maxwell
of Clausius' paper of Ref. 44, which Maxwell read in
1859. As we have shown, this paper uses probability
arguments. However, Maxwell may have been influ-
enced by at least two further factors not directly relat-
ed to Clausius' theory.

The first of these factors was Maxwell's acquaint-
anceship with the theory of probability and the applica-
tion of probabilistic methods in different sciences. At
Edinburgh, Maxwell was a close friend of Robert Camp-
bell, a younger brother of Maxwell's first biographer,
Lewis Campbell. In Lewis' opinion, it was Robert who
first drew Maxwell's attention to the theory of proba-
bility (Ref. 11, pp. 127-128). In 1850, after the publi-
cation in the Edinburgh Review of Herschel's review"
of the book of Ref. 47 by Quetelet, Maxwell acquainted
himself with the application of this theory in sociology.
In a letter to Lewis Campbell (Ref. 11, p. 143), Max-
well notes the use of probability in the theory of
games—this subject, as it happens, was mentioned in
Herschel's review—and describes the method of least
squares. At Edinburgh, a teacher and friend of Max-
well was James Forbes,13' whose scientific works the
young Maxwell carefully studied (Ref. 14, p. 55). In
Ref. 100, Forbes justified the reality of the existence
of binary stars by means of the methods of probability
theory. He lectured on this question at a meeting of the
British Association, at which Maxwell too was appar-
ently present (Ref. 23, p. 21). Boole's book An Inves-
tigation of the Laws of Thought101 may also have been
one of the sources of knowledge of probability theory
for Maxwell. In this book, Boole defended the method
of probability theory as a method based on solid logical
principles. In addition, Maxwell may have considered
the discussion of the logic of probability theory in
Mill's book of Ref. 46, which he read in 1854 (Ref. 27,
p. 191).

The second factor was pointed out by Garnett, who
says in the biography of Maxwell that Maxwell's inter-
est in probability theory could also be due to his study
of the rings of Saturn. In his paper "On the stability of
the motion of Saturn's rings,"102 Maxwell writes: "When
we encounter collisions of bodies whose number, size,
and shape are unknown, we can no longer follow the
mathematical laws of their motion with any certainty."

In the manuscript "Mathematical theory of the rings of
Saturn" (beginning of 1860), Maxwell says: "In my pre-
vious paper I restricted myself to cases in which colli-
sions do not occur. . .[but the particles] influence each
other much more in collisions than by gravitational at-
traction . . . . The principle on the basis of which prob-
lems of this kind must be considered was treated by
Prof. Clausius and myself" (Ref. 27, p. 92; retranslated
from Russian as this reference appears to be incorrect).
In the paper of Clausius, an attempt is made to treat
such collisions on the basis of probabilistic considera-
tions which, naturally, could not but attract the atten-
tion of Maxwell. It was now clear for Maxwell that the
solution to the problem of Saturn's rings could be found
by developing the theory of gases.

In May 1859, Maxwell wrote a letter to Stokes,16 in
which he described a theory of gases developed by him-
self as a result of study of the work of Clausius.44 He
noted that "of course, not all my particles have the
same velocity, but the velocities are distributed in ac-
cordance with the same formulas as the errors are in
the theory of least squares." Four months later Max-
well presented his theory at a meeting of the British
Association in his paper "Illustrations of the dynamical
theory of gases."1

The paper of Ref. 1 was of fundamental importance
for the development of statistical physics. Essentially,
it contains the first description in the history of physics
of a statistical model of microscopic processes. Max-
well constructs this model on the basis of the following
basic assumptions: a) all directions of motion in a gas
are equally probable; b) no value of the velocity is
privileged or forbidden, i.e., the velocities of the mol-
ecules are arranged in the interval from 0 to °°;
c) every gas left to itself ultimately arrives in a steady
state in which a definite distribution of the velocities
between the molecules is established and remans con-
stant in time. Cbviously, these assumptions are possi-
ble only when the molecules move randomly.

In Proposition IV, Maxwell formulated the problem:
"To find the average number of particles whose veloci-
ties lie between given limits, after a great number of
collisions among a great number of equal particles."
Maxwell solves this problem as follows: Let N be the
total number of particles, x,y,z be the velocity compo-
nents of each particle with respect to three mutually
perpendicular directions, and let the number of parti-
cles in unit volume of the velocity space be
NAx)f(y)Az'>, where f(x), /(y), and/U) are functions of
x,y,z that determine the distributions for the corre-
sponding velocity components [Nf(x)dx is the number of
particles with velocity component between x and % + dx,
and similar expressions are taken for the two other
components]. Since the directions of the coordinate
axes are chosen arbitrarily, "this number must depend
on the distance from the origin alone, that is

Solving this functional equation, we find
8> James Forbes was in charge of the class of natural philo-
sophy at Edinburgh University. (f\r-)-- (Ref. I , p . 1 9 J ) .
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If A is positive, the number of particles will increase
to infinity with the velocity, and therefore Maxwell
takes the coefficient A negative and equal to -I/a2. The
constant C is found from the normalization condition.
In this case, the distribution function has the form

In this derivation of the velocity distribution law of
the molecules, Maxwell uses the assumption of statisti-
cal independence of the velocity components of an indi-
vidual molecule: "the existence of the velocity x does
not in any way affect that of the velocities y or z, since
these are all at right angles to each other and independ-
ent." Thus, he assumes that the distribution functions
/(*)> /(?)> and/U) are statistically independent of each
other when the number of molecules is large, and in
calculating the probabilities that the velocities of the
molecules lie in the intervals from x to x + dx, from y
to y + dy, and from z to z + dz he multiplies f ( x ) , f ( y ) ,
and/U) and obtains then the correct expression for the
distribution function.

Maxwell evidently assumed that the analysis made in
Proposition I of the motion of the spheres after a colli-
sion—"we find that the velocities parallel to the line of
centres are exactly reversed, while those perpendicular
to that line are unchanged"—ensures the independence
of the distributions of the velocities along three mutual-
ly perpendicular directions. Later, Maxwell recog-
nized that his assumption is not obvious and gave a new
proof for the distribution function.

Maxwell notes that "the velocities are distributed
among the particles according to the same law as the
errors are distributed among the observations in the
theory of the "method of least squares." The velocities
range from 0 to <*>, but the number of those having great
velocities is comparatively small" (Ref. 9, I, p. 382).
Maxwell's conclusion concerning the similarity between
the distribution function and the law of the distribution
of errors in the method of least squares is certainly
not a chance remark but the result of his study of prob-
ability theory, which he used to derive the velocity dis-
tribution law of the molecules.

Maxwell later constructed a graphical representation
to illustrate the particle velocity distribution (Ref. 66,
p. 101), this being derived from the distribution of bul-
lets over a target. The essence of the construction is
as follows: To get an idea of the nature of the distribu-
tion of the velocities of the molecules in the gas, one
can plot in an auxiliary diagram—the velocity dia-
gram—from one point vectors that each represent in
their direction and magnitude the velocity of a molecule.
The end of the vector can be called the velocity point of
the corresponding molecule. The velocity distribution
of the molecules corresponds to the distribution of the
velocity points in the diagram. The latter can be estab-
lished in terms of a density, i.e., the number of veloc-
ity points per unit volume. The density varies from
point to point in such a way that it is a function of the
coordinates in the velocity diagram or, which reduces
to the same thing, a function of the velocity components
of the molecule. If the density is now expressed in

terms of them, the entire statistics of the molecular
motion is reduced to a single formula. In the case of a
steady state, any element of the velocity diagram will
lose as a result of collisions as many points as it gains
new ones.

Maxwell uses the obtained distribution function to find
the statistical characteristics of two systems of moving
particles. He determines the number of pairs (one from
each system) whose relative velocity lies within a given
range (Proposition V) and the number of pairs that dur-
ing unit time approach to a definite distance (Proposi-
tion IX). In Proposition VI, by means of a geometrical
construction that illustrates the collision of particles of
two systems in a single vessel, Maxwell proves equality
of the mean vis viva for all particles.

Proposition X poses the problem: "To find the prob-
ability of a particle reaching a given distance before
striking any other." Like Clausius in Ref. 44, Maxwell
assumes that this probability is equal to e'"1 if ad* is
the probability of the particle's being stopped when it
traverses the path dx. "The mean distance travelled by
each particle before striking is I/a." For a, Maxwell
obtains the expression <f2ws2N, where A is the number
of particles in unit volume, and s is the distance be-
tween the centers of the particles at the time of the col-
lision, from which it follows that the mean free path is
l=l/a= l/2?s2.M(see above).

This formula differs somewhat (in the value of the
numerical coefficient) from Clausius' formula because
Maxwell used a distribution function while Clausius
took the velocities of all molecules to be the same.

Although the main aim of Ref. 1 was not the estab-
lishment of statistical laws, the development of statis-
tical methods appeared to Maxwell to be necessary as
well, since "an important physical analogy will be es-
tablished, which may lead to more accurate knowledge
of the properties of matter." In October 1859, Maxwell
wrote to Stokes that he intended to introduce a proposi-
tion about collisions of elastic spheres independently of
hypothetical assumptions about gases (Ref. 16, p. 39).

Although the distribution function made possible an
essentially new approach to the explanation of phenome-
na in gases, it originally evoked little interest. It is
possible that this reaction was due to the circumstance
that the velocity distribution could not be experimentally
verified.14' The statistical description introduced by
Maxwell was either ignored or rejected as incorrect.

The main criticism of the use of the velocity distri-
bution law was made by Clausius,59 who regarded the
application of a spherically symmetric distribution func-
tion to transport phenomena as incorrect. Clausius de-
veloped his own theory, taking into account the addition-
al kinetic energy associated with the motion of the par-
ticles in the direction of the temperature gradient,

**' Experimental confirmation of Maxwell' s distribution law
was obtained only in the twenties of this century after the
development of vacuum techniques. See Ref. 103 for a dis-
cussion of experimental investigations of the velocity distri-
bution.
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which was not taken into account by Maxwell.151 Max-
well recognized Clausius' criticism as correct and
wished to modify the distribution function by taking into
account the presence of a temperature gradient, but he
was not able to do this. In the Maxwell archives at
Cambridge there is a rough copy of such a paper, in
which he attempted to take into account the directed na-
ture of transport processes (for more detail, see Ref.
22).

Maxwell returned to the question of the form of the
velocity distribution function in 1866 in Ref. 2.

He writes: "The only case in which I have deter-
mined the form of this function is that of one or more
kinds of molecules which have by their continual en-
counters brought about a distribution of velocity such
that the number of molecules whose velocity lies within
given limits remains constant. In the Philosophical
Magazine for January 1860, I have given an investiga-
tion of this case, founded on the assumption that the
probability of a molecule having a velocity resolved
parallel to x lying between given limits is not in any
way affected by the knowledge that the molecule has a
given velocity resolved parallel to y. As this assump-
tion may appear precarious, I shall now determine the
form of the function in a different manner" (Ref. 2, p.
43).

The basis of the new proof is the condition of the
equality of the number of direct and inverse processes
for each type of collision; this has since become known
as the principle of detailed balance. Maxwell considers
collisions of a definite kind for which the velocity com-
ponents of two colliding molecules and the collision
parameters lie in definite intervals. He writes the
number of such collisions in unit time in the form

nJ«2Fd« = /1(a)/!(6)(dF)2f Ae,

where ni = /1(a)dV and «2 = f2(b) dV are the numbers of
molecules with masses Mj and M2 for which the velocity
components a and b (before the collision) lie in intervals
corresponding to the volume element dV of the velocity
space (after the collision, the molecules have velocities
a' and b', respectively), de depends on the ranges of
variation of the parameters which characterize the giv-
en type of collision, and F is a function of the relative
velocity and angle characterizing the change in the di-
rection of this velocity as a result of the collision.
Similarly, the number of collisions of molecules having
velocities a' and b' before the collision and a and 6 after
it (i.e., the number of inverse collisions in the modern
terminology) is

/a(a') /,(&') (dV)- P' Ae.

The functions F and F' depend in the same manner on
only the magnitude and the change in the direction of the
relative velocity of the colliding molecules, and there-
fore Maxwell sets F= F'. He formulates as follows the
condition for the process to be stationary: "When the

number of pairs of molecules which change their veloci-
ties from OA, OB to OA' , O.B'16' is equal to the number
which change from OA', OB' to OA, OB, then the final
distribution of velocity will be obtained, which will not
be altered by subsequent exchanges. This will be the
case when/1(o)/2(6)=/1(a')/2(6')"(Ref. 2, p. 45). The
velocities a, b and a', b' are related by

Mta* + MJP = M,a"+ Jlf ,&'».

Solving these equations, Maxwell obtains

(10)

where A^at2 = M2(?. The constants Cj and C2 are deter-
mined from the normalization condition

and a similar condition for C2.

Further, Maxwell writes: "If, therefore, the dis-
tribution of velocities among A^ molecules is such that
the number of molecules whose component velocities
are between £ and 4 + d£, rj and 77 + dn, and f and £ + d£

dA', = -

then this distribution of velocities will not be altered by
the exchange of velocities among the molecules by their
mutual action: This is therefore a possible form of the
final distribution of velocities. It is also the only form;
for if there were any other, the exchange between
velocities represented by OA and OA' would not be
equal" (Ref. 2, p. 45). Maxwell emphasizes that "this
final distribution of velocity is attained only when the
molecules have had a great number of encounters"
(Ref. 2, p. 46).

Maxwell answers Clausius' comments concerning the
possibility of applying the distribution function to trans-
port processes. "When the differential elements of the
gas are changing their figure, being compressed or ex-
tended along certain axes, the values of the mean
square of the velocity will be different in different di-
rections. It is probable that the form of the function
will then be

/id, 'i, 0 = -

where ct,P,y are slightly different. I have not, how-
ever, attempted to investigate the exact distribution of
velocities in this case, as the theory of motion of gases
does not require it.

When one gas is diffusing through another, or when
heat is being conducted through a gas, the distribution
of velocities will be different in the positive and nega-
tive directions, instead of being symmetrical, as in the
case we have considered. The want of symmetry, how-
ever, may be treated as very small in most actual
cases" (Ref. 2, p.46).

15' Clausius always hesitated to use a distribution function. He
employed Maxwell' s velocity distribution function only once,
in 1875 in the paper of Ref. 104.

16) Maxwell illustrates his arguments by a diagram in which
OA=a, OB=b, OA'=a', OB'=b'.
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Calculating the mean values of the various quantities
("the principal conclusions which we may draw from
this investigation"), Maxwell finds that the mean value
of the kinetic energy of a molecule "will be the same in
each system. This is a very important result in the
theory of gases, and it is independent of the nature of
the action between the molecules, as are all the other
results relating to the final distribution of velocities.
We shall find that it leads to the law of gases known as
that of Equivalent Volumes."

Maxwell understood well the importance of the re-
sults he had obtained. In the letter to Thomson49 men-
tioned above, he writes: "When there are two or more
kinds of molecules acting on one another by impact the
average kinetic energy of a molecule is the same what-
ever its mass. Hence follows the dynamical interpreta-
tion of

1. Gay Lussac's law of equivalent volumes of gases.

2. Dulong and Petit's law of specific heats of gases.

I claim No. 1 but am willing to distribute as regards
No. 2"(Ref. 49, p. 211).

In 1873, Maxwell published the paper "On a final
state of a system of molecules in motion subject to
forces of any kind,"3 in which he generalized the re-
sults of his investigations in Ref. 1, 2 with regard to
the form of the distribution function.

If an ideal gas is in a closed vessel, and no external
forces act on it, the velocity distribution of the mole-
cules satisfies the distribution function found by Max-
well, and the distribution with respect to the coordin-
ates will be uniform and constant, i.e., the mean num-
ber of particles in any volume AF within the vessel will
be the same. But in a field of external forces, for ex-
ample, in the gravitational field of the Earth, the mean
number of molecules of an ideal gas will not be the
same in different parts of the vessel. In this case "the
number of molecules of a given kind which, on an aver-
age, have their coordinates between x andx + dx, y and
y + dy, and z and z + dz, and also their component vel-
ocities between £ and Sj+ d|, i\ and r)+ dij, and £ and f
+ d£" will be described by a distribution function that
depends on the coordinates and the velocity components.
In the derivation of this function, Maxwell assumes that
as a result of a large number of collisions there is es-
tablished a steady state in which "as many pairs of
molecules change their velocities from vit v2 to v[, v2

as from v(, v2 to vit v2" (Ref. 3, p. 352). He also as-
sumes that not more than two molecules collide simul-
taneously, that a collision between molecules occurs
instantaneously, and that the velocities of the colliding
particles are independent.

Writing the number of molecules in the form

dN = j(x, y, z, I, T), ?) Ax dy dz d5 dt] dj ,

Maxwell investigates the dependence of this expression
on, first, the velocity components, and then on the co-
ordinates.

Considering the distribution of molecules of a given
kind with respect to the velocities, and using the meth-

od of argument adopted in Ref. 2, Maxwell finds that

/,(S.,r|..C.) = <yu'*!. /,fe.t,s, t,) = c,^u'-l. (11)

In this case, the expressions for the number of parti-
cles can be written in the form dJV = CeAM(t*-a?*2)d£dTi
xdtdxdy dz, "where C is a function of x,y,z which may
be different for different kinds of molecules, while A
is the same for every kind of molecule, though it may,
for aught we know as yet, vary from one place to
another." Maxwell notes that "this result as to the dis-
tribution of the velocities of the molecules at a given
place is independent of the action of finite forces on the
molecules during their encounter, for such forces do
not affect the velocities during the infinitely short time
of the encounter" (Ref. 3, p. 353).

Maxwell considers further how the number of parti-
cles in the volume element dxdydz changes under the
influence of a force with potential $. In this case, "the
variations of x,y ,z arising from the motion of the mol-
ecules during a time 5/ are 6x = |6/, 6y = rjlit, 6z = £5t,
and those of |,TJ, £ in the same time due to the action of
the force, are

If c = logC, then the change in \og(dN / d£,drid£dxdydz)
= c+ AM(|2+ ?)2+ £2) due to the variations 5xit 5ylt 621(

5?i, 8T)1( 6^ is

(12)

and this is equal to zero irrespective of the values of £,
77, £, "since the number of molecules does not change
during their motion." Hence

0,
'

44 = 0, 4^ = 0, i.e.,dj d; ' '

"A is constant throughout the whole region traversed by
the molecules." Then, comparing the first and second
terms in (12), Maxwell finds

r = AM(ty + B)

and for the number of particles of the first kind obtains
finally

) dx d;/ dz dc dii d£, (13)

where "A is an absolute constant, the same for every
kind of molecule in the vessel, but B belongs to the first
kind only." These constants can be found in terms of
the total number of molecules of the given kind and the
total energy of all the particles by integration with re-
spect to the six variables.

With regard to the constant A, Maxwell notes: "The
quantity A is essentially negative. Its value determines
that of the mean kinetic energy of all the molecules in a
given place, which is -3/2A, and therefore, according
to the kinetic theory it also determines the temperature
of the medium at that place. Hence, since A, in the
permanent state of the system, is the same for every
part of the system, it follows that the temperature is
everywhere the same, whatever forces act upon the
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molecules" (Ref. 3, p. 354).

Maxwell concludes that "the distribution of each dif-
ferent kind of molecules in the vessel is determined by
the forces which act on them in the same way as if no
other molecules were present. This agrees with Dai-
ton's doctrine of the distribution of mixed gases" (Ref.
3, p. 354).

The law (13) was obtained for the first time by Boltz-
mann. In 1868-1871, in the fundamental papers
"Studien Uber das Gleichgewicht der lebendigen Kraft
zwischen bewegten materiallen Punkten"98 and "Uber
das Warmegewicht zwischen mehratomigen GasmolekU-
len,"105 Boltzmann considered in detail Maxwell's dis-
tribution and generalized it to more complicated cases,
namely, a gas in a force field and a multiatomic gas.
In the first of these papers, Boltzmann showed that a
multiatomic gas whose molecules can be regarded as
systems of bound material points will also satisfy the
Maxwell distribution law in the equilibrium state. In
the second paper, Boltzmann considered the equilibri-
um of a gas in a potential force field and obtained as a
result of a very comprehensive derivation the distribu-
tion law in the form

_ ( i „, 3LJ2l!l+U(x. y, z)|
-1 d.r O v uc ily,.

(14)

where U ( x , y , z ) is the potential energy of a molecule of
the gas in the given force field, m is its mass, and £
is a constant. It should be noted that Maxwell's deriva-
tion considered above [Eqs. (13) and (14) differ only in
the notation] is simpler and clearer.

In 1872, Boltzmann published the paper "Weitere
Studien Uber das Warmegewicht unter Gasmolektilen,"106

in which he showed that in a gas left to itself molecular
collisions lead to a Maxwellian distribution of the veloc-
ities irrespective of the initial distribution. This
greatly strengthened the arguments in favor of the Max-
wellian velocity distribution. In the same paper, Boltz-
mann gave the first variant of the famous H theorem,
which was to become one of the fundamental theorems
of statistical mechanics.

It should however be said that these papers of Boltz-
mann on kinetic theory did not have a strong influence
on Maxwell, who continued to go his own way. Cne can
give two reasons for this. The first of them is, possi-
bly, due to the circumstance that in 1866 Boltzmann at-
tempted to give a mechanical explanation of the second
law of thermodynamics, whereas Maxwell from the very
start regarded the second law as a statistical law and
was very critical toward all attempts to derive it from
any principles of mechanics. The second reason is to
be sought in the difference between the ways in which
Maxwell and Boltzmann thought. Maxwell wrote to Tait
in 1873: "By the study of Boltzmann I have been unable
to understand him. He could not understand me on ac-
count of my shortness, and his length was and is an
equal stumbling block, to me" (Ref. 17, p. 114). It is
perhaps for this reason that the H theorem is not men-
tioned once in Maxwell's papers.

At the same time, it must be emphasized that Maxwell
highly regarded Boltzmann's work on the kinetic theory
of gases and had great respect for Boltzmann. In 1875,
in his paper "On the dynamical evidence of the molecu-
lar constitution of bodies,"66 Maxwell notes the great
importance of Boltzmann's studies for the further de-
velopment of natural science: "The theorem of Boltz-
mann may be applied not only to determine the distribu-
tion of velocity among the molecules, but to determine
the distribution of the molecules themselves in a region
in which they are acted on by external forces. It tells
us that the density of distribution of the molecules at a
point where the potential energy of a molecule is ip, is
proportional to exp(-^/fe0), where 6 is the absolute
temperature, and k is a constant for all gases. It fol-
lows from this, that if several gases in the same vessel
are subject to an external force like that of gravity, the
distribution of each gas is the same as if no other gas
were present. This result agrees with the law as-
sumed by Dalton, according to which the atmosphere
may be regarded as consisting of two independent at-
mospheres, one of oxygen, and the other of nitrogen....
Another consequence of Boltzmann's theorem is, that
the temperature tends to become equal throughout a
vertical column of gas at rest.... But besides these re-
sults, which I had already obtained by a less elegant
method and published in 1866, Boltzmann's theorem
seems to open up a path into a region more purely
chemical.... It is easy to see that this result ought to
be applied to the theory of the states of combination
which occur in a mixture of different substances. But
as it is only during the present week that I have made
any attempt to do so, I shall not trouble you with my
crude calculations" (Ref. 66, p. 434).

It is very important that Maxwell was the first who
understood the statistical origin of the second law of
thermodynamics. Long before the appearance of
Boltzmann's H theorem, Maxwell used his "demon" in
a letter to Tait in December 1867 to illustrate the sta-
tistical origin of the second law of thermodynamics
(Ref. 17, p. 213). Maxwell noted that the second law of
thermodynamics applies only to systems consisting of
a large number of molecules, and may be violated by
individual molecules.

In the first edition of Theory of Heat7 in 1871, in a
passage about the limits of applicability of the second
law of thermodynamics, Maxwell wrote: ". . . it is un-
doubtedly true as long as we can deal with bodies only
in mass, and have no power of perceiving or handling
the separate molecules of which they are made up. But
if we conceive a being whose faculties are so sharpened
that he can follow every molecule in its course, such a
being, whose attributes are still as essentially finite as
our own, would be able to do what is at present impos-
sible to us. For we have seen that the molecules in a
vessel full of air at uniform temperature are moving
with velocities by no means uniform, though the mean
velocity of any great number of them, arbitrarily se-
lected, is almost exactly uniform. Now let us suppose
that such a vessel is divided into two portions, A and
B, by a division in which there is a small hole, and
that a being, who can see the individual molecules,
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opens and closes this hole, so as to allow only swifter
molecules to pass from A to B, and only the slower
ones to pass from B to A; He will thus, without expen-
diture of work, raise the temperature of B and lower
that of A in contradiction to the second law of thermo-
dynamics" (Ref. 7 pp. 308/309 in 3rd Ed.).

Maxwell's "demon" was, essentially the first impor-
tant illustration of the difference between microscopic
and macroscopic processes. It should be noted that
Maxwell did not like the term "demon," which was pro-
posed by Thomson; Maxwell did not wish to use physi-
cal speculations concerning the method of operation of
this "demon." He proposed the use of the word "valve"
(Ref. 27, p. 204). As Maxwell emphasized in a letter to
Tait, his aim was "to show that the 2nd Law of Ther-
modynamics has only statistical certainty" (Ref. 17, p.
215).

All Maxwell's studies are organically related to each
other. Complementing each other, they reflect the
depth to which Maxwell penetrated into the essence of
the investigated phenomena. Thus, the "demon" is
needed on the one hand for the sake of its actions when
a velocity distribution of the molecules is present; on
the other hand, it makes the presence of the distribu-
tion function obvious; further, the study of transport
phenomena is also impossible without a distribution
function.

Having recognized earlier than others the qualitative
differences of microscopic processes, Maxwell en-
gaged in active propaganda for the statistical method.
In a number of popular papers, he clearly formulates
the features of the different methods of investigating the
states of complex systems and gives preference to the
statistical method when one is concerned with atoms and
molecules.

In the review Ref. 69 of Watson's book A Treatise on
the Kinetic Theory of Gases,71 Maxwell notes that there
are two very different methods of determining the state
of complex material systems. According to the "rigor-
ous dynamical method," we can follow each particle
along its entire path and apply the laws of mechanics in
all their rigor. However, "the application of this me-
thod to systems consisting of large numbers of bodies
is out of the question. We therefore make use of
another method which we may call the statistical me-
thod, on account of its analogy with the methods em-
ployed in dealing with the fluctuations of a large popu-
lation" (Ref. 69, p. 242). Maxwell describes the fea-
tures of this method as follows: "We divide the bodies
of the system into groups according to their position,
their velocity, or any other property belonging to them,
and we fix our attention not on the bodies themselves,
but on the number belonging at any instant to one par-
ticular group. This number is, of course, subject to
change on account of bodies entering or leaving the
group, and we have therefore to study the conditions
under which bodies enter or leave the group, and in do-
ing so we must follow the course of the bodies accord-
ing to the dynamical method. But as soon as the pro-
cess is over, when the body has fairly entered the
group or left it, we withdraw our attention from the

body, and if it should come before us again we treat it
as a new body, just as the turnstile at an exhibition
counts the visitors who enter without respect to what
they have done or are going to do, or whether they have
passed through the turnstile before" (Ref. 69, p. 242).

The bodies may be grouped that are in a region of
space, in accordance with their velocities, or in some
other way; for example, one can consider pairs of
bodies whose separations lie within certain limits.

"The object of study in the statistical method is the
probable number of bodies in each group" (Ref. 69, p.
242).

In Ref. 5, Maxwell uses statistical methods to inves-
tigate the problem of the stresses in rarefied gases
that arise due to inequalities of the temperature. He
writes that this problem "may be stated thus: to deter-
mine the distribution of velocities among the molecules
of any element of the medium, the current-velocity and
the temperature of the medium being given in terms of
the coordinates and the time. The only case in which
this problem has been actually solved is that in which
the medium has attained to its ultimate state, in which
the temperature is uniform and there are no currents"
(Ref. 5, p. 689), i.e., there is no macroscopic motion
of the medium.

From the solution of the Boltzmann equation for such
a state of the medium one obtains the spherically sym-
metric function

where ^ is the potential of the force with components
x,y,z; AI is a constant, which is different for each kind
of molecules; and h is a constant which is the same for
all molecules and determined by the relation j/z = RQ
(R is the gas constant and 0 is the temperature).

Maxwell notes that "this is the complete solution of
this problem, and is independent of any hypothesis as
to the manner in which the molecules act on each other
during an encounter" (Ref. 5, p. 690).

For the more general case when there is an inequal-
ity of the temperatures, Maxwell takes for the mole-
cules of a definite kind

= A' F (|, t), m /„ i dt, (16)

where "F is a rational function of £,r), £ which we shall
suppose not to contain terms of more than three dimen-
sions [i.e., not more than cubic], and/0 is the same
function as in Eq. (15)" (Ref. 5, p. 691), i.e., for a
homogeneous medium. Accordingly, Maxwell chooses
the following function F:

P-YI- - PWI + - y v2P»-i + -'"' -1 nS ) ,

(17)

"where each combination of the symbols otpy is to be
taken as a single independent symbol, and not as a pro-
duct of the component symbols" (Ref. 5, p. 693).
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In the study of the influence of collisions, the aver-
aging is performed by means of a function of the type
{1 + F}f0, where F is assumed to be small compared
with unity.

The paper of Ref. 5 demonstrated once more the ef-
fectiveness of the statistical method in the solution of
different problems of the kinetic theory of gases. A
more general treatment of systems of strongly inter-
acting particles was contained in Maxwell's paper "On
Boltzmann's theorem on the average distribution of en-
ergy in a system of material points."6

The paper begins with a reference to the third section
of Boltzmann's paper of Ref. 98 of 1868, which "Dr.
Ludwig Boltzmann . . . has devoted . . . to the general
solution of the problem of the equilibrium of kinetic en-
ergy among a finite number of material points." Noting
that Boltzmann's method "is ingenious, and, as far as
I can see, satisfactory," Maxwell assumes that "a prob-
lem of such primary importance in molecular science
ought to be scrutinized and examined on every side, so
that as many persons as possible may be enabled to
follow the demonstration, and to know on what assump-
tions it rests" (Ref. 6, p. 713). Maxwell strives to find
the most general solution to this problem, applicable to
a system of any kind provided it satisfies the equations
of dynamics: "I shall begin with the case in which the
system is supposed to be contained within a fixed ves-
sel, and shall afterwards consider the case of a free
system..." (Ref. 6, p. 715).

Maxwell notes that the previous investigations in this
field were based on two assumptions: "that the time
during which a particle is encountering other particles
is very small compared with the time during which
there is no sensible action between it and other parti-
cles; and also that the time during which a particle is
simultaneously within the distance of molecular action
of more than one other particle may be neglected."
These restrictions are "inapplicable to the theory of the
equilibrium of temperature in liquids and solids, for in
these bodies the particles are never free from the ac-
tion of neighbouring particles." And although in the in-
vestigations of Boltzmann and Watson "it is difficult, if
not impossible," to see where these conditions are used,
their presence in the enunciation of the problem "can-
not fail to leave in the mind of the reader the impres-
sion of a corresponding limitation in the generality of
the solution" (Ref. 6, pp. 713-714).

In Maxwell's opinion, "the only assumption which is
necessary for the direct proof is that the system, if
left to itself in its actual state of motion, will, sooner
or later, pass through every phase which is consistent
with the equation of energy." This idea of Maxwell has
a direct bearing on the "ergodic hypothesis." In fact,
Maxwell proposed this hypothesis for mechanical sys-
tems that have a constant energy but are capable of in-
teracting with their environment, in particular, with
the walls of a vessel. However, he did not require this
interaction to have a random nature at the microscopic
level.

To present his proof of the theorem, Maxwell intro-

duced new concepts: the "phase of the system," being
the set of coordinates and momenta of the system of
material points, and "the degees of freedom of the mol-
ecules" (instead of Boltzmann's "variables"). These
terms are used in modern physics.

Maxwell presents his methods as follows: "I have
found it convenient, instead of considering one system
of material particles, to consider a large number of
systems similar to each other in all respects except in
the initial circumstances of the motion, which are sup-
posed to vary from system to system, the total energy
being the same in all. In the statistical investigation of
the motion, we confine our attention to the number of
these systems which at a given time are in a phase such
that the variables which define it lie within given limits.

If the number of systems which are in a given phase
(defined with respect to configuration and velocity17')
does not vary with the time, the distribution of the sys-
tems is said to be steady.

It is shewn that if the distribution is steady, a cer-
tain function of the variables must be constant for all
phases belonging to the same path. If the path passes
through all phases consistent with the equation of ener-
gy, this function must be constant for all such phases.
If however, there are phases consistent with the equa-
tion of energy, but which do not belong to the same
path, the value of the function may be different for such
phases.

But whether we are able or not to prove that the con-
stancy of this function is a necessary condition of a
steady distribution, it is manifest that if the function is
initially constant for all phases consistent with the
equation of energy, it will remain so during the motion.
This therefore is one solution, if not the only solution,
of the problem of a steady distribution.

It appears from the theorem that in the ultimate state
of the system the average kinetic energy of two given
portions of the system must be in the ratio of the num-
ber of degrees of freedom of those portions. This,
therefore, must be the condition of the equality of tem-
perature of the two portions of the system.

Hence at a given temperature the total kinetic energy
of a material system must be the product of the number
of degrees of freedom of that system into a constant
which is the same for all substances at that tempera-
ture, being in fact the temperature on the thermody-
namic scale multiplied by an absolute constant.

If the temperature, therefore, is raised by unity,
the kinetic energy is increased by the product of the
number of degrees of freedom into the absolute con-
stant" (Ref. 6, pp. 715-716).

1T) By configuration, Maxwell means the following: "When a
material system is considered from the point of view of the
relative position of its parts, the set of relative positions
is called configuration of the system. Knowledge of the con-
figuration at a given instant includes knowledge of the posi-
tion of each point of the system with respect to every other
point at this instant (Ref. 8, p. 2; retranslated from the
Russian as original currently unavailable).
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Whereas Boltzmann defines the probability of the
system in the phase as the ratio of the considered in-
terval of time to the total time of the motion, taking the
latter to be very long, Maxwell assumes that "there
are a great many systems the properties of which are
the same." Each of these systems is determined by a
set of n values of the coordinates and n - 1 momenta,
and the total energy E is the same in all the systems.
Maxwell considers "the number of systems which, at a
given instant, are in the phase (a^, 6)."18) Let N be the
total number of systems and AT(«i> b,t) be the number of
systems in the phase (a±, b) at the time t. "The aim of
the statistical method is to express N(a, b, t) as a func-
tion of N, of the coordinates and momenta with their
limits, and of t." Setting JV^, b , t ) = Nf(a^ . . . an, 6t . . .
bn,t)da2 . . .dand61 . . .dbn, Maxwell considers the motion
of systems from some initial time t' to the time t and
obtains the relations

f ( a . 2 ... fl = t, b, t) = NC (ft,)-' da , ...

where C is constant for all phases of the same motion.
"If, however, we assume that the original distribution
of the systems according to the different phases is such
that C is constant for all phases consistent with the
equation of energy, and zero for all phases which that
equation shows to be impossible, then the law of dis-
tribution will not change with the time, and C will be an
absolute constant" (Ref. 6, p. 722).

We note that Maxwell finds the statistical character-
istics of the system by means of its dynamical charac-
teristics, which he obtains from the general equations
of dynamics and the energy equation. In this case, to
derive the form of the distribution function Maxwell
used the equation d^' . . . dq'ndp£ . . . dp'n(l/q{)
= dq^ . . . dqndp2 . . . dp^l/qj , which is obtained from dy-
namical considerations and is valid for systems with
constant energy for the instants of time t' and t.

For the general case, when "N(b) denotes the number
of systems in which qr is between 6t and 6X+ dbit q2 be-
tween b2 and 62+ db2, and so on, and qn between 6n and
6n+ dbn, the momenta not being specified otherwise
than by their being consistent with the equation of en-
ergy," it is possible to find N(b) by integrating
N(OI, b, t) = N(alt b) over (%,... an, which reduces to the
calculation of

To simplify the integration, Maxwell assumes that the
variables are transformed in such a way that the kine-
tic energy T is expressed as a sum of squares of the
momenta with coefficients that are functions of the co-
ordinates alone.

Using the dynamical relation b± = dT/da^, Maxwell
finds that "the number of systems in a given configura-
tion is a function of the kinetic energy corresponding to

is> The system will be in the phase (alt 6j) for any value of the
coordinates q and momenta p if qt lies between 61 and bl

+ d&!, 92 between 62
 an(J 62 + d*S' etc-> P^ between <z2 and a2

+ da2,
 eto^ The limits for Pi are not specified, since the

value of pi depends on the other variables.

that configuration" (Ref. 6, p. 724). For a system con-
sisting of n' material points with masses m^.. .mn, and
n= 2n' degrees of freedom, Maxwell finally obtains

3n' 3"'-2

N(b) = NC'(^jjLr(ml...mn.)
a'2(2E-2V) 2 db, ... dbn,

where V is the potential function and r functions of 1/2
and 3«'/2 occur.

For a system consisting of two parts, Maxwell ob-
tains the result that "when two parts of a system have
the same temperature, the average kinetic energy cor-
responding to any one of the variables belonging to these
parts must be the same" (Ref. 6, p. 727).

If the theory is applied to gases, for which "the parts
of a system are in a great degree independent of each
other" and the mean values of the potential energy of
these parts "may be treated as constant," then "the
variable part of the exponential function will be reduced
to exp(-W/2/C) We may therefore interpret the re-
sult as asserting that the density of a particular kind of
gas at a given point is inversely proportional to the ex-
ponential function whose index is half the potential en-
ergy of a simple molecule of the gas at that point [w],
divided by the average kinetic energy \_K\ corresponding
to a variable of the system" (Ref. 6, p. 729).

This paper of Maxwell was an important step toward
the creation of statistical mechanics in the generalized
form that it was subsequently given by Gibbs.

5. CONCLUSIONS

The papers of Maxwell considered in the previous
sections were the points of departure of a number of
directions of research. Many ideas put forward in
these papers (above all, in the four fundamental papers
Refs. 1, 2, 5, and 6) were widely developed. Some of
them have become so familiar that one usually forgets
that Maxwell was their originator. This applies to the
method of considering binary collisions of particles,
the principle of detailed balance, and the concept of a
relaxation time.

In his papers of 1868-1872 (Refs. 98, 105, 106 and
others), when he began his investigations on statistical
physics, and in his subsequent papers and well-known
lectures on the theory of gases,60 Boltzmann relied di-
rectly on Maxwell's papers of 1859 (Ref. 1) and espe-
cially 1866.2 In the preface107 to the translation of
Boltzmann's lectures into English, Brush writes en-
tirely correctly: "The foundations of the modern theo-
ry of transport were laid by Maxwell in his great mem-
oir of 1866; it is essentially this method which Boltz-
mann used to make his discoveries, and which he pre-
sents in this book." The transport equation which
Boltzmann derived in 1872 for the velocity distribution
function, which led him to the formulation of the H
theorem, is a special case of Maxwell's general kinetic
equations for the transport of a quantity Q which is a
function of the velocity components (as we have seen
above). In his lectures, Boltzmann calls the derivation
of the velocity distribution law based on consideration
of direct and inverse collisions "Maxwell's proof of
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the velocity distribution law" (Ref. 60, p. 38). Boltz-
mann particularly admired the way Maxwell simplified
the solution of transport problems in the paper of Ref.
2 by setting n = 5 for repulsive forces inversely propor-
tional to r" (see above). Boltzmann's enthusiastic esti-
mation of this method in a lecture dedicated to Kirch-
hoff (Ref. 108, p. 50) in 1887 is well known. Chapter
III of the first part of the lectures of Ref. 60 carries
the title "The molecules repel each other with a force
inversely proportional to the fifth power of their dis-
tance" (such molecules are frequently said to be Max-
wellian). Note that in the same chapter III Boltzmann
uses the mathematical method of transforming spheri-
cal functions proposed by Maxwell in 1879 in the paper
of Ref. 5 (in the addenda to the main text), and in chap-
ter II of the second part of the lectures ("Physical
meaning of van der Waals' theory") Boltzmann consid-
ers, following Maxwell's paper Ref. 66 of 1875, the van
der Waals isotherm (the equality of the areas cut off by
the horizontal straight line; see Fig. 3). In considering
Liouville's theorem, Boltzmann refers to Maxwell's
paper of Ref. 6 (Ref. 60, p. 340), which he highly re-
garded. In 1881, Boltzmann wrote a detailed review109

of this paper. He published it in German and sent it to
the Philosophical Magazine with an accompanying let-
ter, in which he wrote: "So far as I know, this excel-
lent paper of Maxwell's has not been reprinted in your
Magazine; it may not, therefore, be without interest to
your readers that some notice of it should appear, if
only as an abstract..." (Ref. 109, p. 299). It is well
known that Gibbs' statistical mechanics was a develop-
ment of the ideas of Boltzmann and the ideas of Maxwell
in the paper of Ref. 6.

Maxwell's ideas about the statistical origin of the
second law of thermodynamics are associated with his
development of statistical methods. These ideas of his
include the "demon" (see above), which subsequently,
in this century, has been considered by more than one
generation of physicists. Smoluchowski110 was the first
who noted a possible influence of Brownian motion on a
shutter; this would lead to its random opening and clos-
ing and would destroy the operation of the entire sys-
tem. This would have a decisive influence on any auto-
matic device such as a spring valve and would com-
pletely rule out the possibility of a protracted applica-
tion of such a device. Szilard111 showed for the first
time in 1929 that a demon acts on information about the
details of the motion of the gas and actually transforms
the information into negative entropy (negentropy).
Slater112 posed the problem of the part that the uncer-
tainty principle could play in the problem of the demon.
Essentially, we are here, as Brillouin emphasizes in
the book Science and Information Theory113 (in the chap-
ter "Maxwell's demon and the negentropy principle of
information") dealing with a much more fundamental
question: "Is it actually possible for the demon to see
the individual atoms?" (Ref. 113, p. 215.) Brillouin
gives an explanation of the resulting paradox from the
point of view of information theory. He regards the
action of the demon as the transformation of informa-
tion into negentropy.

We may mention that the "information" approach to

problems of the statistical origin of the second law can
already be found in Maxwell. In connection with the
consideration of the mixing of two identical or two dif-
ferent gases (the Gibbs paradox, see above), Maxwell
wrote in 1875 at the very end of the paper Ref. 81:
"Dissipated energy is energy which we cannot lay hold
of and direct at pleasure, such as the energy of the
confused agitation of molecules which we call heat.
Now, confusion . . . is not a property of material things
in themselves, but only in the mind which perceives
them" (Ref. 81, p. 646).

In 1877, considering the statistical origin of the sec-
ond law (at the end of the review of Ref. 71 of Tail's
book Thermodynamics72), Maxwell also considers the
problems of fluctuations (in modern terminology). He
writes that the second law of thermodynamics is "a sta-
tistical, not a mathematical truth," since this truth "de-
pends on the fact that the bodies we deal with consist of
millions of molecules, and that we can never get hold
of individual molecules" (Ref. 70, p. 670). Further,
Maxwell refers to the calculations of Thomson who
"has shown how to calculate the probability of the oc-
currence within a given time of a given amount of devi-
ation from the most probable distribution of a finite
number of molecules of two different kinds in a vessel,
and has given a numerical example of a particular case
of the diffusion of gases." Maxwell emphasizes that for
"a finite number of molecules, even if the system to
which they belong contains an infinite number, the aver-
age properties of this group, though subject to smaller
variations than those of a single molecule, are still
every now and then deviating very considerably from
the theoretical mean of the whole system, because the
molecules which form the group do not submit their
procedure as individuals to the laws which prescribe
the behaviour of the average or mean molecule." Max-
well concludes that "the second law of thermodynamics
is continually being violated, and that to a considerable
extent, in any sufficiently small group of molecules
belonging to a real body," that with increasing number
of molecules in the group "the deviations from the
mean of the whole become smaller and less frequent"
and that for a sensible part of the body (i.e., for a part
of macroscopic size) "the probability of a measurable
variation from the mean occurring in a finite number
of years becomes so small that it may be regarded as
practically an impossibility." Such a calculation,
writes Maxwell "belongs of course to molecular theory
and not to pure thermodynamics," and shows that "the
truth of the second law" corresponds to "a strong prob-
ability" but not an "absolute certainty." Finally, Max-
well notes the impossibility of deducing "the second law
from purely dynamical principles, such as Hamilton's
principle, and without the introduction of any element of
probability."

As is well known, the statistical origin of molecular
phenomena such as fluctuations and the limits of appli-
cability of the second law were subsequently considered
in detailed theoretical studies, in particular, by Smolu-
chowski (see Refs. 115 and 116).

It is very important that Maxwell's papers initiated
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the development of transport theory in this century.

In 1905, Langevin, using the method developed by
Maxwell in 1866 in Ref. 2, in his paper "Sur une for-
mule fondamentale de la the'orie cinetique"117 solved the
"problem of the diffusion of one gas in another for any
type of interaction between these gases" (Ref. 117, p.
299). In the special case of Maxwellian molecules (re-
pulsive forces inversely proportional to r5), Langevin's
results agrees with Maxwell's. For the coefficient of
diffusion in the "case of elastic collisions" (for the
model of perfectly elastic spheres), Langevin found a
formula of which he writes: "an entirely analogous for-
mula can be derived from the results obtained by Max-
well." Langevin refers to the paper of Ref. 1 of 1859,
in which Maxwell "for the first time, in the form of an
addition to the purely statistical arguments of the mean
free path method, introduces dynamical conditions of
the collisions between the spheres" (Ref. 117, p. 317).

Important new results on transport theory in gases
were obtained in the period beginning in 1911 by the
independently working Chapman and Enskog. Chapman
published his first paper in 1912.118 In it, he consid-
ered the first approximation to the complete transport
theory, taking as his basis Maxwell's transport equa-
tions.

Many years later (in 1961), Chapman wrote to Brush
about the origin of his studies: "In the summer of 1910
after taking the last of my mathematical examinations
at Cambridge University, I asked Larmor to suggest a
subject of research for me in applied mathematics. I
had already started writing papers on pure mathemat-
ics. Larmor drew my attention to the work of Knudsen
and Smoluchowski, and I made some extensions of their
results, but never published them. But I found Max-
well's papers [2, 5 in Philos. Mag.] and did not know
how many mathematicians had tried to generalize his
work. Thus, with the ignorant hardihood of youth I
attempted a problem that Larmor would certainly have
though unfit to suggest to such a novice. It seems it is
sometimes good not to know too much" (see Ref. 24,
Book 2, p. 455, Note 12).

In 1911, Enskog published his paper of Ref. 119, in
which he also considered the first approximation to the
complete transport theory for one gas on the basis of
the method proposed by Boltzmann (who developed, as
we have seen above, the method that Maxwell gave in
Ref. 2). Then in 1912, Enskog investigated the case of
a mixture of two gases120 and established that in the
general case of non-Maxwellian molecules (n* 5) the
phenomenon of thermal diffusion (diffusion due to a
temperature gradient) must be observed in a mixture of
gases. Chapman arrived at the same conclusion sub-
sequently, in 1917. It should be emphasized that for
Maxwellian molecules (n= 5) a temperature gradient
does not lead to diffusion (due to the compensation of
two effects), and therefore Maxwell did not note the
possibility of thermal diffusion.

Subsequently, Chapman and Enskog continued to de-
velop the theory of inhomogeneous gases. We should
also mention Lennard-Jones' paper of Ref. 121 in 1923.

In 1939, Chapman and Cowling published their funda-
mental monograph on the theory of inhomogeneous gas-
es,122 in which they collected together the investigations
of Chapman and Enskog (using basically Enskog's treat-
ment). In this monograph there is an historical review
with a bibliography; the review emphasizes the pioneer-
ing nature of Maxwell's papers of Refs. 2 and 5.

In 1956, Ikenberry and Truesdell published a paper
(in two parts123'124) in which, on the basis of Maxwell's
paper of Ref. 5, they developed an effective method
(the method of "differential iteration") for solving
transport problems. By means of this method a number
of problems can be more readily solved than by the
methods of Chapman and Enskog.

The paper is entitled "On the pressures and the flux
of energy in a gas according to Maxwell's kinetic theo-
ry," and at the end of the second part, after the ac-
knowledgements, Truesdell writes: "It is fitting that
this appraisal should end in tribute to the magnificent
genius of Maxwell. Such ideas in the present memoir
as are not entirely new derive from reading and re-
reading Maxwell's two great analytical researches on
the kinetic theory [1867, 1879].19) Indeed, in spirit this
memoir passes over all developments in the kinetic
theory since 1879 and goes back for its source and in-
spiration to what Maxwell left us" (Ref. 124, p. 120).
We see here an example of how Maxwell's ideas to
stimulate fruitful investigations more than three quar-
ters of a century after his death.

Important questions that greatly interested Maxwell
were the problems of the nature of molecules and of the
interatomic and intermolecular forces. In his papers
and lectures, Maxwell paid great attention to these
problems. In his review "Interatomic forces: from
Maxwell to Schrodinger,"125 Coulson emphasizes the
great importance of Maxwell's studies in the early
stage in the solution of the problems of these forces
and writes: "Maxwell had almost got to the limit of
what he could have done in the discussion of interatom-
ic forces. We needed the quantum theory, with its
many ramifications, before one could go any further."
Coulson lists the problems advanced by Maxwell:
1) What is a molecule and what is the nature of the ag-
gregate of atoms of which it consists? 2) What is the
origin of the interatomic and intermolecular forces?
3) Why are all atoms and molecules of a given kind
identical? 4) How are molecules formed?

We have briefly considered a number of the impor-
tant directions of investigation due to Maxwell, and we
have seen how great is the contribution that Maxwell
made to the development of molecular physics and sta-
tistical methods. This contribution is comparable with
his contribution to electrodynamics. It is appropriate
to recall the evaluation of Maxwell's scientific work
which Rayleigh made as early as 1890. Rayleigh wrote
in the paper of Ref. 58 about Maxwell's studies on elec-

19) In a footnote at this point, Truesdell says: "I suspect that
if Maxwell' s notes and unpublished calculations have been
preserved, they may contain much that is of value."
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tromagnetism: "There can be little doubt but that pos-
terity will regard as Maxwell's highest achievement in
this field his electromagnetic theory of light, whereby
optics becomes a department of electrics." And then
Rayleigh speaks of Maxwell's studies in the kinetic the-
ory of gases: "Scarcely, if at all, less important than
his electrical work was the part taken by Maxwell in the
development of the Dynamical Theory of Gases." Now,
at the end of the twentieth century, we can see even
more clearly the grandiose contribution which Maxwell
made to the development of physics (see, for example,
Ref. 126).
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