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The transition from classical quantities to quantum
operators is usually accomplished in rectilinear coor-
dinates. But there are situations in which the kinetic
energy in classical mechanics can be expressed only in
terms of generalized coordinates and velocities. As an
example, we cite the expression for the kinetic energy
of the collective motions of the nucleons in an even-
even axially symmetric nucleus1:

The space of configurations (/8, e,<p)in this example is
not flat, since the curvature tensor is not equal to zero.

In the case in which the kinetic energy T is a homo-
geneous quadratic form in the velocities, there is every
reason to suppose that in quantum mechanics the opera-
tor f is a Beltrami operator2'3; the situation is more
complicated in the case of an arbitrary dynamical sys-
tem. In this paper, we shall show how it is possible to
construct the Hamiltonian and generalized-momentum
operators by means of a regular process (see also Refs.
4-6). We shall also study the integrals of the motion of
an arbitrary dynamical system on the basis of the clas-
sical Lagrangian function. As an illustration, we shall
consider the following dynamical problems: a free
gyroscope,- the three-particle problem, and the problem
of the rotation and small oscillations of a system of par-
ticles.

1. MOMENTUM AND HAMILTONIAN OPERATORS

We shall find the form of the Hamiltonian and gener-
alized-momentum operators in configuration space for
an arbitrary dynamical system. For this purpose, let
us consider a classical dynamical system acted upon by
both conservative and nonconservative forces (a mag-
netic field, Coriolis inertial forces, etc.). The Lagran-
gian function in this case has the form

L = 4- J?,.vj*f/' -i- <V/' 1- T0-V.

In the relative motion, T0 represents the potential of the

centrifugal inertial force. Calculating the Hamiltonian
function, we obtain

The configuration space Q, in which the coordinates of
a representative point are the n generalized coordinates
q^ of the dynamical system, provides the most natural
representation of this function. The metric of this space
is specified by means of a linear element:

As- =

We shall assume that the commutation relations for the
generalized momenta and coordinates in the space Q
are the same as in the Euclidean space for the rectilin-
ear coordinates. It follows from this assumption that

Putting F=f- iln c, we have

**-'*"(-'£)-'•

By means of a unitary transformation, we can elimin-
ate the arbitrary function /. Then

POO = «- ' ( -« -^ir)".

In quantum mechanics, we shall seek the operator H
corresponding to the classical function H in (1.1) in the
form

It follows from the condition that H is Hermitian that D
=A. Using (1.2), we obtain

6=4- AC~' -V^'^-V AC -riA*Ba»-2- + ±AC-*2 dip if dq* 2 a,

+ 4- ABC-'a" -^r (AC) + -i A

a. 4)
From the requirement of invariance of the last three
terms in (1.4), we find

/12B = coast --= 1, ABC'1 = const, CA-* = kY~g
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(k is a constant). It follows from the correspondence
principle that const=l in the first case. Substituting
the resulting values of A, B, and C into (1.4) and (1,2),
we finally obtain

also satisfied:

(2.6)

(2'7)

0

7f
POO = i?"

Thus, the requirement of invariance of only three terms
in (1.4) implies invariance of the Hamiltonian operator
fi. In view of the fact that p^) are not components of a
vector, we enclose the index M in parentheses. Since
g^vQ^q" is a positive-definite form, the eigenvalues of
the operator H in (1.5) with V=0 and T0=0 are non-nega-
tive. Depending on the topology of the space, the spec-
trum of eigenvalues will be either continuous or dis-
crete. With a Euclidean topology and «M-0 at infinity,
the spectrum is continuous. If the discussion is mathe-
matically rigorous, this is the case for the motion of a
particle in a real magnetic field.

2. INTEGRALS OF THE MOTION LINEAR IN THE
MOMENTA

For our purposes, we are interested in only integrals
of the motion that can be represented in covariant form.
In the case of complete separation of the variables, the
separation constants are also integrals of the motion.
If there are no cyclic coordinates, all these integrals
are quadratic functions of the momenta; however, since
the variables are separated in certain curvilinear co-
ordinate systems, these integrals cannot be represent-
ed in covariant form. Let us consider integrals linear
in the momenta.

If the following conditions are satisfied,

(2.1)

(2.2)

^^Kr-f' + TBTa0^olI$r" u (2.3)

the quantity N=D*ipll+N0 is an integral of the motion of
the classical system (1.1).

It follows from the condition (2.1) that D^q) forms a
Killing vector of the metric ,§>(#). The number m of
independent Killing vectors and the dimensionality n of
the space Q are related by

The equality holds in the case of a space of constant
curvature.7 It follows from the equation D"'-"+DK>1 that

DV o, (2-4)

i.e., the covariant divergence of a contravariant Killing
vector is equal to zero.

In quantum mechanics, the tensor operator

is also an integral of the motion if, in addition to Eqs.
(2.1), (2.2), and (2.3), the following two conditions are

It is easy to see that when (2.4) is taken into account
the conditions (2.6) and (2.7) are satisfied automatically.

Making use of (2.4), we obtain for N an expression of
the form

,v-=-iD»-L. + JV (2.8)

Thus, if N is an integral of the motion in classical
mechanics, the operator $ in (2.8) corresponding to N
in quantum mechanics is also an integral of the motion.
We note that the maximum number of integrals in quan-
tum mechanics occurs in the case of "inertia!" motion
in a space of constant curvature, and this number is
in(n+l), where M is the dimensionality of the space. If
the classical Poisson bracket is

{.V.U} --: K,

where N=l
E.»,,=0

---DandAMf]

(2.9)

0, K=F*p,,+K0 and 0^=0,

(2.10)

Let us consider a simple example. The kinetic energy
of a solid body with moments of inertia /1=/2=/3=/, ex-
pressed in terms of the Euler angles and their deriva-
tives, has the form

':- ' ' -r < " + 2>

The space Q in (2.11) is not flat. The Ricci tensor and
the Riemann-Christoffel tensor in this case can be rep-
resented in the form

«,,v = - - ( V - 1) AAV,- /' 'i.vp-, -- A" av<V -- A',,-?,,,,).

where N=3 and K=- j.

Consequently, the space Q is a space of constant cur-
vature. Let us find the integrals of the motion which
represent the projections of the angular momentum on-
to the moving and fixed axes.

It follows from (2.11) that

('l -= /~Ve. i|- (J siirll)"1- (/'* — PC, cosU),

The angular-momentum projections </(l), J(2j, and J(3>
onto the moving axes are J(l)=Iult J(2)=Iu2, and J(3)
=/o), or

(2.12)

On the basis of (2.8), we have the following expressions
for the operators of the angular-momentum projections
in the moving coordinate system:

— i cos ([ -~ --' ^ — T-,sin 6
. cos (£
-.---

clij 0 -s in 'i • — ~ ,'-'i|; fe ' tyif / ' (2.13)
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Similarly, by considering the projections of o> onto the
fixed axes, we obtain

•TV) = A°i> Pv- = cos if • pe — ctg 9 • sin y. p^ + -HH± p,()

In quantum mechanics,

t= — i [cosif -rg- — ctg8• sin 1(1 • - + £

etc.

The commutation relations are readily obtained by
making use of (2.9). The maximally symmetric three-
dimensional space in (2.11) has six independent Killing
vectors: Dfa, flfo, Dfa, -Of,), Df,), andflfz). We note
that although (2.11) describes free motion, the operator
f has a discrete spectrum. This is due to the topologi-
cal characteristics of the space of rotations.8

In conclusion, we consider two particular dynamical
problems.

3. THREE PARTICLES

To describe the motion of three particles, we intro-
duce the Jacobi coordinates

p _ p = r _ "1i'i+"'»'i D __ '"i
2 '' 3 ni + m, ' c ~

The kinetic energy of the system is

We place the origin of the coordinate system at the cen-
ter of mass (Rc = 0) and put

then

(3.1)

Thus, having eliminated the coordinates of the center of
mass, we have reduced the problem to the problem of
the motion of two quasiparticles with masses p. and 1.

With the choice of the variables/?, 6, <p, x, y, and z
(in the fixed space S), the potential energy depends on
the angles; to avoid this, we introduce a moving coor-
dinate system £'. The z axis of the system £' is direct-
ed along the vector R. The position of R in £ is char-
acterized by the angles 6 and ip. We shall assume that
£' is obtained from £ by successive rotations through
the Euler angles (</>+|f, 6,0). In the problem of the
motion of a particle in the field of two centers, we use
an elliptic coordinate system whose origin bisects the
line joining the centers. Consequently, we make the
substitution

The components of the angular velocity fc> in £' are
(8, <p sin 8, <j> cos 6). We represent the absolute velocity
f in (3.1) as the sum of the relative and transport velo-

cities:

r -t- r + !« (r + aflk)] + aflk

(here r denotes the velocity in £', and i, j, and k are
the unit vectors of the moving coordinate system). With
this substitution, the Lagrangian function is

lk)*-V(X, x, y, z). (3-2)

Calculating the Hamiltonian function, we obtain

H " - (p« - "

(£ci Py> Pti Ixi ly, I '* are the projections onto the moving
axes of the momentum and the angular of the second
quasiparticle). The fundamental determinant is

g = R* sin2 8.

The Hamiltonian function (3.3) in quantum mechanics
corresponds to the following operator H(K=1):

-* ( -JL _ i?, + laR ptj ] 2 + R-* ctg 6 • (-|j. - ilx + iaRp, )

ilsme-iaRsin6.xi (3.4)

Another method of constructing the operator H is given
in Ref. 9.

The total angular momentum of the system is equal to
the sum of the angular momenta of the two quasipar-
ticles. The angular-momentum projections of the first
of them onto the moving axes are (M#2#, /iS2sin 9- q>, 0),
and those of the second are (ls=aRpy, ly+aRp%, I,). The
quantities lx, ly, and I, are the projections of the angu-
lar momentum with respect to a point displaced from
the origin along the z axis by a distance aR.

Since

(3.5)

p, = ufl2 sin29-(p 4- lu sin6 -- lz cos0 ~ a/JpjSin9,

the square of the total angular momentum is

K2 = p! + sin"2 9 (Pi — I , cos 6)z -4- / f .

The projections of the total angular momentum in £' are

Kr_= — s i n t f -p 8 — ctg 9-cos (f -(pf— /2cosfl)n-sin 9-cos<p- i r ,
Ky = cos(p-pc — ctg 9-s in <f '(pf— Iz cos9) + sin 0.sin <f-lt,

The functions Z>M in (3.6) satisfy the condition (2.4).
Consequently, in quantum mechanics (#=1)

*»=•

A'r = :

0 , . . n • &-r .ctg 9.^9- — (3.7)

(here ?z is the projection in S', and -Kx, ,̂, and ft, are
in SO. Replacing the physical quantities in (3.5) by op-
erators, we obtain

(3'8)
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In the case of a diatomic molecule, we can assume
that the center of mass coincides with the center of
mass of the nuclei. In this case, by putting a=0, re-
placing the angular momentum of the second quasipar-
ticle in (3.4), (3.7), and (3.8) by the sum of the angular
momenta of all the electrons, and replacing p2 by Z/iPf,
we obtain the operators H, KIt Ky, K,, and K2 for the
diatomic molecule,

4. ROTATION AND SMALL OSCILLATIONS OF A
SYSTEM OF PARTICLES

In quantum mechanics, we do not have the right to im-
pose either finite or differential constraints on a sys-
tem. Let us consider a system of particles character-
ized by moments of inertia in an " equilibrium" position is
and suppose that the deviation from the "equilibrium"
position is small. The mass of any particle can be taken
to be equal to unity in the corresponding coordinate
transformation . The kinetic energy T of the system is

here roi and u4 are vectors characterizing the "equili-
brium" position and the deviation from this position of
particle i in the system S'. The system S' rotates with
angular velocity w with respect to the fixed system S.
Neglecting u>2wf and wz«jroj and using the fact that10

-5- 2 ('..».! =0;

we obtain

here lx, ly, and lt are the projections of the "oscillat-
ing angular momentum" onto the moving axes:

(we have neglected terms of the form o)2<?atfB).

Replacing the velocities by the momenta in (4.1), we
obtain

T = U J2 - J' 1

In quantum mechanics, the physical quantities must be
replaced by the corresponding operators.

Since Iba6l«l, the eigenvalue ?« is not in general equal
to an integer. In the case of a linear molecule, ba8=n
(where n is a unit vector directed along the axis of the
molecule), ta'^XaPya-yaPx*, and the eigenvalues 4*'
are integers.

Thus, we have constructed the Hamiltonian operators
and the operators of the generalized momenta on the
basis of the Lagrangian function in generalized coor-
dinates. We have proved that the operators linear in
the momenta which correspond to integrals of the mo-
tion in classical mechanics are also integrals of the
motion in quantum mechanics.

The author is deeply grateful to M. A. Liberman and
L. P. Pitaevskii for valuable advice and helpful discus-
sions.

Here T0 is the kinetic energy of a gyroscope. We in-
troduce the normal coordinates

In this case,

8 + TV

where ba8=Z/jlaiaajal=-bBa and Z/iataaJB = oraa. We call
attention to the fact that Ib^l «1 . If for fixed a and &
we have

and if the unit vector n is independent of i, then in this
case (and only in this case) Iba8l = l.

In the case of a symmetric gyroscope,

- ~ 7, (i]>2 sin" 6 + B2) + \- 73 (i> cos 6 + '< (4.1)

It follows from (4.1) that

pf = /„ (if cos 6 + <p) + I,,
ps = /[tj -f lx coscp — ly s incf ,
pq = 7,1); sin2 9 + 73 (i); cos 9 + (p) cos 8 + lx s in9 's in ip

4- ly sin 9 cos <p -i- ?. cos 9;
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