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The experimental and theoretical work on free-electron lasers is reviewed. Different amplification schemes
and electron scattering mechanisms, the relation between the single-particle scattering of free electrons in
high-energy beams and stimulated scattering by collective oscillations in a dense electron-beam plasma
(comparatively low-energy) are discussed. Various physical approaches used to describe the processes in free-
electron lasers are discussed. Stimulated multiphoton emission processes in undulators and stimulated
Compton scattering processes are examined. The relation between the quantum and classical properties of
these phenomena is discussed. The nonlinear behavior of the gain in a free-electron laser under saturation
conditions is described. The possibility of optimizing the gain in a Compton laser in a scheme with
noncollinear propagation of electrons and electromagnetic waves is discussed.
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1. INTRODUCTION

Free-electron lasers (FEL) have recently been at-
tracting a great deal of attention. This is apparently
related to the early successes in experiments on FEL
and to hopes of creating, in this manner, radiation
sources that are tunable over a wide range of frequen-
cies: up to ultraviolet and soft x-ray regions. The
number of papers on FEL, published at the present
time, is very large. These papers are primarily theo-
retical. The number of experiments on FEL is signifi-
cantly lower and the basic results of existing experi-
mental work will be described below. As far as the
theoretical studies of FEL are concerned, as a rule,
they are concerned either with proposing modifications
of known schemes, new principles for amplification,
and so on, or understanding the physics of the proces-
ses occurring in FEL.

The theoretical methods used are very diverse. The
theory of FEL, both in the classical and quantum ap-
proaches, is constructed using a numerical solution of
the equations and with the help of analytical methods, in
the weak and strong field approximations, based on a
single-particle description of electrons and starting
from the theory of the physics of plasma, and so on. In
view of the variety of methods and approaches used, it
is useful to try to summarize to some extent the ideas
on which FEL are based and to give a unified theoretical
description of the physics of processes leading to am-
plification and saturation in FEL. This paper is con-
cerned with these problems and it is useful to begin by
describing existing experiments.

One of the more popular schemes for FEL is a laser
based on relativistic electrons propagating along the
axis (Oz) of an undulator, whose field is stationary and
depends periodically on the longitudinal coordinate z.
Spontaneous emission by electrons in an undulator was
examined back in 1947 by Ginzburg1 and in 1951 by
Motz.2 Subsequently, the phenomenon was repeatedly
observed experimentally and it was widely studied theo-
retically, this being illustrated, for example, in Ref. 3.
Stimulated undulator emission (or absorption) arises
when an external electromagnetic wave, which can be
amplified or absorbed, propagates along the undulator
axis parallel to the electron beam. In the nonrelativis-
tic energy range, devices based on stimulated undulator
emission are known as ubitrons and they apparently are
among the most powerful sources of radiation in the
centimeter and millimeter wavelength range,4'5

The transition to relativistic electron energies is un-
doubtedly related to some qualitatively new characteris-
tics of stimulated undulator emission and, primarily,
to the possibility of greatly increasing the las ing fre-
quency compared to that of the ubitron. One of the first
experiments on stimulated undulator emission using
relativistic electrons was described in Ref. 6. How-
ever, the energy of the electron beam used in that work
was not very high (~700 keV). According to the inter-
pretation given in Ref. 6, amplification of a wave prop-
agating toward the beam was observed, while in the
ultrarelativistic case the most intense emission is for-
ward emission by a relativistic electron and it is in this
case that it is possible to attain a high las ing frequency.
Amplification was achieved in Ref. 6 with a single pas-
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sage of radiation through the undulator.

Amplification of a test wave in a relativistic undulator
with an electron energy of e = 28 MeV and radiation fre-
quency u>=2-1014 s~l (A = 10.6 Mm) was observed in Ref.
7. In the next paper by this group,8 under similar con-
ditions, lasing was detected, i.e., the first free-elec-
tron laser was created. The scheme of the experiment
in Ref. 8 is shown in Fig. 1. The energy of electrons in
the beam was 43 MeV. Both the electron beam and the
amplified electromagnetic wave represented a sequence
of pulses with duration ~3-10"12 s (length of the train
"lO"1 cm). The lasing process consisted of amplifica-
tion of a train of electromagnetic radiation in the region
of localization of an electron bunch within the time for
the bunch to pass through the undulator. Due to the
mirrors, the train of electromagnetic radiation was
confined in the resonator before the arrival of the next
electron bunch, which approached the inlet to the un-
dulator simultaneously with the electromagnetic pulse,
after which amplification was repeated.

The density of electrons in the beam, estimated from
the magnitude of the current </max= 2.6 A,8 with a beam
diameter d~ 0.3 cm, is Nt= 5-1010 cm"3. The period of
the magnet used in Ref. 8 was \0 = 3,2 cm with an over-
all magnet length of L = 5 m and helical magnetic field
intensity B0 = 2.4-103G.

The lasing frequency in Ref. 8 was w=5.5'1014 s"1 (A.
S3.4-10"4 cm"1). The maximum radiation power was 7
kW outside the resonator and 500 kW inside the reso-
nator. This permits estimating the field intensity in the
undulator: for a caustic with transverse size d~0.3
cm, £0~3-10" V/cm.

The creation of a somewhat different type of PEL was
reported in Ref. 9. In this experiment, the electron en-
ergy was much lower than in Ref. 8, e = 1.2 MeV, but
the magnitude of the current was much higher, I = 25
kA. Generation was achieved at a wavelength A = 0.5 mm
with the periodicity pitch of A0= 8 mm. The radiation
power, attaining in the experiment9 a magnitude of
P=l MW, was much higher than the output power of the
FEL in Ref. 8.

The lasing mechanism, according to the interpreta-
tion given in Ref. 9, consisted of stimulated Raman
scattering of equivalent photons, corresponding to the
periodic magnetic field, by longitudinal plasma oscilla-
tions of the dense electron beam plasma with the emis-
sion of photons of the generated radiation.

A similar type of experiment was described in Ref.
10, in which instead of an undulator, a powerful pump
wave propagating toward the electron beam was used.
The emission mechanism was, apparently, stimulated
Raman scattering of the pump by plasma waves in the

FIG. 1. Diagram of the experiment. 1) spiral magnet; 2) mir-
rors; 3) electron beam; 4) amplified wave.

beam. The electron energy in Ref. 10 was not high
(~600 keV) with a comparatively small current J = 4.2 kA.
In view of the low energy, conversion of the pump fre-
quency in Ref. 10 was low: the frequency increased by
approximately a factor of 3.

The term FEL is used in this review, as a rule, in
the narrow sense of the word to describe lasers based
on an undulator. It should be noted that many other
ideas exist for using electron beams to create lasers
based on free-free transitions, which are also often
considered as FEL. Some of the suggestions along
these lines are: a) Compton laser,11 in which the elec-
tron and the amplified wave interact not with the mag-
netic field of the undulator, but with the pump wave,
propagating toward the electron beam (see Section 6);
b) lasers based on the Cherenkov effect with electrons
propagating in a waveguide filled with a dielectric me>-
dium12"14; c) lasers based on the Smith-Purcell ef-
fect,15-16 i.e. on generation with propagation of electrons
above the surface of a diffraction grating; d) lasers
based on propagation of electrons in a corrugated wave-
guide,17-18 and so on. Without stopping to consider the
details of all these mechanisms for scattering elec-
trons, which are examined, for example, in detail in
Ref. 19, we note that there is a great similarity be-
tween them. Generally, if we keep in mind scattering
of electrons by periodic structures in the field of the
amplified wave, then, apparently, the specific mechan-
ism for realizing the periodic structure is not very sig-
nificant. For this reason, in particular, many of the
conclusions arrived at below for FEL based on an un-
dulator are also valid in reality for other mechanisms
for scattering electrons by periodic structures.

The relation between the beam density and the elec-
tron energy is much more significant than the specific
scattering mechanism.

A comparison of the experiments described in Ref. 6,
9, 10 and 8 indicates that there are two different com-
plementary trends in the development of FEL. Experi-
ments in the first group are concerned with using high-
current electron beams in order to obtain high FEL
power with a comparatively low lasing frequency. The
experiment in Ref. 8, on the other hand, is concerned
with achieving high lasing frequencies due to the use of
high-energy electron beams, but with comparatively
low density. Both the advantages and disadvantages of
each of these approaches are clear. It is also evident
that the creation of new FEL both of the first and sec-
ond types is of great interest both from the physical
point of view and for applications.

The physical difference between FEL based on high-
current low-energy beams and those based on weak-
current high-energy beams lies in the fact that in the
former case collective effects in the beam plasma can
play an important role, while in the latter case the
interaction between the electrons in the field is funda-
mentally of a single-particle nature. From here fol-
lows also the difference in the theoretical approaches.
In order to construct a theory of FEL based on dense
beams, it is necessary to use the equations for the
medium: Boltzmann's equation or the Navier-Stokes
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equation.20"23 On the other hand, the theory of the type
of PEL in Ref, 8 must be constructed based on single-
particle equations of motion for the electron. Using
this approximation, both the mechanism of amplifica-
tion in PEL of the type in Ref. 8 and the nature of the
multiphoton processes occurring in them, the physical
nature of the saturation and the nature of the gain itself
in the saturation regime can be understood. With this
formulation of the problem (i.e. applicable to FEL of
the type in Ref. 8), we examine the problems formu-
lated.

The quantitative criterion for the densities and ener-
gies at which it is necessary to take into account col-
lective effects, under typical conditions, is determined
by the parameter24'25 *•= u>btY~3'2, where u>b = V47re2.N'e/m
is the plasma frequency of the beam, t is the time of
flight of an electron through the undulator, and y = e/
me2 is the relativistic factor. In the rest system of the
beam, this parameter equals &$' (where the primed
quantities correspond to a moving system of coordi-
nates). This means that the plasma frequency w£,
characterizing the maximum increment for the devel-
opment of instabilities in the plasma, is equal to the
inverse interaction time t'~l. It should also be noted
that the characteristic time for the development of am-
plification in FEL can be determined not by the length
of the undulator, but by some other factors. For large
amplification in FEL, the effective time tetf equals the
inverse growth increment of the field in the FEL 1/cg,
where g is the gain per unit length. Finally, as will be
shown in Sees. 2 and 6, the nature of the amplifica-
tion depends considerably on the relation between the
number of periods in the undulator N=L/K0 and the en-
ergy spread of the electrons in the beam, determined
by the parameter £=./VAE/e, where A£ is the width of
the electron distribution function /(c). For £<1, the ef-
fective interaction time te{[, entering into the definition
of the parameter *, equals //£ = (X0/c)£/AE.26 Taking
into account all the possibilities examined, the param-
eter *, separating regions of single-particle and col-
lective interactions with electrons, can be represented
in the form

* r - ">h\~3'~ m'n \t. — . — -r~l .61 \ eg • c ±e I

If the parameter n is large, *•> 1, then collective ef-
fects in the beam plasma can play a significant role and
the amplification mechanism is the stimulated Raman
scattering of photons, equivalent to the magnetic field
of the undulator (see Sec. 2) or of the pump wave by
plasma oscillations in the beam. For these reasons,
devices corresponding to the region *•> 1 are not free-
electron lasers in the strict sense of the word (both
with respect to the frequency range and the collective
nature of the amplification). Such devices are in many
ways similar to cyclotron masers,27 based on the use of
the cyclotron instability in the electron plasma.

On the other hand, for *<1, it is in principle possi-
ble to attain a high las ing frequency and amplification
is achieved via the mechanism of single-particle scat-
tering of free electrons. Both of these criteria indicate
that it is devices that fall into the region *< 1 that most
deserve to be called "free -electron lasers."

The criterion *•<! is almost always satisfied at high
electron energies, wheny»l . In particular, this cri-
terion is well satisfied under the conditions of the ex-
periment described in Ref. 8.

The FEL based on an undulator is most similar to a
Compton laser (see Sec. 6 below). Apparently, the
first theoretical work along these lines on lasers based
on relativistic free electrons is the paper by Pantell et
al.,11 in which the idea of using stimulated Compton
scattering for creating a laser was formulated and the
gain was estimated under certain conditions in second
order quantum perturbation theory.

The next step in the theory of FEL was the work by
Madey,28'29 in which the method of equivalent photons
relative to the magnetic field of the undulator was used
(see Sec. 2). In these papers, an expression was ob-
tained for the lasing frequency and the gain in a weak
field was found for the case of a Gaussian electron en-
ergy distribution and a Gaussian frequency distribution
for the equivalent photons.

The induced emission of a relativistic electron in an
undulator was first analyzed, apparently, in Ref. 30
with the use of classical equations of motion.

The results, close to or equivalent to the results of
Madey's work,28'29 were rederived by many workers us-
ing different methods.31"37 In most of these
works,31'34"37 the electron motion is described purely
classically. Attempts to construct a quantum theory
are contained in Refs. 32, 33, and 38. A direct quan-
tum mechanical calculation of the gain in FEL (in the
weak signal approximation), in which a transformation
to the rest system of the beam and the method of equiv-
alent photons are not used, and which is much simpler
than the procedure used by Madey,28'29 is given in Refs.
39-41. In Refs. 42-44, the results of the linear theory
are generalized to the case when the fixed field approx-
imation is not valid, i.e. the gain per pass of the elec-
trons through the magnet is not small. Such a situation
is typical for low-energy electron lasers.6'9'10 How-
ever, already at electron energies ~10-102 MeV, the
gain per pass under real conditions does not exceed
several percent. This permits using the fixed field ap-
proximation in calculating the gain per pass in FEL.

The effects of nonlinearity in FEL were qualitatively
discussed in Refs. 36 and 37. The work in Ref. 45,
concerned with this problem, apparently, is wrong,
since the chain of equations is terminated in it without
justification. Numerical solutions of the classical
equations of motion of an electron in an undulator in a
strong field are contained in Refs. 36, 43, 46-48. The
multiphoton processes and saturation of gain in FEL
were described analytically using quantum theory in
Refs. 49 and 50. Subsequently, some of the results of
these papers were rederived using different methods
and confirmed in Refs. 51 and 52. The analytical ex-
pressions for the gain found in Refs. 49 and 50 were ob-
tained in Refs. 53 and 54 starting from the classical
equations of motion for an electron.

Concluding the review of the literature of FEL, a
number of papers proposing to optimize the amplifica-
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tion conditions in FEL should be noted. The gain can
be increased by introducing a dielectric medium into
the undulator,55 by applying an additional longitudinal
magnetic field,36 by using an undulator with a variable
step or (and) amplitude of the field intensity B0.

57"61

A two-step undulator-Compton laser scheme, in which
first, as in the usual FEL, radiation is generated at an
intermediate frequency, which is then again scattered
by the same electron beam, which leads to amplifica-
tion and generation at a high frequency, was proposed
in Ref. 62. An FEL, in which two coupled undulators
were used, was discussed in Refs. 63 and 64. One of
the possible methods for optimizing the gain in a Comp-
ton laser is to choose the most advantageous geometry
for the experiment (see Sec. 6 below).65-66 Some
practically important estimates of the gain for existing
accelerators were made in Ref. 67.

It should be noted that the number of published works
on FEL is increasing very rapidly. This trend can be
observed by comparing the review contained in the
present paper with the review in Ref. 68. In what fol-
lows, we will be concerned primarily with the physical
interpretation of amplification in FEL, the physics of
multiphoton processes and saturation, and amplification
in a Compton laser. The entire analysis that follows is
based on the single-particle description and for this
reason concerns high-energy electron lasers, for which
y»l and x.«l. The opposite case, *>1, was analyzed
in many of the original papers cited above, as well as
in the review in Ref. 69.

2. PHYSICAL INTERPRETATION OF AMPLIFICATION

Several approaches to interpreting the phenomena in
an FEL are known. In the work by Pantell et al. ,u the
results of a quantum electrodynamic calculation in low-
est (second) order perturbation theory are used. The
approach formulated by Madey28'29 is based on the anal-
ogy with processes in FEL with stimulated Compton
(Thompson) scattering by an electron at rest. The idea
of the method is based on transforming to the center of
mass system of the unperturbed relativistic electron
beam. In so doing, the potential of the magnetic field,
moving with respect to the electron at rest with a ve-
locity close to the velocity of light, is transformed into
an expression close to the potential of a plane wave with
frequency n = <j0/Vl -vz

0 = yqQ, where <?0=2iT/A0, v0 is the
velocity of the electron beam, y = e/m, e and ra are the
energy and mass of an electron, c»m, and /z = c = l.

This permits replacing, in the center of mass system
of an electron, the potential of the electromagnetic
field of the moving undulator by the potential of an
equivalent plane wave with frequency O. The frequency
of the amplified electromagnetic wave is Doppler
shifted as a result of this transformation and becomes
equal to w' = o>V(l -y0)/(l +vj*= •- V l - y g = co/2y. The
interaction of the electron with two waves with frequencies
Q andu>' can be viewed as stimulated Thompson scatter-
ing of a photon with frequency J2 by an electron at rest.
Such a process, evidently, is possible if w '~n . This
condition determines the resonance frequency u)res,
near which (for to = wres) stimulated emission or absorp-

tion of photons of the amplified wave is possible:

(1)

(from what follows, it will be evident why the term
"resonant frequency" is justified). The use of the meth-
od of equivalent photons relative to the field of the mov-
ing undulator70 also permits finding the equivalent-pho-
ton density and the gain in an FEL.28'29

Another approach to describing FEL is based on
interpreting the processes occurring in them in terms
of stimulated bremsstrahlung emission and absorption
tion.39"41 Such an interpretation is possible since a sta-
tionary magnetic field can be viewed as a particular
realization of an external potential, scattering elec-
trons. The main property of the undulator is that due
to the spatial periodicity of the magnetic field, both en-
ergy and momentum are conserved39:

«' — e = T®, p' — P = -F(ci) + ?o)< (2)

where e' and p' are the energy and momentum of an
electron after scattering (we assume that the electron
momentum is oriented strictly along the axis of the un-
dulator 02).

The conservation laws (2) determine both the momen-
tum of the scattered electron p' and one of the param-
eters characterizing the radiation or the incident elec-
tron beam. For example, more exact values of the fre-
quencies coe and wa, at which emission and absorption of
a photon with fixed energy is possible, or correspond-
ing values of the energy eeja at a fixed frequency w fol-
low from Eqs. (2):

'£-• (3)

For high magnetic field intensity B0, it is necessary to
take into account in equations of the type (3) the shift in
the mass of an electron in a strong magnetic field 6m2

= e2-B2/<72. In this case, for example, the expression
for the wavelengths of the emitted and absorbed photons
is written in the form

where r0 = e2/m is the classical radius of the electron.

For a circularly polarized magnetic field of the un-
dulator, the mass shift is the only effect arising for
6w2£ m2. In the case that the magnetic field is linearly
polarized, for 6w2^ m2, together with this, there also
arises the possibility of amplification at harmonics of
wreg and the gain changes considerably.71'72

The cross sections for stimulated emission ae and
absorption ua of a photon can be found with the help of
a direct quantum electrodynamic calculation39 using
second-order perturbation theory: first-order in the
magnetic field potential AH and first-order in the poten-
tial of the electromagnetic wave AEM.

Bo AEM = c.c.), (5)

where a and e are unit polarization vectors.

The cross sections creia, generally speaking, must be
averaged over the electron energy distribution function
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/(E). It is easy to verify that awcc/(eepa). The gain is
determined by the total photon emission cross section,
aT = a, - aa<*/(£„) -/(ea). Expanding the arguments of
the distribution functions with respect to the small en-
ergy difference et - ea, we find as a result of such a
calculation the gain per pass:

(6)

This equation can be interpreted in terms of a popu-
lation inversion: amplification occurs if the energy
e0 (3) is such that df/dt>0, i.e. if the value of E0 cor-
responds to the increasing part of the distribution func-
tion /(e).

The contours of the spectral lines for stimulated pho-
ton emission fco-^ti))] and absorption fco-Ju))], accord-
ing to relations (3), are slightly shifted relative to the
contour of the spontaneous emission line in different
directions.

It follows from here that the gain G, proportional to
the difference ffe(w) -cra(u>), is determined by the de-
rivative of the contour of the spontaneous emission
line, whose intensity is proportional to/(£). This re-
lation between stimulated and spontaneous emission is
in excellent agreement with the experimental results
(Fig. 2).7

If the electron beam is sufficiently monoenergetic,
then the magnitude of the gain can be determined not by
the electron energy spread, but by the finite length of
the magnet L. Equation (6) is inapplicable, if Ae< E/JV,
where N=L/\0 is the number of periods of the magnet.

In this case, the gain with e = a* has the form30'37-39

G =
2 VTn.y il sin" » (7)

where u= -w2w<A/2e3, A = E -mS<a/2q0 is the detuning
of the resonance, and taL is the duration of the inter-
action.

We note that the spectral width of the function G(A) in
this approximation equals I\ = 2eVm2arf, i.e. it is de-
termined by the inverse duration of the interaction.

Finally, one more interpretation of amplification in
FEL, developed in many papers, is based on using the
classical equations of an electron in the fields (5),
which, according to Refs. 35-37, 42, 43, 47, 48, and

FIG. 2. Experimentally measured spectral intensity of spon-
taneous emission (a) and gain G (b) in a free-electron laser as
a function of the emission frequency.7

54, can be reduced to the equation of a simple pendu-
lum73 for the phase <f> = (ta + qa)z - ut:

dzro
^¥- = s in(f. (8)

where fi = (ef/e) ^2E0B0 is the dimensionless time.

The initial conditions for Eq. (8) follow from the def-
inition of the phase (p and the parameter M and have the
form

(f (n = 0) = <,

where

(9)

(10)

is a quantity which characterizes the scale of the de-
tunings and corresponds to the field-dependent width of
the resonance curve G (A) for strong fields (see Sec.
5 below) and <f>a is the initial phase.

As is well known,73 the equation of a simple pendulum
(8) has a first integral that expresses the conservation
of energy, which taking into account the initial condi-
tions (9), can be written in the form

Here, (d<p/dv-)2, 2 cos <p, and 2cos^&0 + (A2/A^) are the
effective kinetic, potential, and total energies of the
pendulum (Fig. 3).

The energy emitted by the electron per pass is de-
fined as the work performed by the field of the electro-
magnetic wave74:

(12)

where EEU is the intensity of the electric field corre-
sponding to the potential AEM (5). The classical velocity
of the electron in directions perpendicular to the un-
dulator axis, vx, determining tf§ (12), can be found ex-
plicitly, if the fact is taken into account that since the
potentials AH and EEM (5) are transverse and depend
only on z and t, there exists an integral of motion
pA + (e/c)(AH + Agjj) = const. Finding from here explicit
expressions for v1( substituting them into Eq. (12),
integrating, and taking into account the definition of the
phase <p, we find that the following relation exists be-
tween the emitted energy A# and the rate of change of
phase dip/dy. (Refs. 43, 53, and 54):

FIG. 3. Effective potential energy of a pendulum as a function
of phase q>. The horizontal lines represent the total energy
level: a) for |A| > Am (weak-signal approximation); b) for
|A| <Am and for initial phase 0>0 close to T ; c) for | A) < Am
and for values of <P$ close to 0 and ZT.
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(13)

Since the longitudinal size of the electron bunches in
the experiment in Ref. 8 (~3 mm) greatly exceeded the
wavelength of light (~10"* cm), all physical quantities
(such as, for example, the emitted energy &g?) must be
averaged over the initial phase <pa.

The fact that the classical equations of motion of an
electron in FEL reduce to the equation of a simple pen-
dulum reflects, in particular, the analogy with radio-
electronic devices of the travelling-wave tube type. It
is well known that in the fixed field approximation the
equations for a travelling wave tube also have a form
similar to Eq. (7).75 However, the physical meaning of
the parameters /J., A, and Am, entering into Eqs. (8)-
(13), are different for FEL and travelling wave tubes.
For this reason, the physical results following from
these equations are different for FEL and travelling
wave tubes.

The weak signal approximation in FEL corresponds to
small values of the parameters p. and Am: H, Am— 0
(but the ratio M/Am in this case can be arbitrary). The
motion of the electron with respect to phase <f in this
case is infinite, since j A | » A,,, and the effective total
energy of the pendulum is much greater than its poten-
tial energy. For this reason, the term 2 (cos<p - cosc?0)
in Eq. (11) can be taken into account by iterating.

The zeroth-order solution with respect to M, Am

<p"" = <Po + A -£- (14)

is cancelled out on substitution into (13). The first-or-
der solution

d(p(l) A j n p / _L i "1 /1 C\

vanishes after averaging with respect to <pa. It is only
in second-order in iterating Eq. (11) with respect to ji,
Am that a nonvanishing average rate of change of phase
is obtained:

du - 1 i --1 ' (16)

Substituting this expression into (13) and calculating
the gain G = ̂ N^W/El again leads to Eq. (7).

Within the scope of the classical description, ampli-
fication in FEL is often interpreted as the result of
spatially periodic bunching of the beam as it passes
through the undulator and subsequent coherent emission
by the modulated beam.76 It should be emphasized that
modulation of the beam, in this case, arises automatic-
ally. Initially, at the inlet to the undulator, the beam
is uniform (on the scale of the order of the wavelength
of the radiation ~10'4 cm).

The quality of FEL, as any amplifying system, in
addition to the gain G, is also characterized by the ef-
ficiency. The latter is defined as the ratio of the en-
ergy A^ emitted by an electron per pass to the initial
electron energy e. In the weak signal approximation,
starting from Eqs. (13) and (16) or directly from (7), it
is easy to verify that the efficiency, corresponding to
the detuning A for which the gain G(&) is maximum, A
~ T, = 2Am/M, equals M4/64irN. As the field E0 in-

creases, the efficiency increases <x Ejj. As will be evi-
dent from what follows, the parameter /^ is a saturation
parameter, which is attained for ji~ 1. In this case,
the efficiency attains the value l/64ffAf, which is deter-
mined by the inverse number of periods of the undulator
and is the maximum possible efficiency in the weak
signal approximation. Numerically, the efficiency of
FEL is low, since N» 1 must be satisfied. These re-
sults were obtained in Ref. 35.

The study of the limits of applicability of equations
(6), (7), and (16) requires going beyond calculations in
lowest order quantum perturbation theory and beyond
the weak signal approximation in the classical ap-
proach.

It should be noted that at first glance the agreement
of the results of classical and quantum calculations in-
dicates the complete equivalence of the approximation
of single-photon transitions in quantum mechanics and
the weak signal approximation in classical theory.
Based on this, it is sometimes stated that FEL based
on an undulator and a Compton laser are single and
double quantum devices.77 Sometimes, this assertion
is not clearly stated, but in fact is used in deriving the
gain with the help of calculations in the single-
Double-) quantum approximation. 11'28>29-35'39 However,
as analysis shows,49'50 in reality the single-quantum
approximation and the weak-signal approximation in
classical theory are not equivalent. The conditions for
applicability of these approximations are appreciably
different and, as a rule, amplification in FEL always
has a multiquantum character. In order to analyze
completely the relation between the quantum and clas-
sical descriptions of processes in FEL and, in particu- .
lar, in order to describe multiphoton transitions, it is
necessary to start from the quantum approach, whose
basic results are presented below in Sec. 3. In order
to find the gain in FEL (taking nonlinear ity into ac-
count), as the result in Refs. 49 and 50 shows, it is
possible to start from quantum as well as classical
equations of motion for the electron (Sec. 4). Each
of these approaches reveals some new physical charac-
teristics of the amplification of a strong wave in FEL
and, for this reason, the quantum and classical de-
scriptions of FEL in a strong field compliment one an-
other.

3. QUANTUM DESCRIPTION OF MULTIPHOTON
PROCESSES AND SATURATION

Neglecting small spin corrections,70 let us begin with
the Klein-Gordon equation in fields AH and A^, (5).
The quadratic terms e2A| and e^^ in this equation for
circularly polarized fields e = a* = l/V"2(x-ty) are con-
stant and determine the shift in the electron mass,
which we will assume is taken into account in m; x and
y are unit vectors along the Ox and Oy axes. Examining
only one-dimensional electron motion along the Oz axis,
we start, therefore, with the equation

The initial condition for Eq. (17) has the form *(< =
xei(": according to Refs. 49 and 50, it may be as-
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sumed that the interaction is turned on instantaneously
at / = 0, since under real conditions the switching time
A/, in order of magnitude, equals the time for the
electron to traverse a distance X0, much less than the
period of characteristic oscillations in the system ~L /

v0~ L. In examining the initial problem, it is not nec-
essary to take into account formally the spatial finite -
ness of the region of interaction, taking it into account
actually by fixing the finite duration of the interaction
t~L. Under these conditions, due to the law of con-
servation of momentum, the state of the electron with
momentum p is related only to states with momentum

For this reason, all states coupled with one another
can be enumerated by the discrete integer index « = 0,
±1, ±2, . . ,, so that

pn = p — n (co — <70i, £„ = ! Pn-r-m-, (18)

where p is the initial momentum of the electron.

Due to the conservation laws, the problem of transi-
tions into the continuum reduces to an equivalent prob-
lem of resonant excitation of a system of discrete lev-
els en (18). Excitation of the system to a level tn cor-
responds to absorption (for «>0) or emission (for «<0)
of j n | photons.

It follows from (18) that the wave function *U, t) at an
arbitrary time is a superposition

V -~^,a. i f i e x p [i t p . : — (£ — n u U i ] , (19)

where e = £0 is the initial energy of the electron.

The coefficients an(t) are slowly varying functions of
time. For this reason, their second derivatives an can
be dropped in the equations for an(/).50

The energy en can be expanded in a series in powers
of n, which gives

f / m-<£ \ „ /n:to- ] e-E,:Ba , , , ^ O A ^'*-- " —-?«-"-— - ^ 0 ' - ' - 0 " - ' ' (20)

with the initial condition a,(0) = 6n>0.

It is evident that Eqs. (20) are analogous to the quan-
tum mechanical equations that describe excitation of an
anharmonic oscillator by a resonant field,78 The fre-
quency wree (1) plays the role of a characteristic fre-
quency of the system, relative to which the electromag-
netic field is resonant.

The coefficients an(t) determine the energy Ai". emit-
ted by an electron over the time of the interaction t,
and the gain per pass G:

(21)

The system of equations (20) is characterized by four
fundamental parameters: the interaction energy of the
electron interacting with fields AH and AEM <gint
= e2E0B0/2qau€., the anharmonic energy &utt= m2q>2 /2e3,
detuning of the resonance A = e -»iV u>/2<j0, and the
interaction time /. It is convenient to introduce the di-
mensionless parameters

r-, (22)

= 2/v gPittt !?„„ , which coincides with the dimensionless
time entering into the classical equation for the pendu-
lum (8). As shown in Refs. 49 and 50, the parameters
V~p and ?] determine the degree to which the electron
scattering process in the FEL is a multiphoton process,
«max = min (r j . /p) , the parameter ji determines the con-
dition for transition to saturation (v.~ 1), and the pa-
tameter /3 determines small quantum corrections to the
gain.

The numerical values of these parameters under the
conditions of the experiment in Ref. 8 are: nau~^~p
~r)~105, ^i*5,|3~10"5.

The solution of Eqs. (20) in first-order perturbation
theory with respect to 8PiBt permits calculating the tran-
sition probability amplitudes atl, differing from zero,
and with their help the gain, coinciding with (7). The
criterion for applicability of perturbation theory is the
condition |atl | <1, which is already violated in very
weak fields, since |«tl |majl~ TJ and, for example, under
the conditions of the experiment in Ref. 8 J)~ 10°» 1.
For 7)»1, during the excitation process, a large num-
ber of photons is absorbed and emitted and a large
number of levels $n equivalent to a system with a dis-
crete spectrum is excited, i« | s«m l l

> : > l- This means
that the quantum description of FEL, based on calcu-
lations in lowest order perturbation theory,11'28'29 is
strictly speaking incorrect. The problem of resonant
excitation of a multilevel system in accordance with
Eqs. (20) was solved in Refs. 49 and 50 and subsequent-
ly in Refs. 51 and 42 for two characteristic relations
between the parameters:

lT»>i» ' '."«') and "

For M < 1 , but 77»1, the explicit form of the distribu-
tion of the electrons over the energy levels e, after
passage through the undulator to lowest order in the
small parameter £ (22) is determined by the expres-
sion79

fgg£!in-"!£:£!). (23)

as well as the saturation parameter /i = 2/77/3

For a characteristic detuning A ~ F ( , corresponding
to the width of the curve G(A) (7), the argument of the
Bessel function equals, in order of magnitude, TJ and
we have verified that for TJ» 1 and p-< I the degree to
which the scattering process is a multiphoton process
is «mi,= '!>> 1 and perturbation theory cannot be used to
calculate the probabilities of multiphoton transitions

However, the gain, found with the help of Eqs. (20)
and (21) by summing with respect to «, in the approxi-
mation TJ » 1 and M < 1, turns out to be equal to the gain
in the weak signal approximation (7).50 This means that
the parameter characterizing the nonlinearity of the
gain is the classical parameter M and not the quantum
parameter ?]. The reason that the nonlinearity param-
eters for the scattering amplitudes an(t) and for the gain
G differ so greatly lies in the appreciable cancelling of
the higher order contributions in the sum over « (21),
determining A# and G. This effect, evidently, is of the
same nature as the compensating effect in multiphoton
bremsstrahlung absorption of a strong wave in the
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FIG. 4. The energy emitted by an electron in FEL per pass as
a function of the saturation parameter n. n » 5 corresponds to
the conditions of the experiment in Ref. 8. This curve also
represents the dependence of the gain 6 on the interaction
time t or magnet length L.

presence of scattering of an electron by a Coulomb po-
tential.80

The probabilities for multiphoton transitions ja,|2

(23) determine, for example, the moments of the num.
ber of emitted photons, i.e. the average values of pow-
ers of the emitted energy. It is easy to see that, for
example,

For A~r,A?z~(32/V) Ar2»A«?2, where A8P is de-
fined by_Eqs. (13) and (16). Such a large difference be-
tween A#2 and Af2 again reflects strong cancelling in
the sign alternating sum over n, defining Aj? (21).

The analogy between the cancelling of the probabili-
ties for multiphoton transitions in the theory of FEL
and the elimination of the well-known infrared diver-
gence of the cross section for spontaneous bremsstrah-
lung of soft photons10 was pointed out in Ref. 8 1 . Equations
(7) and (23) were obtained in Ref. 81 by examining the
interaction of a classical electron current with the field
of a quantized electromagnetic wave, amplified in an
undulator.

For strong fields, when the saturation parameter M
is large (M>1), the energy Afc" emitted by an electron,
obtained with the help of the solutions of Eqs. (20),49-30

has the form

A graph of A#(M-) is shown in Fig. 4. As the field £0

(or the interaction time t, i.e. the length of the undu-
lator L) increases, the emitted energy reaches a sat-
uration level equal to A, undergoing in this case am-
plitude damped oscillations. The condition for appli-
cability of Eq. (24), aside from the assumption that M
> 1, is a restriction on the magnitude of the detuning
|A| <Am, where An is defined by Eq. (10). The physi-
cal consequences of Eq. (24) will be discussed in Sec.
5. For now, we only note that both expression (24)
itself and the conditions for its applicability do not de-
pend on Planck's constant, which indicates the classi-
cal nature of the gain saturation. In Sec. 4, we dis-
cuss how and for what specific reasons saturation
arises within the scope of the classical description of
FEL.

4. CLASSICAL INTERPRETATION OF SATURATION

It is well known,65 that the solutions of the pendulum
equation (8) in general can be written in an implicit
form in terms of elliptic integrals. However, it is im-
possible to find a general explicit form for the solutions
<p(V., (f>0) and to average with respect to <p0 analytically.
It was shown in Refs. 53 and 54 that, asymptotically, in
a strong field M> 1 not all electrons make the same
contribution to the average rate of change in phase: for
M> 1, | A | < Am electrons whose initial phase <p0 is close
to the value <P0

 = 7r> corresponding to the stable position
of equilibrium of the pendulum, make the main contri-
bution to d<f/d^. As |J. increases, the interval of values
of the initial phase 6^>0, making an appreciable contri-
bution to dip/di±, decreases, which is what leads to the
decrease in the amplitude of the oscillations, i.e. to
damping of dtp/dy. and to saturation of A#(p.). For {A |
< A,,, and \<f>0 -TI | <1, the pendulum equation (8) simpli-
fies, transforming into the equation of a classical an-
harmonic oscillator with small anharmonicity for the
phase shift relative to the equilibrium position x = <f> - f:

TF-'-T-0- <25>

Taking into account the initial conditions x(Q)=x0
s<Po

-IT, and #(0) = A/Aff l and the corrections to the oscilla-
tion frequency due to small anharmonicity,73 the solu-
tion of Eq. (25) has the form

(26)
Solution (26) permits finding the contribution of the

small interval values of xa, A.v0<l, near the point x0

= 0 (or <pa = n), to the average rate of change in phase
d<?/d\L or to the difference At? -A (13):

Axo/2

-Aif/2

The characteristic interval of values of x0, which con-
contributes to the integral (27), is ox0~l/V/Z<l. For
5x0<&x0, the limits of integration in (27) can be re-
placed by T00, which again leads to Eq. (24) for A8P.
From estimates of the range of values of the initial
phase 6*0, contributing to the integral (27), it follows
that as p increases this interval becomes narrower.
For x01 > 6x0, the difference A#"- A as a function of xa

oscillates rapidly, as a result of which the contribution
of the corresponding regions to ASP-A vanishes. As
shown in Ref. 54, for p.>l, other regions of values of
the initial phase <pot corresponding to unstable equilib-
rium positions <p0 = 0, 2ir, also do not contribute to ASP
-A. For this reason, for p> l , Eq. (27) represents not
only an estimate of the partial contribution of_ electrons
close to the bottom of the potential well to ASP - A, but
it also determines the total average energy emitted by
the electron beam as a whole, in the limit A*0— °°, go-
ing over into expression (24).

5. ASYMPTOTIC PROPERTIES OF FEL IN A
STRONG FIELD

Thus, in the saturation regime |^>1 and | A J <Am, the
energy Agf, emitted by electrons per pass through the
resonator, is determined by expression (24). This re-
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suit leads to a number of interesting consequences con-
cerning the nature of amplification in FEL when the
saturation parameter M is large.

If the gain G (21) is viewed as a function of the inter-
action time t (or magnet length L), then it is charac-
terized by the same curve as the emitted energy A if
(Fig. 4). As the length L increases, the gain first in-
creases and then, oscillating, attains a constant value.

For very large detuning | A | > Am, independent of the
magnitude of the parameter M, the weak signal approx-
imation is valid and Eq. (24) is replaced by expression
(7), which in this case describes the decrease in gain
G with increasing |A . Therefore, the quantity Am, de-
fined by Eq. (10), is the asymptotic spectral width of
the gain T for a high field (J.> 1 (in the weak signal ap-
proximation M<1, r = r = 2 A m J M ) . Depending on the
interaction time t, the spectral width of the gain T first
decreases with increasing* t (in region fJ -< l ) , and then
assumes a constant value Am (Fig. 5). On the other
hand, depending on the field intensity of the wave E0,
the spectral width T remains constant, while M<1, and
for fi> 1 increases as -

is illustrated qualita-The function G(A) for fixed
tively in Fig. 6.

The frequency w, for which the maximum value of the
gain is attained, for n>l decreases with increasing E0:

(28)

The shift in the frequency w relative to cores, esti-
mated under the conditions of the experiment described
in Ref. 8, in order of magnitude equals 10"3 wras, The
maximum (relative to frequency w or detuning A) val-
ues of the emitted energy and gain for )i> 1 are equal to
Af (A=Aj and G(A=Aj.

The dependences of these quantities on the intensity
Ea, following from Eqs. (10), (21), and (24), are illus-
trated in Fig. 7.

As £0 increases, Agfmax, oscillating, increases on the
average as /lE^, while Gmax, oscillating, decreases as
£0"

3/2. The decrease in the gain Gmax with increasing
£0 could be the mechanism that determines the station-
ary lasing conditions in FEL: if Gmax decreases to the
loss level, then further increase in E0 ceases. The
horizontal dot-dash lines in Fig. 7b characterize the
loss level under different conditions. The oscillatory
dependence Gmax(£0) can be the reason for the fact that
for small losses (see Fig. 7b, 2) lasing, generally
speaking, can occur in several ranges of values of the
field intensity E0, where Gmaj is greater than the loss

FIG. 6. Spectral dependence of the gain G(A) in the saturation
regime^ >1.

level. The efficiency equals A#t/-0/£ and behaves like
A# ((J.). For detuning A corresponding to the maximum
gain, A ~ A m , under saturation conditions M>1, the ef-
ficiency in order of magnitude equals

where, as previously, N is the number of undulator
periods.

Just as t, the efficiency (29) with increasing field
£0, oscillating, increases on the average (see
Fig. 7a). The decrease in efficiency noted in Refs. 35
and 43, after passing through a maximum, is, in real-
ity, only a temporary drop, related to the oscillations
in A ifmax( (J.) , which then again increases, as long as E0

(or p.) does not stop increasing due to a decrease in
Gmax-

The conditions of the experiment described in Ref. 8
correspond to a saturation parameter ^~ 5, which cor-
responds to the beginning of the saturation region (Fig.
4), where the weak signal approximation is no longer
valid, but the numerical difference between estimates
using Eqs. (7) and (24) are not yet too large. From
this point of view, in order to check the theoretical pre-
dictions, it is undoubtedly interesting to perform ex-
periments in a region with greater saturation.

As already noted, the pendulum equation (8) was
solved, in application to the theory of FEL, numerical-

FIG. 5. The spectral width r of the gain as a function of the
interaction time t and field intensify £0.

FIG. 7. The dependence on the field intensity £0 of maximum
(along the spectrum) gain Gmax (b) and emitted energy A$",r,,^
(a) (for A «Am).
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ly in Refs. 36, 43, 46-48. The results of numerical
calculations agree very well with the theoretical equa-
tions, presented above, from Refs. 49 and 50. Graphs
of G(A) for different values of the saturation parameter
H were constructed numerically in Ref. 46. These
curves are similar to the ones shown in Fig. 4. The
maximum values of the gain, found from these curves,
do not contradict the dependence EQ 3/2, although the
number of points satisfying the conditions of an asymp-
totically strong field, in numerical calculations,47 was
not very large (2-3). The position of the maximum on
the curves G(A) also, with this reservation, agrees
well with that determined by (10) and Eq. (28). Here, it
should be noted that the dependences described by Eqs.
(24), (28), and (29), were not computed directly in Refs.
46-48 in the course of solving the problem numerically,
although this would have undoubtedly been interesting.

A comparison of the analytic and numerical results
permits estimating more precisely the limits of appli-
cability of the asymptotic equations (24), (28), and (29).
Although formally in deriving them, it was assumed
that n«l and |A| <<:Am, numerical calculations show
that the asymptotic equations are already readily ap-
plicable for M2 2.

6. COMPTON LASER. NONCOLLINEAR
AMPLIFICATION SCHEME

As noted above, the idea of a Compton laser was first
proposed by Pantell.11 Subsequently, the possibilities
for amplification in a Compton laser were studied theo-
retically in a number of papers,65'66'82"87 but this idea
has not been realized experimentally up to now.

According to Ref. 11, in a Compton laser, a low-fre-
quency electromagnetic wave (pump wave with frequency
Wj) must propagate toward a relativistic electron beam.
In this case, within the scope of the collinear scheme,
examined in Ref. 11, amplification is possible at the
frequency w2 of the reflected wave, propagating parallel
to the electron beam

(30)

The frequency u^^ is similar to the resonant frequency
in the undulator (1) and expression (30), just as Eq. (1),
follows from conservation of energy and momentum,
characterizing the process of stimulated Compton scat-
tering in second-order perturbation theory. In Ref. 11,
the gain in a Compton laser was also found in second-
order perturbation theory. The general equations that
describe multiphoton transitions and nonlinear amplifi-
cation in a Compton laser are, to a large extent, sim-
ilar to the equations examined above for a FEL based
on an undulator (20). From here it follows, in particu-
lar, that relative to the process of stimulated Compton
scattering in this very simple geometry all the consid-
erations and conclusions concerning the gain saturation,
the role of multiphoton processes, and nonlinearity pa-
rameters presented above are valid.79 In Eqs. (10),
(21), (22), and (24), in this case, E0 and -B0

 are re-
placed by the intensities of the pump field and the gen-
erated radiation field E1 and E2, while the parameters
q0 and u are replaced by c^ and w2. Over a wide range

of values of the parameters determined by the condition
TJ> 1, the process of stimulated Compton scattering is
a multiphoton process. In this case, calculations in
lowest order quantum perturbation theory, strictly
speaking, are not applicable (although they do give the
correct expressions for the gain). The value of the
multiphoton parameter JJS 1, for example, for Xj = 3.2
cm, e = 50MeV, corresponds to intensities E^E^
~ 3-103 V/cm. The conditions for gain saturation in a
Compton laser, as before, are determined by the re-
lation M~l , which corresponds to £1»JEZ*105 V/cm. It
is interesting to compare these estimates to values of
the field intensity for which the multiphoton nature of
the absorption process with spontaneous Compton scat-
tering in the field of a single strong wave is mani-
fested.70'88'89 It is well known that Compton scattering
of an electron in the field of a single strong wave with
frequency w « m becomes a multiphoton process for
eA~m, where A is the vector potential of the wave or
for VB~c, where vs = eE0/mu is the amplitude of the
oscillations of the electron in the field of the wave. Nu-
merically, the condition VB~ c for w = 3'1015 s"1 corre-
sponds to a field intensity E0~ 5' 109 V/cm. A compari-
son of the estimates presented shows that in the field of
two waves the multiphoton nature of the scattering ap-
pears much earlier than in the field of a single strong
wave.

The probabilities for multiphoton stimulated Compton
scattering in the field of two waves for M<1 are deter-
mined by Eqs. (23).71

The gain in a Compton laser, within the scope of the
traditional collinear scheme proposed in Ref. 11, for
M<1, is determined practically by the same expres-
sions (6) and (7) as the linear gain in FEL based on an
undulator.

Thus, for example, for a relatively short length L of
the interaction region (^/t)(L/\)«1 (where \ = 2ir/(J)l

is the length of the pump wave), the gain at frequency
(i), can be written in the form

t (cog —(D; res) (31)

where E^ is the amplitude of the electric field intensity
of the pump wave, c = H= 1.

Under saturation conditions (n>l), all characteristics
of the behavior of the gain are determined by the re-
sults of Sec. 5. For EZ~E^, in the region u-»l, the
gain GmiU decreases as £j/2£^3/2=£Jx.

We will examine, in what follows, one of the possible
ways of optimizing the amplification conditions in a
Compton laser, related to an extension beyond the col-
linear scheme. This possibility was investigated in
Refs. 65 and 66. It should be noted that amplification
in a noncollinear scheme was considered in Ref. 86.
However, the analysis carried out in Ref. 86 relates
only to the nonrelativistic case and does not permit
finding the optimal las ing conditions. These problems,
just as the analysis of the dependence of the gain on the
geometry, are examined below mainly following Refs.
65 and 66.

The vector potentials of two interacting waves, in
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general, can be represented in the form

(32)

where e1|2 are unit polarization vectors, kl f2 are the
wave vectors, and |kli2| = wli2,

According to Refs. 65 and 66, the case of a small de-
viation from a eollinear scheme, when the pump wave
propagates toward the electron beam, while the ampli-
fied wave propagates at a small angle 8 relative to the
direction of the electron momentum, is of greatest in-
terest. In this case, the relation between the frequen-
cies a^ and w2 has the form

For y f l« l , Eq. (33) goes over into (30), while for y6
>> = 1, the frequency u>2 is almost independent of the
electron energy, but depends on the angle 0: w2

!S4w1 02.

Just as in the one-dimensional scheme, in the noncol-
linear geometry, the gain can be determined either by
the finite interaction length l~t or by the energy spread
of the electrons AC. The parameter £, separating
these two regions, in the noncollinear scheme with 6
«1, according to Refs. 65 and 66, equals

(34)

If £>1, then it is necessary to take into account the
energy spread of the electrons and the gain has the
form65

II' (6) e3
(35)

As a function of angle 6, the gain first decreases,
vanishing for r# = l, and then increases for fO= 1, and
due to the decrease in frequency u>2 (33) (u>2<x 0"2).

The factor (y6>)2- l /(y0)2+l in Eq. (36) stems from
interference of the second-order matrix elements,
arising from the terms that are quadratic (e2A2) and
linear (2epA) in the field in the interaction energy in
the multidimensional Klein-Gordon equation. For yB
» 1, the difference in the gain G(B) and G(0 = 0) is de-
termined by the factor (yd).*

At first glance, the fact that the gain G(9) increases
ourside the relativistic cone y0>l may appear to be
unexpected. Actually, the spectral intensity of the
spontaneous Compton scattering outside the relativistic
cone decreases. In the geometry being examined, it
has the form64

(it if _
lio.dU,. ~~

where rfnt2 is the element of the solid angle in the di-
rection k2. As is easily seen, f o r y 0 > l , the spectral
intensity (36) decreases as 0~2 with increasing angle 8.
Aside from the decrease in absolute magnitude of the
intensity, in this case, there is also a narrowing of the
spectral line corresponding to spontaneous emission.
The width of the spectral line (36) is determined by the
distribution function/(e). However, according to (33),
for yB> 1, the dependence of the frequency w2 on energy
£ decreases. For this reason, the change in energy e
by an amount AE corresponds to a decreasing change in

the frequency o>2, Aw2, i.e. as a function of frequency
w2 the spontaneous emission line narrows:

(37)

The gain G for £ > 1 is proportional to the derivative
of the spectral intensity of spontaneous emission:

c_ (38)

Narrowing of the spontaneous emission line for yfl» 1
leads to an increase in the derivative of the spectral in-
tensity with respect to frequency and, therefore, to an
increase in gain.

The increase in gain G(6), of course, is not unlim-
ited. The limitation is related to the fact that if for
some values S> 1/y, £(#)> 1, then for large 9 the sign
of the inequality changes and the parameter £ becomes
small, £(0)<1- In this case, it is possible to neglect
the energy spread of the electrons, taking into account
instead of this, the finiteness of the interaction time,
which gives65

G =

•where

T202- 1 \ g d sin'a
Y20a+l / Au ~ (39)

In the general case of arbitrary £, the gain G is deter-
mined by the smallest of the quantities (35) and (39).
It should be kept in mind that the interaction time t it-
self (or length I) can depend on the angle S. If d is the
transverse size of the electron beam, then l = d/B. It
follows from here that in the region where £(#)> 1, the
gain G (35) increases as 03: G^ld* = d&*. On the other
hand, for £(0)<1, the gain decreases as 9~3: G<*l3 = d3/

The nature of the function G(8) is illustrated qualita-
tively in Fig. 8.

The optimum conditions for generation in a Compton
laser are determined as the condition for changing from
one of the two mechanisms for determining the gain
examined above to the other, i.e. by the relation £(9)
~ V2w. This equality determined the optimum angle

(40)

The maximum gain, attained for 6= 00, in order of
magnitude equals

(41)

(36) where I0 = d/90. Substituting 10 and 80 into Eq. (41)
transforms the optimum gain Gmax into the form

FIG. 8. The dependence of the gain 6 in a Compton laser on
the angle between the directions of propagation of the elec-
tron beam and the amplified wave, ft is the optimal angle.
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_ , n.,t XjJ, (W/cm2) J (A)
(Ae/e) V

(42)

where /t is the intensity of the radiation in the pump
wave and J is the current in the electron beam.

According to (42), all the dependence of GmU[ on the
parameters of the pump wave is concentrated in the fac-
tor Xjlj. This means that when the pump wavelength \t

increases, the intensity /t necessary for attaining a
fixed gain decreases as X1( It should also be noted that
in the noncollinear scheme the optimum gain (42) de-
pends on the total current J and not on the current den-
sity, and does not depend on the transverse size of the
electron beam.

We will present an estimate, illustrating the possibil-
ity of amplification in a Compton laser in the noncol-
linear experimental scheme. For electron beam pa--
rameters J^-l. kA, d = 0.5 cm, y = 20, Ae/e = 10"3 and
pump wave #0^ = 0.1 eV, £t = 5' 107 V/cm, we have 10

= 5 cm, 00 = 0.2, G~l%. This result indicates the pos-
sibility of attaining significant amplification in the ul-
traviolet frequency range (#u>2= 10 eV) using CO2 laser
radiation as a pump. If it is assumed that the same ex-
pression as in the one-dimensional case is retained for
the saturation parameter (J, in the noncollinear scheme,
then the highest attainable field intensity E2 in the gen-
erated radiation for the numerical values of the param-
eters of a Compton laser presented above, in order of
magnitude, equals £2~ 3-104 V/cm.

7. CONCLUSIONS

In summarizing the discussion of free-electron la-
sers, it is useful to point out the basic lines along which
it is possible and useful to setup experiments on FEL.
Of course, there is great interest in developing classi-
cal high-frequency electronics90 and going on to high
density relativistic beams. Here, it is difficult to ex-
pect very high electron energies and high frequency
conversion factors. However, the power of the existing
radiation sources can be very high with the use of high-
current electron accelerators.91 In essence, this group
of problems was not discussed in this review, since we
concentrated on FEL based on high-energy electrons.

For electron energies of the order of several tens of
MeV, it becomes possible to create FEL operating at
infrared frequencies. Creation of such lasers could be
of great interest for studying the physics of the inter-
action of radiation with molecules. In this electron en-
ergy range, under typical conditions, the amplification
mechanism in FEL is the single-particle electron scat-
tering examined in detail above.

It is possible to create FEL both using the traditional
undulator scheme and, in principle, utilizing stimu-
lated Compton scattering. In this case, it is necessary
to use powerful UHF radiation sources, for example,
a magnetron, as the pump. Estimates show that in or-
der to attain acceptable magnitudes of the gain it is
necessary to use UHF radiation sources with intensities
of the order of 10-102 MW/cm2, which, apparently, is
possible in the pulsed regime.

Finally, there could be great interest in the ultravio-
let frequency range. In this case, for electron energies
of several tens of MeV, it is hardly possible to count
on creating a magnetic undulator with the necessary
small spacing (10~3 -10"4 cm). According to results
and estimates of the preceding sections, under these
conditions, it may be expected that a Compton laser
can be created, if a powerful CO2 laser, operating in
the picosecond regime, is used as a pump.

A completely independent set of problems is opened
up by analyzing the possibilities of creating radiation
sources by channelling particles in crystals. These
problems have recently been attracting increasing in-
terest.92'93 However, physically, channelling of parti-
cles, undoubtedly, differs considerably in nature from
amplification with passage of electrons through an un-
dulator or with stimulated Compton scattering, as ex-
amined in the present review, although physically, the
phenomena occurring here are related to FEL and are
of undoubted interest.

Finally, from the point of view of studying the phys-
ics of processes in FEL, it is interesting to study ex-
perimentally the nonlinear dependences of the gain in
the saturation region, discussed in Sec. 5. In this
respect, the experiment reported in Ref. 94, in which
the dependence of the gain in a FEL based on an undu-
lator on different parameters of the system in the UHF
range were studied, is very interesting. In particular,
it was discovered that the gain depends nonmonotonical-
ly on the length of the undulator, which can be inter-
preted as the appearance of an oscillatory dependence
with the transition to saturation (first oscillation in
Fig. 4). Setting up such experiments and, especially
in the infrared and optical frequency ranges, is of great
interest for studying the physics of amplification in
FEL.

On the whole, apparently, it may be stated that the
basic directions for development of FEL, which are of
greatest interest, are: increasing the lasing frequency,
increasing the FEL power, and investigating and using
new schemes and principles for amplification.

The author is grateful to M. I. Petelin and V. P.
Poponin for discussions and useful remarks.
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