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A broad set of phenomena in which the coupling of several order parameters is essential is examined from a

unitary standpoint on the basis of the fluctuational theory of phase transitions. The coupling of an order

parameter with other degrees of freedom can lead to the appearance on the phase transition lines of singular

(polycritical) points, near which the character of the anomalies changes. We analyze numerous experimental

studies near polycritical points, whose results as a whole confirm the conclusions of fluctuational theory. The

studied objects include 3He-4He solutions, antiferromagnetics, ammonium halides, liquid crystals, and

mercury near the liquid-gas critical point. The main result of studying systems with coupled order parameters

is a substantial expansion of the possibility of a universal description of real phase transitions, including those

that have been objects of more or less separate fields of physics, owing to their complexity.
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1. INTRODUCTION

Only several years have passed since the solution of
the problem of critical phenomena (second-order phase
transitions)—one of the most difficult problems of mod-
ern macroscopic physics. The universality of the be-
havior of objects of the most varied nature is the most
attractive result of the fluctuational theory of phase
transitions (see Refs. 1-5). Critical anomalies are
characterized by a set of universal constants (critical
exponents) that depend only on the type of symmetry of
the order parameter. As a rule, only relatively sim-
ple models have been studied theoretically (e.g., the

Ising and Heisenberg models). In particular, when the
order parameters of a model and a real system have
the same symmetry, universality implies that the sin-
gularities of the corresponding thermodynamic quanti-
ties must be the same (isomorphic). Therefore, dif-
ferences in the behavior of the thermodynamic quanti-
ties of real and model systems (if they exist) can be as-
sociated with the coupling of the order parameter in
real systems with other degrees of freedom that were
not taken into account in the simplest models.

In recent years, a rather large number of both theo-
retical and experimental studies has been devoted to the

57 Sov. Phys. Usp. 24(1), Jan. 1981 0038-5670/81/010057-19$01.10 © 1981 American Institute of Physics 57



problem of taking into account the coupling of the order
parameter with any other variables. We can briefly
characterize their fundamental results as follows:
coupling of the order parameter with other degrees of
freedom leads to:

1) appearance of second-order phase-transition lines
where isomorphicity is maintained;

2) appearance on these lines of singular (polycritical)
points, near which the character of the anomalies
changes;

3) breakdown of the second-order transition into a
first-order transition.

We should stress that the experimental situation near
polycritical points is far more complicated than in ob-
jects with ordinary critical points, where the accuracy
of the determination of the critical exponents is some-
times better than the accuracy of the theoretical pre-
dictions.6 Hence we have restricted the treatment sole-
ly to sufficiently reliable experimental data. From
among a large number of objects having polycritical
points, we have selected only the ones that are most
characteristic and well studied experimentally.

This includes first of all the 3He-4He solution, which
has become a classical example of a system with a tri-
critical point, as well as the relatively well studied
antiferromagnetics and ammonium halides (near their
orientational transitions).

Moreover, we have treated in this review certain
phase transitions which, at first glance, have nothing
in common with polycritical points: the transition to
the liquid-crystalline state, the liquid-vapor critical
point of mercury, and the triple points in the ammon-
ium halides. As it has turned out, in all these cases
the concept of coupling of the order parameters can
serve as the basis for understanding the character of
these phenomena, while we can consider the transitions
themselves to be distorted to some extent by polycriti-
cal points.

2. PHASE DIAGRAMS WITH POLYCRITICAL POINTS

a) Mixture of helium isotopes

Figure 1 shows the phase diagram of 3He-4He solu-
tions under the pressure of the saturated vapors .7 A
second-order phase transition occurs in the isotope 4He
at the temperature Γ = 2.17 Κ to the superfluid state (λ-
transition). Addition of the isotope 3He lowers the tem-
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FIG. 1. Phase diagram of the 3He-4He mixture.
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FIG. 2. Phase diagram of the 3He-4He mixture in coordinates
of temperature vs chemical potential. The dotted and solid
lines are respectively the second- and first-order phase tran-
sitions.

perature of the λ-transition. At a content of 3He above
67 atom percent, the transition to the superfluid state
occurs by a jump accompanied by demixing into two
phases of differing composition. The superfluid phase
is enriched in the isotope 4He, and the normal phase in
3He. The point at which the second-order phase-tran-
sition line is supplanted by a first-order transition line
is called a tricritical point (Landau critical point).8

In Fig. 2 the same diagram8 is drawn in the coordi-
nates of temperature vs chemical potential1' (μ is the
quantity thermodynamically conjugate to the concen-
tration). The tricritical point (TCP) of the 3He-4He
solution is the experimentally best studied object among
the tricritical points.

b) Ammonium halides

The ammonium halides manifest phases with varying
orientational order of the ammonium ions, depending
on the temperature and the pressure (P). Figure 3
shows the phase diagram of NH4Br.10 Three phases
coexist at the triple point (β is disordered, δ shows
ferromagnetic-type ordering, and γ shows antiferro-
magnetic-type ordering). The transitions among the
phases near the point 0 are all first-order. Therefore
we should not confuse this point with a tricritical point.
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FIG. 3. Phase diagram of NH4Br: 1—point of maximum Cp

(T), 2—breakdown of lie adiabatic.

1 'More exactly, the difference of chemical potentials of the
3He and 4He isotopes.
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FIG. 4. Phase diagram of KH2PO4. The dotted and solid lines
are respectively the second- and first-order phase transitions.
/ / //-paraelectric-ferroelectric first-order transition.

However, with increasing pressure, the β -δ transition
becomes a second-order transition, and hence a TCP
arises. The pressure is the same in the coexisting
phases. Therefore the diagram in Fig. 3 is an analog
of the diagram for 3He-4He in the coordinates of Γ and
μ. The same type of TCPs have been found on the β-δ
transition lines in the other ammonium halides as well.

c) Ferroelectric; and antiferromagnetics

TCPs have also been found in ferroelectrics. KH2PO4

has been best studied experimentally. Figure 4 shows
the phase diagram for KH2PO4 in the coordinates Τ, Ρ,
and Ε (electric field). A characteristic and seldom en-
countered feature of this case is the fact that the field
E, which is thermodynamically conjugate to the order
parameter (the polarization), can be realized experi-
mentally. At the TCP three second-order transition
lines converge: two lines for E*0 and one line for Ε
= 0. Hence we get the name of this point: tricritical.1 2

In strongly anisotropic antiferromagnetics, e.g.,
dysprosium aluminum garnet (DAG), FeCl2, and DyPO4

at temperatures above the tricritical point, a continu-
ous phase transition occurs from a homogeneously
magnetized paramagnetic to the antiferromagnetic
state. At lower temperatues, this transition is accom-
panied by a jump in the magnetization. Figure 5 shows
the phase diagram of FeCl2 in coordinates of tempera-
ture vs magnetization.13'14 We see that it qualitatively
coincides with the diagram of the 3He-4He solution (see
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FIG. 6. Phase diagram of MnF2.

Fig. 1). The magnetization plays the role of the 3He
concentration here. In the coordinates of temperature
vs magnetic field, the phase diagram of similar anti-
ferromagnetics correspondingly has the same form as
the diagram of Fig. 2.

In weakly anisotropic antiferromagnetics (e.g., MnF2),
the situation differs. As the magnetic field Η is in-
creased, when the antiferromagnetic ordering becomes
unfavorable, the mean magnetizations of the sublattices
deviate from the axis of easiest magnetization. The
transition from this (spin-flop) phase to a homogene-
ously magnetized phase is a second-order transition.
Yet the spin-flop-antiferromagnetic transition is first
order. Consequently we have the phase diagram shown
in Fig. 6.15 The point at which two second-order tran-
sition lines and one first-order transition line meet in
this way is called a bicritical point.16

In more complicated cases, the appearance of another
(intermediate) phase can occur.17 Here four second-
order transition lines meet at a polycritical point.
Therefore this point has been termed a tetracritical
point.16

d) Solid solutions

An intermediate phase is realized in two-component
solid solutions of antiferromagnetics, e.g.,
FeIMn1_IWO4. The crystal structures of the two pure
components FeWO4 and MnWO4 are very similar. At
the same time, the elementary magnetic cells com-
pletely differ18 (Fig. 7). The neutron scattering of this
mixture shows that reflections of both structure (a) and
structure (b) are present in a certain range of concen-
trations χ (0.12<x<0.32) (see Fig. 7).

In particular, the phase diagram of the solution
K2Mn1_IFeIF4 has been studied.19 Figure 8 shows this
diagram in the coordinates of Tvs x. Four second-
order transition lines intersect at the point O, i.e., at
a tetracritical point.
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FIG. 5. Phase diagram of FeCL2, Mo—saturation magnetiza-
tion. 1—dataofRef. 13, 2—dataofBef. 14. FIG. 7. Magnetic structures of FeWO4 (a) and MnWO4 (b).
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FIG. 8. Phase diagram of KjMn,.

β) Multicomponent liquid solutions

In multicomponent liquid solutions (with a number of
components N^ 3), higher-order critical points exist,
at which three or more phases become identical.20

When three phases coincide (e.g., two liquids and one
gas), this point proves to be a tricritical point.21

3. PHENOMENOLOGICAL DESCRIPTION OF
POLYCRITICAL PHENOMENA
a) The Landau theory

Let us examine the conditions for appearance of poly-
critical points within the framework of the Landau the-
ory of phase transitions,22 in which the thermodynamic
potential has the form of an expansion in powers of the
order parameter φ:

The coefficients of the expansion depend on the temper-
ature, the pressure, and the other field variables
(which assume identical values in coexisting phases).

First let us examine the symmetric case in which
symmetry considerations rule out invariants of odd or-
der (e.g., φ is a vector). If the coefficient C>0, then,
when A =0, a second-order transition occurs. When C
<0, the phase transition proves to be first-order. Con-
sequently, the thermodynamic "surface" defined by the
conditions

4=0, C = 0, (3.2)

is a "surface" of tricritical points. If there are only
three independent variables (Ρ, Τ, φ), then the condi-
tions (3.2) define a single TCP (the number of degrees
of freedom is i = 0) (Fig. 9a). If we go from any field
variable to its thermodynamic conjugate (the so-called
"density"), e.g., from pressure to volume, from mag-
netic field to magnetization, or from chemical potential
to concentration, then the phase diagram having a TCP

FIG. 9. Phase diagrams of systems having a tricritical point
in the Landau theory in the variables of temperature vs field
(a) and temperature vs "density" (b). The dotted and solid
lines are respectively second- and first-order phase transi-
tions. The region of tricritical behavior is cross-hatched.

has the form shown in Fig. 9b. The following conditions
define the location of fourth-order critical points, etc.
(in the terminology of Stanley et al.):23

A = 0 , C = 0 , £ = 0 . (3.3)

Here the third-order critical-point lines meet at a
fourth-order critical point. In general, lines of points
of order θ meet at a point of order θ + l. We note that
a critical point of order θ is characterized by the fact
that the first nonvanishing term in the thermodynamic
potential of (3.1) is φ2 0. In this terminology an ordi-
nary critical point is a second-order critical point.

According to the Gibbs phase rule,6 we have

i - n + i - / . (3.4)

Here η is the number of independent thermodynamic
variables, and/ is the number of coexisting phases.
In the (symmetric) case being studied, we should as-
sign the following value to the number of phases at a
critical point of order β23:

/-Θ + 1. (3.5)

If the invariants of odd order are not identically zero,
then we have24

/=2Θ —1. (3.6)

Equation (3.4) implies that the number of independent
variables satisfies η >/- 1. Since / is larger in the
nonsymmetric case (2Θ - 1 * Θ +1), then the appearance
of high-order critical points in the nonsymmetric
case requires a larger number of independent variables
than in the symmetric case. For example, a tricritical
point (Θ = 3) in liquid solutions is possible only with a
number of components equal to three (four independent
variables).

Now let us examine the more general case of two
coupled order parameters. We can represent the
thermodynamic potential in the form

Φ* (Φ ι, φ,) = Φο + Φ! (φ,) + Φ2 (φ2) + Φ1η, (Φ ι, φ,). (3.7)

Three cases can occur: 1) φ
χ
 is a vector and φ

2
 is a

scalar; 2) φ
χ
 and φ

2
 are both vectors; 3) φ

λ
 and φ

2
 are

both scalars.

1) φ1 is a vector and φ2 is a scalar:

(3.8)

Here we have Av =α1τ1=α1(Γ - Tcl )/Td , A2 =a2r2

=a2(T -T^/T^, and the coupling constant is λ
= -{a JITc, ){dTd /άφ2). We have neglected the higher-
order terms in φ2, since we assume that TC2<TC1. That
is, a transition in φ2 independent of the transition in φί

is not realized. In this case we can reduce the two-pa-
rameter potential of (3.8) to a one-parameter potential
of the form of (3.1). Actually, we find the following ex-
pression from the condition 8Φ*/θφ2 =h2, where h2 is
the field thermodynamically conjugate to φ2:

Let us transform to a potential that depends on the field
variable h2:

(3.9)
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Upon comparing this with (3.1), we find

' ' α2τ, ' ' α,τ2 ' ~ " ~ ·

As the temperature is lowered, T2 declines and the co-
efficient C can change sign. The conditions A = 0, C = 0
correspond to the TCP. For a fixed φ2, the TCP is
determined from the conditions

Then the phase diagram has the form shown in Fig. 9b.

2) φί and φ2 are both vectors:

If To l and Tc 2 depend on any variable g, then the transi-
tion lines can intersect. The intersection point will be
bicritical (Fig. 10a) when X2& CXC2 and tetracritical
(Fig. 10b) when \2<C1C2 (see Ref. 25). We note that the
condition for appearance of a bicritical point is strong
coupling of the order parameters.

If we minimize with respect to one of the order pa-
rameters, we again arrive at a one-parameter poten-
tial of the form of (3.1). Here, in spite of the absence
of odd-order invariants in the two-parameter poten-
tial, it may turn out that such invariants will appear in
the one-parameter representation. The number of in-
dependent variables in the studied case is four (T, g,
0 l ; and φ2). The intersection point of the critical lines
is invariant (i = 0), i.e.,/=w + l = 5. In the symmetric
case we have 0 = / - l = 4, and in the nonsymmetric case
0 = (/+1)/2 = 3. It has been shown26 that the tricritical-
point lines meet at a bicritical point in the T,g,h1,h2

space, and according to Ref. 23, the bicritical point is
at the same time a fourth-order critical point. No de-
tailed study has been made of the tetracritical point.

3) φί and φ2 are both scalars:

Φ* = φ0 + Φι (φι) + Φ2 (?,) + λφιφ!. (3.11)

This case is characteristic of liquid mixtures. The
conditions of stability have the form

(3.121)

(3.12")

(3.13)/ 3 2 Φ· \ 2 Λ

V 0φι off 2 I

In the previous cases we have β2Φ*/δφι8φ2 = 0 from the
side of the disordered phase, and the stability was de-

y

/ ι

FIG. 10. Phase diagrams of systems having bicritical (a)
and tetracritical (b) points in the Landau theory. The dotted
and solid lines are respectively second- and first-order phase
transitions.

termined by one of the expressions of (3.12). In the
case under discussion with bilinear coupling of the or-
der parameters, we have 92Φ*/θφ1Βφ2Φθ, and the sta-
bility is determined by the expression (3.13). That is,
generally one cannot determine which of the order pa-
rameters is involved in the breakdown of stability.
The differences are revealed only in the presence of a
noncritical phase, i.e., at the so-called finite critical
points. For two-component mixtures the situation is
simplest, since φ1 can be defined in terms of the com-
position of the mixture (x), and φ2 in terms of the den-
sity (p). Two types of critical points can exist in bi-
nary mixtures: liquid-gas and liquid-liquid equilibria.
Both of these types are equivalent thermodynamically,
and we can choose either of the parameters ?: or ρ as
the critical parameter. However, in describing liquid-
gas critical points it is convenient to choose the density
as the critical parameter, since the critical-point lines
end at the critical points of the components of the mix-
ture. Upon transforming to the field variables—the
chemical potential μ (or the pressure P)—we obtain the
one-parameter potential Φ {Τ, ρ, μ) [or Φ (Τ,χ, Ρ)].
For a fixed value of μ (or Ρ), this is isomorphic with
the potential of an ideal system having an isolated cri-
tical point: Φ = Φ (Τ, ρ) for a one-component liquid, or
Φ = Φ (Τ,χ) for an incompressible binary mixture. For
more details on the isomorphicity, see Refs. 27 and
28. We must stress that isomorphicity is conserved
everywhere on the critical lines of two-component
mixtures, and higher-order critical points are absent.
In a three-component mixture, we are now dealing with
critical surfaces, and correspondingly, with lines of
finite critical points. These lines can meet to form a
critical point of order θ =3, i.e., a TCP. This is the
only singular point on the critical surface. The fun-
damental differences of this point from a symmetric
TCP are the following: there are no separate critical-
point lines; one cannot single out the critical and non-
critical order parameters. That is, the singularities
of all the corresponding thermodynamic quantities per-
taining to the different order parameters are the same.
With a larger number of components, critical points
of order θ> 3 can arise in addition to those of order θ
= 3. Thus, in a five-component mixture a fourth-order
critical point can occur.

b) The field of applicability of the Landau theory

As we know, the Landau theory, which neglects fluc-
tuations of the order parameter, is inapplicable in the
immediate vicinity of a critical point. The Ginzburg
criterion, which defines the field of applicability of the
Landau theory, has the form3

((Αφ)»)
•ci. (3.14)

Here the ((Αφ)2)~ ΐ/α \τ |rf are the fluctuations in a vol-
ume having linear dimensions of the order of the corre-
lation radius rc, and φ0 is the equilibrium value of the
order parameter. The correlation radius, as calcu-
lated under the assumption that the fluctuations are
small (the Ornstein-Zernike approximation),8 is

rc = r0 | τ |-V*. (3.15)
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Here r0 is the direct correlation radius measured in
units of the distance between the particles. Then the
criterion (3.14) assumes the form

(3.16)

As is implied by the expansion of (3.1) with Β =D = 0,
the region of tricritical behavior has 0φ 4 « .Εφ 6 , and
the equilibrium value of the order parameter is

(3.17)

The Landau theory then is applicable under the condi-
tion

(3-<i)/2-^ E1

(3.18)

This condition is satisfied always when d > 3. When d
= 3, as will be shown below, taking fluctuations into
account leads to the appearance of logarithmic correc-
tions to the results of the Landau theory. That is, the
behavior remains "almost classical".

In the region of critical behavior ( ϋ φ 4 » £ φ 6 ) , we
have

_ / a | T I W 2

Then the Landau theory is applicable if

ι _ ,(4-<!>/2^ C

(3.19)

(3.20)

This is always satisfied if d>4. When d = 3, we have
| T | »C2/a4r%, and a region of applicability of the Lan-
dau theory appears either upon a decrease in the con-
stant C or when r%» 1 (long-range action). A broad set
of objects (liquids, helium, ferromagnetics) has ro~ 1.
Then a region of applicability of the Landau theory is
absent, and the f luctuational theory gives a correct de-
scription.3'5 The situation is also analogous near bi-
critical and tetracritical points.

c) The scaling hypothesis. Crossover phenomena

A characteristic feature of all the systems that we
have examined is the existence of an isolated singular
point (polycritical point) on the phase-transition line
Tc(g). Here we have introduced the generalized ther-
modynamic fields, which can differ in meaning for dif-
ferent systems (the chemical-potential difference of the
components in the 3He-4He mixture; the magnetic field,
or more exactly, H2, in antiferromagnetics, etc.). The
polycritical point arises when g=g0. We shall denote
the corresponding temperature Τ = Tc(g0) as To.

The singularities of the thermodynamic quantities on
the phase-transition lines and at the polycritical point
differ. Isomorphicity to an ideal system is conserved
on the phase-transition lines, i.e., a system whose
thermodynamic potential depends only on the tempera-
ture and on the order parameter. Isomorphicity breaks
down at a polycrilical point. As we approach a critical
point Tc(g) that is close to but not coincident with the
polycritical point To, the behavior of the system must
change from polycritical to critical. In order to de-
scribe such a transition behavior, we can employ the
hypothesis of homogeneity of the thermodynamic func-

tions.2 9 This hypothesis is a generalization of the scal-
ing hypothesis,1 on which the fluctuational theory of the
critical point is based.

Let us represent any thermodynamic quantity A as
the sum of a regular and a singular component. We
shall assume that:

1) the singular component of the quantity A is a func-
tion of the dimensionless deviations of the temperature
from the transition point τ = [Τ - Tc(g)]/Tc(g) and of the
field# from the polycritical value &g = (g—go)/go'·

2) the singular component of the quantity A is a homo-
geneous function of its variables:

τ Or)1'
(3.21)

Here a0 is the critical exponent that characterizes the
behavior of the quantity A at the polycritical point, and
φ is the so-called crossover exponent29 that character-
izes the width of the transition region from polycritical
to critical behavior. Here/(z) is a nonanalytic func-
tion. Let us find the conditions that this function must
satisfy near the polycritical (z« 1) and critical (z>> 1)
points. When ζ « 1, the anomaly of the quantity A is
characterized by the exponent aa, i.e.,

/ (ζ) ~ const.

When z»l, the singular component of the quantity A is
characterized by the exponent ααΦα0. That is, A s

~ kiiT)!""0, where a c is the critical exponent of the
quantity A in an ideal system, and we have

/(z) = const .ζ<\-<·">ν.

The equation of the critical line is determined by the
exponent φ and it has the form

(3.22)r c (g) = τ, (l + . . . ) .

In addition to the principal nonanalytic term that we
have written out, there are also terms regular in Δ^·.

The transition from polycritical to critical behavior
occurs at z~ 1, i.e., at r~kg*. The Landau theory of
the tricritical point has φ = 2, since the transition from
the critical to the tricritical region occurs when T ~ C 2 /
aE, while the quantity C plays the role of &g. The
Landau theory has φ = 1 at bicritical and tetracritical
points.

A very essential point is that the thermodynamic
functions found experimentally must be homogeneous
functions of the type of (3.21) only in the case in which
the experiment was actually performed at a fixed value
of the field # (e.g., the difference of the chemical po-
tentials of 3He and 4He). As was shown in Ref. 28, only
a fixing of the field variables, as contrasted with the
"densities", allows one to maintain isomorphicity.
Sometimes it is impossible to satisfy this condition.
Thus, in the 3He-4He system, all the measurements
are performed at a fixed value of the concentration χ of
3He. In this case all the quantities must be expressed
in terms of the parameter T(X) = [Τ - ΤC(x)]/Tc(x). Here
the critical exponents are renormalized.

Thus the exponent that characterizes the quantity A
can vary for two reasons near a polycritical point:
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1) transition from the polycritical to a critical region
(first type of crossover phenomena);

2) transition to a renormalization region upon ap-
proaching a critical or polycritical point along a non-
isomorphic path (second type of crossover phenomena).

In the polycritical region the renormalized values of
the exponents are 3 0

ao/(l—oto) when φ(1 — α ο ) > 1 . a o > O .

«o<P when <p (1 — cc0) ̂  1. φ>1.

a 0 (no «normalization) when φ ( 1 — o t 0 ) > l . <x0 < 0 or

<p(l— o t o ) < l . φ<1.

(3.23)
In the critical region the exponent ac is renormalized

in a unique manner:

, _ («c/(l-«t) when <xc>0.
c 1 a 0 (no renormalization) when <xc < 0.

This is because ζ » 1 near a critical point.

(r) (r))* =I (4.3)

(3.24)

The width of the renormalization region when g is the
chemical potential is determined, as shown in Ref. 27,
by the parameter

- ~ X [17 Bx I m

For example, near a critical point renormalization
arises in the region

ξτ (x)-*c > l. (3.25)

Experimental study of systems near polycritical
points is highly impeded, precisely by the existence of
these crossover phenomena. Practically all the experi-
ments to study polycritical points have been performed
either in the first or the second transition regions.

The problem of the microscopical theory is to calcu-
late all the critical exponents (both at the critical and
the polycritical points) and the crossover function f(z).
In the experimental testing of this theory, it is most
expedient to study the degree of homogeneity of all the
thermodynamic functions, rather than the "effective"
critical exponents, which vary as we approach the
transition point.

4. THEORETICAL STUDY OF PHASE TRANSITIONS IN
SYSTEMS HAVING SEVERAL ORDER PARAMETERS

a) Formulation of the problem

All real second-order phase transitions occur on
lines or surfaces, since other degrees of freedom exist
in addition to the order parameter. The only exception
is the critical point of a one-component liquid. In
principle, we can treat any equilibrium degree of free-
dom as being an additional order parameter. Thus, we
can represent the Hamiltonian of the system in the form
of the sum of the Hamiltonians of noncoupled subsys-
tems, each of which is characterized by its own order
parameter 0 m , plus the term <^n t, which takes account
of the interaction between them:

tt . . ., <fn} = Σ <
T H = 1

Here we have

(4.1)

, (4.2)

The integration is performed over the entire space of
dimensionality d, and the Tcm are the temperatures of
the transitions with respect to the parameters <pm in
the absence of coupling. The Hamiltonian 3fm is the
well-known Landau Hamiltonian,8 while the form of Winl

is determined by the particular type of symmetry of the
order parameters.

No extra restrictions are imposed on the <pm in (4.1);
this implies that we are operating at fixed values of
the thermodynamically conjugate variables <pm of the
fields hm.

According to the fluctuational theory of second-order
phase transitions,2'3 the constants of the original Ham-
iltonian of (4.1) are renormalized as we approach the
critical point and approach certain universal values.
In the language of the theory, this implies the existence
of a stable fixed point (FP) of the transformations of
the renormalization group. The character of a phase
transition, in particular the critical exponents, is
fully determined by the character of the stable FP. As
a rule, taking into account the extra variables 0 m leads
to the appearance of new FPs, each of which has its
own region of stability with respect to the constants of
the Hamiltonian of (4.1). Here one of the following three
cases can occur:

1) The FP corresponding to the ideal system remains
stable. The phase transition proves to be isomorphic
with the transition in the ideal system.

2) The old FP becomes unstable. A new FP is stable,
and the character of the phase transition is altered. In
the phase diagrams this corresponds to the appearance
of polycritical points.

3) There are no stable FPs at all. Breakdown of a
second-order into a first-order transition occurs. This
case has been studied in detail in Refs. 31-33.

b) Coupling of two order parameters. Conditions for
appearance of polycritical points

Let us treat the coupling Hamiltonian ̂ n t in the form

* n t {<Pi, φ2} = λ j ddrQ, (r) Q2 (r). (44)

Here λ is the coupling constant, and the operators Qm(r)
depend only on the </>m(r). All the cases of interest to
us have the operator Qx(r) = φ^{τ). Depending on the
symmetry, the operator Q2(r) can be equal either to
4>2(r) (if 0 2 is a scalar), or to φ\\γ) (if φ2 is a vector).

The two cases subsequently lead to substantially dif-
ferent results:

1) The critical temperatures of the noncoupled sub-
systems T^ and Tc2 differ. As we shall show below, a
tricritical point can arise here in the phase diagram.

and Tc2 are the2) The critical temperatures
same. This condition leads to a bicritical or tetra-
critical point, depending on the number of components
of the order parameters φλ and φ2.

In the former case ( 7 ^ * TcZ), only one of the order
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parameters proves to be critical (say, φ!). Let us
integrate the partition function of the system

Z= ,, <p2}) (4.5)

Upon expanding (4.6) in terms of #"j m, we find

for τλ« 1 over the noncritical mode φ 2 . 3 4 Thus we re-
duce the problem of calculating the partition function
of (4.5) of a two-component system to calculating the
partition function of a one-component system having the
effective Hamiltonian Weff{<t>a, which is defined by the
formula

(4.6)

- τ 2 - ^ r - <Ρλ)' \ δ < · " (r< Γ<) Π <?. (r<) d -̂i. < 4 · 7 )

Here t h e S ^ 0 are the irreducible Zth-order means of
the operators Q2(r):

fi'.'V, ri) = «<?z(ri) . . . <?2<r,)». (4.8)

The averaging in calculating the Β £" is performed using
the distribution function β χ ρ ί - β ^ ΐ φ ^ ) . The fundamen-
tal contribution to the integrals of (4.7) arises from the
regions of scale r a « r a . (The rcl are the correlation
radii of the fluctuations of φχ and φ2 respectively).
Therefore, in the principal approximation with respect
to ra/rcl, we can replace the products of operators
Π'=1 Q^n) with Q['\r) in (4.7). Then the effective Ham-
iltonian will amount to a polynomial in the critical order
parameter φχ that is analogous to the Hamiltonian
#Ί{Φι} °f the ideal system, with constants that depend
on the temperature and on the field thermodynamically
conjugate to the parameter φ2. Naturally this leads to
the appearance in the phase diagram of a line of critical
points Tc(/i2) of the transitions with respect to the order
parameter φί. When

>._r,-(>,)-re,..,

the B2

l) are regular functions of Γ andfe2, and the Ham-
iltonian <% ,̂|{φι} is isomorphic with the Hamiltonian
3^[{φ^. In renormalization-group language, this means
that the stable FPs of the Hamiltonian<% f̂f {φ} (per-
turbed system) and of <^{φι} (ideal system) coincide.
We must stress that isomorphicity is conserved almost
throughout the phase diagram and breaks down only at
the singular points.

Let us find the conditions for breakdown of isomorph-
icity. As h2 varies, so does Tc{h2); here Tc(fi2) and Τ Ώ

can approach, one another, and the constants of the
Hamiltonian #^τ{Φι} approach the boundaries of sta-
bility of the FP. If the emergence beyond the stability
region occurs at a finite (albeit small) value of Δτ, a
tricritical point will arise in the phase diagram.

Let us explain why a TCP arises as TJ}i2) approaches
Ta. The FP of the ideal system is stable as long as
the coefficient of φ\ is positive. Equation (4.7) implies
that the increment to the fourth-order term is negative
and is associated with the correlator B2

2) (we recall

that ()ι = φ1), which increases with decreasing τ 2 . Here
the effective coefficient uelf decreases and can become
negative. In the case of a scalar order parameter φ2,
we have Q2 = φ2, and

".ff =«i—5-βλ 2 β 2 (τ 2 , fe2). (4.9)

Here G 2 (T 2 ,JI 2 ) is the Green's function of the fluctuations
of φ2.

The stability boundary of the FP that characterizes
the phase transition in the ideal system corresponds to
the vanishing of wcff at a certain temperature Tt:

(4.10)

In other words, at the point in the phase diagram,
whose temperature and field h2 are determined by Eq.
(4.10) and by the extra condition

Tc (hn) = Tt, (4.11)

the second-order phase-transition curve Tc(fe2) goes
over into a first-order transition curve. Here Tt and
h 2 t are the coordinates of the TCP.

One can perform the analysis presented above only
when the transition points T c l and T r a of the subsystems
do not coincide. Where the two critical-point lines
intersect, we have Tcl=Tc2, both order parameters are
critical, and a transformation to an effective Hamilton-
ian that depends on only one of the variables is impos-
sible. Isomorphicity breaks down. As soon as we leave
the intersection point, the condition ΤΆ = Τα no longer
holds, one of the order parameters becomes noncriti-
cal, and isomorphicity is conserved along the lines.
Whether the intersection point is bicritical or tetra-
critical depends on the number of components of the
order parameters.3 4

We shall not treat in detail the breakdown of a sec-
ond-order into a first-order transition. We only note
three possible mechanisms of such a breakdown.

1) The transition is second order in the isomorphic
variables, and first-order in the nonisomorphic. A
characteristic example has been treated in Ref. 31,
where the coupling of the order parameter with phonons
was taken into account (Goldstone mode, i.e., every-
where critical). Here the physical variables (Ρ, Τ)
proved to be nonisomorphic, and the constant u e f f be-
comes negative upon approaching the transition point.

2) A stable FP exists, but the constants of the origi-
nal Hamiltonian lie outside its region of stability.32

3) There are no stable FPs. For example, this case
is realized in the coupling of critical order parameters
of the same dimensionality. This leads to the appear-
ance of additional fourth-order invariants, in particu-
lar, the square of the scalar product of the order pa-
rameters.3 3

5. TRICRITICAL POINTS

a) Theory

Let us introduce the tricritical exponents, or the ex-
ponents of the power-function dependences of the ther-
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modynamic quantities near the TCP, following Ref. 35
(Table I). The signs + and - pertain respectively to the
right-hand and left-hand branches of the first-order
transition in the coordinates Γ and φ2 (see Fig. 1 and
Table II). The exponent κ defines the form of the criti-
cal lines at zero ordering field h1. In all the remaining
cases in Table I we assume that hl =0.

Among the 19 tricritical exponents that we have intro-
duced, only three, e.g., at,yt, and φ, are indepen-
dent. The rest can be calculated by using the following
relationships:

1) The relationships of scaling theory1:

at + 2β( + Vt = 2, β, (6t - 1) = vt, 2 - a, = dvt,
Vt = vt (2 - η,), v+ = V- = V... «+ = δ-, β+ = β- = Κ

du + 2pu + Vll = 2, β + (δ + -1)=ν+- (5.1)

2) The relationships that stem from the renormaliza-
tion upon transforming to nonisomorphic variables30:2'

γί=Υι<Ρ> v?=vtq>, κ = (β,δ,φ)-', γ,, = α,φ, β,, = (1 — at) φ. (5.2)

Let us study the form of the phase diagram and the
thermodynamics near the TCP by starting with the ef-
fective Hamiltonian of (4.7). In momentum space the
latter has the form3)

Sr\« {φ,} - j ddk {-i [τ, (h2) + W\ | φ, (k) Ρ

TABLE I. Tricritical exponents.

2 *ι)+ιτ

(5.3)

We must retain the term proportional to φ\, owing to
the sign change of u(h2) upon passing through the TCP.

Let us transform in (5.3) to the new variable

φ, (k) = ψ (k) + σοδ (Α·) .

Also let us choose σ0 in such a way that the cubic term
in φ in the Hamiltonian 2ζη {φ} vanishes. Then, in ad-
dition to the λ-line

= t i C's) = >Ί = (5.4)

we find that two other second-order phase-transition
lines meet at the TCP when hy*0:

)
2

σ0 = ± ( — - „ ,

(for u(Aj)<0).

(5.5)
Since the exponent κ satisfies n< 1, all three critical

lines meet at the TCP.

In calculating the critical exponents and the equations
of state, it is convenient to single out the terms in the
Hamiltonian of (5.3) that correspond to the mean value
of the order parameter φ1 0 = φ1(* = 0). Then we elimi-
nate the quantity τχ(Λ2) from the equations for the or-
dering field hy and the susceptibility x^.

, = <»*•"

2'As was noted in Sec. 2, such a renormalization occurs under
the condition φ(1-α,)*ί1, which is satisfied at the TCP
(0 = 2, a t = l/2).

3)The further treatment in this section mainly follows Ref.
36, to which we refer the reader for details.

Thennodynamic
quantity Symbols

Thermodynamic
path

Functional
relationship

a) Quantities associated with the critical order parameter

Susceptibility

Order parameter

Heat capacity

Correlation radius
of the fluctuations

Correlation function

Critical lines in
nonzero ordering
field

First-order transition
linesforA, =0

δΦι
Χι=ΊΚΓ

Φι

r C l

Gi<*>

Tc-Tt

Φι=Φ>ί

A, = A,t, T<Tt

h2=kst, Γ = Γ ,

*, = *«

Φΐ = Φ«

* , = A,t, T = Tt

—

-

τ»

?;/«?

i~at

τ"νι
t-*f

A2-"t

hi'*

(A,-A,t)»

b) Quantities associated with the noncritical order parameter

Susceptibility

Order parameter

Heat capacity

Φί-φί
Φ ί — q>n

ΦΐΙ—φ2

φ«— tu

fit— φζ

Φί = φ21. Τ>Τι

φ2=φ5, T<Tt

φ,= φ ; , T<Tt

T<Tt

T<Tt

T<Tt

tp,>tp3t, T=Tt

Φί<φ2ΐ, T = Tt

tl = Φϊΐ

•t-Vu

T - V -

τ?*

τ»-

(A2-A,t)1/et

(Α2-*«)' / δ-

Thus we obtain the parametric equation of state pro-
posed by Migdal to describe the singularities of the
thermodynamic quantities near second-order transition
points:

Α, = χΓ'-Ρ/νψ(πι), (plo = Xrf'/Vm· (5.7)

Here we have

3 — — ρ(Xt (5.8)

In the averaging in (5.6), the bare coupling constants
uQi2) and ν in (5.3) are renormalized, and they become
universal functions of the susceptibilities "(Xj and
v(x,), each of which has its own scaling dimensionality.
The transformation to the new universal functions

g (X,) = u (χ,) χ('-")/2, (5.9)

whose scaling dimensionalities are zero, leads to the
simplest notation for the equation of state (5.7), since
the scaling dimensionalities of the functions m and Φ
are also zero.

The equation of state (5.7) describes the entire
neighborhood of the TCP (including the λ-line and the
first-order transition line). However, one can write
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TABLE Π. Correspondence between solutions of the helium
isotopes and antiferromagnetics.

<Pi

i:

3 He-4 He

φ-superfluid order parameter*

je-3He concentration
Λ-field conjugate to Φ (nonphysical)
μ-difference of chemical potentials of

1 He and4 He

Antiferromagnetics

/-antifeiromagnetic order
parameter

Af-magnetization
^s t-staggered field

//f-intemal magnetic field

*Here φ is a wave function having two components (amplitude
and phase) and is therefore equivalent to a two-component
vector. Since χ is a scalar quantity, the coupling of the order
parameters has the form φζχ, which leads to a TCP (see Sec.
3).

it in such a simple form only by neglecting the exponent
of the correlation function η, i.e., under the condition

* - - £ . (5.10)

Here the symbols c and t pertain respectively to the
exponents at the critical and tricritical points. When
T)C is taken into account, the fifth-order term in m is
changed. Therefore it exceeds the accuracy of the
treatment to preserve this term in the approximation
TJC = O. However, since η,=0, the equation of state (5.7)
gives a correct description of the behavior of the sub-
stance in the tricritical region of interest to us, while
the smallness of r\c (rjc~ 0.05)6 assures us that the de-
viations in the critical region are not too large.

The functions g{Kj) and p(Xx) are defined by nonlinear
differential equations analogous to the equations of the
renormalization group. These equations have two FPs,
one of which corresponds to critical, and the other to
tricritical behavior. In order to find the singularities
of the thermodynamic quantities near the critical or
tricritical points, one must substitute the values of g
and p at the corresponding FPs into the equation of
state (5.7), (5.8). The character of the variation of g
and p near the FP is usually governed by the nonasymp-
totic increments to the thermodynamic quantities. It
affects the asymptotic singularities of the thermody-
namic quantities only at a certain, so-called limiting
dimensionality dc of the space. For a critical point we
find dc = 4, and for a tricritical point dc = 3. The FP
corresponding to a TCP is determined by the following
expressions (for d = 3):

= 0, ρ, ~ In-' X l
- 0 . (5.11)

An account taken of the logarithmic dependence of
(5.11) leads to the appearance of logarithmic increments

TABLE HI. Results of a theoretical study of the tricritical
behavior of the beat capacity and the order parameter.

Φι

r>rt

T<Tt

T<Tt

Self-consistent field

(Landau theory)

const

| τ Γ " 2

ί χ | 1 / 4

Fluctuation^ theory

τ-ι/2 Η,-1/2 _L
τ

|i|-l/2lnl/2 1

|T|l/4lni/4_i_

to the pure power-function (scaling) singularities of
certain thermodynamic quantities (Table III). Both
above and below the TCP, logarithmic corrections to
the heat capacity exist, yet they differ: when T > 0 the
singularity is weaker than a pure radical singularity,
and stronger when τ < 0 . The ratio of the coefficients
at the singularities of the heat capacity below and above
the TCP is universal and equal to 5V 5/ir.

Let us list the fundamental differences between the
predictions of the fluctuational theory and the results
of the classical Landau theory.

1) Singularities of the thermodynamic quantities exist
in the disordered phase.

2) Certain singularities are not of pure power-func-
tion type.

3) In the T, <p2 plane, all three transition lines (see
Fig. 1) approach the TCP with different slopes, in
contrast to the conclusions of the Landau theory. This
is explained by the fact that the quantity (8φ2/3?ί2)Γ

[(3χ/9μ)Γ in the case of a 3He-4He mixture] has in the
disordered phase a singular (~τ"α) component just as
the heat capacity does.28

We should note that all the differences from the Lan-
dau theory arise upon taking systematic account of the
logarithmic corrections. Without an account taken of
the logarithmic term in (5.11), the TCP is fully de-
scribed by the classical theory.

b) Experiment

Tricritical points have been found in systems that
undergo phase transitions of the most varied types:
magnetic,38'39 orientational,40"46 liquid-crystalline,47"50

etc. Correspondingly, the distorting factors that lead
to deviation of the experimentally determined exponents
from the true, asymptotic values also differ. For ex-
ample, in magnetics, one of the main difficulties is
taking the demagnetizing fields correctly into account.
For specimens of strictly ellipsoidal shape, the de-
magnetizing field is homogeneous and can be taken into
account. When the shape deviates from ellipsoidal, an
inhomogeneous field arises that qualitatively alters the
behavior in the immediate vicinity of the transition
point. In all likelihood, this circumstance has led to
values of the exponents differing from the theoretical
ones near the TCP in the antiferromagnetic
CsCoCL,· 2D20.51 Here the magnitude of the inhomogen-
eous demagnetizing field was not at all small (~ 25 Oe),39

owing to the irregular shape of the specimen.

Another factor that affects the value of the exponents
is crossover. If the measurements are not performed
in the asymptotic region, the behavior of the thermody-
namic quantities is described by certain effective ex-
ponents. Thus, the obtained value of the effective ex-
ponent for the heat capacity in the orientational transi-
tion in NH4C1 varies smoothly with varying pressure4 0

(Fig. 11). The behavior of the critical order parameter
0! in ND4C1 has been studied.41 It turned out that the
value of the exponent β depends considerably on the path
of approach to the phase transition point. For example,
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TABLE IV. Tricritical exponents. Comparison with experi-
ment.

\

/Jkbar

FIG. 11. Pressure-dependence of the tricritical exponent of
the heat capacity of NH4C1. The differently shaped symbols
pertain to different methods of processing the experimental
results.

near the critical point Te = 280 K, one finds 20e = O.61
±0.04 for Ρ = Pe, and 2/3e = O. 50±0.04 for T =Tc. An
analogous discrepancy was found also near the TCP:
2/3, = 0.36±0.01 iorP=Pt, and 2/3, = 0. 28 ±0. 01 for Τ
= Γ,. This is explained by the fact that the path Τ
= const lies mostly in the transition region, owing to
the great steepness of the transition line P(T) (Fig. 12).

We have noted two factors that affect the value of the
exponents: distorting factors and crossover. There is
another factor that involves the fact that tricritical be-
havior is not described by pure power-function rela-
tionships, and processing of the results of the mea
surements without taking the logarithmic factors into
account can lead to false values of the exponents.

This is manifested especially explicitly in the deter-
mination of the exponent βt, which is small in magni-
tude. Even with a single choice of Tt, the difference
between the pure power-function dependence φ1 ~| r|f l t

1 / 4
6/τ| in theand the theoretical relationship φ1 ~| τ | | |

interval | r | = 10'4 to 10'1 does not exceed 2% for 0,
= 0. 20, and 4% for /3t = 0.18. Hence it is not surprising
that the neutron-scattering intensity data in ND4C141

(accuracy -7%) are equally well described by a pure
power-function relation and by the theoretical formula.40

The study of the tricritical behavior in the 3He-4He
mixture and in many-component liquid mixtures is
characterized by the fact that the experiment is per-
formed at constant concentration, i .e. , at φ2 = const,
and one must take into account the renormalization of
the exponents. The pertinent experimental values are
given in Table V and they agree with the theoretical
values. When we take the remarks made above into ac-

zso r,K

FIG. 12. Phase diagram of ND4C1. The region of the transi-
tion from critical to tricritical behavior is dotted.

System

DyPO,
K H 2 P O 4

NH4C1

ND4C1
NHjBr
Fluctua-
tional
theory

0.50±0.04'

0,18±0.06S»
0.5·)

0,46±0.04"

0.45±0,07«
0,57±0.07
0,50±0,0712

0.49±0.01
0,35±0,03

0.5

0,18±0.01«

0.18—0.20 s:

0.25

l,01±0,02 M

l,05±0,20"

f i t

0,52±0,08"

0.5"
0,5

5,1±
± 0 . 8 "

*The Landau theory has £*t = 0.

count, the values of the non-renormalized exponents
also agree with the theory (see Table IV).

The form of the phase diagram in the coordinates Τ
and h2 is determined by the crossover exponent φ. All
the existing experimental data (see Table VI) agree
with the theoretical value φ = 2. Moreover, it has been
confirmed experimentally60·67 that the transition line
T(h2) has a continuous first derivative and discontinu-
ous second derivative at the TCP. Thus, it was found
in Ref. 67 that the transition line in DAG has the follow-
ing form near the TCP (the signs ±pertain to Τ <Tt):

h2± -h,t=A±(T- Tt) +B±(T - Tt)\

Here A. and A. coincide to an accuracy of 5%, while B,
*B.(BJB. = 3. 9 ± 1. 4). It is difficult to find the critical
exponents in non-zero ordering field hlt since the latter
is nonphysical in the mixture of helium isotopes, while
for antiferromagnetics \ is the staggered field H,t.
Fortunately, owing to the special symmetry in DAG,
application of a magnetic field along the [111] axis in-
duces Hat,™ and one can find69 the form of the critical
lines for H,t*0. The value of the critical exponent *·
agrees with the theoretical value (see Table VI). In the
ferroelectric KH2PO4, the role of hx is played by the
electric field Ε (see Fig. 4), and one can construct the
whole phase diagram. However, the existing experi-
mental data do not suffice for finding the exponent κ.

The numerous studies7·58·60-61 of the phase diagram of
the 3He-4He mixture in the coordinates of Τ and χ all
agree with the theory (as an example, Fig. 1 shows the
phase diagram taken from Ref. 7). We note that, al-
though all the lines approach Tt linearly, there is a
discrepancy (-15-20%) in the slopes found in the dif-
ferent studies. In all probability they involve the grav-
itational effect.61

Figure 5 shows the phase diagram of FeCLj as ob-
tained by different methods: by neutron diffraction13

and from measurements of the magnetic circular di-

TABLE V. Re normalized tricritical exponents.

System

'He- 4 He

C.H,—C2H5OH —
— HjO— (NH4),SO4
Theory

yf

2.20±0.d2e s

2

vf

1.98±0.11«s

2

vf

1 "
l , 1 5 ± 0 , l "
1.06±0.08«s

1

vf'

1.03+0.06"

1
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TABLE VI. Exponents characterizing the form
of the phase diagram near the TCP.

System

He=-He*
DAG
Theory

Φ

l,95±0.08«»
1.95±0.11«»

2

κ

0,41±0.03«·
0,4

chroism.1 4 In both studies the lines Tx and Tt approach
Tt linearly and have different slopes, as predicted by
the theory. However, the forms of the T. lines differ
completely. The exponent β. is 0. 36" and 1.13 ±0.14. w

This discrepancy in the value of the exponent may arise
from the difference of almost 2% in the position of the
TCP. Unfortunately, the reasons for the discrepancy
in Tt are not clear. Apparently, the main reason may
involve the difficulty of taking the demagnetizing fields
into account.

The behavior of the noncritical order parameter φ2

near the TCP has been studied most fully in two sys-
tems: dysoprosium aluminum garnet and the 3He-4He
mixture. Figures 13 and 14 show the results of mea-
suring, respectively, the magnetization of DAG along
the tricritical isotherm and the susceptibility with re-
spect to the noncritical order parameter for Μ = Μ , . 6 6

We see that the data agree with the theoretical values
of the exponents 6± = 2,yu = l . Figures 15 and 16 show
the analogous results for the mixture of helium iso-
topes.6 0 In general we should note that all the experi-
mental data confirm the theoretical values of the expo-
nents 6± = 2,yu = >'t = l (Table VII). There is only one ex-
ception known to us, which can serve as an example of
the need for taking a thorough account of the effect of
distorting factors. In Ref. 62 the behavior of 9χ/3μ in
a 3He-4He mixture was studied by means of light scat-
tering, and the value y .= 1.67±0.1 was obtained. A
little later, the same authors obtained y . = 1.00±0.05.63

It turned out that the region of asymptotic power-func-
tion behavior of the quantity dx/d№ in the superfluid
phase is very small: ΔΤ = Tt - Γ «10 mK. However, a
gravitational effect was manifested in Ref. 62 at ΔΤ
<10 mK. This distorted the singularity and impeded
finding the asymptotic value of the exponent γ..

The heat capacity at constant 3He concentration CpΛ

has also been measured in the 3He-4He mixture. Upon
approaching the tricritical point, along with the decline
in the discontinuity in the unmixing-type first-order

FIG. 14. Susceptibility of DAG at M=Mt.

transition, the value of C P l along the λ-line also de-
clines7 (Fig. 17). Along the tricritical "isochore"
x = xt, the heat capacity CPx decreases linearly59 (Fig.
18). This agrees with the theoretical value of the exponent
a u = - l . An analogous value has been obtained by proc-
essing the light-scattering data by using the scaling re-
lationships among the exponents.64 Naturally, the value
a u = - l corresponds to a t = l/2. Direct measurement
of the heat capacity at constant chemical potential CPll

(i .e. , Ck2) is impossible in practice. However, a re-
calculation from CP x to Cp u has been performed in
Ref. 59. The results (Fig 19) agree with the value

6. BICRITICAL AND TETRACRITICAL POINTS

a) Theory

We have shown in Sec. 4 that the existence of two pa-
rameters with noncoincident transition points leads to
a renormalization of all the constants of the effective
Hamiltonian. The character of this renormalization
depends on the character of the coupling between the
variables φ1 and φ2. In particular, in systems of the
type of 3He-4He [the coupling operator has the form of
(4.4) with Q2 = 4>2\ the fluctuations of the noncritical
mode mainly renormalize the quaternary coupling con-
stant «j. Yet the temperature of the transition with re-
spect to the variable φ1 is practically independent of the
fluctuations of φζ. This leads to the appearance of a
TCP in the phase diagram.

21S0 SZOD SZ50

FIG. 13. Magnetization of DAG at T=Tt.

FIG. 15. Concentration-dependence of the susceptibility with
respect to the noncritical order parameter (8χ/9μ)Γ in a 3He-
4He mixture at T=TT.
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FIG. 16. Temperature-dependence of the susceptibility (dx/
8μ)τ in a 3He-4He mixture at x = xt and along the first-order
transition lines.

Another type of coupling is realized, e. g., in anti-
ferromagnetics with weak anisotropy,72 and also in cer-
tain materials that undergo crystallographic transi-
tions (SrTiO3)

73. The crossover term in φ1 and φ2 in
these systems has the form

With this choice of <%fnt, one can easily show that the
fluctuations of the noncritical variable φ2; 1) shift the
temperature of the transition with respect to the pa-
rameter φχ; and 2) renormalize the bare quanternary
coupling constant ux. Upon substituting Q1 = φ\(τ) and

Q2- Φΐ(γ) i n t o (4- 7) a n d (4· 8)> w e obtain in the weak-
coupling limit (the general case has been treated in
Ref. 74):

Δκ,-λ*
(6.2)

The increment to uz is proportional to the correlator
of energies of the parameter φ2, which is equal to the
heat capacity of the system described by the Hamilton-

{ . In the case of separated transition points,

TABLE VII. Exponents of the noncritical order parameter.

System

'He- 'Ht
DAG
FeCl2fluctuations
theory
Landau
theory

System

5 He-4 He

DAG
FeCl2Fluctuational
theory
Landau theory

Κ

1.00±0.05'
11.97+0.04··
l . l l id.H "

1

1

V-

1.00+.0.05'3

1°'
1

1

1 ·
1 "

1.03+0.05"
1

1

2.05+.0.1 »

2.12±0.24··
2

1

β-

1 »
1 "

1.13+.0.1411

1

0

1,02+0.03 ·'
1.01 ± 0 . 0 7 "

1

0

s_

2.07±0.1«

2.14±0.26««
2

2

Y+

1.00+0.02 "
1 e :

1

0

- C
- 1 "
,9±0.2"

- 1

0

Λ
x-ff.SS0

FIG

0,8 7,0 7,2 /,4 T,K

17. Heat capacity CPiX of 3He-4He mixtures.

the expressions of (6. 2) are analytic functions of their
argument ATiTCl-TC2)/TC2, and the effective Hamilton-
ian proves to be isomorphic with the Hamiltonian

However, as Δτ —0, both the effective quaternary
coupling constant and the shift in the transition temper-
ature are nonanalytic functions of the difference Δτ be-
tween the critical temperatures. Here the phase transi-
tion is nonisomorphic with the "ideal" phase transi-
tion.

Let us find the singularities of the thennodynamic
quantities in this case. As the main approximation, it
is now more convenient to select a model whose Hamil-
tonian has the form (4.1) with transition temperatures
in the variables φι and φ2 that differ weakly from one
another:

(g) = aAg, (g) = 7Ό - b\g. (6.3)

Here a.g is the deviation ofthe disordering field from
a certain value g0 that is defined by the equations

Tei (go) = Tct (go) = Τ., (6.4)

Α>0. (6.5)

to- 7O-'

r-rt,x
FIG. 18. Temperature-dependence of the heat capacity CPtX

of a 3He-4He mixture at x = xt.
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to1

(6.8)

T-Tt ,M

FIG. 19. Temperature-dependence of the heat capacity Cp > 1

of 3He-4He mixtures at μ =μ4.

Here nx and n2 are the numbers of components of φ χ

and φ 2 , respectively. <2flnt has the form (6.1). In the
case of an antiferromagnetic (see Fig. 6), the t rans i-
tion temperatures a re functions of the magnetic field
{g~H2). Tal(H2) is the temperature of the transition
to the spin-flop phase, and T ^ (if2) is the temperature
of the transition to the antiferromagnetic phase &g=H2

When Δ # > 0 , the order p a r a m e t e r φχ is crit ical,
while the order p a r a m e t e r φ 2 is cri t ical when Ag-<0.
When T<T0 and &g changes sign, a f i r s t-order t r a n s i -
tion occurs in the system: a phase having φ1Φθ, φ 2 = 0
is supplanted by a phase with φ ^ Ο , φ 2 * 0 (a more com-
plicated case of an intermediate phase i s also possible).

When Ag=0, both o r d e r p a r a m e t e r s a r e crit ical, and
a transformation to an effective Hamiltonian that de-
pends only on one of the variables is impossible. In
this case the singularities of the thermodynamic quan-
tities can be found by the renormalization-group method
within the framework of the ε- expansion. If we assume
that the dimensionality d of the space is close to four:
d = 4 - ε ^ β have singled out the dimensionality d = 4
since all the fluctuations in four-dimensional space
prove to be Gaussian, while the singularities of the
thermodynamic quantities a r e classical), we can e m -
ploy perturbation theory in the small parameter ε.
Here all the coupling constants a re renormalized and
also prove to be of the order of ε.

The equations for the complete Green ' s functions
Gf(fe)=< | φ((&)|2> in the first order in ε have the form

G"1 = τ, + (η, + 2) ufi]1 In G~' + -̂ - I G " 1 In G~'

G"1 = τ2 + (n2 + 2) u.zG~* In G'1 + -y- ~/.G? In G~\
(6.6)

The exponents if the susceptibilities y1>2 (with respect
to the first- and second-order parameters) are obtained
by substituting the values of the renormalized coupling
constants at the FP into Eq. (6. 6):

(6.7)

Near the intersection point of the curves Tcl( g) and
Ta(g), all the thermodynamic quantities have the cha-
racteristic "homogeneous" form of (3.21), in particu-
lar,

Here we have τ=(Τ- Ttt)/T0, and the crossover expo-
nent φ in the first order in ε is equal to

φ = — = l - T I ( r e , + n2). (6.9)

The transition temperature Tt r and the functions /x and
/ 2 are determined by Eq. (6. 6). In particular, Tt r - To

~Δτ*.

A bicritical or a tetracritical point will be realized,
depending on the number of components of the order
parameters.34 Thus, when n = n1 + w2<4, a bicritical
point will exist. In this case we have

(6.10)

Since φ>1, in contrast to the Landau theory, the criti-
cal lines are tangent to each other at the bicritical
point.

When n>4, the intersection point will be tetracritical,
i.e., an intermediate phase arises. However, we must
distinguish two cases:

1) Here we have (n - 8)(n + 16) > (nx - n2(
2—an "un-

coupled" tetracritical point;

2) Here we have 4 <w<8 +(nx-w2)
2/(n+ 16).

In the former case we find

(6.11)

That is, the system at an "uncoupled" tetracritical
point behaves like two noninteracting subsystems, and
the transition lines intersect at this point at an angle

In the latter case we have λ>0, φ>1, and the transi-
tion lines are tangent to each other at the tetracritical
point. The exponents also turn out to be different.34

b) Experiment

The experimental study of bicritical points is at
present in its very initial stage. The relatively small
number of studies is mainly restricted to measuring
the form of the phase-transition lines near a bicritical
point, i. e., determining the single critical exponent φ
[see (6.9)]. All the systems that have been studied are
anisotropic antiferromagnetics with an "easy axis"
type of anisotropy (the phase diagram is given in Fig.
6).

Along with the ordinary experimental difficulties of
studying phase transitions in solids (inhomogeneous
samples, long relaxation times, etc.), another diffi-
culty exists here that is precisely specific for the given
experiments: the need for exact coincidence of the di-
rection of the external magnetic field Η and the axis of
easiest magnetization (AEM). When the direction de-
viates from the AEM, the phase diagram is greatly
complicated.26 In particular, the transition from the
antiferromagnetic phase to the spin-flop phase ceases
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to be a first-order transition.7 5 In all likelihood, it
makes sense to perform measurements at various an-
gles between the field Η and the AEM and to extrapolate
the results of the measurements to zero angle.7 6 In
Ref. 76, the phase transition lines of GdA103 were de-
termined from the maxima of the magnetic susceptibil-
ity, and the crossover exponent φ was found from the
expressions77

-HI)]". (6.12)

Here we have

aT"c

Here the T"c·
1 are respectively the critical temperatures

of the paramagnetic-antiferromagnetic and the para-
magnetic-spin flop phase transitions, and ω,, and ω±

are nonuniversal coefficients whose ratio is universal
and depends only on the total number of components of
the order parameters n = n1 + n2. The subscripts b and
SF pertain to the bicritical point and to the antiferro-
magnetic-epin-flop phase transition line. It was as-
sumed in processing the data76 that ωΜ = ωχ. That is,
a total dimensionality of the order parameters η = 2
was directly imposed (Table VIII). The exponent φ
proved to be 1. 25±0.07, whichagrees reasonably with
the theoretical value.7 8 InRef. 76 an attempt was made
also to determine two other critical exponents: yu—the
exponent of the noncritical susceptibility, and /3u-the
jump in the total magnetization for T<Th. The exper-
imental value of the exponent j3u agrees well with the
theoretical prediction. Yet the values that were ob-
tained of the exponent yu proved to be somewhat lower
than the theoretical estimate. In all likelihood this in-
volves the effect of crossover.

Measurements of the form of the phase-transition
lines in MnF| 5 · 7 9 yield a result intermediate between η
= 2 and η = 3. The value of the exponent φ agrees well
with the theoretical value for w = 2, whereas the uni-
versal ratio ω±/ωΝ lies between the theoretical values
for η =2 and w=3 (see Table VIII).

The experimental data near tetracritical points are
qualitative in nature, and they consist mainly of the
proof of existence of an intermediate phase. The accu-
racy of the experiments evidently does not suffice for
determining the form of the phase-transition lines (i .e.,
the exponent φ). Among the other critical exponents,
only the exponent β, which describes the behavior of
the order parameter has been determined,19 but this
was done along the critical lines rather than at the
tetracritical point itself.

TABLE v m . Results of experimental study of bicritical points.

GdAlO,
MnF,
NiCI,-6H,0
CsMnBr,-2D,0
HbMnF3

Theory

1.25±0,07'·
1.279±0.031"
i.2i±0.048°

S 1

l,278±0.02M

l,175±0.01578

i.250±0.015'«

1 "
1.56±0.35™

1»

1
2.51

0.92*0.03'·

0.85±0.04
0.85±0.04

0,15'

0.33±0.07
0,40±0.07

7. DISTORTED POLYCRITICAL BEHAVIOR

a) Tricritical behavior in the isotropic liquid-nematic
liquid crystal phase transition

Tricritical points have been found47'50 in liquid-crys-
talline materials in the transition from a nematic or
cholesteric phase to a smectic phase (Fig. 20).

There have been attempts83 to explain the appearance
of a tricritical point within the framework of the Lan-
dau theory by the coupling of the smectic order param-
eter φ (two-compound vector) with the nematic order
parameter Q = ( | (3 cos2f? - 1)), where θ is the angle be-
tween the orientation of the axis of the molecule and
the preferred direction.8 4 4 ) The term in the thermody-
namic potential that takes into account the coupling of
the order parameters has the form λ| ψ|2<?, as in the
3He-4He mixture (see Sec. 3a).

In contrast to the nematic-smectic transition, the
isotropic liquid-nematic liquid crystal phase transition
(IsN) is everywhere a first-order transition and is
traditionally described by the Landau theory:

β τ <?2 - 4 Λ ( ? 3 + τ (7.1)

The smallness of the constant β « 0 . 0685 has the re-
sult that the jump in entropy is small, and the transi-
tion is close to a second-order transition (B = 0).

The constant C also has proved to be unexpectedly
small. This has posed the question of the closeness of
the /» ΛΓ transition to a tricritical point (C = 0).8 5 The
solid line in Fig. 21 shows the heat-capacity curve that
arises from the Landau theory with account taken of
fluctuational corrections in the Ornstein-Zernike ap-
proximation.54 The experimental curve fundamentally
differs from the theoretical curve in the absence of a
jump in the regular components and in the large magni-
tude of the anomaly in the isotropic phase. Upon com-
paring the temperature dependences near the I»N
transition and near the TCP in NH4Br, their striking
similarity catches one's eye86 (Fig. 22). At the same
time, an attempt to describe the temperature-depen-
dence of the heat capacity with a law having a fixed ex-
ponent α =0. 5 (as at a tricritical point) yields an inade-
quate model. The model becomes adequate upon vary-

1.0

1.0 •

, Smetic

TCP

V

/ Nemetic/

y /
'/
/

Isotropic
liquid

so ml T2O no we reo
T.'C

FIG. 20. Phase diagram of the liquid crystal CBNA.47

4)Strictly speaking, the nematic order parameter is a second-
order tensor, and the presented treatment is a substantial
simplification.
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300 320 350 Γ,/f

FIG. 21. Experimental values of the heat capacity of MBBA
and the results of the Landau-de Gennes theory with allowance
for the fluctuational corrections in the Ornstein-Zernike ap-
proximation (solid line).

ing the critical exponents, though the values of a and
d (see Table IV) do not fit into any of the theoretical
schemes. We can explain this result, first, by cross-
over from tricritical to critical behavior (see Sec. 3),
and second, by the need for taking account of the log-
arithmic factors. Therefore the data on the heat cap-
acity of methoxybenzylidenebutylaniline (MBBA) and
butylmethoxyazoxybenzene (BMOAB) have been ana-
lyzed54 for agreement of the crossover model of (3. 21)
with the function /(z), which was chosen in the simplest
form

/ (z) =» Κ„ [1 + Kpt-'·»]-1. (7.2)

That is, the experimental data were processed by the
formula

CP τ I»·6 + Kt | τ I"]"1 + (CP), (7.3)

The best agreement is attained for α = 0 . 1 . Here the
model of (7. 3) adequately describes the data in both
phases. In all cases the constant K2 is smaller by a
factor of 15 to 30 thanif1. Therefore the second term
in (7. 3) is comparable with the first only when | T|
< 10'3. Consequently tricritical behavior governs
throughout the experimental temperature range, both
in the nematic and in the isotropic phase. As regards

zo-
"P "Pff

• /?

A

Ά
a

η

J

— MBBA

»- NH4Br

-zo -70 to 20 T-T,,K

the logarithmic factors, one can neglect them com-
pared to the crossover background at the existing accu-
racy of calorimetric experimentation.

Essentially the short-range intermolecular forces
are responsible for the 1-z.N transition. Therefore it
was difficult from the very outset to expect agreement
of the Landau theory with experiment. The "classical"
behavior of the susceptibility ~(Γ- Τ,,)'1 and of the cor-
relation radius rc~(T- Ta)"1/2, which followed from
rather accurate experiments,56 was even more sur-
prising. The idea expressed above that the I^N tran-
sition is close to tricritical enables one to explain with-
out contradiction the entire set of experimental data:
the "classical" behavior of the exponents y and ν (see
Table IV) and the value of the exponent 0 «1/4, which
was first noted by Keyes.87 5 )

The proposed closeness of the 1st Ν transition to a
TCP poses many problems. Although one can obtain
tricrictical behavior in the region τ»Β 4 · 3 , T»C2'S*
within the framework of the Landau theory, the causes
of this behavior are not evident. We can suppose that
the nematic order parameter couples with the other
degrees of freedom (e.g., the intramolecular ones).61

It is not ruled out that this coupling causes the coeffi-
cients Β and C simultaneously to be small both by al-
lowing the closeness of the transition to a second-order
transition and by giving rise to the features of tricriti-
cal behavior.

An explanation of the experimental results has beem
proposed89 that is based on the idea that the I*N tran-
sition is close to a special second-order transition
whose possibility in principle has been demonstrated in
Refs. 88 and 89, rather than to a TCP. This transition
must be characterized by a special set of critical ex-
ponents. However, the calculated values of the critical
exponents differ substantially from the experimental
values. It seems highly unlikely to us that a more ac-
curate calculation of the exponents will lead, as pro-
posed in Ref. 89, to agreement with experiment.

b) The liquid-gas coexistence curve near the critical point

of mercury

Features of the equation of state have been found ex-
perimentally near the critical point of mercury that
sharply distinguish it from nonconductive liquids.90

Mercury is characterized by failure of the law of cor-
responding states and by an unusually strong deviation
of the liquid-gas coexistence curve from linearity (Fig.
23). One can explain these features91 by the coupling of
two order parameters: the density p, which character-
izes the liquid-gas transition, and the concentration η

FIG. 22. Comparison of the temperature-dependences of the
heat capacity of MBBA and NH4Br.

5'The experimental data indicate rather the value β = 0.18-
0.20.57 As we have noted above, one can easily raise this
value to 0.25 by taking into account the logarithmic correc-
tions. Moreover, one should treat the given values of β with
caution, since the temperature-dependence of the order
parameter was determined in a narrow temperature range
(smaller than an order of magnitude with respect to τ).

6>Apparently this hypothesis has recently been confirmed
experimentally."
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FIG. 23. Phase diagram of mercury near the critical point.

of electrons in the conduction band, which characterizes
the metal-dielectric transition. This coupling has been
treated ih the approximation of the self-consistent
field.91 The thermodynamic potential of the interaction
Φ1 η, was chosen in the simplest form allowed by sym-
metry considerations, and which was derived from
model considerations in Ref. 92:

= —tlpn. (7.4)

Figure 23 shows the experimental points90 and the
theoretical coesistence curve91 (solid line) of mercury.
The heavy line at p = p* shows the metal-dielectric
transition. The dotted line is an extrapolation fromthe
low-temperature region without taking into account the
coupling of the order parameters (see Ref. 90). Taking
the coupling into account substantially alters the co-
existence curve. The critical point of the liquid-gas
transition is "pulled" toward the metal-dielectric
transition line. However, in this case a TCP is not
realized, owing to the following circumstance. It is
common to speak provisionally of the metal-dielectric
"transition" in the transcritical region, having in mind
the line at which the electrical conductivity varies al-
most jumpwise. We should also note that, even if the
metal-dielectric transition were a real phase transi-
tion, nevertheless it could not be a second-order tran-
sition. This is prevented by the existence in the ther-
modynamic potential of the system of a coupling term
in (7. 4) that is linear in n.

c) The intersection point of the oriented-phase-transition

lines in ammonium bromide

If the β -δ and β-γ transitions in NH4Br (see Fig. 3
and Sec. 2) were second-order, then the triple point Ο
would be a bicritical point, and the heat of the δ-y
transition would approach zero at the point O. How-
ever, near the point Ο the β-δ and β-γ transitions are
first-order, and we can view their intersection point as
"bicritical" only to the extent that they are close to
second-order, i. e., to the extent that the ratio \/RT
«0.1 is small. Nevertheless this closeness suffices,
as shown by experiment,93 to cause a sharp decline in
the heat of the δ-y transition. In NH4Br there are two
critical order parameters: one is characterized by
parallel, and the other by antiparallel orientation of the
ammonium tetrahedra in the crystal structure. Their

coupling should lead to a bicritical point. However, the
coupling of the critical order parameters with the non-
critical degrees of freedom causes a breakdown into a
first-order transition (a TCP on the 0-6 line). Unfor-
tunately, it is not yet clear which degrees of freedom
are responsible for this breakdown.

8. CONCLUSION

The main result of the study of systems with coupled
order parameters is the substantially expanded possi-
bility of universal description of real phase transitions
in the language of more or less simple models. P r e -
viously, real systems were treated from the standpoint
of distortion of a model having a single order param-
eter (e. g., the Ising model with an impurity, taking ac-
count of asymmetry in the model of a lattice gas, etc.).
Now already a set of models having several coupled or-
der parameters can play the role of "ideal systems".
Thus one can include in the physics of critical phenom-
ena topics that, owing to their complexity, were hereto-
fore the object of special fields (physics of magnetic
phenomena, physics of liquid crystals, physical chem-
istry of solutions, etc.). And while currently a physi-
cally clear and theoretically rigorous description of
tricritical behavior exists only for the 3He-4He mixture
in a model of coupled order parameters (wave function
and concentration), we are assured of the generality of
this approach to poly critical phenomena.

Numerous objects whose behavior apparently can
also be explained by the coupling of order parameters
have remained outside the scope of our review. First
of all, these include the recently discovered94 transi-
tions to the superfluid state in 3He, which merit a
special review. We have also not treated the so-called
Lifshits critical points, which separate the lines of
commensurate and incommensurate phase transi-
tions,9 5 · 9 6 and phase transitions in nonintrinsic ferro-
electrics, to which a special review has been devoted.97

Recently, great interest has been aroused in dissipa-
tive structures. 9 8 The study of the coupling of several
order parameters in these systems should lead to ana-
logs of the polycritical points for nonequilibrium proc-
esses (a promising topic in this regard is convective
instability in mixtures).

LIST OF THE MAIN ABBREVIATIONS AND SYMBOLS

-tricrit ical point,
-fixed point of the transformations of the re-

normalization group,
-axis of easiest magnetization,
-dysprosium aluminum garnet,
-nematic liquid crystal,
-methoxybenzylidenebutylaniline,

TCP
FP

AEM
DAG
NLC
MBBA
BMOAB -butylmethoxyazoxybenzene,
Γ -temperature,
Tc -critical temperature (the symbol c refers to

critical parameters),
To -temperature of thepolycritical point,
Tt -temperature of the tricritical point (the sym-

bol t pertains to tricritical parameters),
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stΒ,
Μ
Μο

d

?

τ
φ
h
G

Χ
C

η

k

Φ

-temperature of the bicritical point (the symbol

b pertains to bicritical parameters),
-pressure,
-chemical potential,
-concentration,
-electric field,
-magnetic field,
-internal magnetic field,
-staggered magnetic field,
-magnetization,
—saturation magnetization,
-dimensionality of the space,
-Hamiltonian,
-thermodynamic potential,
- = {T-Tc)/Te,
-order parameter,

-field thermodynamically conjugate to φ,
-correlation function of the fluctuations,
-correlation radius of the fluctuations,
—direct correlation radius,
-suspectibility,
-heat capacity,
-number of components of the orderparameter

—wave vector,

-crossover exponent,

-exponent that determines the form of the criti-

cal lines in nonzero ordering field near a TCP,

α
β
y
δ

ν

η

-critical exponents of the

heat capacity,

order parameter,

susceptibility,

critical isotherm,

correlation radius,

correlation function.

The primed exponents (a ' , etc.) pertain to the ordered

phase, renormalization exponents are denoted in addition

by an asterisk (a*, a*', etc.), and exponents for quanti-

ties involving a noncritical order parameter are mark-

ed by the subscripts u(yB, etc.).
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