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INTRODUCTION

Recent years have seen rapid development of research
into nuclear magnetic resonance in magnetically ordered
materials. These studies have now assumed practical
importance because of applications of nuclear spin echo
in radioengineering. Under the usual experimental con-
ditions, the electron spin resonance frequency is much
higher than the frequency of nuclear magnetic reso-
nance. Review papers published during the last decade
have therefore been concerned with this situation. In
the present review, on the other hand, we consider the
new region in which the nuclear magnetic and electron
spin resonance frequencies overlap. This overlap re-
gion represents, in a certain sense, the extremal state
of the electron-nuclear magnetic system, and has long
attracted the attention of theoreticians and experimen-
ters. However, substantial progress has been achieved
in this direction only in the last few years, and this has
been responsible for the need for a new review.

We shall confine our attention to simplest magnetic
structures, namely, uniformly magnetized ferromag-
netic and antiferromagnetic materials. All fundamental
questions will be discussed by considering the example
of an isotropic ferromagnetic sphere, and some par-
ticular expressions will be given for uniaxial ferro-
magnets and antiferromagnets with an "easy plane."

1. EQUATIONS OF MOTION AND BASIC FEATURES
OF THE ELECTRON-NUCLEAR MAGNETIC SYSTEM

When the temperature is much less than the terro-
magnetic Curie temperature Tc, electron spins are or-
dered and nuclear spins are in the paramagnetic state.
Accordingly, the equations of motion for the electron
magnetization Μ and the nuclear magnetization μ are
the Landau-Lifshitz and Bloch2 equations:

M = — 7

6M ' δμ

(1.1)

where ξ is the dimensionless parameter representing
the damping of electron magnetization, and 7\ and T2

are, respectively, the longitudinal and transverse re-
laxation times for nuclear magnetization. The electron
gyromagnetic ratio is ye> 0 and the negative sign in
front of y. is shown explicitly in the first equation; the
nuclear gyromagnetic ratio yn can be both greater than
or less than zero, but, for most magnetic materials,

The density of the phenomenological Hamiltonian #*
contains the hyperf ine magnetic interaction term3

Μ^Αμ-Μ, (1.2)
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where A -100-1000 is the dimensionless hyperfine
interaction constant. This interaction gives rise to an
additional effective magnetic field both in the nuclear
and electron magnetic subsystems:

W;=-AM, Ηΐ^-Αμ. (1.3)

Whilst, in most cases, HI is negligible in comparison
with other fields acting on the electron magnetization
(the constant external field, the magnetic anisotropy
field, and the magnetic dipole field), the component H\
reaches values of the order of 105-10e Oe and, as a
rule, is the main field governing the magnitude and
orientation of nuclear magnetization. We shall there-
fore omit the subscript 1 in the field H* and will assume
that this field is entirely determined by AM· μ. The
quantity μ is calculated as the magnetization of the
paramagnetic system made up of the nuclear spins in
the magnetic field AM. The direction of the vector β
in the ground state is opposite to the direction M, in
accordance with the negative sign of H". We shall as-
sume that, in the ground state, both the external mag-
netic field Η and the electron magnetization Μ lie along
the ζ axis. In Bloch's equation (1.1), therefore, we
have taken the plus sign in the expression (μ,+ μ),
which describes longitudinal relaxation: the nuclear
magnetization is in equilibrium when μ̂  = -μ.

The considerable strength of the effective magnetic
field at the nuclei, and the fact that it is proportional
to the electron magnetization M, have a distinctive ef-
fect on the entire dynamics of nuclear magnetization in
magnetically ordered media: they give rise to certain
characteristic features in the motion of μ as compared
with the dynamics of μ in materials without magnetic
order. Under normal conditions, when the electron
resonance frequency ωβ is much higher than the nuclear
resonance frequency ωη, the basic features of NMR in
magnetic materials are well known and have been de-
scribed in review papers and monographs.3"8 Let us
briefly recall them.

In the first approximation, the expressions for the
NMR and FMR frequencies (for simplicity, we consider
an isotropic ferromagnetic sphere) are as follows:

: γ η Α Μ, ω,. (1.4)

Thus, whilst the FMR frequency ω, is determined by
the external magnetic field (as is the NMR frequency in
para- and diamagnetic materials), the NMR frequency
ωη in ferromagnets is determined by the hyperfine field
experienced by the nucleus and, for T« Tc, it is a
characteristic of the given material (for example, for
cobalt ωη/2π^200 MHz, whereas, for iron, ωη/2ττ
=* 50 MHz).

The transverse components of the hyperfine field that
appear under the influence of an external time-depen-
dent magnetic field h(i) perpendicular to the Ζ axis
give rise to a distinctive amplification effect. The
field h produces transverse components of electron
magnetization and, consequently, transverse compo-
nents of the hyperfine field h". The nuclear magnetiza-
tion then experiences the resultant field h + h°, but hn

is stronger than h by a factor of r\, where η is the am-
plification coefficient3:

where χ0 is the static t ransverse susceptibility of the
electron magnetic system and H* is the anisotropy field
(we assume that the specimen is magnetized along the
anisotropy axis). The nuclear magnetization is thus in
an exceedingly strong hyperfine field h%t), and the r a -
diofrequency field h(i) can be neglected in comparison
with it. However, this does not exhaust the role of η.
The response of the nuclear system, i.e., the appear-
ance of the t ransverse components μΧ(ί), induces a
hyperfine field in the electron system which responds
to it with the t ransverse component mx(i). The appa-
ratus records the resultant response μ ^ η ^ , but m1

exceeds μι by a factor of η, and the direct response of
the nuclear system can be neglected. Thus, the exci-
tation and detection of the nuclear signal in the mag-
netically ordered medium occur through the electron
magnetic system. Mathematically, this is represented
by the fact that it is the square of the coefficient η that
appears in the resultant response:

m, = ri2xnh (1.6)

where xn is the nuclear susceptibility tensor.

The dynamics of the electron-nuclear magnetic sys-
tem can, in general, be described by five nonlinear
f irs t-order equations (three equations for the compo-
nents of Μ and two equations for the components of M,
whose modulus is conserved). An essential simplifica-
tion of this complicated problem is achieved by intro-
ducing the following two fundamental assumptions:

a) The electron magnetization is written in the form

Μ (Ζ) = k.W + m (i), | m | « . ! ; , (1.7)

so that (1.1) can be linearized in the t ransverse compo-
nents of the electron magnetization m, whilst retaining
the equation for the nuclear magnetization μ in its non-
linear form.

b) When the frequency ω is much less than the elec-
tron resonance frequency ω,, we may use the quasi-
static approximation for the Landau-Lifshitz equation

[ M X H « ] = 0 . (1.8)

When these approximations a r e adopted, the Landau-
Lifshitz equation (1.8) yields the following simple ex-
pression for the t ransverse components of electron
magnetization:

m = χ,,Οι-Λμ.,). (1.9)

Substituting this in the second equation in (1.1), we ob-
tain a set of three nonlinear f i rs t-order equations for
the components of the nuclear magnetization μ. When
the magnetic field h rotates with frequency ω in the xy
plane of the coordinate frame attached to this field,
the equations become9

(1.10)

m -f- f i + L2 = — (a,jU -f ωχν)

where
μ.» Py !':

u~ μ ' "" μ ' ~~ μ ' ω ' ~ Vni n

y==(on — ω, Ly = Dmv, Lx---- —Drnu, Λ2 = 0, D = yn/
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The numerous results obtained in the theory of nu-
clear resonance in ferromagnets for ωη« ω, are based
on (1.10) or an equivalent set of equations corresponding
to assumptions (1.7)-(1.8). Some of these results, i.e.,
those corresponding to the linear motion of nuclear
magnetization (μ,— -μ), were given above. Other re-
sults include the dynamic shift of the Ν MR frequency,3

which is described by the nonlinear terms Lf in (1.10).
In the linear situation ( μ , - -μ), the dynamic shift is
a maximum: the Ν MR frequency is then decreased
by the amount

_ ηωημ _
Μ (1.11)

It is clear that the dynamic frequency shift increases
with decreasing electron resonance frequency ω# (how-
ever, μ .» ωη must remain; the entire foregoing dis-
cussion becomes invalid when this condition is not sat-
isfied). In the nonlinear situation, the dynamic fre-
quency shift leads to many features of pulsed phenom-
ena such as new mechanisms for the formation of nu-
clear spin echo, which have been extensively investi-
gated both theoretically and experimentally in recent
years.6'8

2. NATURAL FREQUENCIES AND DAMPING OF
ELECTRON-NUCLEAR MAGNETIC OSCILLATIONS

It is clear from (1.4) that, as the magnetic field Η
decreases, the NMR and FMR frequencies approach
one another and may even overlap, so that ω,= ωη. The
approximation defined by (1.8) then becomes invalid and
we must return to the complete system given by (1.1).
In the linear approximation, to which we will confine
our attention in this and the next sections, Eq. (1.1)
consists of four coupled first-order equations for the
transverse components of nuclear and electron mag-
netizations.10 These equations describe a system of
two interacting oscillators. In the special case of com-
plete magnetic isotropy in the xy plane, the number of
coupled equations can be reduced to two by introducing
circular projections for the transverse components of
μ and M.

A. Natural frequencies of interacting oscillators

We recall the general properties of the natural fre-
quencies of a set of two interacting oscillators by con-
sidering a simple example that can be described by
first-order equations. The complex natural frequencies
are then given by

(ω.-ω+ίΓ6)(ωη-ω + ίΓη) f = 0, (2.1)

where ω, and ωη are the unperturbed resonance fre-
quencies of the oscillators, Γ, and Γη are their relaxa-
tion parameters, and ω, is the oscillator interaction pa-
rameter.

Substituting ω= ω' + i ω", we obtain from (2.1) the fol-
lowing two equations for

η+ •/!•„ (2.2)

where x = ω, - ω', y = ωη - ω'. The equation ?? + y = 0 cor-
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FIG. 1. Natural frequencies wj>2 of interacting oscillators.
Solid curves correspond to ως > |Γ ε -Γ η | ; broken curves corres-
pond to the opposite inequality.

responds to ωβ= ωη and | Γ, - Γη | > ωα, in which case, the
solution is

ω ι , ι = Cue = ω π ,
(2 3)

The first equation in (2.2) describes the dependence of
the real natural frequencies &£ 2 on ωβ, which we shall
vary by varying the separation between the unperturbed
oscillator frequencies ωθ and ωη. The solid curves in
Fig. 1 show the solution in the absence of damping (Γ,
= Γη = 0). The intersecting straight lines represent the
frequencies ωπ and ω, of the unperturbed oscillators.
The natural frequencies ω' are found to separate at ω,
= α>η = OJC by an amount equal to the interaction frequency
u)q. This effect corresponds to the separation of degen-
erate energy levels of a quantum-mechanical system
when an interaction is introduced. As the distance from
the point of intersection increases, the interaction ef-
fect becomes weaker and the natural frequencies tend
to the corresponding unperturbed frequencies ω, and
o>n. The foregoing discussion is also valid for damped
oscillators if their relaxation parameters are equal,
since the first equation in (2.2) involves only the mod-
ulus of the relaxation parameter difference | Γ, - ΓΒ |.

At the point ω,., the frequency difference for
ως is given by

Κ (2.4)

As Ι Γ, - Γ η | increases, the frequency difference de-
creases; the two frequencies become equal when
| Γ. - ΓΒ | > ω, (broken curves in Fig. 1). It is clear from
the second equation in (2.2) that the damping of ω"2 at
the point u>0 for | Γ, - Γη | < coq is the same for the two
branches, and is equal to the half-sum of the unper-
turbed damping parameters:

<·>! 2|w„=<«„ =Ό 2
(2.5)

When | Γ, - Γ, | > ω,, the damping at wc is described by
(2.3). For |Γ,-Γ 1 1 |»ω 1 ,, Eq. (2.3) yields

o- ^ Γ ρ

 M q ω- ._, Γ , Κ (2.6)

As the distance from the crossing point increases,
and independently of the relationship between | Γβ — Γη |
and ω,, the damping of each natural frequency tends to
the unperturbed damping of the corresponding
oscillator.
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Β. Electron-nuclear magnetic oscillations where

Let us now consider the difference between the model
system consisting of two simple oscillators and a real
system of coupled NMR and FMR (AFMR). As noted
above, in the special case of magnetic isotropy in the
x,y plane, the introduction of circular projections gives
rise to a considerable simplification of the problem.
The complex electron-nuclear frequencies of magnetic
oscillations corresponding to resonance projections μ*
and m* are described by

(2.7)

ω.« = Ve \H

»» = Ye IH

i + (Nx - Nz) Μ 4-
, - (Nv - iVz) Μ 4

((ut. - ω 4-ίξω) (ω,,-ω + γ - ) — = 0.

It is clear that this situation is very close to the sys-
tem of two simple oscillators (2.1). However, Eq. (2.7)
has a new feature connected with the sign of the gyro-
magnetic ratio. The electron gyromagnetic ratio is y.
>0, i.e., we have introduced explicitly the negative
sign in front of y, in the Landau-Lifshitz equation. On
the other hand, yn can be either positive or negative.
For yn> 0, the projections m* and μ* correspond to the
resonance situation, whereas m~ and μ" correspond to
the nonresonance situation. Foryn<0, the resonance
projections are m" and μ'. The equations for the natu-
ral frequencies in this case have the form (damping is
neglected for simplicity):

for m*, μ*: (ωε — ω) (ω,, '-- ω) χ~~^

for rn'. u
(2.8)

where ωη =

μ ; (ωΕ -τ ω) (ω,, — ω) -^- — 0;

yn |AM, ̂  = 4ye|yn |Α
2Μμ. There is no res-

onance interaction between the oscillators in this case:
the degenerate levels do not split. The first equation
describes the FMR frequency, modified by the interac-
tion with the nonresonance projection μ*, and the sec-
ond gives the NMR frequency modified by the interaction
with the nonresonance projection m":

4 (ωθ-{- 4 (ω,Λ + (2.9)

When ωβ= ωη, these frequencies are equal. It is inter-
esting to note that, when ωη « ωβ, this situation is in-
distinguishable from the case yn> 0, It is clear from
(2.9) that the dynamic frequency shift has the same
sign and is given by the same equation (1.11). More-
over, the absence of splitting of oscillations with oppo-
site polarization is of purely academic interest in this
case, since yn> 0 for the nuclei of all the main mag-
netically ordered materials. In addition, for yn < 0, the
situation described by (2.8) will be observed only for
complete magnetic isotropy in the x, y plane. Magnetic
crystallographic anisotropy in this plane or shape an-
isotropy lead to the coupling between the right and left
polarized components of electron magnetization m* and
m~ and, consequently, to the resonance interaction be-
tween the electron and nuclear magnetic oscillators for
any sign of yn.

The basic question, i.e., whether it is physically pos-
sible to reduce ωβ down to ωη, is intimately connected
with shape anistropy and magnetic crystallographic an-
isotropy. For a magnetic ellipsoid with arbitrary ratio
of semiaxes, the FMR frequency is given by

(2.10)

in which Ηίί=Αμ.,Νι are the demagnetizing factors for
the ellipsoid, and HltH2 are determined by the mag-
netic anisotropy. For example, in the case of uniaxial
anisotropy along the ζ axis, we have H1=Hz = Hk. On
the other hand, if the anisotropy is along the χ axis,

We shall now consider the effect of the shape of the
specimen, neglecting for the moment the static inter-
action with the nuclear system HA and anisotropy. To
ensure that the specimen is magnetized uniformly by
the magnetic field in the Ζ direction, it is necessary
(but not always sufficient) for the internal field in the
specimen Hf =H -NtM to be greater than zero. This
yields the necessary condition10 for the point ω,= ωη to
be reached:

iv4>Ve/AV\V (2.11)

In practice, this means that the point at which the two
frequencies ωβ and ωη become equal may lie in the phys-
ical domain only for specimens for which one or both
demagnetizing factors in the xy plane are close to zero.
Specimens of this kind include: (a) a thin plate mag-
netized either in its plane or at right-angles to it, and
(b) a long cylinder magnetized at right-angles to its
axis. Naturally, condition (2.11) may turn out to be in-
sufficient in many cases: the additional condition is that
the anisotropy field must be small or the situation must
be such that this field can be compensated by an exter-
nal field; the gap ωΔ due to the static hyperfine field
ΗΑ=Αμ cannot be removed. The gap ωΔ is very small
in ferromagnets, but it may become appreciable in
antiferromagnets because of the appearance of the ex-
change field HE in the relevant expressions. For ex-
ample, in "easy plane" ferromagnets, the frequency
corresponding to the low-frequency branch of AFMR
and the size of the gap are given by

«? = Ye VlUn, (2.12)

where ae = (H + HD)/HE is the angle between the sublat-
tices, ΗΏ is the Dzyaloshinskii field, HS=2JM is the
exchange field, and J is the exchange integral.

The natural frequencies of electron-nuclear magnetic
oscillations in the region where ωβ and a>n overlap were
initially investigated without taking damping into ac-
count.11'12 In the general case of a ferromagnet, they
are described by

(ω- - ω!) (ω2 — ωϊ) — γεγη^2.1/μ (2ω* 4- ω η ω τ 4- ω η ω Β - ^ι^ΑΖΜμ) -= 0.

(2.13)

When ωη « ωΛ, this equation shows that the maximum
dynamic NMR frequency shift is

D = yeynAh\^^±p-. (2.14)

ωΡ=|/ΐ

At ω,= ωη, the difference between the natural frequen-
cies is determined by the dynamic electron-nuclear
interaction parameter wq. For a ferromagnet,

l-h£)fi+-^). (2.15)
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The magnitude of ωα depends on the shape of the
specimen. This dependence or, more precisely, the
dependence on the degree of ellipticity of the locus of
M, is connected with the fact that the dynamic elec-
tron-nuclear coupling will be stronger as the electron
susceptibility χβ increases. The expressions for ωχ

and a>y given by (2.10) can be rewritten in the form

ytM yeM

Xoy
(2.16)

where χΟΙ,ΧΟν

 a ^e the static susceptibilities of the elec-
tron system along the χ and y axes, respectively. The
condition ωβ= ωη defines the product xOxxOy. Therefore,
to increase the susceptibility along one of the axes (for
example, the χ axis), we must simultaneously reduce
the susceptibility along the other axis (the y axis). The
result will be that ωβ will reach its maximum value in
the case of maximum asymmetry in the precession
plane, i.e., ω,/ω χ »1. When this is so, we have the
following expressions for ferro- and antiferromagnets:

ω, 5» γ β V ΑμΗ,, (2.17)

respectively. For the remainder of this section, we
shall write all our mathematical expressions for the
case of strong asymmetry, for which electron sus-
ceptibility is a maximum along the χ axis: x O y « χ0χ

= χ0. In easy-plane antiferromagnets, the ellipticity of
the locus of magnetization of a sublattice is stronger
than in ferromagnets. In ferromagnets, therefore, the
magnitude of ω, will be much greater than in ferromag-
nets. Finally, we note that the expressions given by
(2.17) for ferro- and antiferromagnets are the same
as the corresponding expressions for the hyperfine gap
ωΔ in the spectrum of unperturbed electron resonance.
This is so because the static and dynamic hyperfine
interactions are determined by the same scalar quan-
tity, namely, A.

The effect of relaxation on the natural frequencies of
electron-nuclear oscillations was first examined by
Portis1 3 and later, and in greater detail, by Ignatchenko
and Tsifrinovich.14 As already noted, the behavior of
the natural frequencies is wholly determined by the re-
lationship between | Γ . - Γ η | and ω,. In magnetically
ordered media, we usually have Γη « Γβ and the be-
havior of the natural frequencies is determined by the
relationship between ως and Γβ. When ω,» Γβ, the
overlap region contains two equivalent modes of cou-
pled electron-nuclear oscillations with complex fre-
quencies o\2. At ω.= ωη, we have

ω,,',

re«-
(2.18)

When ω4 « Γβ, the natural oscillations in the overlap
region can be reliably separated into electron-like os-
cillations with frequency ώβ and nuclear-like with fre-
quency ώη. To within terms ~μ, we then have15

where x'J,H) and x,(H) are the real and imaginary parts
of the electron susceptibility at the NMR frequency, re-
spectively:

ττ> i = - f i > r · (2.20)
These expressions are valid for ferromagnets. In the

case of antiferromagnets, we must distinguish the sus-
ceptibility of the specimen χβ from that of the sublattice
χβν. Since the nuclear magnetization of the sublattice
interacts with the electron magnetization of only its own
sublattice, we can replace xt with χθμ in the expres-
sions for D and Γκ. In easy-plane antiferromagnets,
Xev~xJctt, where a„ is defined above.

It is clear from (2.19) that the dynamic shift of the
frequency of nuclear oscillations D is determined
by the real part of the electron susceptibility
Xe(-fi). The magnitude of D is a maximum for
we (H) = Vu>£ +2Γ ε ω η and vanishes at the overlap point
ω ε = ωπ. The damping coefficient of nuclear-like oscilla-
tions increases the amount Γχ , which is the parameter
of the nuclear-electron relaxation (NER), i.e., relaxation
in the nuclear system due to the damping of electron
magnetization. The parameter Γ χ is determined by the
imaginary part of the electron susceptibility, χ'^(Η),
and reaches its maximum at the frequency overlap
point. The maximum values of D and Γκ are determined
to within a factor of 0.5 by the same parameter ω*/4Γ,.
It is clear that the magnitude of ω^/4Γβ is the renor-
malized parameter of the dynamic electron-nuclear
interaction in the case of strong relaxation of the elec-
tron magnetization.

We note that, whatever the relationship between Γβ,
Γη, and ω,, the electron-nuclear oscillation frequencies
are related by

|ω,ω2|=ωί(/0ωη, (2.21)

where ω° = ν α^- ω£ is the frequency of the electron
resonance in the absence of the nuclear system.

C. Electron-nuclear spin waves

We shall now briefly consider electron-nuclear spin
waves in the overlap region. Analysis on the basis of
the equations of motion1 2·1 5'1 6 has shown that, in the
absence of relaxation, the curves representing co' as a
function of the wave vector k will separate in the over-
lap region. An analogous result follows also from
quantum theory.1 7'1 9

When electron relaxation is large enough, the natural
frequencies will cross, just as in the case of uniform
oscillations, and the coupled oscillations can be unam-
biguously separated into electron-like and nuclear-like
spin waves.15 For a uniaxial ferromagnet, for example,
the complex electron-like spin-wave frequency is given
by the following expression to within terms of the order
of ~μ:

ω -Qe.il 1 a;t

 ω '"~ω" ) | ,rfK fl d'ci) (2.22)

and the complex frequency of the nuclear-like spin
wave is given by

(2.23)
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where ωΛ and ΓΛ are the frequency and damping pa-
rameter of the electron spin waves20

« ? = V Ω,Ω, -f 4πγθΛ/ (Ω2 sin2 cpk + Ω 2 c o s 2 <j>k) sin2 9 k ,

Ω, = V c (# + Λμ + Ht + a7№ - N,M),

+ aMk2 - N,M), (2.24)

0k and <pt are the polar and azimuthal angles of the
wave vector k, respectively, and

d j k = 2γβ/1μωη (a>lk + σ,,ω,,),

di,k == 2Τ,.4 μωί (ωη + a k ) , β£ = ( w ? k - ω *

( 2.25)

The expressions given by (2.22)-(2.25) show that the
electron spin wave with wave vector k will, in a way,
"generate" a nuclear spin wave with the same wave
vector. These expressions are valid if the relaxation
parameter of the electron spin wave, ΓΛ, is much
greater than the dynamic interaction parameter ω4 ϊ be-
tween the corresponding wave and the nuclear system:

(2.26)

If the dispersion curves for the electron spin waves
(for fixed 0k and <pk) cross the NMR frequency ωη, the
order of magnitude of the maximum shift of the natural
frequencies wk and damping coefficients ω£ is deter-
mined by the renormalized dynamic interaction param-
eter u>qj,/4rej. Hence, it follows that the width of the
dispersion band for the nuclear-like spin waves is of
the same order as their damping coefficients.

We recall that the electron resonance frequency ωβ is
not necessarily equal to the minimum frequency uf^" of
the electron spin waves. In general, if the electron
resonance frequency ω, is equal to the NMR frequency,
the frequencies of a whole group of electron spin waves
will also be equal to the NMR frequency. Moreover,,
the geometry of the experiment can be chosen so that
the electron spin wave frequencies ωΛ will cross the
NMR frequency ωη even in sufficiently strong fields
when ω,» ωη. For example, for a thin plate magne-
tized in its own plane, we have Ν^ = 0 and, consequently,
CL^1" « ω9. We shall return to this situation in Sec. 4.

3. SUSCEPTIBILITY OF THE SYSTEM

A. Coupled oscillators

Let us now consider the behavior of a set of two
interacting oscillators—nuclear and electron—under
the influence of an external force, i.e., the time-de-
pendent magnetic field h(t). This force acts on both
oscillators but, because of the amplifying properties
of the hyperfine interaction, its direct effect on the nu-
clear oscillator can be neglected: this oscillator is
excited mainly through the coupling with the electron
oscillator. This is also valid for the response: the di-
rect response of the nuclear oscillator is much weaker
than the response through the coupling between the os-
cillators. A close analog of a system of interacting
FMR and NMR will therefore be two coupled oscillatory
circuits ("e" and "n"), of which only one ("e") plays
an active role: it is connected to an external source and
it is the current in this circuit that is measured. The

experimenter should be able to use these measurements
to extract data both on the circuit which he is using
(FMR) and the circuit coupled to it (NMR).

The general properties of a system of two coupled
circuits are well known (see, for example, Ref. 21).
This system is widely used in radioengineering as a
band-pass filter, wave trap, and so on. However, we
are interested in its properties from a specific point of
view, namely: what information about the system can
be extracted from the readings of an instrument con-
nected in the " e " circuit? We recall some of the gen-
eral properties of the system by considering the simple
example of NMR and FMR in a magnetically isotropic
sphere. The complex susceptibility of the resonance
component of electron magnetization is, in this case,
given by

(3.1)
(ω,—ω-ΗΓβ) (ωη— ω + >Γη)- (ω=/4) ·

The absorption of the energy of the high-frequency field
h(f) is proportional to the imaginary part of the sus-
ceptibility:

X = ( t ) e — CO, / = ω η — ω , q2 = -ζ (s>\ 4- Γ 0 Γ η .
(3.2)

In the first instance, we shall be interested in the
point of overlap between the unperturbed oscillator fre-
quencies (ωβ= ωη= o)c) at which the interaction is a max-
imum. The form of the function χ"(ω) is then deter-
mined by the relationship between the three parameters
Γ,, Γη, and wQ; it is well known that χ"(ω) will, in gen-
eral, have either three extrema (minimum at ω= ωΒ and
two side maxima) or one maximum at the point ω= a>c.
We recall that, when ως> | Γβ - Γη | , the natural fre-
quencies will split and the damping coefficients will
coincide. Two resonance frequencies will exist in this
case, namely, ω[ and u>'2) and the corresponding two
resonance peaks will be well resolved if the separation
between ωί and ω'2 is much greater than the damping
of the two oscillators. For oscillators with similar
linewidths

I r, - rn ι « rn, ι re - rn κ <»„, (3.3)

the expression given by (3.2) with x = y can be approxi-
mately written in the form

ι ,,„ r ι , _J ι
2 ' I. is—ο)!τ-62

(3.4)

Hence, it is clear that there are two identical reso-
nances, in each of which the properties of the inter-
acting oscillators have been averaged out. The posi-
tions of the resonance maxima and their widths cor-
respond to the natural frequencies (2.4) and damping pa-
rameters (2.5). The resonances approach one another
as ω, decreases and, when ω, is less than the critical
value, they merge into a single resonance (Fig. 2). The
two resonances can be resolved (in the absence of noise)
provided

Λ/'-^L·-- (3-5)
Resonance circuits with coupling just stronger than the
critical value (curve 2 in Fig. 2) are used as band-pass
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FIG. 2. Susceptibility (in relative units) of a system of two
oscillators with c<fe > | IJ ,-r n | when the coupling coefficient is
greater than (1), close to (2), and less than (3) the critical
value.

filters in radioengineering.

The first theoretical paper22 devoted to the shape of
the absorption lines in the Ν MR-FMR overlap region
and based on the method of temperature Green's func-
tions, was used to analyze the situation where there
was very strong inhomogeneous broadening of the un-
perturbed NMR line: Γ 3 » Γ., where Γ3 is the half-
width of the NMR line due to the inhomogeneity of A.
Two cases were considered, namely, ω , « Γ 3 and wq

» Γ3. It was shown that, in the former case, the ab-
sorption line had only one maximum (corresponding to
weak coupling in oscillator theory), whilst, in the lat-
ter case, there were two comparable and well-re-
solved maxima (corresponding to strong coupling).
Moreover, a weak third maximum might occur22 be-
tween these two strong maxima. This, in fact, takes us
outside the framework of the theory of oscillators with
a homogeneous absorption line, and depends on the
shape of the distribution function for the hyperfine
interaction constant, /(A), over which the results re-
ported in Ref. 22 were averaged. The third maximum
vanishes when/(A) is the Lorentz function.

Subsequently, a detailed analysis was carried out2 3'2 5

of the situation characteristic for magnetic materials,
within the framework of the Landau-Lifshitz and Block
equations. This is characterized by the electron re-
laxation being much greater than the nuclear relaxa-
tion, i.e., Γ ,»Γ η ,Γ 3 . Henceforth, we shall confine
our attention to this particular situation.

B. Electron-nuclear magnetic resonance

Suppose that

4ΓΪ
(3.6)

When the right-hand side inequality is satisfied, the
natural frequencies of the two interacting oscillators
are equal at a>c(&i= ω'2= coc) and the two resonance peaks
should coincide. On the other hand, when the left-hand
inequality is satisfied, the function χ"(ω) must have
two maxima either side of ω0 and a minimum at u>e.
At first sight, this seems contradictory.

The parameters of magnetic materials typically obey
a more stringent condition than is indicated by (3.6),

FIG. 3. Electron-nuclear magnetic resonance (ENMR) along
the frequency axis (solid curve) and along the magnetic field
axis (broken curve).

The expression for the imaginary part of the suscepti-
bility of the system can then be approximately repre-
sented by the product of two factors

χ2 ~^~ Γη (Γη + p) / Q Ο \

where p= ω2/4Γ. is the coupling parameter between the
oscillators, renormalized by relaxation.

The first of these factors is the imaginary part of the
FMR susceptibility whose relaxation parameter is mod-
ified by the interaction between the oscillators, in ac-
cordance with (2.6). When the conditions in (3.6) are
satisfied, the second factor in (3.8) approaches unity
throughout with the exception of a narrow (as compared
with the FMR linewidth) region near x = 0. It describes
a narrow peak in the inverted, modified, and greatly
amplified NMR signal against the broad background of
the FMR line (Fig. 3). This phenomenon was first in-
vestigated in Ref. 23, where it was called the electron-
nuclear magnetic resonance (ENMR). The inversion of
the NMR signal is due to the fact that the nuclear os-
cillator is both excited and detected indirectly through
the electron oscillator. Under the FMR conditions, the
transverse component M± of the electron magnetization
lags in phase by π/2 behind the radiofrequency field h.
The transverse component μχ of the nuclear magnetiza-
tion under NMR conditions lags in phase by π/2 behind
the exciting hyperfine field (-A Mx). The component
μχ then induces a field (-Α μχ) in the electron system
which, in turn, gives rise to an additional term in the
transverse component of the electron magnetization m1 (

which is in antiphase with ML. The result is that the
electron signal induced by the nuclear system is in
antiphase with the electron system excited by the high-
frequency field.

Thus, the phase relationships are found to reconcile
the two conditions in (3.6): in accordance with the ex-
pressions for the natural frequencies, the two reso-
nance peaks occur at the same point ω= ωβ, but the
linewidths of the modified FMR and modified NMR (Fig.
3) are given in accordance with (2.6) by the expressions

(3.9)

The relative size of the NMR peak expressed as a frac-
tion of the maximum value of the FMR signal is given by

(3.10)
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increases. As Γ η - 0 , the NMR signal tends to its max-
imum value, which is equal to the magnitude of the FMR
signal. The additional terms in (3.9), i.e., ω2/4Γ,, are
negligible in comparison with the FMR linewidth when
(3.7) is satisfied, but may be very substantial for NMR.

The ENMR phenomenon (Fig. 3) is thus only outward-
ly similar to the resonance curves of two coupled cir-
cuits with similar damping (Fig. 2); the physical nature
of the maxima and minima in Figs. 2 and 3 is quite dif-
ferent.

In further analysis of ENMR, it will be convenient to
use a further approximation for the susceptibility of the
system. Let us introduce the complex susceptibilities
for the unperturbed FMR and NMR

(3.11)

so that the complex susceptibility of the system (3.1)
can be written in the form25

χ = - (3.12)

The approximate expression on the right-hand side is
valid only in the case of a "weak" NMR signal for which
λ « 1 . It then follows that the imaginary part of the sus-
ceptibility is given by

x"« Xe+A* «χ;·- χ;·) Χή+ 2χ;χ;χ;ι. (3.13)

In contrast to (3.8), this expression is valid for any re-
lationship between the unperturbed frequencies ω, and
to,. It is clear that, in the general case, the absorption
of energy depends both on the imaginary and real parts
of the nuclear and electron susceptibilities. The ampli-
fication coefficients for χη' and χη may become imagin-
ary because of the phase relationships in the neighbor-
hood of FMR. It will be more convenient to consider
the squares of the coefficients in front of χΒ' and χη:

1? = Λ2 (X'c· - 7?). (3.14)

Let us consider (3.13) and (3.14) in the neighborhood
of NMR, for which ω is close to ωΛ. The coefficient η2

will tend to the usual expression given by (1.5) when ωη

« w,, i.e., it will be determined by the static suscepti-
bility (Αχ0)

2; it will vanish for \x | = Γ, and will become
negative within the half-width of the FMR line. The co-
efficient η2, in front of χΒ is small in comparison with
r\\ both near χ = 0 and for χ » Γ,. It is only on the slop-
ing side of the FMR curve where x~ Γ. that the contri-
bution of χΒ to absorption will dominate the contribution
due to χη'. For ω~ ωΒ and different relationships between
ω. and ω. we have

We » ωη,
(3.15)

The first of these expressions describes the usual nu-
clear signal well away from the region of interaction
between FMR and NMR, whilst the second expression
describes the inverted and amplified nuclear signal in
the case of ENMR. The additional amplification of the
nuclear signal by the FMR signal is proportional to the
square of the ratio of the susceptibility at resonance to
the static electron susceptibility, i.e.,

' = ( - £ - ) · (3·1β)

We recall that, in practice, we have to use suscepti-
bilities measured in different magnetic fields: χ№ in
fields corresponding to ω,= ω0 and χ0 in much stronger
fields, for which ωη « ω,. This means that Κ is greater
than one would expect from the FMR amplification ef-
fect alone.

To be specific, we have confined our attention to
ENMR in the simple case of a magnetically isotropic
sphere. When anisotropy is introduced in the xy plane,
some of the above expressions will become more com-
plicated. Thus, for a thin magnetic film magnetized in
its plane at right-angles to the uniaxial anistropy in that
plane, the susceptibility of the system is no longer giv-
en by (3.1) but by the following expression^3:

•'"•"-" 2 _ _ (3.17)

where the parameters of the nuclear system are the
same as before but the parameters of the electron sys-
tem and ω, are now given by

(3.18)

However, all the qualitative conclusions remain in
force. In addition, all the expressions containing χ, and
χΒ remain valid in their general form given by (3.12)-
(3.14) or (3.9)-(3.10) provided, of course, thatx,,xB

and the other parameters are suitably redefined.

The absorbed energy of the high-frequency field per
unit volume per unit time is given by

Ρ = 4-ωχ"Α*. (3.19)

The form of this function had been analyzed numerical-
ly23 well before the ENMR signal was observed. It was
assumed that

ω, = 1.5-10's-1,

Γη = 5.8-10» s-1.
(3.20)

r e =9-10 e s- 1 , Γη = 5.8-10» s-1.

The value of ωΒ corresponds to the NMR frequency in
cobalt, where Γ, was taken from FMR experiments on
permalloy films in the microwave band, whilst ΓΒ was
taken from NMR experiments on single-domain cobalt

200 WO Sao 800
ω/2ιτ, MHz

c

FIG. 4. Absorption of electromagnetic field energy at ωη/2π
= 200 MHz and ωε/2π = 600 (a), 250 (b), and 200 (c) MHz.
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particles. The quantity ω, corresponds to (3.18) with
μ calculated from the Langevin formula for an alloy
containing 40% of cobalt at 300°K.

Figure 4 shows the results of these calculations for
different values of ω, and ωη. It can be seen how the
NMR signal (at 200 MHz) is inverted and amplified as
the FMR signal "creeps" over it.

C. Shift of FMR

The electron resonance susceptibility is known to be
a function of two variables, ω and H, i.e., the reso-
nance can be observed by varying either the frequency
or the field. For ω η « ω., the nuclear resonance sus-
ceptibility depends on the magnetic field in a nonreso-
nance fashion: NMR can be observed only by varying
the frequency. In general, ENMR is a function of two
variables, namely, ω and H, but the form of this reso-
nance is qualitatively different when the frequency is
varied than when the field is varied. The double-hump
ENMR curve was analyzed above in detail. It is ob-
tained by varying the frequency, and we have already
considered the kind of information that can be extracted
from it. A single-hump curve should be observed when
the field is varied (broken curve in Fig. 3). In this sec-
tion, the ENMR curve is, in fact, FMR modified by the
interaction with NMR. The most obvious effect of this
modification is clear from Fig. 3 and amounts to a re-
duction in the resonance FMR susceptibility. The other
effect is that the resonance magnetic field is shifted for
ω* ωη. The susceptibility χ" has a maximum when the
field is varied determined by the relation

ωβ = ω + (-5- (m._m«4--rT- (3.21)

Thus, by investigating the dependence of the FMR
resonance field Ho on frequency near ω= ωη, one can
determine the real part of the nuclear susceptibility.25

This is an unexpected result, especially since it does
not depend on the relationship between Γβ, Γη, and ω,,
i.e., it is independent of whether or not the natural fre-
quencies separate or cross. In other words, the func-
tion Ho{ ω) is unrelated to the behavior of the natural
frequencies ω'(Η) (see Fig. 1).

The expression given by (3.21) refers to the isotropic
ferromagnetic sphere. In the case of magnetic aniso-
tropy in the x,y plane (shape anisotropy or crystallo-
graphic anisotropy), the equation for the resonance
field Ho turns out to be more complicated.25 For a
ferromagnet with x O y « χ^,

r M ι g t i
 M -iω γ-

and for an antiferromagnet

(3.22)

? ? = ( ^ - ) 2 , (3.23)

where the effective field 5 Δ describes the effect of the
nuclear system on the resonance field Ho:

it. _ Atw rv° ι' (ι.Λ\ (Ί ΟΛ\

The first term in the last equation describes the longi-
tudinal (static) hyperfine field acting on the electron
system, -Α μ. The second term is proportional to χ£
and corresponds to the hyperfine field induced by the

FIG. 5. Curve 1—resonance FMR (AFMR) field Ho as a func-
tion of frequency; curves 2 and 3—natural frequencies for
r e « u:q « ωη and u>q « re « ωη, respectively. Broken curve
corresponds to absence of the nuclear system.25

transverse components of nuclear magnetization in the
electron system. When ω » ωη, the second term is
small and HA is determined by the static hyperfine field
which is readily observed in AFMR because of the ex-
change amplification.26 In the overlap region, # Δ is
determined by the second term, i.e., by the real part
of the nuclear susceptibility.

Equations (3.22)-(3.24) are more complicated than
(3.21) but, qualitatively, they describe the same ef-
fect: as the field is varied ENMR exhibits a single -
mode curve representing the modified FMR for which
the resonance field Ho is determined by the real part
of the nuclear susceptibility. Figure 5 shows schemat-
ically the theoretical25 dependence of Ho on frequency
(curve 1). For comparison, the figure also shows the
natural frequencies of electron-nuclear magnetic os-
cillations when Γ,« ω,« ωΒ (curve 2) and when w q « F ,
« ωΒ (curve 3). Similar effects should be observable
when FMR and AFMR interact with any other reso-
nance, the frequency of which is independent of the ex-
ternal magnetic field. We note that all the foregoing re-
sults are valid only in fields exceeding the saturation
field He, so that the specimen is in the single-domain
state and M|| H. When H^ is not high enough, there will
be a frequency ω> ωη for which H0 = He, i.e., curve 1 in
Fig. 5 will "press against" the ω axis.

D. Effect of inhomogeneities

It is well known that the spatial inhomogeneity of the
hyperfine field IP, associated with the inhomogeneity
of A and due to different types of defect, is important
in NMR and often provides the main contribution to the
linewidth and structure of the NMR spectrum of mag-
netically ordered materials. In general, spatial in-
homogeneity of A is very difficult to take into account,
and such problems must be solved with the aid of the
correlation theory of random functions. Depending on
the ratio between the correlation length r 0 of the random
function of coordinates A(r) and the correlation length
of the exchange interaction, ra, one can distinguish be-
tween two limiting cases, namely, macroinhomogeneity
( r o <<r0) and microinhomogeneity (r0<<ra). For a uni-
axial ferromagnet, for example, the correlation length
of the exchange interaction is given by27

aM (3.25)

where a~ 10"12 cm2 is the exchange interaction constant.

The limiting case of macroinhomogeneity is the sim-
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plest. The specimen can be approximately divided into
noninteracting pieces with different values of A (since
ra <<r0). Consequently, one can then introduce a one-
dimensional function/(i4), which should be used in av-
eraging the susceptibility obtained for one of the mem-
bers of the ensemble, i.e., a region with constant A.
The case of microinhomogeneity is more complicated.
Here, the condition is ro~ a, where a is the lattice con-
stant, and the macroscopic energy density cannot be
written in the form AM^ since the very introduction of
Μ and β presupposes averaging over a physically in-
finitesimal volume of linear size r b » a . A different
approach must, therefore, be adopted.28 Let us con-
sider a small but macroscopic volume of radius rb»r0,
and let us sum over it by introducing the macroscopic
electron magnetization M. The chosen volume will
contain a large number of atoms with different values
of A. We now divide them into separate groups con-
taining nuclear spins with the same NMR frequency
(the same A) although they may be at relatively long
distances from each other within the chosen volume of
averaging. Each such group of spins, with roughly the
same NMR frequency, can be referred to as isochro-
matic and looked upon as a kind of sublattice. How-
ever, in contrast to the antiferromagnet, the number
of sublattices is no longer fixed but is determined by
the precision with which the isochromatic groups can be
identified. By summing over the isochromatic groups,
we obtain the nuclear magnetization of the sublattice,
μ4. We neglect direct interaction between the sublat-
tices, and their interaction with the electron magnetiza-
tion Μ (introduced after the summation) is described by
the next term in the macroscopic energy density:

(3.26)

where Ν is the number of isochromatic sublattices.
The electron magnetization connected with strong ex-
change will interact with the resultant field of the nu-
clear isochromatic groups. It is clear that one can ap-
proximately replace summation by integration, so that
the final expression for the hyperfine interaction term
in the phenomenological Hamiltonian is

Αμ(Α)ΛΑ.

This expression is valid for

rb

(3.27)

(3.28)

where the volume of averaging ~rjj must be large enough
to ensure that each sublattice within it contains a suffi-
ciently high number of atoms. This approach is there-
fore valid only for long-wave oscillations in the elec-
tron and nuclear magnetizations: The condition krb « 1
must be satisfied (k is the characteristic wave number)
and this is more stringent than that used in the phe-
nomenology of the homogeneous system (ka «1).

As in the usual phenomenology, one can use (3.27) at
nonzero absolute temperatures much lower than Tc.
This presupposes that, in obtaining the magnetization
μί of a sublattice in (3.26), we did not sum over the
sublattice spins but have evaluated the thermodynamic
mean. The function μ(Α) is then the magnetization of

the sublattice in the field AM at the given temperature
T, and can be calculated from the Brillouin formula

(3.29)

where Ν is the density of magnetic nuclei and / is the
nuclear spin.

The effective magnetic fields corresponding to the
interaction Jf̂  are given by

H\=- \ Αμ(Α)άΑ, Η';=-ΑΜ. (3.30)

The equations of motion for the system are still given
by (1.1) but, now, the Bloch equation describes the
motion of the magnetization of one isochromatic sub-
lattice in the field HJ, and the Landau-Lifshitz equation
describes the motion of the electron magnetization in
the resultant field of all the isochromatic sublattices
interacting with it.

Thus, the average susceptibility of the electron-nu-
clear system is given by two different expressions in
the two limiting cases25: for macroscopic inhomogen-
eities

(3.31)

(3.32)

and for microscopic inhomogeneities

Xn/ (A) <U '

where q=l for a ferromagnet and q= -(2 α , α,)"1 for an
antiferromagnet; a , and an are the angles between the
electron and nuclear sublattices.

In the general case, Eqs. (3.31) and (3.32) are very
different. However, for a weak nuclear signal for
which λ, as given by (3.10), is small, we can expand
the denominators in both formulas into series, and re-
strict our attention to the leading terms. The two re-
sults then become identical. Moreover, the dispersion
of q and A is usually small, and their average values
q0 and Ao can be taken outside the integral sign:

% « Xl, + (7(Ax,,)2 x.,, y.» = j y.uf (A) AA. (3.33)

Hence, it is clear that it is the integrated nuclear
susceptibility χ7 * n a t appears in the case of the weak
nuclear signal both at ENMR and well away from this
resonance. If the inhomogeneous broadening of the
NMR is small in comparison with the homogeneous
broadening, x7 is not very different from χη. When the
opposite inequality is satisfied, the integrated nuclear
susceptibility is wholly determined by the form of f(A).
For example, for alloys, the function f{A) can be a
multimode function whose every peak corresponds to a
specific atomic species or to the positions of the atoms
in the crystal lattice. If we compare (3.33) with (3.12),
it is clear that this entire complicated NMR spectrum
should be seen in both ENMR planes: It should be seen
as the inverted and multiply amplified χ"( ω) signal
along the frequency ax^s and as a shift of the resonance
field, proportional to χ'(ω), along the field axis.

So far, we have confined our attention to the inhomo-
geneity of the hyperfine field acting on nuclei. This,
however, is not the only type of spatial inhomogeneity
that can manifest itself in NMR. Thus, the inhomo-
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geneity of the anisotropy field leads to an inhomogeneity
in the amplification coefficient η. Naturally, when the
conditions for EN MR are satisfied, there are new chan-
nels along which the parameters of the electron mag-
netic system affect the NMR spectrum. This question
is only beginning to be investigated. The effect of spa-
tial fluctuations in the anisotropy field on ENMR was
investigated in Ref. 25. Such inhomogeneities are
known to broaden the FMR line. It turns out that, in
the first approximation, these inhomogeneities can also
be seen in ENMR as an increase in the effective value
of Γ,. Consequently, the NMR amplification coefficient
Κ in (3.16), which is proportional to l/r2,, can be sub-
stantially reduced by inhomogeneities in the anisotropy
field. On the other hand, the shift of the FMR line,
which is proportional to χ'η, has only an indirect effect
on the increase in Γ, (the resonance line is broader,
so that the shut in the resonance field is less accu-
rately determined). It follows that, under the condi-
tions of strong inhomogeneity of the anisotropy field,
the ENMR signal may turn out to be a more sensitive
phenomenon along the magnetic field axis (FMR shift)
than along the frequency axis.

E. Experiment

Experimental work in the NMR-FMR overlap region
has been carried out on thin metal films containing co-
balt nuclei. The specimens were ferromagnetic poly-
crystals with weak induced uniaxial anisotropy in the
plane of the film (i/k~ 10-40 Oe). Such polycrystalline
films are usually produced by thermal evaporation in
vacuum onto glass or other substrates. The film thick-
ness was -10"5 cm, their diameter was ~1 cm, and the
magnetization was ~1 000 G. The experiments were
performed with both pure cobalt films and alloys of co-
balt with iron and nickel. The FMR frequency was re-
duced to the NMR frequency by an external magnetic
field perpendicular to the anisotropy axis [see Eq.
(3.18)]. The first attempt to detect effects due to the
FMR-NMR overlap was undertaken in I960.29 Theo-
retical papers1 0·1 1 have considered the behavior of the
natural frequencies of the system in the neighborhood
of the ω., ωη crossing point, and have stimulated fur-
ther attempts. The first successful experiment was
reported in 197130 and was concerned with FMR along
the field axis at different fixed frequencies. The graph
of the resonance field Ho as a function of frequency (Fig.
6) shows a break in the region where ω. and ωη become
equal. When the radiofrequency field is increased by a
factor of ten, the curve straightens out and the nuclear

WO ZOO 300
<->/Zn, MHz

FIG. 6. Measured dependence of the FMR resonance field i/0

on frequency ω.30 The experiment was performed on a film
containing 40% cobalt. FMR was observed by varying the field
at fixed frequencies ω.
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FIG. 7. Experimental graphs obtained at room temperature
for an Fel4Ni60Co26 film with a complex NMR spectrum31:
a— ENMR line (Δ= 1%; broken curve represents FMR maxi-
mum in absence of the nuclear system); b—graph of G(co)
= A2Xe(o>e/2re)X''(u) obtained from curve a (broken line-NMR
spectrum of Co , recorded by the spin echo method with
signal/noise ratio = 10; ordinate scale is the same as for the
G (ω) graph). Here and below the figure captions contain an
indication of the relative measurement error Δ.

magnetization saturation effect decouples the nuclear
system from the electron system. It was concluded30

that this experiment yielded the natural frequencies of
the system modified by relaxation, i.e., curve 3 of Fig.
5. The experiment stimulated further theoretical work13

in which the frequencies of electron-nuclear oscillations
were investigated for the first time with allowance for
damping. Qualitatively, the shape of the ω'(Η) curve
for electron-like oscillations turned out to be close to
that shown in Fig. 6, but the observed FMR shift dif-
fered from the theoretical prediction by an order of
magnitude. The reason for this discrepancy remained
unclear until it was shown25 that the function //0(ω)
plotted along the field axis described x̂  (curve 1 in
Fig. 5) and had no relation to the ω'{Η) curve.

ENMR was demonstrated experimentally for the first
time in 197531 along the frequency axis, soon after it
was predicted theoretically.23 The solid curve in Fig.
7a shows the ENMR spectrum recorded for an
Fel4Ni60Co26 film at room temperature. The broken
curve in Fig. 7a is the top of the FMR line in the ab-
sence of the nuclear signal. The NMR signal amplified
by FMR should be measured from this curve in the
downward direction. Since the NMR spectrum of this
film is relatively broad, analysis of the ENMR signal
must take into account the variation in the amplification
coefficient η, given by (3.14), across the FMR line.
The susceptibility χ£ of the nuclear system deduced
from Fig. 7a is shown in Fig. 7b (solid line). The
broken line in this figure shows (on an arbitrary scale)
the NMR signal recorded for the same film by the spin
echo method well away from the region of overlap of
the resonance frequencies. It is clear that the spectrum
structure is very similar. Figure 8 shows similar
measurements and analyses of the ENMR signal at liq-
uid nitrogen temperatures.3 2 As can be seen, there is
a sharp rise in the nuclear susceptibility: the NMR
signal now amounts to 20% of the FMR signal. The ad-
ditional amplification Κ of the nuclear signal in ENMR,
compared with the signal observed without the imposi-
tion of the external magnetic field, as given by (3.16),
was found to reach if = 300 at liquid nitrogen tempera-
tures. The substantial amplification of the signal in
ENMR has suggested31·32 the use of very simple equip-
ment, i.e., slightly modernized standard Q -meters
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FIG. 8. Experimental graphs for Fel4Ni60Co26 film at liquid
nitrogen temperatures82: a—ENMH line (Δ= 3%); b—graph of
G (ω) and the NMR spectrum of Co59 with signal/noise ratio =
20. Notation the same as in Fig. 7.

(type E9-5).

Recently, ENMR has also been investigated experi-
mentally25 along both the frequency and the field axes.
The observations were performed with a combined ap-
paratus (Fig. 9) capable of measuring active losses in
the specimen and observing the spin echo. The spin-
echo signal from the probe D was amplified in the re-
ceiving channel R and was recorded by the oscillo-
graph CRO. A continuous oscillator Oc was connected
to the probe used to record ENMR. In the case of the
experiments along the frequency axis, the absorption
of energy P1 in the specimen at overlap (ωβ= ωα and
H-i-h) was compared with the absorption Po in a strong
field ΗII h where it was practically independent of fre-
quency. The measurements were therefore expressed
in relative units: Ρ{ω) = Ρ1(ω)/ρ0. Figure 10 shows the
experimental graphs for the specimen with a single-
peak NMR spectrum. It is clear that the χ^(ω) and
χ '̂(ω) curves are in satisfactory agreement with one
another. The possibility of simultaneous measurements
of χή(α>) and χζ(ω) improve the reliability of these re-
sults very considerably. Experiments have also been
performed on the same specimens at liquid helium
temperatures.3 3 The FMR signal P(H) was observed in
these experiments only at frequencies ω exceeding a
critical value. It would appear that this effect is con-
nected with the large magnitude of HA [see Eq. (3.22)].
Whenever the nuclear system was saturated, the FMR
signal was observed at any frequency.

4. TRANSIENT PROCESSES

A. Nuclear-electron relaxation and spin echo

Transient processes in the region of overlap between
the nuclear and electron resonances should be exceed-
ingly varied. If the natural frequencies of electron-
nuclear oscillations are split (ως>Γ,), the leading fea-
tures of the transient phenomena are probably deter-

r-D-,

FIG. 9. Block diagram of apparatus:25 Oc—continuous oscil-
lator; Op—pulsed oscillator; D—detector; Ca—capacitor, C-
coil containing specimen; R—receiver, CRO—oscillograph;
Μ—meter.
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FIG. 10. Experimental graphs obtained for an Fe9Ni21Co70
film with a simple single-peak NMR spectrum at liquid nitro-
gen temperatures25: a—ENMR line (Δ= 3%; broken curve re-
presents top of FMR line in absence of the nuclear system; on
the scale of the figure, the latter is practically a straight line);
b—NMR spectrum of Co59, recorded by the spin echo method
with signal/noise ratio = 20; c—FMR resonance field fl0 as a
function of frequency ω (Δ= 0.5%); broken line represents the
graph in absence of the nuclear system; d—shift of the FMR
resonance field, 6H0~x'n(u>), as a function of frequency ω.

Oc

mined by the dynamic frequency shift. One would ex-
pect that some of them would be analogous to the phe-
nomena observed well away from the overlap region
under the conditions of strong dynamic frequency
shift.e'8 If the natural frequencies overlap (ω,<Γ.),
the situation is more complicated because D = 0 at the
crossing point and the electron magnetization Μ may,
generally speaking, undergo nutation with frequency
yji under the influence of the resonant hi field h. It
is only in the limiting case where the electron relaxa-
tion parameter Γ, is much greater than all the charac-
teristic parameters representing the motion of the nu-
clear magnetization that the theoretical analysis be-
comes much simpler.15 One can then neglect transient
processes in the electron system and consider the
transient phenomena in the nuclear system separately.
The main feature of such phenomena is the sharp in-
crease in the nuclear electron relaxation which has al-
ready been mentioned in Section 2. It is clear that, if
the shift D well away from the overlap point exceeds
the NMR linewidth, the characteristic NMR time 7\
= l/r H at ω,= ωη will be the shortest relaxation time in
the nuclear system, since max I\, = 2max D. It is read-
ily shown that, if NMR provides the main contribution
to nuclear relaxation, the relaxation process will pro-
ceed with constant modulus of nuclear magnetization
| μ |. Naturally, it will not then be possible to observe

the spin echo. If we neglect transient processes in the
electron system, we can consider the nonlinear equa-
tions of motion for the nuclear magnetization, such as
those given by (1.10), just as in the case of points well
removed from the overlap region. Instead of (1.9), we
then obtain the following expression for the resonance
components of the circular projections:

m* =χβ(Λ+-Λμ+); (4.1)

where χ, is the complex electron susceptibility, i.e., in
contrast to the case where ωη « ω#, we take into account
the fact that the electron magnetization Mx lags in phase
behind the effective field acting upon it. The nonlinear
terms in (1.10) then become

Lx = —Dmu 4- Txmv,
L v = Dmv + T.Kmu,

(4.2)

i.e., we have the additional term describing NMR. We
note that the amplification coefficient for the hf field
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and the nuclear signal in pulsed experiments is given by

•η — Α Ι γ I (A 1\

i.e., it is determined by the modulus of the electron
susceptibility and rises sharply as a>,(i/) - ωη. In con-
trast to the stationary method, the phase relationships
between h, M, and μ play no role in this case. In the
absence of this high-frequency field, the equations of
motion for the nuclear magnetization (1.10), taking
(4.2) into account, will describe NER. If we neglect the
weak dependence of χβ on μ2, we can readily integrate
these equations15 and obtain

tg—ψ— = βχρ{ — TKt) tg—-: (4.4)

where 9(t) is the angle by which μ deviates from its
equilibrium position and θ0 is the initial deviation of μ.
It is clear that only the angle between Μ and μ will
vary during the NER process. We also note that, if the
NER mechanism dominates the situation, the decay of
free precession will be replaced by a radiation burst
for 0O> TT/2. It must be remembered that, when θο> ir/2,
another process is possible in principle, namely, spon-
taneous growth of nuclear-like spin waves.15'16 This
process is most probable for 0O approaching it, so that
the initial amplitude of homogeneous deviation is small.
In this situation, the frequencies of nuclear-like spin
waves are given by (2.23) provided we introduce the re-
placement μ—(-μ). It is clear that, when Γκΐ£>Γη, the
nuclear-like wave will grow and will not be damped. If,
at the same time, Γκ]Ι> Γκ, the homogeneous transient
process will not be possibility because of the decay of
nuclear magnetization into nuclear-like spin waves.

We must now consider the case where the time for
reversible dephasing of nuclear spins due to the in-
homogeneity of the hyperfine field is less than the NER
time (1/Γ3= T3<Γκ). (This corresponds to the case of
weak nuclear signals in the stationary method.) If the
inhomogeneity of the field acting on the nuclei is
macroscopic, the specimen can be divided into quasi-
noninteracting regions, in each of which the field is
homogeneous (see Sec. 3). In each such region, the
magnetization will return to its equilibrium state 0 = 0
in a time ~Τκ. The nuclear spin echo will therefore be
observable only for time i s Tv. The situation is quite
different when the inhomogeneity of the hyperfine field
is microscopic. The nonlinear terms in (1.10) then as-
sume the form28

Lx= — DmKu
Ly = DmKv + VxmKu,

Ku=\uf(A)dA, = \ vf(A)dA.

(4.5)

In this case, the electron magnetization interacts
with the resultant field of the nuclear isochromatic
group so that nonlinear effects are "turned on" only
during the intermediate times for which the nuclear
spins are in phase and μχ*0. Consequently, NER is ef-
fective only during the short intermediate times corre-
sponding to the decay of free precession and the evolu-
tion of spin echo. In other words, microscopic in-
homogeneity suppresses NER, but this suppression has
nothing in common with the well-known34"37 suppression
of transverse relaxation T2.

In fact, Γκ does not change, and the effect is due to
the fact that the time Ai during which NER is operative
in pulsed experiments is very short: AT~ T3. The rel-
ative change in the amplitude of the nuclear spin echo
due to NER is of the order of I\,T3.

28

Β. ENMR in inverted state

Let us now consider quasistationary transient proc-
esses. Suppose that, at the initial time i = 0, the nu-
clear magnetization is in the inverted state μ,. = μ.
For narrow NMR lines, inversion can be produced by
a high-frequency π pulse, or, for a system with a
broad NMR spectrum, by a remagnetizing pulse ap-
plied to the electron system.16'38 When i>0, the nu-
clear magnetization relaxes slowly with characteristic
time 7\:

μζ = μ(2β-"τ-,_1). (4.6)

If, at the same time, a sufficiently weak high-frequency
field is applied to the system, the transverse compo-
nent of μ will "rock" only slightly, and the longitudinal
component will, as before, relax in accordance with
(4.6). In magnetically unordered systems in the in-
verted state, the energy of the hf field will be amplified
rather than absorbed. Such effects have already been
observed experimentally (see, for example, Refs. 39
and 40). The well-known first experiment in this
field39 recorded stimulated coherent emission. In mag-
netic materials, the situation is complicated by the
fact that NMR is always observed against the back-
ground of nonresonant electron absorption. Moreover,
as already noted, NMR is itself in fact an electron sig-
nal induced by the nuclear system. Theoretical calcu-
lations41 have shown that the amplification of the en-
ergy of the resonance hf field by the inverted nuclear
system of a ferromagnet well away from the NMR-FMR
overlap region is possible only when the additional con-
dition ω^/4Γ,Γη> 1 is satisfied. When this is so, the
NMR amplitude will exceed nonresonant electron
absorption.

When the NMR and FMR frequencies are equal,
quasistationary transient processes can be observed
only when nuclear-like oscillations (and nuclear-like
spin waves) are damped in the inverted state (μ, = μ) in
a time much shorter than the longitudinal relaxation
time:

•, - „ 1 (Α η\

If the natural oscillations of μί are damped, the quasi-
stationary process in the overlap region will occur as
for ω η « ω,: the projection μ, of nuclear magnetization
will relax with characteristic time Tit and μί will
"rock" slightly under the influence of the weak hf field.
The ENMR line in the inverted state has the inverted
shape as compared with the normal state: a narrow
peak representing the additional nuclear absorption
(shown broken in Fig. 11) appears against the back-
ground of the broad electron resonance maximum. As
μ, relaxes, the amplitude of this peak decreases, and
the peak vanishes altogether when μ,= 0. The inverted
signal then appears and gradually approaches its sta-
tionary level (solid curve in Fig. 11). We note that,

54 Sov. Phys. Usp. 24(1), Jan. 1981 V. A. Ignatchenko and V. P. Tsifrinovich 54



ιι
/!

FIG. 11. ENMR spectrum in the
normal state (solid curve) and
in the inverted state (broken
curve).
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when the inhomogeneity of the hyperfine field is micro-
scopic, the sufficient condition for the realization of
the quasistationary process is T3« 7\, since the dy-
namic hyperfine interaction will be effective only dur-
ing the time ~T3.

Let us now consider one further interesting situation.
As already noted in Sec. 2, the minimum frequency of
the electron spin wave, ω^'", may turn out be lower
(or even much lower) than the frequency ω, of the
homogeneous resonance. It follows that the frequencies
of an entire group of electron spin waves can be made
equal to the Ν MR frequency by applying a suitable
magnetic field Η and, at the same time, ensuring that
ω η « ω,(Η). If, in this situation, the nuclear magneti-
zation is inverted (μ,= μ), we have the possibility of
spontaneous growth of nuclear-like spin waves. The
theoretical analysis reported in Ref. 42 appears to be
applicable to this situation if we suppose that the main
contribution to the relaxation of the ζ component of nu-
clear magnetization is due to one-magnon processes:
inversion of the nuclear spin is accompanied by the
creation of a resonance magnon with ωβ ι= ωη. It turns
out that this may give rise to the "magnon bottleneck:"
the energy of the excited nuclear spins is transferred
to the system of resonance magnons with other degrees
of freedom. The system of resonance magnons is
therefore overheated, and becomes essentially a non-
equilibrium system. The necessary condition for this
bottleneck is that σ » 1, where σ is the dimensionless
bottleneck parameter. To within a factor of νΊΓ, the
parameter σ for ferro- and antiferromagnets is given
by the same expression42: σ= (ϋ/Γ*)(ωβ/ΓΛ), where
r e k is the damping parameter for the resonance mag-
nons and Γ* is the effective NMR line half-width. When
D«r*, but ci)e»re l (and σ » 1 , the dynamic frequency
shift is practically zero, and the main features of
transient processes may be connected with the magnon
bottleneck. When the bottleneck occurs for μ^>0, the
rate of relaxation of μ, will be initially greater than for
μζ<0, and this will, of course, have an effect on pulsed
experiments. Similar effects have already been ob-
served in electron-type paramagnetics under the condi-
tions of the phonon bottleneck.43

C. Experiment

We must now examine the results of experimental
studies of transient processes in the region of the ωβ,
ωη overlap. Pulsed experiments have been performed
with the same specimens and under the same conditions
as in stationary experiments. The nuclear spin echo
was reliably observed in the NMR, FMR overlap region
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FIG. 12. Experimental graphs obtained for the specimen shown
in Fig. 10l s: a—spin echo amplitude.^ as a function of external
magnetic field if with signal/noise ratio not less than 10; b—
ί-j and .L2

 a s functions of Η(Δ= 5%).

and the delay time between pulses was usually much
greater than the characteristic NER time Tn. This
means that the inhomogeneity of the hyperfine field in
these specimens was microscopic. The spin-echo am-
plitude always rises sharply as ωβ— ωη (Fig. 12a).
Hence, it is clear that, when pulsed methods are em-
ployed, weak nuclear signals are again more conven-
iently investigated in the NMR, FMR overlap region. It
has been shown44 that, in the overlap region, the am-
plitude of the three-pulse stimulated echo, Α'β

%, de-
creases with increasing delay τ 23 between the second
and third pulses two or three times more rapidly than
well away from the overlap region. [When ω η « ωβ(/ί),
the function Α°'(τ23) is determined by 7\.] It has been
suggested that this effect could be used in radioengin-
eering.45 Figure 12b shows graphs obtained by the two-
pulse echo method25 with the same specimen as in Fig.
10. The dependence of the echo amplitude A, on the de-
lay time τ is approximately represented by an expo-
nential with characteristic time L2 (L2= T2 for ωη« ωβ).
Figure 12b shows that there is a substantial reduction
in L2 in the overlap region. Other experiments have
also been performed with this specimen. A preliminary
pulse was used to excite the nuclear system, and then
the usual spin-echo program was turned on after a time
το· The dependence of the echo amplitude on τ 0 was
again represented approximately by an exponential with
a characteristic time L1 (L1 = 7\ for ωη « ωβ). It is
interesting that the relative changes in Lx and L2 in the
overlap regions are the same although the absolute
magnitude of Ly is greater by an order of magnitude
than that of L2. It has been suggested25 that the reduc-
tion in Ll and L2 in the overlap region is connected with
the NER mechanism.

The first report of an experimental demonstration of
the nuclear spin echo in the NMR, FMR overlap region
at helium temperatures has recently been published.33

CONCLUSIONS

It is clear from our brief review that the region of
overlap between the nuclear and electron resonances
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is no longer an exotic speculation indulged in by theo-
retical physicists. The discovery of new phenomena
such as EN MR and the FMR shift that is proportional
to the real part of the nuclear susceptibility, which
have been confirmed experimentally, shows that this
new branch of the science of magnetic resonance has
very attractive possibilities. Experiments performed
in the region in which the resonances overlap will help
the development of research into the properties of other
physical systems and will open up new possibilities for
the spectroscopy of magnetic materials. The strong
dependence of the nature of the transient processes in
the NMR, FMR overlap region on the inhomogeneity
correlation length can be used to investigate the prop-
erties of new promising amorphous magnetic materials.
Effects such as amplification of the nuclear spin-echo
signal, acceleration of relaxation, and ENMR are very
likely to find applications in high-frequency devices.
It is important to note, however, that, so far, the ex-
periments have been confined to polycrystalline co-
balt-permalloy films and, as a rule, nitrogen or room
temperatures, i.e., conditions corresponding to a
"weak" nuclear signal. Nonlinear effects (including
NER), saturation effects, and quasistationary proces-
ses remain practically uninvestigated. Experimental
difficulties are connected, in the first instance, with
the necessity for lowering the electron resonance fre-
quency down to the NMR value in such a way that a do-
main structure does not appear. However, the value
of the information that can be extracted from experi-
ments in the region of strong ineraction between FMR
and NMR should serve as a stimulus for efforts to
overcome these difficulties.
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