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This review analyzes current ideas on the electrical conductivity and galvanomagnetic properties of normal

pure metals, in which relaxation processes are governed entirely by collisions of electrons with phonons.

Attention is concentrated on a group of closely related topics: the diffusive nature of electron motion on the

Fermi surface at low temperatures, mutual influence of the normal collisions and of the umklapp processes,

and dependence of the relaxation mechanisms on the topological properties of the Fermi surface. The analysis

is based on the diffusion equation method which makes it possible to treat in a unified manner all the topics

under discussion and to formulate the results in terms of specific physical mechanisms.
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1. INTRODUCTION

Enormous material is now available on the low-tem-
perature electrical conductivity of metals. This is true
both of the experimental data and of the relevant theo-
retical representations. The present review does not
in any way attempt to analyze and classify all this enor-
mous amount of information. We shall consider only
the conductivity of typical pure normal metals, in which
relaxation processes are entirely due to collisions of
electrons with phonons. We shall base the presenta-
tion on a certain group of closely related topics: the
small-angle nature of electron scattering at low tem-
peratures, mutual influence of the normal and umklapp
processes, and dependence of the relaxation mechan-
isms on the topological properties of the Fermi sur-
face. Our main aim will be to achieve basic clarity in
topics of this kind and to discuss various physical con-
sequences. Preference will be given to simple models
which make it possible to consider analytically the qual-
itative aspect of the problem as compared with numer-
ical calculations based on more specific data. No at-
tempt will be made to give a description of the experi-
mental situation in any degree of detail and experimen-
tal results will be quoted only to illustrate theoretical
conclusions. The treatment will be based on the auth-
ors ' diffusion equation method which makes it possible,
in the authors' opinion, to elucidate in a unified man-
ner the topics under discussion and to formulate the
results in terms of specific physical mechanisms.

Some of the results obtained in connection with this
review are published for the first time. This applies
particularly to the applications and to the galvanomag-
netic properties of metals with a two-dimensional net-
work of open orbits.

a) Qualitative considerations

The modern theory of the electrical conductivity of
metals was founded in the early thirties mainly by Bloch
and Peierls . u 2 Calculations of the electrical conducti-
vity carried out during this period were based on very
rough representations of the spectra of electrons and
phonons, and of the interaction between them. How-
ever, the qualitative ideas of Peierls, which are ex-
tremely clear and complete, have been found very
fruitful in the further development of the theory.

An analysis of the transport equation enabled Bloch
to show that the electrical resistivity of a metal asso-
ciated with the electron-phonon interaction is propor-
tional to the fifth power of the absolute temperature:

ρ ~ Ί\ 0, (i.D

where θ is the Debye temperature. Bloch used the
simplest model of free electrons interacting with lon-
gitudinal phonons, whose dispersion law is linear and
isotropic, and he assumed that phonons are described
by the equilibrium Bose distribution function.

The result (1.1) is easily understood on the basis of
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the following considerations. Although at low tempera-
tures the density of phonons is proportional to T3, the
number of phonons capable of scattering a given elec-
tron with a momentum ρ is limited by the laws of con-
servation of energy and momentum ε,*,- ε ρ =±ω 4 and,
therefore, it is proportional to Τ2 (ε, and ω, are the
electron and phonon energies). Moreover, the square
of the matrix element of the electron-phonon interac-
tion is proportional to the phonon momentum q » T/s (s
is the velocity of sound). Therefore, the mean free
time of electrons colliding with phonons is T'OC T ' 3 .
Moreover, we must bear in mind that a single collision
alters the electron momentum only slightly and is
therefore not very effective. Collisions with phonons
cause an electron to wander at random over the Fermi
surface in steps of q at intervals of τ ' . An electric
field shifts the electron distribution in the ρ space in
the direction of the vector eE. Equilibrium is estab-
lished by the diffusion of an electron over a distance of
the order of the characteristic dimension of the Fermi
surface pg , so that the transport relaxation time is
Tb.

ar'(pT/q)z. Consequently, the electrical resistivity
obeys p<* ( T ^ O C T5.

It is clear from the above discussion that the result
(1.1) is not conditional on Bloch's very simple assump-
tions on the spectra of electrons and phonons: it is
sufficient that the thermal momentum of phonons is
small compared with all the characteristic dimensions
of the Fermi surface. The second assumption of Bloch
that the phonon distribution is in equilibrium is of fun-
damental importance. If we do not make this assump-
tion and confine our attention to normal collisions which
conserve the total quasimomentum, we find that the
electrical resistivity vanishes. This becomes obvious
if we note that in the presence of just normal colli-
sions the electron-phonon system is in a state of in-
ternal equilibrium and can move as a whole at an arbi-
trary velocity. This makes possible a constant (non-
decaying) electric current in the absence of an external
field.

Peierls demonstrated that the equilibrium of the pho-
non system can be ensured by phonon-phonon collisions
accompanied by spin flipping. However, cooling re-
duces exponentially the probability of these umklapp
({/) processes: the collision frequency obeys (τ^)"1

= v^oz exp(- γθ/τ), where γ is a numerical coefficient
of the order of unity (2γθ is equal to the smallest val-
ue of the sum of energies of all three colliding phonons
calculated subject to the laws of conservation of energy
and quasimomentum). Moreover, short-wavelength
phonons participating in the umklapp processes are
most likely to transfer momentum not to thermal pho-
nons but directly to electrons.

It is thus difficult to justify the assumption of phonon
equilibrium. In any case, it is obvious that for each
metal there is a certain characteristic temperature
below which the U processes can no longer ensure this
phonon equilibrium. A comparison with the experimen-
tal data on the thermal conductivity of insulators (see,
for example, Ref. 3) shows that this should occur over
a fairly wide range of low temperatures, for example,
Τ/Θ < 1/10.

The degree of coupling of phonons to electrons is
governed by the frequency of phonon-electron colli-
sions υ^,α Τ. [The order of magnitude of the corre-
sponding mean free path is l,t(T) ~Ιη{θ)θ/τ, where
1<*{β) «ΙΟ^-ΙΟ"* cm is the mean free path of an electron
at the Debye temperature.] On the other hand, the fre-
quency of the normal phonon-phonon collisions is v1^
α Ί6 and the frequency of the scattering of phonons by
microscopic lattice defects is vrl« Γ*. Therefore, at
sufficiently low temperatures the inequalities v^ » νζ9,
vrl, v^ shouldbe satisfied. This means that the phonon
system is tightly coupled to the electron system, i. e.,
phonons are dragged completely by electrons.

At sufficiently low temperatures when the phonon-
phonon U processes can be ignored, the electrical re-
sistivity is governed by the umklapp processes involv-
ing collisions of electrons with phonons. Hence, it
follows directly that there is a considerable difference
between the behavior of the lattice resistivity at T —0
for metals with closed and open Fermi surfaces. If
the Fermi surface is closed and the number of elec-
trons is not equal to the number of holes, the electri-
cal conductivity should increase exponentially as a re-
sult of cooling. In fact, the umklapp process requires
a phonon with a momentum exceeding the minimum
separation Δ,ρ between closed electron or hole groups.
If the thermal momentum of phonons is less than Ap,
the number of such phonons is proportional to
exp(-&ps/T).

According to Peierls, the situation is different in the
case of metals with open Fermi surfaces. In this case
the Bloch law p°c T5 should be obyed at arbitrarily low
temperatures because the umklapp processes in the
collisions of electrons with phonons are possible no
matter how small is the phonon momentum. The re-
sistivity of a compensated metal depends in a similar
way on temperature: the total quasi-momentum sup-
plied by an electric field is then zero and the role of
phonons reduces to the exchange of momentum between
the electron and hole subsystems via the normal colli-
sions.

Following Peierls, we shall consider in greater de-
tail the mechanism of quasimomentum relaxation in an
electron-phonon system in the presence of the umklapp
processes. By way of example, we shall consider a
Fermi surface of the corrugated cylinder type (Fig. 1).

FIG, 1. Two diffusion paths on an open Fermi surface. The
dashed curve represents the Fermi surface shifted by an elec-
tric field.
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If we consider only the normal collisions, i .e . , the
type a processes, the total momentum of phonons in the
direction of the electric field will increase indefinitely
with time. Therefore, under steady-state conditions
about half the nonequilibrium electrons should follow
type b trajectories which involve the umklapp process-
es. (The absorbed phonon momentum is clearly equal
to the vector directed from the point of creation of a
nonequilibrium electron to the point of its disappear-
ance in the extended ρ space.) If the process of one of
these types is for some reason hindered, the electrical
conductivity is then governed by this process. Clearly,
these considerations are applicable also to closed
Fermi surfaces except that the type b trajectories now
include not only diffusion sections but also "jumps" be-
tween the electron or hole groups.

Naturally, these considerations apply only to suffi-
ciently "perfect" metal samples in which the phonon
scattering mechanism predominates right down to very
low temperatures. The relevant restrictions on the
concentration of lattice defects depend strongly on the
experimental situation and can easily be formulated in
each specific case (see Footnote 7).

b) Transport equation

We shall use the transport equations describing a
system of interacting electrons and phonons in an ex-
ternal electric field

? ? ? . Φ,} = * Ε ^ , (1.2)

XP} = 0, (1.3)

k, q P

Κ - 2π ι;"" - Τ *l

,k = e p - e k , B,

^

pkq ;

, k+q+g!

(1.4)

here, Brltl is the matrix element of the electron-phonon
interaction; the δ symbol expresses the law of conser-
vation of quasimomentum to within the reciprocal lat-
tice vector g (since |qg| <g2, then for each pair of
states ρ and k in the sum over g only one term remains
and this corresponds to g equal to zero or to one of the
minimum reciprocal lattice vectors). The nonequili-
brium corrections to the electron and phonon distribu-
tion functions are represented by -xpdn,/dE, and -Φ,άΛ ,̂/
άων where nv and JV, are the nonequilibrium Fermi and
Bose distribution functions.

We shall now point out some of the properties of Eqs.
(1.2) and (1.3), which are consequences of the law of
conservation of quasimomentum.

If for any reason there are no umklapp processes, a
homogeneous system of transport equations has the
solution

χρ = up, Φ, = Uq, (1.5)

which describes the simultaneous drift of electrons and
phonons at an arbitrary velocity u.

In the general case, it follows from Eqs. (1.2) and
(1.3) that

ΣΦ4^)ρ· ft·»)

The left-hand side of this equation represents the rate
of change of the total quasimomentum of the system as
a result of the umklapp processes, whereas the right-
hand side represents the effects of an electric field.

In the case of a metal with a closed Fermi surface,
we have

(1.7)

where η, and nk are the electron and hole densities.

In the case of an open Fermi surface, we can easily
show that

(1.8)

Here, V is understood to represent (depending on the
convenience in a given case) either the volume of the
cell occupied by electrons or the electron-free "hole"
volume. The charge e* has different signs depending
on the case. The absolute value of the vector Sg is
equal to the area of contact between the volume V and
the cell boundary and is directed along the external
normal to the boundary; g is the reciprocal lattice
vector corresponding to this boundary. If the Fermi
surface consists of several sheets and some of them
are closed, the volumes of the electron and hole groups
should be included with the appropriate signs in V.

The fundamental role of the umklapp processes in
the electrical conductivity of metals with open and
closed (but with ne *nh) Fermi surfaces follows from
Eqs. (1.6)-(1.8). When we consider the umklapp pro-
cesses, we must bear in mind that the difference be-
tween them and the normal processes is largely arbi-
trary. As is known, the selection of the unit cell in
the momentum space is arbitrary all that is necessary
is that it should include all the nonequivalent states
(but not more than once). Clearly, when the unit cell
is selected suitably, a transition between any fixed
states ρ and k can be described by a normal or an um-
klapp process.

This allows us to formulate the general conclusion
that the electrical resistivity differs from zero if the
umklapp processes cannot be removed by any selection
of the unit cell. We can easily show that this is equi-
valent to the following requirement: under the action
of collisions with phonons at least some of the elec-
trons should escape to infinity in the extended ρ space
and, if this escape to infinity is impossible along cer-
tain directions, then the electric field Ε should be per-
pendicular to these directions. With the exception of
compensated metals and the special case of an exactly
cylindrical Fermi surface (see Appendix Π), this condi-
tion is both necessary and sufficient. If the infinite
trajectories mentioned above include "jumps" over
finite distances, the asymptotic behavior of the resis-
tivity in the limit T~0 is exponential; otherwise, the
Bloch law pec 1* applies.

We shall conclude this section by considering briefly
the role of the umklapp processes in heat conduction
in metals with closed Fermi surfaces. The quasimo-
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mentum balance condition then becomes

(1.9)
where E'=E - βΛ{Ζμ/ΐιΤ)νΤ and μ is the chemical
potential.

We can easily see that the role of the umklapp pro-
cesses in heat conduction in compensated and uncom-
pensated metals is in a sense opposite to that found in
electrical conduction.

In fact, if n, =nh, the balance condition (1.9) clearly
cannot be satisfied without allowance for the umklapp
processes. This is due to the fact that simultaneous
drift of electrons and phonons is accompanied by heat
transfer in zero electric field because j = e{nf - n,)u.
Consequently, the thermal conductivity increases ex-
ponentially as a result of cooling." However, the
thermoelectric field Ε deduced from the condition j = 0
varies with temperature in accordance with a power
law.

If η^*ηλ, then the balance condition (1.9) does not re-
quire allowance for the umklapp processes. In this
case we find from Eq. (1.9) that, to within terms which
are exponentially small in the limit Γ—0, the thermo-
electric field is given by

e E ' = [a-L + P (i) 3 ]v2\ (1.10)

where a and β are numerical coefficients of the order
of unity. It is important to note that the thermo-emf is
then not related to the requirement that the electric
field should vanish. The latter condition makes it pos-
sible to determine the arbitrary vector u in the solu-
tion (1.5) of the homogeneous system of transport
equations considered above, [if nt,= nh, when the um-
klapp processes have to be allowed for, the solution
(1.5) does not apply.] Naturally, the thermal conduc-
tivity depends on temperature as a power law.

2. DIFFUSION EQUATION

The majority of calculations of the electrical conduc-
tivity of metals have been based on the variational
principle applied to the transport equation (see, for
example, Ref. 4). The main problem which is en-
countered in the application of this method is the selec-
tion of the trial functions describing the electron and
phonon distributions. It is usual to employ the simplest
drift functions of the (1.5) type with generally different
values of the velocity u for electrons and phonons. It
is difficult to control the precision of the drift approxi-
mation. In some cases it overestimates greatly the
contribution of the umklapp processes to the electrical
resistivity. This is evident most clearly in the case
of an open Fermi surface since the function x,,=u*p
does not satisfy the condition of periodicity in ρ space.

Recently, Kagan, Zhernov, and Flerov carried out
a series of investigations5"7 in which they went beyond

" We can show that this dependence should appear at lower
temperatures than in the electrical conductivity of an un-
compensated metal.

the framework of the standard "one-momentum" ap-
proximation: the trial function for electrons was selec-
ted in the form of an angular polynomial subject to re-
strictions imposed by the symmetry of a crystal. This
made it possible to satisfy the condition of periodicity
in the case of open Fermi surfaces and to allow for
the anisotropy of the distribution function in the case
of closed Fermi surfaces.

Our analysis is based on a fundamentally different
(diffusion) approach and it makes consistent use of the
principal physical feature of the electron-phonon scat-
tering at low temperatures, which is its small-angle
nature. Bethe and Sommerfeld pointed out many years
ago8 that it is possible to expand the transport equation
in terms of the small parameter q/pT. Klements and
Jackson9 used physical considerations to derive an
equation describing the diffusion of electrons on the
Fermi surface in the case of the simplest model (the
dispersion laws of electrons and phonons were assumed
to be isotropic, and phonons were assumed to be in
equilibrium).

a) Low-temperature expansion

In going over to the calculations, we note that the
transport equation (1,3) can be solved for the phonon
distribution function Φ,. Substituting this expression
in Eq. (1.2), we obtain a very complex integral equa-
tion for the electron function χρ which cannot be investi-
gated in its general form. The problem simplifies
greatly at sufficiently low temperatures when the pho-
non momentum q ~ T/s is small compared with all the
characteristic dimensions of the Fermi surface. We
can show that under these conditions the required func-
tion x9 is largely independent of the energy (see Appen-
dix I) and on the constant-energy surface it varies sig-
nificantly only over distances comparable with the
characteristic dimension of this surface .2) Therefore,
χρ-, and other continuous functions of the quasi-mo-
mentum occurring in the collision integral can be ex-
panded as series in powers of q, and the nonzero re-
sult is obtained only in the approximation quadratic
with respect to q. However, such calculations are
very cumbersome and their results cannot be presented
in a clear manner.

It is much more convenient to derive the diffusion
equation by making an assumption which immediately
yields a compact expression for the collision integral.
This can be done by summing Eq. (1.2) over a certain
region Vo in the ρ space. Let us assume that this re-
gion includes a part of the Fermi surface whose di-

' 2 ' The energy equilibrium is established rapidly—as a result
of a single collision with a thermal phonon—whereas com-
plete relaxation requires a large number of collisions need-
ed to displace an electron over the whole Fermi surface (we
shall return to this topic in Sec. 3). All this applies to re-
laxation under the influence of an electric field which—in the
principal approximation with respect to the parameter Τ/μ —
does not alter the electron energy distribution. In the pres-
ence of a temperature gradient the function Xp is energy-
dependent, which has a considerable influence on the
nature of the diffusion equation (see Appendix I).
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mensions are much greater than the thermal phonon
momentum.

Bearing in mind that ΒΛ^
transformations give

Σ /e = ( 3 - 1
PCV. pcv,. ktK.. q pctVo, i

we find that simple

(2.1)

It is important to note that in expanding this approxi-
mation in terms of q a nonzero result is obtained al-
ready in the linear approximation, whereas in the ex-
pansion of the quantity I' itself it is necessary to in-
clude second-order terms. [There is no contradiction
here because Eq. (2.1) contains an extra power of q
due to the smallness of the summation region: transi-
tions can take place only from a narrow layer near
the boundary of the region Fo.] This is the advantage
of the proposed method.

We shall divide the collision integral into two parts

where /*" is the integral describing collisions with
equilibrium phonons [i.e., without Φτ, in Eq. (1.4) for
r*pk« ] > ar>d / " describes the interaction between elec-
trons via phonons.

We shall now consider the sum Σ//**. We note that
in the first order in q the difference χ ρ - &, where k
= Ρ - Q - g, can be written in the form xp - χ* = q3xP /3p
for any value of g (we recall that χρ is a periodic and
continuous function of the quasimomentum and its peri-
od is g). All the other calculations can be carried out
in the lowest nonvanishing approximation with respect
to q. In particular, the matrix element of the interac-
tion can be written in the form

and since the Hamiltonian is Hermitian, we have Mt(- e)
= Mp(e).

The results of calculations can be represented in the
form

Integration is carried out here only along the line of
intersection of the Fermi surface with the boundary of
the region Vo and the vector dl is directed along the
outer normal to this line, which lies in a plane tan-
gential to the Fermi surface. The operator V repre-
sents a two-dimensional operation applied to the tan-
gential plane: V=pg/ap. When quadratic differential
operations are carried out, it must be remembered
that the projection operator Ρ is a function of the mo-
mentum.

The diffusion tensor is then of the form

(2.2)

where the angle φ is measured in the plane tangential
to the Fermi surface [with accuracy to within quantities
of the order of q/pv and s/v, the unit vector e(<p) lies
in this plane].

Application of Gauss's theorem gives

Σ ieP = ~W J d i v(A>VXp)d"Sp.
PCK, v,

where integration is carried out over the part of the
Fermi surface included in the region Fo and divA = V{A{.

Similarly, we obtain

Σ /e p e=—|rjdiy(upap)d5p,

where

(μ)η ,

(2.3)

(2.4)

α(μ)=

Integration in Eq. (2.3) is over the whole Fermi sur-
face; np = vp/i>p; μ is the unit vector defined by [np

χ np. ] ; A,(e) is the "partial" diffusion coefficient defined
by the relationships

Dp (e) Op" (e) = D, (e) e'e».

Thus, all the terms of the transport equation (1.2)
integrated over the region 70 can be represented in the
form of integrals over the part of the Fermi surface in-
cluded in this region (this transformation is self-evi-
dent for the field term eE9np/3p), Bearing in mind that
the region Vo is chosen in an arbitrary manner, we ob-
tain the required diffusion equation

div Dp (V/p — a p ) = — i?Enp, (2.5)

where the quantities Dt and a, are given by Eqs. (2.2)
and (2.3).

It should be noted that D, in Eq. (2.5) does not have
the usual dimensions p2/t of a diffusion coefficient:
[Dv]=p2/vt. This is due to the fact that the density of
nonequilibrium electrons on the Fermi surface is pro-
portional to wp *Xp> whereas the diffusion flux is propor-
tional to VXp.

b) Analysis of the diffusion equation. Allowance for the
umklapp processes

Equation (2.5) describes the diffusion of electrons on
the Fermi surface in the presence of an electric field,
which determines the density of sources and sinks.
This equation is integrodifferential and the integral
term ap is associated with the phonon drag. This is
easy to understand. The emission of a phonon by some
electron has two consequences: firstly, this electron
is displaced on the Fermi surface by an amount equal
to the phonon momentum and, secondly, the momen-
tum of the second electron which has absorbed the emit-
ted phonon also changes.

2) Open Fermi surfaces. In the diffusion approxima-
tion the phonon momentum should be regarded as infi-
nitesimally small. Therefore, in the case of an open
Fermi surface the umklapp processes are allowed for
fully by the imposition of periodic boundary conditions
on the function χρ:

Xp+q = X|>· VXp+, = VXp, (2.6)
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i.e., the function χρ and its first derivatives should be
matched at the equivalent zone faces.

In the subsequent analysis it is convenient to write
Eq. (2.5) in the form of a purely integral equation de-
scribing a certain vector function ^χ (the index ρ will
be omitted in all those cases when confusion is unlikely):

Vx—a = O-'t, (2.7)

where the flux φ satisfies the differential equation

div ψ = - eEn. (2.8)

The homogeneous equation corresponding to Eq. (2.7)
has the nontrivial solution Vx=Vup = uM, where uM is the
component of the drift velocity u parallel to the Fermi
surface. It is shown in Appendix II that this solution
is the only one if we ignore the case of an exactly cylin-
drical Fermi surface."

The integral kernel .A in Eq. (2.7) is not symmetric
but the product t)A is symmetric [see Eq. (2.4)]. It
follows that the transposed homogeneous equation has
just one solution ^χ = ΛιΜ = Da and, therefore, the con-
dition of solubility of Eq. (2.7) is

0. (2.9)

The displacement of an electron in ρ space is equiva-
lent to a change in the quasimomentum of the phonon
system. The condition (2.9) implies that the total
quasimomentum transferred from electrons to phonons
is zero. For a Fermi surface with three nonparallel
open directions Eq. (2.9) can definitely be satisfied
since the solution of Eq. (2.8) can always be supple-
mented by some flux δψ, such that άϊνδψ = 0. In the
case of a closed Fermi surface the solution of a homo-
geneous equation with a nonzero total flux / δί/idS must
have singularities.

The relationship (2.9) allows us to obtain easily the
quasimomentum balance condition in the diffusion ap-
proximation:

4" \ g(O(VX-a), dl) = e ij p(En)dS. (2.10)

3'In the case of a cylindrical Fermi surface the diffusion
equation is insoluble. Since this result may be of interest in
investigations of the electrical conductivity of two-dimen-
sional systems, we shall consider it in greater detail. In
the case of a cylindrical Fermi surface all the phonons can
be divided into groups, each of which interacts only with
electrons located along one or several pairs of symmetric
generators. (The exception to this rule is represented by
phonons with momenta parallel to the generators of the cylin-
drical surface, because these phonons interact with all the
electrons on the Fermi surface.) Therefore, in the process
of relaxation in an external electric field the momenta of the
individual groups rise without limit with time, although the
total momentum of the phonon system may remain constant.
A steady state is clearly always achieved when an allowance
is made for collisions between phonons. Then, depending on
the relationship between the frequencies of phonon-phonon
collisions vJJ and phonon—electron collisions vtv we have
two possibilities: a) if t$v»v9t, the diffusion approximation
remains valid (see Footnote 4); b) if v^ « v,,, the rare
phonon-phonon collisions govern the electron diffusion velo-
city and this alters significantly the temperature dependence
of the electrical conductivity.

Integration is carried out along the line L of the inter-
section between the Fermi surface and the boundaries
of the unit cell; the vector g is different for different
parts of this line; the element dl is directed along the
normal to the line L in the tangential plane so that gdl

Since Eq. (2.5) does not include a term for the um-
klapp processes, it is not surprising that the corre-
sponding homogeneous equation has the drift solution
X = u· p. In other words, Eq. (2.5) is invariant under
the Galilean transformation χ = χ' - up, but the boundary
conditions of this equation are not invariant:

Xp+g —Xp = ug. V x P + g = VxP, \i. 11)

where u is an arbitrary velocity of the reference sys-
tem.

We shall now consider the following question: is
there a reference system in which the nonequilibrium
nature of phonons is of little importance, so that it is
reasonable to ignore the integral term a{Vx'} ? it is
shown in Appendix Π that a particular solution of Eq.
(2.7) can be obtained by the method of iterations over
the integral term, i.e., the general solution has the
form

(2.12)
(2.13)

where the sum C converges not slower than a certain
decreasing geometric progression. The velocity u in
Eq. (2.12) should be found from the boundary condi-
tions (2.6) (these also remove the arbitrary nature of
the selection of φ). The reference system in which the
problem can be solved by iterations over the phonon
nonequilibrium will be called the comoving reference
frame. Clearly, if the distribution of phonons is of the
drift type, then phonons should be in equilibrium in the
comoving reference system. Therefore, higher itera-
tions in Eq. (2.13) (i.e., the difference C{>} - D'ty) al-
low for the deviation of the phonon distribution from the
drift form. We shall use a specific example [see Eq.
(3.8)] to show that the corresponding "nondrift" correc-
tions to the conductivity are numerically small. The
point is this: phonons with a given momentum q inter-
act with all the electron states located along the line
q· v = 0 . Consequently, the anisotropy of the Fermi
surface usually has little effect on the phonon distribu-
tion. However, in the case of the Fermi surfaces
elongated strongly along a certain direction, the high-
er terms in an iteration series may be important.

We thus find that in the lowest—with respect to
a{Vx'} — approximation the distribution function and the
velocity of the comoving reference system can be de-
termined from Eqs. (2.8), (2.9), (2.6), and (2.12),
where we have to assume that €{Φ} = ϋ~ίφ. An equiva-
lent and more convenient (for subsequent use) is the
following system of equations4':

4)An analysis within the framework of Eqs. (2.14) and (2.15) is
asymptotically accurate under conditions such that the fre-
quent normal phonon—phonon collisions Impose the drift dis-
tribution on phonons: ^< < μρ·< < ι 'ρρ· At moderately low tem-
peratures these inequalities may be satisfied by some metals,
and particularly by semimetals.
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div

x\ dl)= -e \ p(En)dS

(2.14)

(2.15)

with the boundary conditions (2.11). The integral on
the right-hand side of Eq. (2.15) is given by the for-
mula (1.8).

It should be noted that the system of equations (2.14),
(2.15) is in a sense indeterminate. If we use the fact
that the quasimomentum balance condition (2.15) is
valid for any permissible selection of the unit cell in
ρ space, then Eq. (2.14) follows from this condition
(and not the other way round!). Thus, we can use
either the system (2.15), assuming that it is valid for
any selection of the unit cell, or the system (2.14),
(2.15) with a fixed basic region.

In the "one-dimensional" model, in which the Fermi
surface is a surface of revolution and all the quantities
depend on just one coordinate measured along the axis
of revolution, the complete solution can easily be ob-
tained. We then find that

I Vx'l = « * - * £ £ £ . (2.16)

where r is the radius of a certain section of the Fermi
surface and D is the value of the diffusion coefficient
in this section.

2) Closed Fermi surfaces. In this case the umklapp
processes (or, more exactly, jumps between connected
parts of the Fermi surface) should be allowed for ex-
plicitly in the diffusion equation (2.5). The boundary
condition (2.6) then loses its meaning because the unit
cell in ρ space can be selected so that it does not in-
tersect the Fermi surface.

First of all, we note that at sufficiently low tempera-
tures, when the characteristic umklapp time τ"
°c exp(sAp/T) as long compared with all the other re-
laxation times,5' an allowance for the umklapp process-
es presents no difficulty. They can be ignored in the
electrical conductivity of a compensated metal. If the
metal is uncompensated, the normal collisions result
in a simultaneous drift of electrons and phonons whose
velocity u can be found from the quasimomentum ba-
lance condition. The electric current is then j =e{ne

-nh)yi^ exp(sAp/T). However, this asymptotic depen-
dence is not observed experimentally because of the in-
fluence of the electron-impurity scattering.

Over a wide range of low temperatures a typical
situation is one in which the time TV is comparable (or
even smaller) compared with the time for the diffusion
of an electron across a Fermi surface. Nevertheless,
even in this case the umklapp processes can in a sense
be regarded as rare. This is permitted because the
umklapp processes are possible only in the regions of
the nearest approach of closed sheets of the Fermi sur-

5' Under these conditions the transport phenomena in metals
are of hydrodynamic nature and, consequently, several speci-
fic effects are observed: the temperature dependence of the
electrical conductivity of samples of finite size has a mini-
mum, there are weakly damped vibrations of the second-
sound type, etc.1 1

face and such regions represent a small part of the to-
tal surface. (These regions will be called "hot spots"
or "sinks.") It is easy to show that under these condi-
tions it is permissible to ignore the influence of the
umklapp processes on the phonon distribution and also
the nonequilibrium nature of phonons on the umklapp
processes. Similarly, in the case of an open Fermi
surface which has narrow necks we can ignore the non-
equilibrium nature of phonons within the regions of
these necks.

Subject to the above comments the procedure describ-
ed in Sec. 2a gives the diffusion equation (2.5) with the
additional term

n » e = -£i / ? d E · (2.17)

where/p is the part of the collision integral (1.2) cor-
responding to the umklapp processes in the case when

We shall now obtain a low-temperature expansion of
the quantity Πρ and we shall do this by considering the
model of relatively wide hot spots, which appear when
smooth parts of the Fermi surface of radius of curva-
ture of the order of pF approach one another (Fig. 2a).
The characteristic dimension r<, of such a hot spot can
easily be estimated bearing in mind that the inequality

ρ - ρ* - Δρ %q ~ T/s (p* is the nearest point to ρ on
the neighboring Fermi surface) is satisfied within the
hot spot and hence we find that r0

 K VqpT. From the
point ρ transitions occur to a region in the vicinity of
the point p* and the dimensions of this region are η
= /2qAp + q1. Since r o > n , the "local" approximation
can be applied to the umklapp processes: in the ex-
pression for/ u we can assume that Xk = Xp*. With the
same degree of precision the points ρ and p* can be
regarded as lying on the same horizontal, as shown in
Fig. 2a.

Finally, after integration in Eq. (2.17) with respect
to energies ε, and e k , we obtain

16π>
Z G > q

iN.

Aa.

(2.18)

where q = k - p - g; dSk is an element of the area of the
neighboring surface; g is the reciprocal lattice vector
corresponding to a given hot spot.

It should be noted that the diffusion approximation is

FIG. 2a. Spherical Fermi surface in the periodic zone
scheme (I is the boundary of the Brillouin zone).
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justified for a "wide" hot spot because rt»q.S) How-
ever, when the approaching parts of the Fermi surface
have strong curvatures, the hot spots are of small size.
Then, the local approximation for the umklapp process-
es given by Eq. (2.18) and the diffusion approximation
for the normal collisions may both be disobeyed within
a hot spot. However, the minimum size of a hot spot
is r0 <:q and, therefore, even in the worst case these
approximations are at the limit of their validity.
Moreover, the situation is usually such that a change
in the distribution function χ, within a small hot spot
can be ignored compared with its change over distances
of the order of />F.

The equations corresponding to Eqs. (2.14) and (2.15)
and defining the distribution function in the lowest or-
der of iterations with respect to a{Vx'} are

divOVXp -v" (xP — -/p.) =—«En,

4r \ gVp'Cx,—xP.)-^--=eE K — nh).

(2.19)

(2.20)

3. ELECTRICAL CONDUCTIVITY OF METALS

In this section we shall use the diffusion equation
method to consider the low-temperature electrical con-
ductivity of metals in the absence of a magnetic field.
Since, in general, the diffusion equation cannot be inte-
grated, calculations will be carried out using certain
approximate models. Our main task will be to deter-
mine the relationship between the electrical conduction
mechanisms and the structure of the Fermi surface.

a) Open Fermi surfaces. Fermi surfaces with narrow necks

Let us assume that our Fermi surface consists of
large electron or hole pockets (sheets) connected by
narrow necks. In general, the Fermi surface occupies
several zones and some of these pockets can be iso-
lated. Therefore, the problem has a small parameter
d/pT«\ (d is the neck diameter) and a complete solu-
tion can be obtained. Clearly, in this model the drag
effects are strongest since the electrical conductivity
becomes infinite (if we ignore the umklapp processes)
when the neck diameter approaches zero. Fermi sur-
faces with narrow necks are exhibited by, for example,
noble and many polyvalent metals. Moreover, the ana-
logy with electrical circuits which applies here will be
used frequently in the subsequent discussions.

In calculations of this kind we must note that a diffu-
sion current of high density D\vx\~eEp\/d flows along
a narrow neck [see Eq. (2.16)]. Therefore, in the re-
gion of a neck the integral term a can be ignored com-
pared with Vy [higher iterations in Eq. (2.13) are small
since the singularity 1/r disappears on integration].

6)If q « ύφ an electron acquires an energy Aps » Τ as a re-
sult of an umklapp collision, i.e., this electron is transferred
to a nonthermal energy layer. Normal collisions, which re-
turn an electron to the Fermi surface, displace it by a dis-
tance Ap and not by q. However, at temperatures sufficiently
low to satisfy ΰφ S r0, the distribution function changes over
distances of the order of pT and, therefore, if Δρ«ρν, the
diffusion approximation is not affected.

Moreover, we can ignore the electric field effect be-
cause the change in the flux caused by this field is
proportional to the cross sectional area of the neck.
Therefore, the diffusion equation in a neck region is

0. (3.1)

In the subsequent discussion it is convenient to use the
analogy between the present problem and the flow of
steady-state currents in a branched electrical circuit.
The necks correspond to conductors in the circuit and
the large pockets correspond to the nodes of the net-
work. The current flowing through a neck is

/ =

where integration is carried out along a closed line sur-
rounding the neck.

The analog of the potential is the nonequilibrium cor-
rection χ'. The drop of the "potential" occurs mainly
in narrow necks, whereas in large pockets the potential
can be regarded as constant.

The linearity of the equations makes the current J
obey "Ohm's law":

where χ} and χ£ are potentials in large pockets and
the "resistance" R is governed by the properties of the
neck itself, and can be found from Eq. (3.1).

Next, it is easy to show (see Ref. 10) that the cur-
rents obey the Kirchhoff rules:

£/ =0, S/fi =0.

In the first equation the summation sign applies to the
currents entering a given large pocket along the necks;
the second summation applies to any "internal" circuit
which does not intersect the zone boundaries. At a
zone boundary the potential χ' has a discontinuity equal
to u· g [see Eq. (2.11)], Therefore, the "external" cir-
cuits include the sources of emf's:

ug, (3.2)

where g is the reciprocal lattice vector closing the cir-
cuit; the sign of this vector is determined by the direc-
tion in which the circuit is traversed.

In addition, the quasimomentum balance condition
(2.10) yields another condition (the unit cells are selec-
ted in such a way that they intersect the Fermi surface
only along the necks):

(3.3)

where V is the difference between the electron and hole
volumes bounded by the Fermi surface and the zone
boundaries.

The above equations are sufficient to determine all
the currents and the velocity u of the comoving refer-
ence system. In the adopted model the electric current
is j = 2enVh~3, because in the reference system linked
to the lattice the electron distribution drifts within a
large pocket. In the simplest case when all the necks
are intersected by the zone boundaries, we find from
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Eqs. (3.2) and (3.3) that

where the summation is taken over all the necks.

The neck resistance can be estimated by using a
"one-dimensional" model discussed in Sec. 2. If the
typical neck diameter d is of the order of the radius
of curvature of the neck <%, it follows from Eq. (3.1)
that

R O-< In -££-
a

In the limiting case of d«<%, we have

(3.4)

(3.5)

where the typical neck length is -JdW.

It has been assumed so far that the thermal phonon
momentum is much less than all the characteristic
dimensions of the Fermi surface. In the presence of
long necks (d« @) it is interesting to consider the
range of intermediate temperatures when the thermal
momentum of a phonon satisfies the inequalities

d <q < V dji (3.6)

In this case the diffusion approximation remains valid
but the tensor D changes considerably:

here, D is the diagonal component of the diffusion ten-
sor along the neck axis; β is a unit vector along this
axis; r is the distance of a given point on the Fermi
surface from the axis of revolution.

It follows from Eq. (3.7) that

Thus, under the conditions of Eq. (3.6), we have R
o:d~i/2T~i, whereas for q«d, it follows from Eq. (3.5)
that .R<xd-1/2r~5. The change in the nature of the tem-
perature dependence is due to the one-dimensional
nature of diffusion: only those phonons whose momenta
are almost parallel to the neck axis can interact with
electrons. The number of such phonons is proportional
to Τ and not to T2, in contrast to the two-dimensional
diffusion case. Thus, in the case of metals with long
Fermi- surface necks we find that in the temperature
range corresponding to Eq. (3.6) the electrical resis-
tivity is proportional to Γ4.

Caution must be exercised when the above results
are used in an analysis of the electrical conductivity
of specific metals. The small parameter, which justi-
fies the above approximations, is in fact the ratio of
the resistance of a large pocket to the resistance of a
neck. In the case of a short neck this parameter is of
the order of (Ιΐψρ/d)-1 and need not be sufficiently small
in real cases. Moreover, as demonstrated by direct
measurements of Gantmakher and Gasparov,12·13 in the
case of some metals the probability of electron-photon
scattering in a neck is considerably greater than within
a large pocket. (This is possibly due to the low velocity
of electrons vp in the region of a neck or due to a con-

siderably greater contribution of the scattering by
transverse vibrations in this region.)

Nearly-free electron approximation. We shall con-
sider the simplest model which can be used to obtain
the exact solution of the problem. We shall assume
that a spherical Fermi surface is intersected by just
one pair of the Bragg planes and, consequently, it is
located in two energy bands (Fig. 2b; the distortion of
the Fermi sphere near the zone boundary is unimpor-
tant in the model under discussion).10 We shall assume
that all the characteristics of the investigated metal
are isotropic and, in particular, that the diffusion ten-
sor reduces to a constant scalar D, The electric field
is naturally perpendicur to the Bragg planes.

In this model the kernel of the diffusion equation (2.4)
becomes

nVlsin(nn')

We shall omit the calculations of Ref. 10 and give the
final result. The density of the electric current is j
= neu and the drift velocity u can be expressed in the
form

— ivy" 1 + u 0 (γ 1 ' 2 — Υ" 1 / 2 ) 2 + «ι. (3.8)

(3.9)

here, cosa^=g/2pF; -Ρ,(θ) are the Legendre polynomi-
nals.

The first two terms in Eq. (3.8) are in agreement
with the results of Klemens and Jackson,9 who ignored
the phonon drag. We can easily show that u0 is the
electron drift velocity in the case when phonons are in
equilibrium and there are no umklapp processes. The
second term (- u^'1) is associated with the umklapp
processes. The third term is due to the phonon drift.

The fourth term ut is due to deviation of the phonon
distribution from the drift form. An analysis of Eq.
(3.9) shows that the contribution of this last term is
relatively small. For example, in the case of trivalent
fee metals we have g/2pF=0.89 and calculations show
that then «J/M*0.22. Thus, inclusion of higher terms
in the iteration series with respect to a, [see Eq.
(2.13)] alters the numerical coefficient only slightly.

These results are easily generalized to the case of a
more realistic model with several open directions.10

FIG. 2b. Open Fermi surface in
the nearly-free electron approxi-
mation.
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b) Closed Fermi surfaces

As pointed out several times before, the electrical
conductivity of a metal with a closed Fermi surface
and with «„*«» should obey—at sufficiently low tem-
peratures—the law σ ~exp(T0/T) (Τ^νΔρε, where Δ/>
is the minimum separation between the isolated parts
of the Fermi surface). However, there are as yet no
reports of experimental observation of the strongly ex-
ponential Peierls dependence, although in the case of
some metals measurements have been made at tem-
peratures much lower than Γο. The most favorable
objects for the observation of this dependence are prob-
ably alkali metals for which the separations between
the closed electron groups are very large: Δ/>«/>Γ/3
(for Na we have To« 20 ° Κ whereas for K, we find that
T0*10°K). Woods14 carried out experiments which
gave the following temperature dependence of the elec-
trical resistivity of Na: ρ ~ Γ5 in the range 15 Κ> Τ
> 9 Κ and a faster variation amounting to approximately
p~ Te in the interval 9 Κ > T> 5 K; impurity scatter-
ing predominates in the range Τ s 5 K. A law close to
T6 was observed also for Κ at temperatures 4.2 K> Τ
> 1.3 Κ by Tsoi and Gantmakher15; similar results
were reported by Ekin and Maxfield,16 as well as by
other authors.

Two questions arise in this connection. 1) At which
temperature does the exponential dependence of the
electrical conductivity begin to apply ? 2) What is the
temperature dependence which precedes the exponential
region ?

We shall try to answer these questions by consider-
ing the electrical conductivity of metals with closed
spherical Fermi surfaces.17 The actual calculations
carried out within the framework of this model apply
directly to alkali metals, but—as shown below—some
general conclusions apply to any closed Fermi surface.

1) Idealized model. We shall first consider the sim-
plest model in which Fermi spheres located along the
same line approach one another closely in a periodic
zone scheme (Fig. 2a). Naturally, the electric field
is directed along this line. The distribution function
depends only on the angle a, measured along the arc of
the great circle from the point of the closest approach
of the spheres.

The quantity Δ/> is assumed to be extremely small so
that

l n - ^ » l . (3.10)

It follows from the above inequality that the transition
from the diffusion equation (2.5) to the simplified
scheme of Eqs. (2.19) and (2.20) is an asymptotically
exact procedure. In the model adopted here, Eqs.
(2.19) and (2.20) become

(3.11)

(3.12)

Δχ' — 4(θ)χ=—'-^

r, eE

where

here, Δ is the angular part of the Laplacian; | p - ρ* |
*Δ/> + 2pT is the distance from the point ρ to the next
sphere; an allowance is made for the fact that since χ
is an odd function of ρ and the problem is one-dimen-
sional we have x,* = - χρ, χ=χ'± (ug/2), where the plus
sign corresponds to the right-hand hot spot and the
minus sign to the left-hand one; integration in Eq.
(3.12) is carried out within the limits of the right-hand
hot spot.

It follows from Eqs. (3.11) and (3.12) that / cos Ax'ds
= 0 (this relationship represents the law of conserva-
tion of momentum in normal collisions and it is valid
in any order of iteration with respect to a). Hence,
/ cos x'dS=0. Thus, in the comoving reference sys-
tem there is no electric current and, therefore, the
electrical conductivity is a = neuE~1.

To determine the drift velocity u we have to solve
Eq. (3.11) together with the condition (3.12). Far from
a hot spot the second term on the left-hand side of
(3.11) can be ignored, so that we obtain

It is impossible to solve Eq. (3.11) exactly within a
hot spot. However, the nature of the solution can be
understood from the following considerations. A loga-
rithmic rise of the function χ' on approach to the bound-
ary of a hot spot is associated with a static diffusion
flux 2irdDdx'/da «{2/$)eETip\. Inside a hot spot the dif-
fusion flux decreases since part of the flux is carried
away by electrons crossing over to the next sphere.
Therefore, in the region of a hot spot the variation of
the function χ' is slower than logarithmic (with finite
value at the center of the hot spot). Consequently, in
the determination of the drift velocity u by means of
Eq. (3.12), we can ignore the variation of χ' within a
hot spot [if the inequality (3.10) is obeyed].

Simple calculations give

where

(3.13)

We have introduced here the quantities Rt and Ru which
are the resistances in the case of the diffusion and um-
klapp processes, respectively. The interpolation for-
mula for F, which is asymptotically correct when
q»b.p or q«Ap, is of the form

We shall now consider the physical meaning of Eq.
(3.13). The electrical conductivity is proportional to
the total relaxation time in which an electron com-
pletes a closed cycle in ρ space: this involves diffu-
sion across the Fermi surface and a jump as a result
of an umklapp process. It should be stressed that the
corresponding relaxation times are additive under the
phonon drag conditions.
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The first term, Rt, in Eq. (3.13) is proportional to
the diffusion time of an electron from the central re-
gion of the Fermi surface to a hot spot and it depends
on temperature in accordance with the law Tsln(PFs/T)
[a similar result for a short neck is represented by
Eq. (3.4)]. The second term, Ru, in Eq. (3.13) is pro-
portional to the umklapp time and it depends on tem-
perature as T~1exp(T()/T) if T« To.

It follows from Eq. (3.13) that the temperature Tu be-
low which the Peierls exponential dependence is ob-
served is considerably less than 7*0 if Δρ«ρτ, This
important result is related to the following two circum-
stances. 1) Although the probability of an umklapp pro-
cess is exponentially small even at Τ < Γο, an electron
is transferred to the neighboring sphere as a result of
one collision, whereas the diffusion across the whole
Fermi surface requires a large number of steps. 2)
Each of the three quantities-the square of the matrix
element of the interaction, the area of the part of the
Fermi surface where the transition is possible (r\
*&pq), and the layer of energies in which the transi-
tion is possible—is Δρ/q times greater for phonons
with momenta of the order of Δρ than for thermal ph-
nons. Therefore, the probability of an umklapp pro-
cess contains an additional factor (Δρ/q)3 which is large
is T« To.

By way of illustration, Fig. 3 shows the dependence,
on the parameter of the problem ρψ/Δρ, of the temper-
ature Tul at which Ru/Rt = 0.25 and of the temperature
Ta2 at which #„//?„ = ().25. We can see that the tempera-
ture range of the transition from the law poc r 5 / ln£ P s/T
to the law p<x rexp(- Γο/Γ) is fairly wide and the ratio
T0/Ttt increases on increase in ρτ/Δρ.

In qualitative estimates and in generalizing the re-
sults obtained to other Fermi surface models, it is
convenient to write the conductivity in the form

Here, the umklapp time for an electron in a hot spot
is τσ»[νυ(Β = 0)]~1; Ss is the hot spot area; S F is the
area of the whole Fermi surface. The factor SF/Sa

in the expression for T» allows for the fact that when
τ Β » rd an electron wanders for a long time over the
whole Fermi surface before spin flipping and it is in a
hot spot only for a small proportion (amounting to S,/
SF) of the total umklapp time τ».

It is natural to assume that the value of ru depends
mainly on the relationship between the parameters q

and Δρ and it is not very sensitive to the hot spot geo-
metry; the order of magnitude is given by

1,
<••'?, Τ € To,

where T'°C T~3 is the collision time between an electron
and a phonon.

In the adopted model a typical hot spot area is Saar$
α τ. If the surfaces approach one another because of
narrow side branches (as is the case for a broken long
neck of diameter fif-sA/)), then Sa&dq, i.e., the hot spot
area is again proportional to T. Finally, in the case of
elongated hot spots, which appear when surfaces with
very different approach principal radii of curvature
<%1»Δρ and <%2<Δρ one another, the hot spot area is
Sa<*@\/2qs/2oc 7'3/2> T h e temperature dependence of the
diffusion time is also to some extent related to the hot
spot model: when regions with a large radius of cur-
vature approach one another we have τ ^ Τ~51η(θ/Τ),
whereas in the presence of a broken long neck we find
that T,= r - S o r T 4 ocr- 4 [Eq. (3.7)].

5 10' 2 0 5 0 1 0 s

PF/iP

FIG. 3. Position and width of the intermediate temperature
range.

It is important to note that the conclusion that the
temperature Tt is much lower than To (approximately
as shown in Fig. 3) is valid for any closed Fermi sur-
face if the characteristic dimensions of the electron or
hole pockets are considerably greater than the distances
between them.

We shall now return to the hypothesis that the func-
tion χ is independent of the energy, which is important
in the derivation of the diffusion equation. If the um-
klapp processes are negligible, this hypothesis can be
justified rigorously (see Appendix I) and it is physical-
ly related to the fact that the energy relaxation requires
many fewer collisions than the momentum relaxation.
The situation is different in the region of a hot spot on
a closed Fermi surface at temperatures Τ s Tu when
the momentum relaxation is roughly due to just one
umklapp collision. An electron acquires an energy Δρβ
as a result of the umklapp collision and, therefore, it is
then in a nonthermal layer. Nevertheless, in this case
again the energy relaxation time is shorter than the
umklapp time and, therefore, the dependence of χ on ε
is unimportant. In fact, after emitting several pho-
nons with momenta of the order of Δρ, a nonequilibrium
electron finds itself in its "own" thermal layer in a part
of the Fermi surface of area (Δρ)2; if the same electron
undergoes an umklapp collision, it finds itself in the
neighboring part of the Fermi surface of area of the
order of r\eiqΔp. Thus, the ratio of the corresponding
times is of the order of (γχ/Δρ)2 and the ratio of the
energy-dependent and energy-independent parts of χ
are also of the same order. In the worst case we find
that for T*> Tu this parameter is of the order of Ty/T0,
i.e., it is considerably larger than outside a hot spot
where the smallness of the energy correction is gov-
erned by the parameters T/cT and (Τ/θ)\ An allow-
ance for the energy dependence is made in Ref. 18
within the variational method framework.

2) Alkali metals. Some of the simplifying assump-
tions used in the preceding section are known to be in-
valid for alkali metals. First of all, we cannot expect
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the condition (3.10) to be satisfied and even the weaker
inequality Ap»pv is satisfied poorly. Under these
conditions the very diffusion equation (3.11) provides
only a qualitative description of the behavior of the
function χ in a hot spot (see Footnote 6).

Nevertheless, we shall attempt to approach a real
situation in alkali metals and show that the above quali-
tative conclusions are still valid. The most important
refinements of the result (3.13) are allowances for the
dependence of χ on ρ in the region of a hot spot and for
the fact that each Fermi sphere of an alkali metal is
closely approached by twelve other Fermi spheres. It
is probable that the anisotropy of the phonon spectra is
weaker so that we shall use only the Debye model.

In the case of a Fermi sphere with several pairs of
hot spots the diffusion approximation, similar to Eq.
(3.11), is described by

Ax'~i-<4(#»KXp-Xp.)=—^-cosft; (3.14)

here, the angle at is measured from the direction of
the reciprocal lattice vector gk corresponding to the
hot spot nearest to the point p, and the angle is mea-
sured from the direction of the electric field E, which
can conveniently be regarded as applied along one of
the reciprocal lattice vectors g0 (because in this model
the electrical conductivity is isotropic).

We shall seek the solution of Eq. (3.14) in the form
of a linear combination of solutions of the "one-dimen-
sional" problem corresponding to one pair of hot spots:

X(»fc) «OS Oft " 2 ^ (3.15)

Here, a is the angle between the vectors gk and #0 and
the function χ( ) satisfies the one-dimensional equation

Δχ—Λ (ft) ( χ ± -^-1=0. (3.16)

We can easily show that the function of the (3.15) type
satisfies Eq. (3.14) if

~ 2 vi ~ gEp$

h 0

and the quantity xia*») can be regarded as constant
within the feth hot spot.

It is easily shown that the condition analogous to Eq.
(3.12) is of the form

(3.17)

where nB is the total number of hot spots.

Far from a hot spot the function χ can be found from
Eqs. (3.16) and (3.17), in the same way as has been
done in the preceding subsection:

2tEp'

Inside a hot spot Eq. (3.16) can be solved exactly (in
the asymptotic sense) only in two limiting cases: Rt

«K s and Rt»Rs. However, the expression for the
conductivity may be obtained more simply by a differ-
ent method. It is easily shown that Eq. (3.16) corre-

sponds to the variational principle

» J χ[Δχ-Λ

where &=ug/g.

(3.18)

We shall select a trial distribution function in the
form

gDns

where a0 is a variational parameter which, together
with M, should be found from Eqs. (3.18) and (3.17).

Calculations give the following result17:

(3.19)
n=-3-\nl2(PC+l)], C-

here, ao = 8o; the function F is given by Eq. (3.13); o'
is the correction to the electrical conductivity due to
allowance for the integral term a, in the attached ref-
erence system, given by

21 + 1 λ.

\, is defined in Eq. (3.9).

Figure 4 shows the dependence of the quantity pT~*
(in relative units) on the relative temperature T/To,
calculated using Eq. (3.19). For comparison, the
same figure shows (dashed curve) the results obtained
in the diffusion approximation but without allowance for
the phonon drag. We can see that the drag plays an im-
portant role: in the temperature range (0.15-0.6)T0 the
results differ by a factor of almost two, whereas at
lower temperatures the curves diverge completely.

In the case of potassium, we have To «· 10° Κ and the
slope of the curve at intermediate temperatures agrees
quite well with the experimental results15'16 exhibiting
dependences close to pT&T* and Ρχ^Τ1 (pT~p- p0,
where p0 is the residual resistivity). In the case of
sodium, we have To «20°Κ and, as is clear from Fig. 4,
the change from the law ρΓ<χ τ 5 to a stronger depen-
dence occurs at about 8 °K, in agreement with the ex-
perimental results of Woods.14

We shall conclude this subsection with the following
comments.

i -

Ί
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FIG. 4. Theoretical temperature dependence of the resistivity
of an alkali metal. The dashed curve represents the tempera-
ture dependence in the absence of drag.
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1. The crystal symmetry of alkali metals forbids a
"horizontal" umklapp transition from the center of a
hot spot (i.e., a transition between the nearest points
on neighboring Fermi spheres) involving a phonon with
a transverse polarization. Therefore, transverse pho-
nons with momenta not parallel to the corresponding
reciprocal lattice vector participate in the umklapp
processes. These "oblique" transitions result in a
somewhat different asymptotic dependence of the con-
ductivity in the limit Γ — 0 than predicted on the basis

of Eq. (3.13): croc τ- 2 exp(T 0 /r) instead of σα: r - 1 exp(T 0 /
Γ) (the asymptotic behavior is governed by the trans-
verse phonons whose velocity is less than that of the
longitudinal phonons). However, this asymptotic de-
pendence was not reached under experimental condi-
tions. An estimate of the characteristic angle between
the phonon momentum and the vector g (δθ s VT/r0)
shows that in the temperature range Ta<T<T0 the for-
biddenness of the horizontal transitions results in a
slight change in the resistivity.

2. The resistivity of alkali metals has been calcu-
lated by many authors (in particular, calculations are
reported in Refs. 19 and 20) using the variational prin-
ciple in the one-moment approximation (with a trial
function x = u° p). The most detailed calculations of
Kaveh and Wiser21 gave a good agreement with the ex-
perimental results. In this connection it should be
noted that at temperatures T> Tu the difference χ ρ - χρ·
is small compared with the reduction in the function χ •
within the whole Fermi surface. On the other hand,
the function u· ρ does not have this property and this
results in an overestimate of the contribution of the um-
klapp processes. However, at the same time the con-
tribution of the diffusion processes is underestimated
since the drift function is smoother than the real func-
tion χ that varies over distances shorter than />F.
Therefore, the use of the function u· ρ results in a re-
distribution of the contributions between the diffusion
and umklapp processes (for a fixed trial function in the
variational method the resistivities are additive: p=Pn
+ p u ). The total resistivity can then change only slight-
ly. This is typical of the variational method: the use
of a trial function far from the true one may result in
relatively small errors in the resistivity.

Zhernov and Kagan7 recently reported a calculation
of the resistivity of alkali metals in a many-moment
approximation. These calculations allow in fuller de-
tail for the characteristics of the electron and phonon
spectra, and for the interaction between electrons and
phonons than the results reported above and, therefore,
they may represent more accurate numerical values.
On the other hand, the above discussion allows us to
understand the physical situation associated with the
competition between the diffusion and umklapp process-
es, which occurs irrespective of the actual model of
the Fermi surface.

4. GALVANOMAGNETIC PROPERTIES OF METALS

In strong magnetic fields the asymptotic behavior of
the electrical resistivity of a metal considered as a
function of the field is governed entirely by the topo-
logical properties of the Fermi surface in the direc-

tion of the field. This result can be proved rigorously
without any assumptions about the electron scattering
mechanism.22 However, such properties of the magnet-
oresistance as its dependence on temperature and other
parameters characterizing collisions, the dependence
on the orientation of the magnetic field, and the field
in which asymptotic behavior is established, are deter-
mined largely by the nature of the electron scattering
mechanism. In general, we can only say that the con-
ductivity is a monotonically decreasing function of the
field23 and this decrease becomes significant for Ωτ ί Γ

s i ( r t r is the transport or mean free time governing
the electrical conductivity in the absence of a magnetic
field and Ω is the Larmor frequency).

In the simplest case when a typical electron scatter-
ing angle is Φ * 1 (as in the case of collisions with local
lattice imperfections, such as impurity atoms), satis-
factory results can be obtained in the relaxation time
approximation. Then, the resistivity depends on just
one parameter Ωτ: in the range ί ϊ τ « 1 the influence
of magnetic fields is weak ("weak fields") and the
asymptotic dependence is observed for Ωτ » 1 ("strong
fields"). If a typical scattering angle is Φ « 1 (elec-
tron-phonon collisions at low temperatures, scatter-
ing by dislocations), the situation becomes much more
complex.

Pippard24 was the first to draw attention to the fact
that in a strong magnetic field the effectiveness of
small-angle collisions rises strongly in the presence
of certain features of the Fermi surface that result in
a fast variation of the electron distribution function in
momentum space. Then, the asymptotic behavior on
increase in the magnetic field is observed in much
higher fields and we have to satisfy the inequality Qrtr

»Φ~1 or even ίΙτίΓ»Φ~2. However, Pippard's treat-
ment ignores a number of specific features of the mo-
mentum relaxation in an electron-phonon system of a
metal and these features will be used in subsequent
discussion.

The unklapp processes in electron-phonon collisions
play a role which is as important in galvanomagnetic
effects as in the electrical conductivity in zero magnetic
fields. In the absence of these processes in a metal
with a closed Fermi surface, a drift of electrons and
phonons is established.

Xp = "HP, Φ , = u H q, u H = cH-1 [EH],

and only the Hall components of the transverse conduc-
tivity tensor do not vanish:

aIy = — ayx = e (ne — n^ 0;

here, ζ is the direction of the magnetic field Η and
Ε·Η = 0.

The role of the umklapp processes in metals with
closed Fermi surfaces (or when electrons cross the
zone boundaries in metals with open Fermi surfaces)
is easily demonstrated by the condition of balance of
the quasimomentum perpendicular to H. In the pres-
ence of a magnetic field the diffusion equation is (t is
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the time of motion along an orbit in a magnetic field)

| i eEn. (4.1)

( j
(β. <n (β.

We shall derive the quasimomentum balance condition
by multiplying this equation additionally by [pxH] and
integrating with respect to the Fermi surface; after
simple transformations using the identity (II. 2), we find
that

ii=e(ne—nh)ux + -jp- 2 ΙβΗ]Λβ-(Τ, (4.2)
t."

Qdl-e;Sg t 0E), (4.3)

(Ηη]χ. (4.4)

In the above formulas, ] x is the component of the elec-
tric current density perpendicular to the magnetic field;
σ is the number of the energy band; the quantities e*
and S have the same meaning as in Eq. (1.8); summa-
tion is carried out over all the reciprocal lattice
vectors.

The first term in Eq. (4.2) is clearly the current
associated with the Hall drift. The meaning of the
second term is easily understood: the quantity Atte

gives the number of transitions per unit time accom-
panied by a change in the momentum by the vector g
and in each transition the center of an orbit shifts in
coordinate space by the vector ce~lH~\gx H]. It should
be stressed that under the phonon drag conditions only
these processes are responsible for the transverse con-
ductivity in a magnetic field. If the Fermi surface is
closed, then in the expression (4.3) for Agt(J only the
first term (umklapp frequency) differs from zero. In
the case of an open Fermi surface there is an additional
diffusion flux [the first term in Eq. (4.4)] and the flux
associated with the motion of electrons along orbits in
a magnetic field [the second term in Eq. (4.4)] across
the basic cell boundary. The last term in Eq. (4.3) is
associated with the motion of electrons across the
boundary of the cell under the action of an electric field.

a) Strong fields. Closed Fermi surfaces

In a strong magnetic field (the criterion of strong
fields will be given later) it is natural to employ the
method of successive approximations in solving Eq.
(4.1). We find that

a x < "
91

-eEzvz.

(4.5)

(4.6)

In the last equation an allowance is made for the in-
var iance of the flux V x - a under the transformation χ
- χ + u-p.

In calculation of the electric current by means of Eq.
(4.2) in a strong magnetic field it is sufficient to con-
sider only the first approximation (4.5). However, the
function /(/»,) is determined from the conditions of solu-
bility of Eq. (4.6) representing the next approximation:

(v divD (V/ - a (/)) > + (vU (χ(») > = - eEz (vz >, (4.7)

The angular brackets denote averaging over the revolu-
tion period T(pt):

(·•·>= -~ . At.

We shall make the substitution f(pt) = uept +φ{Ρζ) and
thus go over to the comoving reference system, in
which—in accordance with the definition—Eq. (4.7) can
be solved by the method of iterations with respect to
the integral term a. We shall confine ourselves to the
first iteration (i.e., we shall simply omit the term a
in the relationships expressed in terms of the comoving
system). Simple transformations give the following
final equations for the function ty{Pt) and the velocity

u·.

where

w (4.8)

(4.9)

here, DK is the diagonal element of the diffusion tensor
t) at right-angles to an orbit. The term with deriva-
tives in Eq. (4.8) describes the diffusion of electrons on
the Fermi surface at right-angles to the orbits; - DAty/
dpe is the total diffusion flux across the section pz

= const. It should be stressed that in a strong mag-
netic field the diffusion along an orbit can be ignored
and, therefore, the diffusion process is one-dimen-
sional. The term (ι>Π) gives transitions of electrons
between the orbits passing through equivalent hot
spots. Equation (4.9) describes the balance of the
quasimomentum in the magnetic field direction.

The nature of the solution of Eqs. (4.8), (4.9) depends
strongly on the relative positions of the hot spots on the
Fermi surface, on the magnetic field orientation, and
on the temperature range. We shall begin by analyzing
first a simple physical situation: we shall assume that
the layers of orbits passing through each hot spot (belts
on the Fermi surface shown in Fig. 5) do not overlap
and that the distance between them b is considerably
greater than their width.

In the case under consideration the results of solution
of Eqs. (4.8), (4.9) can be formulated in terms of the
flow of steady-state currents in branched electrical
circuits. In view of the one-dimensional nature of dif-
fusion, the analogy with circuits is more complete than

FIG. 5. Hot spots (sinks) and hot-spot belts on a spherical
Fermi surface. One pair of hot spots Is shown and the belts
are shaded.
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in the absence of a magnetic field.

The analog of the electric potential is the function

HP,). The diffusion current is

(4.10)

We shall consider the case of crossed fields Ε and H.

Then, the difference between the potentials follows

from Eq. (4.8):

δψ = Λβ., i?,= \ Λρ' (4 11)
τ d d' d } D (p2) ' * '

p".-1

Here, integration is carried out within a layer between
two neighboring belts and Rt is the resistance of such a
layer.

The umklapp current through a given hot spot is

(4.12)

here, ψΒ is the value of the function ty(Pe) in a given
hot spot; ψ* applies to an equivalent hot spot. [The
variation of the function HP,) within a belt can be ig-
nored in the adopted model.] The quantity Ru is the
umklapp resistance.

Having integrated Eq. (4.8) over a small region co-
vering one belt, we find that

•rdi + Λ« + Κ = o, (4.13)

where Jtl and Jt2 are the diffusion fluxes on the bound-
aries of the belt; for the first hot spot corresponding
to the minimum value of pt, we have Jtl = 0, whereas
for the second we have Ji2=0. (It is assumed that the
current emerging from a hot spot is positive.)

Equations (4.11)-(4.13) together with the condition

of continuity of the function HPg) are identical with the

Kirchhoff laws for a certain electrical circuit. Gen-

eralization to the case ???0 presents no difficulties.25

These relationships make it possible to find the func-
tion ΦΙΡ^) and the velocity of the comoving system uc.
In accordance with Eq. (4.2), the electric current den-
sity is described by

i- = --fc3775-2[gH]/u+e(«e-«h)Ux, (4.14)

h = | r ί ηΛ dS + e (»« - "*) "<=· (4.15)

We shall now consider the physical meaning of the
results obtained. The order of magnitude is given by
Ju»VLHg(Rll + Ru)~i and, according to Eq. (4.14), the
transverse conductivity is

^(^)^-iV· (4.16)

It follows from the above expression that the trans-
verse conductivity involves, in the situation considered,
both the umklapp and diffusion processes: although
ση is proportional to the number of the umklapp events
[see Eq. (4.14)], if diffusion is ignored it is found that
the densities of nonequilibrium electrons at equivalent
hot spots are equal and we have σ β = 0. In other words,
in a strong magnetic field the transverse conductivity,
like that in H = 0, is due to the feasilibity of infinite
motion of electrons in the reciprocal-lattice space.
The characteristic relaxation time in a strong magnetic

field consists of the umklapp time and the diffusion
time between hot-spot belts: in this time the center of
an electron orbit is displaced by the vector g (Fig. 5).

It should be noted in this connection that Eq. (4.16)
can be represented in the form7'

m Q H e f f ^ (4.17)

here, n. f f is the number of electrons participating in
infinite motion; b is the distance between the belts
(&»r0); Tt«PT(b/v)Rl*!τT(b/pT)

2 is the time corre-
sponding to a diffusion displacement by a distance b;
Tv*>r$Ra/v is the umklapp time for an electron located
in a hot spot; r\fp-J> is the probability of finding an
electron in a hot spot. The diffusion resistance of a
layer of thickness b is equal to R\"R-^)/pv, where
RT<*PF/DazT5 corresponds to the diffusion displace-
ment across the whole Fermi surface.

As shown in the preceding section, RF»RU right
down to very low temperatures Tu and the conductivity
is then governed by the diffusion time. However, in a
strong magnetic field, it follows from Eqs. (4.16) and
(4.17) that the competition between the diffusion and
umklapp times can be avoided by directing the magnetic
field in such a way that an electron may be transferred
from one hot spot to an equivalent one as a result of its
orbital motion. This provides an opportunity for an
experimental investigation of the umklapp processes
in a wide range of temperatures, and, in particular,
of the dependence axx~exp(- To/T) in the range T< Te.
It should be stressed that this result is independent of
the relationship between the numbers of electrons and
holes.

It is also clear from the above formulas that in the

T> Tu case the transverse conductivity is strongly an-

isotropic:

o'?iX I Λρ W ι»™,,* ^

°?i ' ' » ' ' * F /

where bmaz is the greatest distance between the hot-spot

belts and the ratio RT/RU reaches it maximum at Γ* Γο.

It is usual to determine experimentally the resistivity

tensor p = d~1. The order of magnitude of the trans-

verse resistivity is given by

axx ; a , ,

It is clear from these formulas that at temperatures
T> Tu and magnetic field directions corresponding to
the overlap of the hot spots the resistivity has a maxi-

7 )It should be noted that the conditions under which the phonon
scattering mechanism predominates over the impurity mech-
anism in strong magnetic fields are generally less stringent
than in the absence of a magnetic field. In fact, the impurity-
controlled conductivity axx&ne?/mtiiTi (T, is the mean free
time for the scattering by impurities) is small compared with
that given by Eq. (4. 71) if Ti » rFi>/pT + Tv(pF/r0)

2, whereas
in H= 0 and for Γ > Τυ, the contribution of impurities is small
when the more stringent condition r( » r F is satisfied.
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FIG. 6. Anisotropy of the conductivity components σ
in the case of a closed Fermi surface. Here, b=g(p, where
θ is the angle of deviation of the magnetic field from the direc-
tion corresponding to the exact overlap of hot spots.

mum if ne *nh and a minimum if ne —nh.

We shall now discuss the range of validity of our re-
lationships. The Kirchhoff rules (4.11)-(4.13) are es-
sentially based only on the idea that a change in the
function 4(pt) within one hot-spot belt is small com-
pared with the difference between the values of the dis-
tribution function in equivalent hot spots and, therefore,
the diffusion and umklapp effects can be separated.
Therefore, the results obtained are valid not only for
6 » r0, but also for other directions of the magnetic
field if b "r0 corresponds to the condition R\« Ru. The
umklapp resistance R, depends strongly on the struc-
ture of the Fermi surface in the region of a hot spot.
If in this region at least one of the radii of curvature
of the Fermi surface is comparable with the gap Ap
«pT ("narrow" or "elongated" hot spots), the Kirchhoff
rules apply for any direction of the magnetic field.81

The situation is different in the case of metals with
"wide" hot spots (both radii of curvature are of the or-
der of p¥ and r0 * Sofa)· In this case at temperatures
Τ ζτ0 the transition from the "diffusion" to the "um-
klapp" regime occurs when the overlap of the hot spots
is considerable and the dependence ψ(ρ,) is very
strong.25 The results of calculations can be described
qualitatively by Eq. (4.17), where

teff • • tu,

The angular dependence of the transverse conductivity
is shown in Fig. 6a, and the parameter 60 is

1, r > r 0 ,

When several pairs of hot spots overlap, the pattern
naturally becomes much more complex.25

In addition to the transverse conductivity, a consider-
able anisotropy is also exhibited by the value of <Jxt.
Physically, this is due to the fact that when an electron

8' A special situation occurs under magnetic breakdown condi-
tions, when a hot spot is extremely small {ro«q), whereas
the probability of a transition involving crossing a hot spot
is of the order of unity.26

passes to infinity along a chain of hot-spot orbits, it
also is displaced in the direction of the pt axis (if 6*0,
see Fig. 5). Consequently, part of the function *lipt)
becomes anisotropic along pt and this is also true of the
current along the 2 axis, in accordance with Eq. (4.15).
Calculations based on Eqs. (4.8), (4.9), and (4.15)
yield the following relationship which gives the right
order of magnitude for any model of hot spots:

"η (ft) » ^JT Γ °"f^, — + ?• , (4.18)

where λ «1 is a smooth function of the angles, that
varies considerably over the whole Fermi surface.
The corresponding angular dependence is shown in Fig.
6b; the dashed curve corresponds to the case when
axt = 0 in the case of exact overlap of the hot spots
(because of the symmetry of the problem).

It should be stressed that the conclusion about the
strong anisotropy of the transverse conductivity applies
only to those metals in which, firstly, the size of the
hot spot at T = T9 is sufficiently small compared with
pF and, secondly, there are not too many hot spots
so that there are directions of Η along which they are
far from overlapping. In the case of some metals
(alkali metals, Al, In, etc.) both these conditions are
not obeyed: in such cases it is unlikely that the conduc-
tivity anisotropy is strong and, moreover, it is highly
improbable that its detailed behavior is in accordance
with the above formulas. Favorable conditions from
the point of view of this anisotropy may be found in
metals such as W and Mn. On the other hand, the con-
clusion of the possibility of suppression by strong mag-
netic fields of the competition between the umklapp and
diffusion processes is not related to these restrictions
and, in particular, it applies to alkali metals.

b) Strong fields. Open Fermi surfaces

In the case of metals with open Fermi surfaces the
nature of the conductivity depends strongly on the di-
rection of the magnetic field: in the presence of open
orbits, an electron escapes to infinity in ρ space
moving along an orbit in the applied magnetic field; if
all the orbits are closed, this escape to infinity results
from a displacement along a chain of closed orbits.
We shall discuss the diffusion relaxation mechanism
in such cases and this will allow us to study the con-
ductivity anisotropy associated with the appearance of
open orbits.

1) NO open orbits. In this case the unit cell in ρ
space can always be selected in such a way that its
boundaries intersect the Fermi surface only in the pt

= const cross sections (Fig. 7). The solution of the
diffusion equation reduces entirely, as in the case of a

FIG. 7. Selection ofa unit cell in ρ space in the case of an open
Fermi surface; d= b/g.
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closed Fermi surface, to the Kirchhoff rules for the
equivalent electrical circuit. The density of the elec-
tric current deduced from Eq. (4.2) is

[gH] (Jg.

where J, σ are the diffusion currents crossing the cell
boundaries. The order of magnitude of the transverse
conductivity is given by axx~ c2g*/h2H2R. As the situa-
tion with open orbits is approached, i.e., as Η ap-
proaches the directions for which layers of open orbits
appear, the corresponding diffusion resistance ap-
proaches zero.

It is known22 that there are various types of open or-
bits differing in respect of the dimensions of the region
which they form on a stereographic projection of the
magnetic field directions. We shall discuss the be-
havior of the conductivity in some of the most typical
cases of approach to the open orbit regime.

1. The simplest open orbits associated with one open
direction of the Fermi surface correspond to a line in
the stereographic projection, which is the direction of
Η in a plane perpendicular to the reciprocal lattice
vector g.

Actual calculations can easily be carried out using the
following model. The main part of the Fermi surface
is assumed to be a sphere of radius />f; the necks are
assumed to be narrow and short: the neck diameter is
d«pF and its length is l%d. A magnetic field is in-
clined at a small angle θ to a plane perpendicular to the
open direction. The topology of the electron orbits
depends on the magnetic field direction. If b =gd>d,
there are two types of orbit: those consisting of a sin-
gle circle and those representing two circles connected
by a narrow neck (figures-of-eight). If b<d, orbits
with a large number of loops appear (Fig. 7).

Elementary calculations based on Eq. (4.11) give the
result (it is assumed that ucg;l«uligil for 9 « I)27

η to
• 1+-

Α (ι) (1-Α (χ))

here, A(x) is the integral part of χ; Δ(χ)=χ - Α(χ); the
function η(χ)~ 1 oscillates with a period of unity and
with kinks at x = n. The angular dependence of σχχ is
plotted in Fig. 8. The oscillation period is 6(1/6) = l/d
and the oscillation amplitude is independent of b.

The physical mechanism resulting in the transverse
conductivity is as follows: an electron going over from
one trajectory to another is displaced along the py axis
in momentum space and, consequently, along the χ
axis in coordinate space. The kinks and oscillations
are due to the abrupt appearance of orbits with the
number of loops increased by unity. The smooth part
of the angular dependence vxx{b) can be interpreted as
the result of random wandering of an electron along a
chain consisting of extended-orbit layers

σ « « Ρ ^ | ^ ; (4.19)

here, δχ~ cg/eh is the magnitude of a step in this wan-
dering, TC11 ~TF(b/pFfozT's is the diffusion time of an
electron crossing a layer of thickness b; Pc(, ~ (b +d)
xg(vh3)'x is the effective density of states. It should
be noted that the angular dependence axxccb'2 obtained
for b«d by Lifshits and Peschanskii28 in the relaxa-
tion time approximation is of different origin: TCIT

is independent of b, but the magnitude of a step is δχ
~{cg/eH)d/b.

We can easily see how the results obtained are affect-
ed when some of the assumptions associated with the
Fermi surface model are not invoked. If the neck is
wide (d*g), the dependence a^ccb'1 may not appear but
for b «d the law axxazb~2r){d/b) remains valid. If the
neck is sufficiently long (l»d), then when b2dg/l, the
orbits with the number of loops greater than unity dis-
appear and, consequently, the dependence axxccb~l is no
longer obeyed. However, for lower values of b the re-
sults obtained remain valid if we assume that d = d(b),
where d(b) is the thickness of a layer of "through" or-
bits passing through the neck.

We shall now discuss the effects associated with the
finite nature of the thermal momentum of phonons q
- T/s. We shall first assume that the momentum q is
small compared with the characteristic dimensions of a
neck but exceeds the width of one layer of extended or-
bits: b<q«d, I. We can easily see that in this case
we still have random wandering along a chain or orbits,
but now an electron can jump several orbit layers in one
step. Therefore, all the results given above remain
valid but oscillations are smeared out when q>b.

At higher temperatures, when q£ d, I, the failure of
the diffusion approximation becomes very significant.
To avoid umklapp transitions, i.e., those bypassing
the neck, we shall first assume that the neck is long
and that l»q»d. The transverse conductivity mecha-
nism is then as follows. During the time of one colli-
sion with a phonon TCI,

 xTf(q/pF)
2, an electron which is

in a layer of extended orbits is most likely to escape
from this layer and reach a region of circular orbits or
a "cap" (Fig. 7). Then, the electron is displaced by an
amount δρ,~ [(d/b)+ l]g in reciprocal space and by δχ
= c6py/eH in coordinate space. We shall estimate the
conductivity using Eq. (4.19). An analysis based on the
solution of the transport equation on the assumption of
constancy of the function 4>(p,) within the limits of the
individual orbit layers gives27

FIG. 8. Anisotropy of the transverse conductivity in the case
of an open Fermi surface; q«b,d.

„ 3 I c \2 D
(4.20)

[Ι-Δ(χ)] [ - 2 Δ (χ)].
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FIG. 9. Anisotropy of the transverse conductivity in the case
of an open Fermi surface; I »q»d.

It is clear from the above formula that, in contrast to
the q«d case, the conductivity obeys σ^^Ί3 and for.
b > d it is independent of b. A further increase in 6 re-
sults, as is easily shown,27 in return back to the diffu-
sion approximation: σχχ<* b'1!6. The angular depen-
dence of the conductivity in the I»q»d case is shown
in Fig. 9.

If q > I, the umklapp processes appear and their con-
tribution—given by Eq. (4.17)—is simply additive (in
the first approximation) with the contribution (4.20) of
the extended orbits (it is easily shown that the latter
contribution predominates for b < dJdTq).

The above ideas on the relationship between q,% and
the potential drop apply also to an open Fermi surface
and, therefore, Eq. (4.18) is valid in all the situations
discussed here. It follows that the conductivity a,, also
exhibits a considerable anisotropy when the open orbit
case is approached.

2. More complex orbits are formed when two or
more directions are open. Then, the open orbits may
correspond to a two-dimensional region in a stereo-
graphic projection.22 We can easily see that the bound-
ary of this region has a singular structure, which fol-
lows already from the qualitative difference between
the periodic and aperiodic orbits, which correspond
to infinite si mally close directions of the magnetic field.
For example, in the case of a Fermi surface of the
planar grid type (Fig. 10) a simple analysis gives the
following result9':

Here, a ^ i s the angle between Η and the normal to the
grid plane for which the open orbits disappear; φ is the
angle between the projection of Η on the grid plane and
the reciprocal lattice vector g (of the two vectors the
one which satisfies φ < ir/4 should be chosen); m and w
are integers such that the fraction rw/n=tan<p is irre-
ducible.

Thus, the region of open orbits is "bounded" by seg-
ments of different length in a hedgehog manner. The
longest segments correspond to the symmetric direc-
tions of the projection of Η with small values of m and
n. The size of the region is minimal for irrational
values of tan<p, when m,n-"*>; for these values of φ the
open orbits are aperiodic (Fig. 11).

FIG. 10. Fermi surface in the form of a planar grid.

The problem of determination of the dependence
σ(θ, φ) for arbitrary values of θ and φ is difficult. We
shall confine ourselves to an analysis of the conducti-
vity in a sufficiently symmetric direction, for example,
in the [llO] direction ((p = ir/4).10) It should be noted
that our earlier discussion28 of the appearance of open
orbits was made in the relaxation time approximation,
ignoring the fine structure of the boundary, and it is
essentially applicable to this particular direction of the
magnetic field.

We can easily see what changes occur in orbits in the
p,= const section when θ increases to θ,,*, for ψ = τ/\;
the closed orbits, each of them fitted in a unit cell, ap-
proach one another and establish contact for θ = θ Ι Λ Χ in
some particular cross section, giving rise to an infi-
nitesimally thin layer of open orbits. One should also
point out a qualitative difference between such an abrupt
transition from the situation discussed in the preceding
subsection, when the lengths of the orbits increase
without limit on approach to the open-orbit case.

The conductivity oxx can be estimated from Eq. (4.19):
a displacement by the vector g results when an electron
diffuses across a layer of thickness Δ^-ίΚ^-θηβ,) (this
is a simple geometric consequence of the closer ap-
proach of the orbits) and, consequently, we have τ,,,
~ r F ( a - θ,β,)2 and P e f f * ύφ^/vh3. Consequently, for

«θπ№ we obtainθ -

σ - m 3 e (C (4.21)

At sufficiently low values of 3 - θ,η^, we can no longer
assume approximately that the magnetic fields are
strong (see Sec. 4 c below). However, the dependence
(4.21) may be violated even in strong magnetic fields:
when β- 3mx ( i .e., when q» &pr), we cannot use the
diffusion approximation. In this case displacement by
a reciprocal lattice vector occurs for electrons in a
layer of thickness of the order of q as a result of single
collisions with phonons. Therefore, Tett«T7(q/g)2,
p«tt "qg/vh3, and it follows from Eq. (4.19) that

O : r e ; s ! ( | ) 3 ( j L ) 2 _ i ± _ . (4.22)

We can easily see how the situation changes when the
open-orbit case begins to apply along a less symmetric
direction (m, η > 1). In this case at some angles 3 t,θ2,
. . . ,<9» >θΠΒΧ there is an abrupt increase in the length

9 ) A similar formula is obtained in Ref. 29 for a slightly dif-
ferent planar grid model.

1 0 ) In fact, the results obtained are valid in a finite range of
angles ψ: A<p<a-dmK(see Sec. 4. c).
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FIG. 11. Region of open orbits on a stereographic projection
for a planar grid Fermi surface.

of the closed orbits and the number k increases on in-
crease in m and n. (If θ = θ,»,, an open orbit forms as
a result of merging of extended orbits that cannot be
fitted into one unit cell.) As in the preceding subsec-
tion, each abrupt elongation of an orbit results in a
kink in the curve for σϊχ(θ). The expressions (4.21)
and (4.22) are valid when θ,

2) There are open orbits. In this case the solution
of Eq. (4.1) by expansion in terms of the reciprocal
magnetic field should be modified somewhat: in the
case of an open orbit we have (vi) * 0 and, therefore,
the term eEvi should be used in the second-approxima-
tion equation (4.8).

If all the open-orbit layers are narrow (Δ«g, where
Δ is the thickness of the layer), the contribution of each
layer to the conductivity is2 7

°"=T-lk-· (4.23)

The result σ**'* Δ^" 5 was obtained earlier by Kaganov,
Kadigrobov, and Slutskin.30 They demonstrated also
the limits of its validity: for q > Δ, an electron leaves
a layer of this kind as a result of a single collision so
that σ,,'* ΔΤ"3.

In the simplest case when the open orbits are linked
to one open direction, the thickness of the layer Δ is
governed by the thickness of the neck. In the case of a
Fermi surface of the planar grid type when ά,αα-ΰ
«<U ~ 3 i r {tan>9ir = (d/g)[ 1 - (d/g)]SZcod (π/4) - φ] is
the boundary of the region of open orbits for irrational
values of tancp} we can easily show that the thickness
of the layer of open orbits is Δ ^ ^ θ , ^ - θ ) . Applying
aanafe

iTett/my we find that when q«&, then

*(-£)'«» f t , (*„„-*)·. (4.24)

If q» Δ, we naturally have σχχ<* ^(q/gfis^^-s), which
corresponds to the results of Ref. 28 obtained in the
relaxation time approximation.

c) Intermediate magnetic fields

We have seen above that the characteristic relaxation
times governing the electrical conductivity of a metal
in strong magnetic fields (τ") and in zero magnetic
field (T°) may be very different. The reason is that the

value of τ° is related to the diffusion of an electron
over distances of the order of the size of the whole
Fermi surface. However, in a strong field the diffu-
sion is required over much shorter distances since the
major part of the displacement in momentum space
needed in relaxation is attained because of the motion
of an electron along an orbit in the applied magnetic
field. Consequently, the ranges of weak (Ωτ°« 1) and
strong (Ωτ">> 1) fields do not abut and a wide region of
intermediate magnetic fields exists. The specific re-
laxation mechanisms which appear in this intermediate
region may be identified by considering the two sim-
plest models of a closed Fermi surface: a "one-di-
mentional" surface with extended (in the direction of
the magnetic field) overlapping hot spots, when the
diffusion along the pt axis can be ignored in the first
approximation (subsection 1 below) and a spherical
Fermi surface with one pair of hot spots when a com-
plete solution can be achieved (subsection 2 below). In
the case of open Fermi surfaces, the conductivity is
determined by the same mechanisms (subsection 3 be-
low).

1) Magnetoumklapp diffusion. We shall first consider
the problem of the traversing of one hot spot by an
electron moving along an orbit in a magnetic field.
Since the diffusion along pt is ignored, the distribution
function can be regarded as dependent only on the co-
ordinate p% measured along the tangent to the trajec-
tories / and // in a hot spot (Fig. 12).

Let us assume that an electron flux ρτΩφι{-χ) enters
a hot spot along the orbit / from the left. We shall in-
troduce a "reflection coefficient" W which represents
the fraction of electrons that emerge from the hot spot
along the orbit //. If the orbits / and // are of the same
type (electron or hole), then in the orbit // an electron
can escape to the left: ψπ(- °°), ψη(°°) = 0; if the orbits
are of different type, then it can escape only to the
right: ψη{<>°) = ψψ,{-°°), ψ,,(-χ>)=;0. In any case, we

The process of passage across a hot spot can be de-
scribed by

Ωψί (χ) + ^ vu (x) 1% (x) - H,, (x)\ - ν?ψί (*) - 0, (4.25)

=F Ωψί, (χ) + -i vu (χ) [ψ,, (χ) - i, (χ)] - νρψΰ (χ) = 0; (4.26)

here, x=px/pF, νΌ(χ) = ΐ/τΌ(χ), ντ = 1 / T F ; the upper
sign in (4.26) corresponds to orbits of the same type
and the lower to orbits of different type.

In the case of orbits of the same type, we find that
Eqs. (4.25) and (4.26) readily yield the following equa-
tion for the function Ψ,=(Ψι + Ί>η)/2:

Μ' -(νΙνύ'ψ,Τ =0. (4.27)

FIG. 12. Electron orbits near a hot spot. The hot spot is
shown shaded.

35 Sov. Phys. Usp. 24(1) Jan. 1981 R. N. Gurzhi and A. I. Kopeliovich 35



If Ω τ ρ η » 1 (ri is the characteristic size of a hot
spot in the χ direction) we can drop the last term from
Eq. (4.27). Then, the resultant equation describes
combined diffusion of electrons inside a hot spot: the
usual diffusion characterized by the coefficient vTp\
and the " magnetoumklapp" diffusion with the coefficient
tf The solution of this equation is

ix (4.28)

In the opposite limiting case of Ωτρ?·ι « 1 , the follow-
ing expressions apply in the case of orbits of the same
and different types31

+00

W = (2 + ur')-'. u> = · ^ j vu(z)dx.
— σα

Finally, when Ω τ ρ η » 1 and the orbits are of different
types, it follows from Eqs. (4.25) and (4.26) that

We thus find that in the case of orbits of the same
type and in moderately strong fields (w» 1, but ΩτΓ

»1) the result of crossing a hot spot is determinate
(W«l) if ΩΤρ.η»1 and stochastic (W«l/2) if Ωττη.
« 1 . In the case of wide hot spots ( n a 1) the former
is true, whereas in the case of very narrow hot spots
Wa-q/pf), only the second possibility applies. In the
case of orbits of different types, the result of passage
through a hot spot in the w»l case is always stochastic.

The determinate nature of the motion is related to
the magnetoumklapp diffusion. During the passage
through a hot spot an electron undergoes repeated um-
klapping (w »1) . It jumps from one orbit to another
and changes each time the direction of its motion along
the χ axis. Clearly, this process represents diffusion
with the length pT SITV and time TD of each single step.
An electron begins its path from the left-hand edge of
a hot spot along the orbit / and it is highly probable
that it does not cross the whole hot spot but emerges
from the same side as before but along the orbit //.
This is true for Ω7>η» 1, when the conventional diffu-
sion associated with the normal electron-phonon colli-
sions is not very effective. Ι ί Ω τ Ρ η « 1 , a displace-
ment by distance ri is faster due to the conventional
diffusion than due to that under the influence of a mag-
netic field. Consequently, an electron is equally to
arrive at either edge of a hot spot and we now have a
stochastic situation.

Clearly, under the conditions when the result of pas-
sage through a hot spot is determinate, we can expect
the appearance of effectively open electron trajectories.
The simplest example of this situation is a chain of

electron orbits shown in Fig. 13a: the thick curves
represent the resultant open trajectories and the mag-
netoumklapp diffusion regions are shown shaded.

We can easily see that the quantity i0 [see Eq. (4.28)]
represents the relaxation time on an open trajectory:
during this time an electron undergoes a transition be-
tween open trajectories because the probability of
crossing a hot spot right through as a result of com-
bined diffusion is low. Therefore,

(.dp,.

and hence

VF

1i
(4.29)

The first two terms in the last formula are due to the
combined diffusion (νυ is the frequency of umklapp pro-
cesses at the center of a hot spot). The third term
allows for the mechanism of destruction of an open
trajectory ignored in Eq. (4.28): an electron escapes
to the region of closed orbits because of diffusion along
pt Ww is the characteristic size of a hot spot in this
direction). The results in the case of the resistivity
/»w are represented by curve 1 in Fig. 14 (it is assumed
that n « r n ~ l ; the range of intermediate magnetic fields
then corresponds to ν < Ω < -<JvTvv). This range is even
wider {vT < Ω <νυ) if there are two nonparallel direc-
tions of effective open orbits [curve 2; the dependence
p(H) in the range νψ < Ω < V ντ νΏ is governed by the rela-
tively weak dependences of r« and ri on the magnetic
field].31

If hot spots are arranged as shown in Fig. 13b, then
the magnetoumklapp diffusion forms effective closed
orbits which differ from those in a strong field. The
behavior of the resistivity in this case is analyzed in
Ref. 31.

If the result of crossing a hot spot is stochastic (or-
bits of different types or relatively narrow hot spots),
the transverse conductivity is governed by a random
wandering of an electron along a chain of orbits in
steps separated by time intervals of the order of Ω"1.
We then find that σΜ

 anelrn/mXl and the intermediate
range of magnetic fields is defined by vT< Ω < vvri.
Analogous results were obtained earlier by Pippard2*
and Young32 for the case of very narrow hot spots.

2) Spherical Fermi surface. In the preceding sub-
section we have considered only the case of exact
overlap of the hot spots and we have also assumed

FIG. 13, Magnetoumklapp diffusion producing effective open
(a) or hole-like (b) electron orbits.

FIG. 14. Dependences of the transverse resistivity
on Ω in Intermediate magnetic fields: 1) one effective open
direction; 2) several nonparallel open directions.
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that the diffusion time in the direction pt is long com-
pared with Ω"1. Both these restrictions can be lifted
and an exact solution of the problem can be obtained
asymptotically for a chain of spherical Fermi sur-
faces.31

We shall give the final result in the form of diagrams
(Figs. 15a and 15b) showing the regions of different
behavior of the transverse conductivity axx. The first
diagram is plotted using the variables {SITF)"X, τ in the
case when 6 = 0, whereas the second uses the variables
(ftTy)"1, b at T> To. The lines 1, 2,. . . , 8 separating
the various regions are described by the equations

( Q T F ) " ' « ]/5β, β2, -2-, β, βε°/β·, ΐηβ-i, α β- 2 > β ^

where α = τ υ / τ Γ , B=rs/pF, $-b/pF and the charac-
teristic size of a hot spot r3 differs slightly from ra
(see Ref. 31). The other boundaries of the regions are
straight and their positions are obvious from the marks
on the coordinate axes. The conductivity in regions
Ι, Π, . . . VIII is described by the formulas labeled in
the same way as in Table I.

Regions I, VII, and VIE correspond to strong mag-
netic fields, whereas regions V and VI correspond to
weak fields. The region of intermediate magnetic
fields is widest for T-Ta and b = Q. In region II, the
magnetoumklapp diffusion gives rise to open orbits in
which the lifetime is governed by the diffusion of an
electron in the direction pz. In region ΠΙ, the diffusion
destroys the open orbits completely and the conducti-
vity is governed by random wandering of an electron
along a chain of closed orbits and the jump time in this
process is SI'1.

The situation in region IV can be determined by noting
that at distances shorter than δ ~pT(QTr)'1 the velocity
of diffusion of an electron is higher than the velocity of
its motion along an orbit in a magnetic field. The quan-
tity 5, if it does exceed r3, can be regarded as the size
of a hot spot because the probability of an electron be-
ing captured by a hot spot at this distance from it is of
the order of unity. At the boundaries of regions IV and
V we find that δ »pF.

3) Open Fermi surfaces. 1. We shall use initially
the above surface model with narrow and short necks
(/ %d«pr). The results are shown in Fig. 16 (it is
assumed that q« d, I). The dashed curve corresponds
to the relationshippF(Sl*TF)~1/2 =b where U*aSlb/d is

TABLE I.

τ,

w

VF) Pf

FIG. 15. Diagrams of regions of qualitatively different be-
havior of conductivity on a spherical Fermi surface expressed
in terms of different variables: a) T. (ii Tp)"1 for 6 = 0 ; b) b,
(ΩτρΓ1 for T>T0 (see Table D.

"ΧΧ'Ί

lie1

ne1

I

β 2

V

τρίηβ- 1

I I

VI

I I I

a

V I I

(Ω^ΐρϋ)-1

IV

VIII

(ΩΗρΐ^-'β γ Ιηβϋ',α

the frequency of revolution along an extended orbit (6
« d). This curve divides region Π into two parts, in
the upper of which the conductivity exhibits oscillations
(see Sec. 4b), whereas in the lower part there are no
oscillations. All the other lines in Fig. 16 are straight
and their positions are identified by the marks on the
ordinates.

The conductivity in regions I-VI is described by the
expressions listed in Table Π, where βι = ά/ρΐ.

Strong magnetic fields correspond to region I and,
strictly speaking, only to the upper part of region Π.
Layers of orbits distinguished by the number of loops
have a width of the order of b. In the lower part of
region Π the diffusion displacement of an electron during
its period of motion on an extended orbit is pF(Sl*TT)
> b and, therefore, there are no oscillations.

In region ΠΙ after a time l/fi* an electron diffuses
out of a layer of extended orbits: pF(Q*TF)'1'2» d. Un-
der these conditions the difference between an extended
orbit and an open one is unimportant and the electrical
conductivity is given by Eq. (4.23). To the right of
region ΠΙ an electron escapes from a layer of extended
orbits also in a period a'1. It is easy to show that in
this case the necks play the same role as the hot spots
of size d in a metal with a closed Fermi surface at
temperatures Τ > To. Therefore, regions IV and V in
Fig. 16 are fully equivalent to regions III and IV in
Fig. 15. Finally, region VI corresponds to weak fields.

2. A characteristic range of intermediate fields
which appears near the boundary of a two-dimensional
region of open orbits can be analyzed using the example
of a Fermi surface model of the planar grid type. For
^ — ̂ raa in a given section pto there is a layer of open
orbits of zero thickness. In any other cross section
ρΛ which may be arbitrarily close to it the orbits are
closed but a small diffusion displacement of the order

prf is sufficient for an electron to be transferred

tflpr)
! d/pr

FIG. 16. Diagram showing regions of qualitatively different
behavior of the conductivity in terms of the variables 6 and
(Ωτρ)"1 (with one open direction); see Table Π.
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TABLE IL

o v < m

I I I

'"·"·«•

I I I

« "

IV V VI

1

Cl " P .

from this section to the next cell. Clearly, the main
contribution to the conductivity is due to electrons in a
layer \pe~peo\ s^Tpn)" l / 2 = (f and after each revolution
half-period these electrons are equally likely to reach
the next cell or to remain in the present one. Follow-
ing Eq. (4.19), we obtain

(4.30)

It should be noted that the thickness of a layer of open
orbits vanishes not only at the boundary of the two-
dimensional region but also at an isolated point at the
center of this region. The expression (4.30) for the
latter case was obtained by Pippard.24

We can easily see that Eq. (4.30) is valid not only on
the boundary but also within the range of angles | θ
-θη Β ΧΙ«(ΩτΡ)-1 / 2. In fact, if θ - θ Β ω « (Ωττ)-1Λ, the
additional diffusion displacement Δρ,,—gid-e^) neces-
sary if an electron is to reach the next cell is small
compared with the displacement d* during a half-peri-
od; if dma-$« (nTF)'1/2, open orbits essentially do not
yet appear because an electron escapes from a layer
of infinite sections of thickness ^Κθ^-θ) in a time
shorter than Ω"1. If Ιθ-θ^,Ι » (UrT)~1/2, the approxi-
mation of a strong magnetic field is clearly valid.

It may be found that for θ =θηΒΧ the standard asymp-
totic behavior of the conductivity is not attained no mat-
ter how strong is the field. However, the validity of
Eq. (4.30) is limited by the diffusion approximation,
which is valid for d*»q. Therefore, the intermediate
range of magnetic fields on the boundary of the two-
dimensional angular region is defined by the inequali-
ties 1« nrF « (g/qf. In higher fields a collision with a
phonon does not occur during one revolution period and
the results of Sec. 4b apply. The dependence σΧΪ(θ) in
the angular range |θ - θ , ^ | ^ θ , , ^ - θί Γ is shown in Fig.
17: curve 1 corresponds to 1« ΩτΡ « {g/q)2, whereas
curve 2 corresponds to ΩτΡ» (g/q)2.

Concluding, we shall estimate by how much the ori-
entation of Η can deviate from the sufficiently symmet-
tric direction φ (tan<p = m/n, where manal) without
invalidating the results (4.21), (4.24), and (4.30). For

simplicity, we shall consider the diffusion approxima-
tion. If θ - ^,,?, >-(ΩτΓ)'1/2, rotation through an angle
Αφ increases the diffusion displacement necessary to
transfer an electron to the next cell by an amoung gb<p.
This correction should be less than at least one of the
quantities &pt and d* and hence we find Δφ«$ -dm»
+ (ΩτΙ.)"1/2. If θΒΜ-θ>(ΩτΙ.)"1/2, a small rotation by Δ<ρ
has the effect that open orbits become closed but fairly
extended with lengths of the order of g(dma -θ)/Δφ. A
comparison of this quantity with the mean free path on
an open orbit gives Δφ« ( Ω τ ^ ) ' 1 ^ - ^ ) " 1 .

CONCLUSIONS

We have stressed already in the Introduction that our
aim is to establish primarily the qualitative relation-
ships governing the low-temperature electrical conduc-
tivity of pure metals. The results obtained using
idealized models can be used, after establishing their
physical meaning, to analyze the situation in any speci-
fic metal. In a detailed quantitative description, we
can use a combined approach: the structure of the
distribution function can be found from qualitative phys-
ical considerations and the numerical parameters can
be deduced by applying the variational principle (as
has been done above for the electrical conductivity of
alkali metals).

In our opinion, it would be particularly interesting to
study experimentally the effects due to the umklapp
processes: this would provide an opportunity to ob-
serve directly these processes in metals with closed
Fermi surfaces (in the range of strong magnetic fields)
and to alter qualitatively the topological properties of
electron orbits by the magnetoumklapp diffusion (in the
range of intermediate magnetic fields).

Calculations of the low-temperature electrical con-
ductivity of a degenerate two-dimensional electron sys-
tem have yet to be carried out. We have mentioned
earlier that the electron-phonon interactions cannot by
themselves ensure an equilibrium state of such a sys-
tem in an external electric field. This should result in
qualitatively different behavior of the electrical conduc-
tivity of two- and three-dimensional metal systems.
Finally, it should be pointed out that the thermal con-
ductivity, as well as the thermoelectric and thermo-
magnetic effects in metals, may also be analyzed by
the method of the diffusion equation (see Appendix I).

The authors are grateful to M. I. Kaganov for reading
the manuscript of this review and making many valuable
comments.

FIG. 17. Anisotropy of the transverse conductivity near the
boundary of a two-dimensional region of open orbits: 1) 1
« QTF « (g/q)2; 2) ΩτΡ » (g/q)1.

APPENDIX I

As pointed out in Sec. 2, the diffusion equation can be
obtained from the transport equation by direct expansion
in terms of the parameter q/fo retaining terms up to
the second order inclusively. We shall use the same
approach to show that the distribution function of the
principal approximation is independent of energy (in the
absence of a temperature gradient); moreover, we
shall find the form of the function and derive the diffu-
sion equation for heat conduction in a metal.
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1. In momentum space we shall introduce a curvi-
linear coordinate system in which one coordinate is
the energy and the other two represent the position of a
point on a constant-energy surface [these coordinates
will be identified by a vector index ρ: χ,(ε)]. We shall
write the result of expansion of the collision operator
in powers of the parameter q/p? in the form le =/( 0 ) +/( l )

+ΐ<2) + . . . .

The structure of the operator ?m is the most import-
ant feature for further analysis:

Λ%(<0=- f de'Kp(e, «'ΗΧρΜ-χ,,ίε')], (I.I)

where Kv{c, ε') =Kt(c', ε), Kt(c, ε') > 0. For these rea-
sons the homogeneous equation 7(O) = 0 has just one non-
trivial solution X = Cp (Cp is an energy-independent ar-
bitrary function of the surface variables) and for any
function Χρ(ε), we have

j/<»7. <ι«· = ο. (1.2)

The problem has an additional small parameter: s/v
« 1. We can, in particular, show that allowance for
the nonequilibrium state of phonons (i.e., for the func-
tion Φ,) gives rise to a correction to the factor /"" and
this correction is proportional to {s/νΫ, so that it can
be neglected. In this approximation, we have

(1.3)

where α> = ε - ε'.

We shall report without proof some properties of the
operator /( 1 ) .

If in this operator we distinguish parts of different
order in repsect of the parameter s/v: ia)=I™ + li",
I™ s/v, then 70

(1>CII = 0 and for any function χ, we have
/ / ? W = 0. Moreover,

j focp^=u. (1.4)

Application of the method of successive approxima-
tions to the transport equation (1.2) gives (χ=Χ(0> + χα>

/(0)χ(0) = 0

θ + ί(")χ(ΐ) + 7(«>χ<0) = fE ~ .
dp

(1.5)

(1.6)

(1.7)

The field term cannot be attributed to Eqs. (1.5) and
(1.6) since these equations would then be insoluble as a
consequence of Eqs. (1.2) and (1.4).

As pointed out earlier, the only nontrivial solution of
Eq. (1.5) is X(0) = Cp. This demonstrates that the func-
tion of the principal approximation is independent of the
energy. The dependence of the function x(0> on the sur-
face variables can be deduced from the condition of sol-
ubility of Eq. (1.7) tthe term /α)χα> is small in respect
of the parameter s/v]

f /(«)x(«)de= f e E — de.
J J dp (1.8)

This relationship is equivalent to the diffusion equation
(2.5).

2. The main distinction of the low-temperature ex-
pansion in the problem of heat conduction in a metal is

that the energy dependence of the distribution function
X becomes extremely important.

We shall write the transport equation in the form11'

(1.9)

In the approximation lowest with respect to q/pT and
T/eF we have (here, vP is the velocity on the Fermi
surface)

de (uo)
This equation is soluble because the integral of its
right-hand side with respect to ε vanishes. The solu-
tion can be represented in the form χ(0) = <ρρ(ε) +Cp )

where <ρρ(ε) is an odd function of ε - εΓ and Cp is an
arbitrary function of the surface variables. Calcula-
tions in many respects similar to those presented in
Sec. 2 give the following diffusion'equation for the
function C.

p :

div D (VC — a {VC}) = \T ( η -£r + -^r Tn ™l ' ^ 2 +~Tn' j -f- div Q,

H B_ (e) 6 (enj (1.11)

inM_(e) f .. d A -

Ρ II

here, μ(Γ) is the chemical potential; ^ Ί , 2 are the prin-
cipal radii of curvature of the Fermi surface at the
point ρ; η' = (3/3ε)η,,(ε)ε = ε ρ . All the terms on the right-
hand side of Eq. (1.11) are of the same order of magni-
tude: VTT/zT.

We shall now consider the meaning of the relation-
ships obtained. The inhomogeneous termX=v9«/3r
in the transport equation (1.9) can be represented in a
natural manner as X-Χχ +X2 by introducing a term Χι
which is antisymmetric with respect to energy: /Χ\άζ/
v = Q,Xi~ (T/CF)XI. The reaction of the system to the
perturbation Χι is described by Eq. (1.10) and the cor-
responding energy relaxation time obeys τ'<χ Γ"3. On
the other hand, the nonequilibrium associated with Χι
cannot be removed in one collision; the relaxation of
this term is described by the diffusion equation (1.11),
whose right-hand side contains S Xdc/v. The term
divQ in Eq. (1.11) is related to the fact that a change
in the energy causes an electron to travel also along
the Fermi surface.

(Π.1)

APPENDIX II

We shall consider the equation

η - a {η} = β"ΐψ,

where η= νχ and the vector φ obeys the conditions (2.8).
We shall consider two aspects: 1) the uniqueness of the
solution of the homogeneous equation corresponding to
Eq. (Π.1); 2) the convergence of the iteration procedure
in the solution of Eq. (II.1).

u ) This equation does not contain a term with the electric
field since the reaction of the system to such a field is dis-
cussed above. Moreover, the term edN/Ba is missing from
the phonon transport equation because the drag of electrons
by phonons in metals is weak at sufficiently low tempera-
tures.
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1. We can easily show that the integral kernel of Eq.
(Π.1) has the property

i < d 5 p , = 6ift. (Π.2)

We can use this property and write down the homogene-
ous equation η - a{?}} = 0 in the form

V(T, p -T, p . )dS p (Π.3)

We shall multiply the last equation by the vector. ϋ ρ η ρ

and integrate over the whole Fermi surface. Bearing
in mind that D^A^ =ϋρ,Αρ,ρ, we obtain

D (μ) D (μ)
(Π.4)

The integrand in Eq. (Π.4) is nonnegative. If we as-
sume that for all values of ρ and μ we have Ών(β)* 0,
then

(ip—ν'μ=°· (II.5)

The question is now whether Eq. (Π.5) has any non-
trivial (apart from drift) solutions? Let us assume
that at the points pi and p2 such that nx *±n2 the function
η has the values Vi and η 2 . It follows from Eq. (Π.5)
that out of the four components of the vectors i}\ and
η2, three can be selected independently: the compo-
nents parallel to the vector μ^ ~niXn2 are equal.
Clearly, these two vectors can be expressed as pro-
jections of a certain three-dimensional vector u on the
Fermi surface at the points pi and p2: Th = (uu)i and TJ2

= (un)2, where the vector u is defined uniquely by these
relationships. We shall consider another point p3 on
the Fermi surface such that the unit vectors ni, n2,
and n3 do not lie in the same plane. If we introduce
Vs = (un)3 + δη3, we find from Eq. (II.5) that δη3 can be
described by δη3μι3 = δη3μ23 = 0 and hence δη3 = 0, since
the vectors μη and μ23 are nonparallel. Finally, if we
select the point pi so that ni, n2, and n* lie in the same
plane, we can prove the equality t]t = (un)* using vectors
ijt and η3 instead of the vectors t\\ and η 2 .

We have thus shown that if we can find the three
points on the Fermi surface with normals which are not
in the same plane, then the homogeneous equation η
= a{T)} has only the drift solution and, consequently,
the inhomogeneous equation (Π.1) is soluble for any
value of ψ satisfying the condition (2.8).

The exception is thus a cylindrical Fermi surface.
In this case the general solution of the homogeneous
equation (Π.3) is η = u + rji, where u is the drift in the
direction of the generators of the cylindrical surface,
whereas η χ is perpendicular to u and depends in an arbi-
trary manner on the coordinate measured in a direction
perpendicular to the generators (an allowance is made for
the fact that curl η = 0). The condition for solubility of the
inhomogeneous equation (II. 1) can be represented in the
form

I 6-><t>dS= [

In view of the arbitrary nature of the drift u and the
function rji it follows that ψ = 0. However, on the other
hand, ψ should satisfy the equation div!p=-eEn. There-
fore, in the case of a cylindrical Fermi surface the dif-
fusion equation (II.l) is insoluble.

2. It should be noted that the eigenfunctions η, of the
integral operator a form a complete set and satisfy
the orthogonality conditions

This follows from the fact that the equation a-fr,} = λ,η,
rewritten for the functions x, = VZJTJ, in the form

{ 1 , } = XJy.i has a symmetric core i

We can now show easily that the nth term of the itera-
tion series for the solution of Eq. (Π.1) has the form

n""

The drift function i)i=Un with Xj = l does not occur in
the expansion because it follows from the solubility con-
dition (2.9) that C1==0. Thus, the iteration procedure
converges on condition that for all i > 1 the eigenvalues
obey λ{ < 1. This can be proved by noting that the
quantity <Tj|Tj-a{t?}> on the left-hand side of Eq. (II.4)
is essentially positive for any value of η which is not
a solution of the homogeneous equation (Π.3). If we
bear in mind that Eq. (II.3) does not have other solu-
tions except η 1 ; then for i > 1, we obtain

(Hi |η,-β{ηι})=1-λί>0.
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