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The theory of Cherenkov and cyclotron plasma sources Of coherent microwave radiation excited by intense

electron beams is reviewed systematically. The linear approximation of the theory yields the output frequency

spectra, the wave growth rates, and the threshold electron beam currents required for exciting these sources.

The general theory is illustrated for some particular devices: the forward-wave plasma Cherenkov source,

foward-and backward-wave cyclotron-resonance masers, and foward-and backward-wave Cherenkov sources

in a slightly corrugated slow-wave structure. The nonlinear theory of plasma microwave sources leans heavily

on a numerical solution of the dynamic equations of the electromagnetic field and the charged particles in the

system. The nonlinear operation of a forward-wave plasma Cherenkov source is analyzed. Under optimum

conditions, the efficiency of this device can reach 30-35%. The efficiencies of other high-current plasma

sources are comparable in magnitude. Experimental progress toward the development of high-power pulsed

microwave sources of the Cherenkov and cyclotron types using intense relativistic electron beams is reviewed

briefly.
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1. INTRODUCTION

Our purpose in this review is to discuss systemati-
cally the existing theory for plasma sources and ampli-
fiers of coherent electromagnetic radiation which use
intense relativistic electron beams. Plasma sources
of electromagnetic waves first came under discussion
after the publication of papers by Akhiezer and Fain-
berg1 and Bohm and Gross2 (see also Ref. 3), where
the two-stream instability was discovered and where
it was predicted that the energy associated with the
directional motion of electron beams could be convert-
ed into the energy of electromagnetic waves in plasmas.
Subsequent and extensive experimental work completely
confirmed the predictions of Refs. 1-3, but the devel-
opment of plasma sources of coherent electromagnetic
radiation proved far from simple. A firm basis for
developing such sources has become available only in
the past decade, as a result of progress in the tech-
nology and physics of intense relativistic electron
beams.4 ' 5 Although the development of plasma sources
and amplifiers of electromagnetic radiation is still in a
primitive stage, the basic theory of these devices has
already been worked out. It is fair to say that the
theoretical foundation has been laid for a new branch of
plasma physics: high-current relativistic plasma mi-
crowave electronics.

The term "intense electron beams" is usually under-
stood as meaning beams with currents above the so-
called vacuum limit. In a metal waveguide of radius
R and length L»R, of the type customarily used as
resonators in vacuum-tube electronics (Fig. 1), the
beam current is limited by the electron space charge.

This limiting current is determined in order of magni-
tude by5

where γ = [1 - (M2/C2)]"1 / 2 is the relativistic factor of the
electron energy, S is the cross-sectional area of the
beam, which is smaller than or comparable to that of
the waveguide, and ω6 = •iAte^/m is the plasma fre-
quency of the beam electrons. An intense beam would
thus be understood as a beam for which the condition
u>l2(JL>bsp holds. Such a beam can be transported through
a waveguide only if the electron space charge is neu-
tralized; neutralization can be arranged by filling the
system with a dense plasma1' (dense in comparison with
the beam). Strictly speaking, therefore, the field of in-
tense-beam microwave electronics must be a field of
plasma electronics.

It is possible, however, that the plasma may not have
any important effect on the frequencies of the electro-
magnetic waves excited by the beam. The wavelengths
of the electromagnetic waves excited by the beam are
shorter than or comparable to the transverse dimen-
sions of the electrodynamic system of the source, i.e.,
of the resonator; more precisely, ω£ω<.0= μο/R,
where μ specifies the radial wave number of the oscil-
lation mode (the roots of Bessel functions or their
derivatives). Ordinarily, μ~3-10. If the plasma fil-

"The beam current may exceed the vacuum limit even in the
absence of a plasma, with purely ionic neutralization of the
beam charge.5 The plasma also neutralizes the beam cur-
rent, allowing the current to be raised well above the vacu-
um limit.
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FIG. 1.

ling the resonator has a relatively low density, so that
the condition wi = /4ire''!wi/wi< μο/R holds, the plasma
will not strongly affect the electrodynamics of the
resonator, which remains an essentially vacuum de-
vice in terms of its electrodynamic properties. Such
a plasma may neutralize the beam space charge and
allow an intense beam with a current above the vacuum
limit to be transported through the resonator. The
beam current, however, cannot be much higher than
the vacuum limit; specifically, it cannot exceed this
limit by a factor greater than μ2S/γR2, as follows from
the inequalities ω\<ω\< μ2c2/R^. The situation is dif-
ferent in the case of a dense plasma, with ωρ> μο/R.
A dense plasma will not simply neutralize the beam
space charge in the resonator; it will also cause im-
portant changes in the entire electrodynamics of the
resonator, in particular, in the spectra of the elec-
tromagnetic natural modes of the resonator. It is in
this case that we are dealing with genuine plasma elec-
tronics, which will allow us to use electron beam cur-
rents far higher than the vacuum limit, by a factor as
high as i^yS/R1, as we shall see below. Furthermore,
when ultrarelativistic electron beams are used in such
systems it becomes possible to excite efficiently waves
with a wavelength far shorter than the transverse di-
mensions of the resonator, λ « R/γ2. In other words,
plasma microwave electronics presents us with the op-
portunity of developing sources of intense short-wave
electromagnetic radiation.

In principle, short waves with λ ~ R/γ2 could also be
excited in vacuum systems. In practice, however, the
electrodynamic system of the source must be filled
with plasma, and electron beams with a current above
the vacuum limit must be used.

The theory of plasma sources and amplifiers of
electromagnetic radiation has been constructed by ana-
logy with the theory of plasma instabilities on the basis
of a general formalism of the electrodynamics of ma-
terial media.6"8 In this sense the theory differs from
the theory for the devices of classical vacuum micro-
wave electronics—the theory for the traveling-wave
tube, the backward-wave tube, klystrons, "gyrotrons,"
etc. In vacuum microwave electronics one deals with
the interaction of an individual beam electron with the
field of the electromagnetic wave in the resonator, and
one calculates the work performed by the beam elec-
trons on the field as the beam passes through the reso-
nator. If this work is sufficient to offset the loss of
electromagnetic-field energy which results from radia-
tion from the resonator, electromagnetic waves will be
excited in the system.9"12 Generally speaking, this ap-
proach is limited to relatively low beam current den-

sities, at which the distortion of the resonator field by
the beam is negligible. Obviously, the strong inequali-
ty ω = iic/R » ω» must be satisfied; this condition is
equivalent to requiring that the beam current be small
in comparison with the vacuum limit. For dense, high-
current beams, this approach is of course unsuitable,
and it is especially poor in the case of plasma elec-
tronics, in which plasma-filled resonators are used as
the electrodynamic system. In this case the resonator
field is distorted by the plasma to the extent that a
self-consistent solution must be found for the equations
of the electromagnetic field and the equations of motion
of the plasma as a material medium; in the case of in-
tense beams, the equations of motion of the beam elec-
trons are also included here. This is the approach
taken in plasma electrodynamics in a study of plasma
instabilities.6"8

In plasma electrodynamics, on the other hand, the
customary approach in the theory of the stability of
nonequilibrium plasma waveguides is to analyze sys-
tems which are unbounded in the longitudinal direction2'
(Refs. 6-8), while plasma sources and amplifiers of
electromagnetic radiation are definitely bounded in the
longitudinal direction; there are special devices for
injecting the beam and extracting the radiation, and
there is also a feedback system. This circumstance
must be taken into account in the derivation of a theory
of plasma sources of electromagnetic radiation. Con-
sequently, any source or amplifier of electromagnetic
radiation is represented as a spatially bounded medium
consisting of a plasma and a relativistic electron beam.
In a system of this type, which is not at thermodynamic
equilibrium, electromagnetic waves can be excited; in
other words, small perturbations in such a system may
prove unstable and grow with time. The theory for
such a system must tell us the conditions for the occur-
rence of an instability in the system, the frequencies
of the electromagnetic waves excited by the beam, the
growth rates of these waves, and the threshold elec-
tron beam currents required to excite the system. We
also need a theory for the nonlinear stage in which the
instability reaches saturation, and the theory must tell
us how successful the system is in converting beam
energy into radiation energy; i. e., it must tell us the
efficiency of the source.

The methods which have been developed for analyzing
spatially bounded plasma-beam systems are not ade-
quate for solving the source problem as formulated here
in the general case of an arbitrary electron beam den-
sity. It becomes necessary to restrict the theory to
beams for which the density is not very high and for
which the current is not much higher than the vacuum
limit, so that the frequencies of the waves excited by
the beam satisfy ω2»αω\, where α is a small param-
eter which depends on the nature of the interaction be-
tween the beam electrons and the field of the excited
wave and which takes on different values for different

2* The longitudinal boundedness of the system has been taken
into account in several studies of the maximum electron-
beam currents in plasma-filled waveguides (see the reviews
in Refs. 13 and 14).
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types of sources. In solving the self-consistent prob-
lem it is thus necessary to consider only the terms
which are linear in the beam density, and the problem
is thereby simplified considerably. This approximation
is equivalent to the one-particle approximation used in
conventional vacuum microwave electronics. For this
reason, some of the specific results which we will see
below are the same as those derived in Refs. 10-12.
Nevertheless, again in this case we will follow the gen-
eral electrodynamic formalism, since it not only is
more general and gives us a way to approach the case
of truly intense beams but also is in a more canonical
form.

The distinction of "truly intense" electron beams is
based on a comparison of the magnitude of the beam-
induced perturbation of the natural-mode frequency
spectrum of the resonator (more precisely, of the
width of the excitation band) with the difference between
the resonant frequencies of the unperturbed resonator.
For the long systems in which we are interested, the
minimum difference between resonant frequencies is of
order Δ ω 5 κ / L , while the perturbation of the frequen-
cy spectrum by the electron beam is of order ω6 or
even greater. For the intense beams with which we
are concerned the conditions ω,,ζ c^fy /R»uc/L hold,
so that the excitation band may span a large number of
longitudinal modes of the resonator. As a result, in
high-current electronics we are generally dealing with
sources which are in principle multimode sources, at
least in terms of longitudinal wave numbers.

In this review the events which occur in plasma sour-
ces will be described in terms of normal modes which
do not, in the linear approximation, interact with each
other in the resonator volume but which do undergo
mutual conversions at the boundaries of the resonator.
We have a classical problem of the linear electrody-
namics of spatially bounded media. To solve such a
problem we should supplement Maxwell's equations,

r o t E = — !
ill

— , divB =
in

(1.2)

with boundary conditions and with the constitutive equa-
tion

Ω,^,,Ε,. (1.3)

where £fj. is the dielectric permittivity tensor operator.
The electrodynamic boundary conditions are usually
found directly from system (1.2), (1.3) by integrating
it over a boundary layer which physically is an infini-
tesimally narrow layer near the interface; this can be
done only if constitutive equation (1.3) holds for the
entire system. We must therefore deal with the prob-
lem of deriving constitutive equation (1.3) from a speci-
fic model for the medium.

In this review we are adopting the model of a cold
electron plasma and a monoenergetic electron beam.
In this model it is a straightforward matter to deter-
mine the dielectric permittivity tensor operator and
to write constitutive equation (1.3) explicitly. This can
be done by solving the linearized Vlasov kinetic equa-

tion for the plasma and beam electrons:

9f>> . v

 dbl " a f · ' -efv ι ,.,τ,Λ «/ο_ ^ L = e (E+-L[ V Bi)-^-; . (14)

Here Q, = eB0/mc, where Bo is the external longitudinal

magnetic field which prevents transverse expansion of

the plasma and beam, so that the following condition

holds3):

Ω2
(1.5)

The beam electrons are assumed to be monoenergetic,
and their equilibrium momentum distribution is written

(Pi—Ριθ) δ(/>, — ρ,ο), (1.6)

where p±0 = ηιγπ±, ρ]ί0 = nyu n and uv are the velocity
components of the beam electrons respectively trans-
verse and longitudinal with respect to Bo. It will be
assumed that u\«cz, since only under this condition
can a relativistic beam be intense.5 The equilibrium
distribution of plasma electrons is similar in form if
thermal motion is ignored:

/op = η ρ δ (ρ). (1.7)

Before we solve Eq. (1.4) with the equilibrium dis-
tribution in (1.6) or (1.7) we should examine the struc-
ture of those electrodynamic systems which will be dis-
cussed below in the particular examples of plasma
sources of electromagnetic radiation. One of the most
common systems used in practice for this purpose is a
smooth metal waveguide of length L and radius R be-
tween boundaries ab and cd, filled with a plasma (re-
gion I in Fig. 1). Boundary ab is a metal grid or thin
foil which is transparent to the electron beam but opa-
que (reflecting) for the radiation. Region III is a pure
vacuum, from which the unperturbed electron beam is
introduced. Region II is a simplified model of a radi-
ating horn consisting of a smooth waveguide of radius
R filled with a dielectric with dielectric permittivity
ε0. Boundaries ab and cd play an important role in the
excitation of the electromagnetic radiation. The waves
which are being amplified—natural modes of the longi-
tudinally unbounded system—are reflected and trans-
formed at these boundaries. This transformation gives
rise to a feedback: a mechanism for information trans-
fer from one boundary to the other, which is a neces-
sary attribute of any source of electromagnetic radia-
tion. Not just any type of feedback will be sufficient for
excitation, however; the system must not be at equili-
brium, and in the case under consideration here the
electron beam current must exceed a certain threshold
value (or "starting current"). These threshold currents
will be determined below for some specific plasma
sources of electromagnetic radiation. The key element
of the source is region I, which is the region in which
the electron beam interacts with the electromagnetic
field.

Let us determine the specific form of constitutive
equation (1.3) for this model of the medium. For a sys-

3)Generally speaking, this condition is overly stringent and is
necessary only if there is absolutely no neutralization of the
beam charge.

Sov. Phys. Usp. 24(1), Jan. 1981 Bogdankevich et al.



tern which is unbounded in the longitudinal direction we
should seek a solution of the system of equations consis-
ting of the field equations and the kinetic equations in
the following form in the cylindrical coordinates (r, ψ,ζ):

/ (r) exp (—ίωί + ikzz + ϊίφ), (1.8)

where ω is the frequency, and k, and I are the longitu-
dinal and azimuthal wave numbers. Substituting solu-
tions of type (1.8) into system (1.2), (1.4), and using the
general methods (which are described, for example, in
Refs. 6 and 7), we can easily calculate in the limit u\
« c2 the dielectric permittivity tensor operator zi}

which we are seeking. We will write this tensor out
explicitly here, since it plays a governing role through-
out high-current microwave electronics but has never
before been written out completely in the literature:

°*" » ' •••Λ

- yu* I i d r a g b ' r M
~ Ω \r dr Γ γ(ω-*,ΐί|)

 + T g ) '

- ! "ρ "Έ ι * 9 b J _ _
ω' γ γ ^ ω - Μ ρ ) 1 r *• " 3r

! J b , 1 Ω / a δ \

- 7 τ ε , + τ T ( m _ M | | ) (-aTe»""E' IT) · J
(1.9)

Here

« 1 = —

» = el-el, ε, =ep-t

2γω3
r "-*.»i
L ω—* z u, + (+ (β/γ)

uj , m . ? ι Ί ( 1 . 1 0 )

"^ 2 I z c2 j [ω—tju, + (Ω/γ)2| J '

" ~~ 2ω2 |_~Ω ω—(tjUj + (Ω/γ) ~*"~ω [ω— kzuf + (Ω/γ)]! J ·
We turn now to the boundary conditions to supplement

field equations (1.2), (1.3) in the solution of plasma-
electronics problems. Along with the conditions that
the fields must be bounded at the waveguide axis are
the obvious boundary conditions that the tangential com-
ponents of the electric field must vanish at the lateral
metal walls of the waveguide and at boundary aft

£ 1 Z7 Ι Π

τ\ζ=ο="ΕΨ12=ο = 0.

. .. .

The other boundary conditions at the plasma-beam
interfaces and also at boundary cd, which separates the
beam-wave interaction volume (I) from the volume
from which the excited radiation is extracted (η), are
found through a direct integration of constitutive equa-
tion (1.3) near these boundaries. These boundary con-
ditions are quite lengthy, and we will not write them
out here (see Ref. 6 for more details). We simply note
that the radial profile of the plasma density in the wave-
guide is assumed homogeneous. The beam, on the
other hand, is hollow or annular, confined to a narrow
region of thickness A«rt near r=rt<R. However, if
the radial profile of the beam electron density, nb (r) is
to be assumed sharply defined, we must require

(1.12)

Equivalently we must require that the beam thickness
be much greater than the Larmor radius of the elec-
trons in the external longitudinal magnetic field.

Finally, we note that these boundary conditions are
not sufficient for solving the source problem in which
we are interested here. The missing boundary condi-
tions can be supplied by specifying that there are no
perturbations of the beam at the surface ab and that
boundaries ab and cd are transparent to the beam elec-
trons. In the case of a monoenergetic beam these con-
ditions are written

b^'r^rt'^o' (1>13)

where pb and ]6 are the rf densities of the beam charge
and current, respectively. An obvious condition for
the source problem is also the requirement that there
be no perturbations in regions Π and III which are in-
cident on region I. It is easy to see that this require-
ment is equivalent to the radiation condition.

Now that we have discussed the general formulation
of the source problem in the electrodynamics of mater-
ial media, we can proceed to analyze its solution. We
first note, however, that in the model adopted above
both the plasma and the beam were assumed monoen-
ergetic; i.e., the thermal (energy) spread of the beam
and plasma electrons was ignored completely. This
approximation is legitimate if the plasma dimensions
are much greater than the Debye screening length, and
this condition is met with a wide margin in practice.
For an electron beam this condition means that the
Debye length is small in the proper frame of reference
in comparison with the beam thickness. This require-
ment sets a lower limit on the beam current1 5:

/ r Q " r b ΥΔ(5 / Λ \ ΙΛ Λ Λ\

b > -Mow ~ °-°-J J^T" ( K ") ' (1.14)

where Δ# is the energy spread of the beam electrons in
their proper frame. Inequality (1.14), which is one of
the conditions which must be met if the electron beam
is to be judged intense, imposes some extremely strin-
gent restrictions on the energy characteristics of the
beam, requiring that the electrons have an extremely
small energy spread. For example, at an electron en-
ergy g?=l MeV (i.e., γ = 3) and with r t /A = 3, an en-
ergy spread of only 10 keV (i.e., Δ&/&~1%) leads to
the value t/,ow «2 kA.

Actually, inequality (1.14) is overly stringent. For
the source to operate it is sufficient to require that the
excitation bandwidth be greater than the frequency
spread which stems from the thermal spread of the
beam electrons. This last requirement will be written
out explicitly below in the study of the specific sources
of electromagnetic radiation.

2. LINEAR THEORY OF PLASMA SOURCES.
FREQUENCIES OF THE EXCITED WAVES AND
THRESHOLD CURRENTS

As mentioned earlier, plasma sources of electromag-
netic radiation operate by virtue of the Cherenkov and
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cyclotron two-stream instabilities, which can be sum-
marized as the induced excitation of electromagnetic
waves by beam electrons in a resonant interaction of
these electrons with the natural modes of the resonator,
i.e., under the condition

«0 (*z) " l{zu £ + s -ψ • (2.1)

Here ωο(&*) is the frequency of an electromagnetic
natural mode of the resonator in the absence of the
beam; in the case s = 0, the resonance is a "Cherenkov"
resonance, while in the case s# 0 the resonance is a
"cyclotron" resonance. The first case corresponds to
the Cherenkov radiation of natural modes of the reso-
nator under conditions such that the longitudinal elec-
tron velocity is equal to the wave phase velocity; the
second case corresponds to the cyclotron radiation of
the electron as it revolves in the longitudinal magnetic
field. The second case can occur, therefore, only if
the transverse component of the electron velocity is
nonzero, i.e., only if u±*0. IfM^«c2, the cyclotron
radiation occurs primarily at the harmonics with s
= ± 1, which correspond to the normal and anomalous
Doppler effects.

These elementary radiation mechanisms take the form
of second-order poles in the contribution of the beam to
the dielectric permittivity tensor (1.9) under resonant
conditions (2.1). The pole corresponding to the Cheren-
kov resonance figures only in the element i,,, while the
poles corresponding to the cyclotron resonance figure
in all elements of the tensor zi}. Then, in particular,
we can find the order of magnitude of the parameter a
in the condition given above to specify a low-density
beam, ω2»αω1. For a Cherenkov resonance we find
α~1/γ3, while for a cyclotron resonance we find α
~u]/c2. In the limit ω2»αω1 it would obviously be suf-
ficient to consider only those beam terms which contain
poles of second order in the tensor ε^ in the solution of
the problem of the preceding section, of the excitation
of electromagnetic waves by an electron beam. In the
linear approximation, this problem is an electrodynam-
ic eigenvalue problem, from which we are to determine
the frequency (ω) spectrum of electromagnetic waves of
the system. If the condition Ima>>0 holds for some of
the eigenfrequencies, the system is unstable with re-
spect to small electromagnetic perturbations, which
will grow with time and which will be radiated as elec-
tromagnetic waves into region II. The equality Ιπιω = 0
determines the threshold conditions for excitation of the
system.

A general method for solving source problems was
derived in Ref. 16 and refined in Ref. 17 (see also Refs.
18 and 19). Below we will use this method for specific
plasma sources of electromagnetic radiation. For com-
pleteness, we will review the basic features of this
method.

The procedure for finding the excitation eigenfrequen-
cies for the system of Fig. 1 can be summarized as fol-
lows. The solution of field equations (1.2) and (1.3) in
regions'* I and II should be sought in form (1.8), as

mentioned above. Substituting these solutions into the
field equations, and using the radial boundary conditions,
we find the characteristic equations Ζ)1·11 (ω, kt) = 0,
which determine the normal-mode spectra in longitudi-
nally unbounded systems having the radial structures of
regions I and II, respectively. We denote the solutions
of the equations D1'11 (ω, k,) =0 by k\'n

11 (ω), and we denote
the corresponding eigenfunctions by φ],'11, « = 1,2,... ,
Ν1·11, where Ν1·11 is the number of normal modes in
regions I and II. Then a general solution of the field
equations in regions I and II can be written

JVI, II

E1·11, Bl-U= 2 Al' "φη Π ( Γ ) β χ Ρ [ — ίωί + ί/φ + !^ΙήΙ'(ω) 2]. (2.2)

where Aj·11 are arbitrary constants. Up to this point
we have assumed that regions I and II are unbounded in
the longitudinal direction. The boundedness of these
regions can be taken into account by substituting (2.2)
into the longitudinal boundary conditions at ζ = 0, L.
Eliminating the constants Aq

I l H from the resulting alge-
braic relations, we finally find the dispersion relation
which we have been seeking. This dispersion relation
determines the complex eigenvalues ω, whose real
parts are the frequencies of the excited waves and
whose imaginary parts are the growth rates of these
waves. Equating the imaginary parts of ω to zero, we
find the threshold currents for the excitation of the
source, as mentioned above. This essentially exhausts
the linear part of the general theory of plasma sources.
The method described above for solving the problem is
valid only if φ\ ( r )s<^ n ) (r), i.e., only if the problem
can be reduced to a one-dimensional problem. This is
evidently the case for the simple system of Fig. 1.
For more complicated systems the calculations be-
come formidable, and there is hardly any point in go-
ing through them here.

It is easy to show that in the high-frequency limit
ω 2 » au>l in which we are interested the characteristic
equations in regions I and II can be written in a com-
mon form with an accuracy to terms linear in the beam
density:

(2.3). (ω, Κ)= [ ω _ Μ | | _

"We are not interested in the solutions in region III, since
there are no perturbations of any type in that region.

The quantity A ~ a depends on the particular type of
course and will be discussed in more detail below. The
equation ϋο(ω, k,) = 0 is the dispersion relation for de-
termining the natural mode spectrum in the given region
in the absence of a beam; the region is treated as un-
bounded in the longitudinal direction.

In region I, in which there is a resonant interaction of
the electron beam with the wave, and the wave is amp-
lified, Eq. (2.3) in the absence of a beam, D0(u>, kz) = 0,
is quadratic in k, and determines two conjugate branch-
es of natural modes, ± ko{w). Under resonance condi-
tion (2.1) the electron beam perturbs the &t = fe0(u>)
branch but has essentially no effect on kz = -&0(a>). Ac-
cordingly, all four solutions of wave equation (2.3) can
be written as follows:

kzl = *:„ (ω) + 6ft, (i = l, 2, 3), kz, = -k0 (ω), (2.4)

where | 6£f | « | &0(ω)|. Obviously, ko(ui) may be either
positive or negative. A wave with &0(ω)>0 is called a
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FIG. 2.

"forward" (or "comoving") wave, while a wave with
£0(o>)<0 is a "backward" (or "oppositely directed")
wave.5' From (2.3) we find a cubic equation for 6k(:

Now it is a simple matter to find the group velocities of
all four waves: uti = (Ηβ&Λ,,ί&Ο'/θω)"1, i = l,2,3,4. In
the small detuning limit we have

where Δω = ω - kofa)ua -sQ/γ is the difference between
the radiation frequency and resonant frequency (2.1)
(the "detuning") and/ is a quantity proportional to the
electron density in the beam (and thus proportional to
the beam current density).

Equation (2.5) has complex roots corresponding to
wave amplification in region I under the following con-
ditions:

3 ( 1 / 1
V4A» ί < 1 for
I/I u„)V> \ > — 1 for

(2.6)

Obviously, these are the only values of the detuning in
which we are interested in our study of the excitation of
electromagnetic waves in the system. The quantity
I/I , and thus also the beam current, must exceed
certain threshold or "starting" values if the amplifica-
tion is to overcome the damping of the waves which re-
sults from the escape of radiation from the system.
One of the basic problems in the theory of sources is
precisely this problem of determining the threshold
values of \f | and of the electron beam current for ex-
citation of the source.

We will not write out the analytic expressions for the
roots of Eq. (2.5); their behavior as a function of the
detuning is shown qualitatively in Fig. 2a for/ <0 and
in Fig. 2b for/>0. We will restrict the analysis to
the opposite limiting cases of small and large detunings
Δω. In the limit | Δω | «(\f \ un f

 / 3 (small detunings) we
have

f \"3 — l \l/3

)
(2.7)

while in the opposite limit,
tunings), we have

| Δω | » (\f | uu Υ
 /3 (large de-

(2.8

5)Here we are not considering media with a negative disper-
sion, in which the group and phase velocities of the waves
are in opposite directions, so that the wave excited by the
beam with feo< 0 is a forward wave, while that with feo> 0
is a backward wave.

1,2,3), Ugl=-vel

while in the large-detuning limit we have
un = "go. «gs.3 = UII. ui> = — "go;

(2.9)

(2.10)

(2.5) here v.0={-dD0/dk,)/(9Ι\/Βω) is the group velocity of
the resonant wave in the absence of the beam. Figure
3a shows the relationship between the wave group velo-
cities uti and an arbitrary detuning Δω under the condi-
tions vt0>0 and/<0; Fig. 3b shows the corresponding
results for vt0 < 0 and/ > 0.

It can be seen from (2.7)-(2.10) that in the limit of
small detuning Δω, in which the growth rates reach
their maximum values, the group velocities of all three
resonant waves which are interacting with the beam
(«' = 1,2, 3) are of the same sign (this is the sign of vf0)
and are in fact equal in magnitude. This means that
for wave excitation at a small detuning the necessary
feedback in the system can be arranged only by a reso-
nant wave which is reflected from radiating region II,
kl4= -ko(o)), with a group velocity uf4=-vt0. In other
words, there must be a finite reflection of the wave
being amplified by the beam at ζ = L. This is precise-
ly what happens when the beam excites a forward wave
with a positive group velocity vat>0 (intersection point
1 in Fig. 4). For intense beams we have 6fe(L»l, so
that it is sufficient to consider only two of the four
waves: the resonant wave which is amplified by the
beam and the nonresonant wave which is reflected
from the ζ = L cross section and which introduces
feedback in the source. As a result, we find the fol-
lowing dispersion relation for determining the ω fre-

\

FIG. 4.
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quency spectrum:

(2.11)

where ka is either k2 or k3, depending on the sign of/;
and κ is the reflection coefficient at ζ = L for the wave
being amplified.

To calculate χ we need to specify a model for the
radiating device, i.e., for region II. The model adop-
ted in Fig. 1 is far from perfect,6' but numerical cal-
culations would be required for the real radiating de-
vices. Accordingly, | κ | is generally determined ex-
perimentally from "cold" measurements (i.e., without
the beam). If we assume that | κ | is known, then the
entire source problem reduces, according to dispersion
relation (2.11), to an analysis of region I alone. It is
in this region that the beam undergoes the resonant
interaction with the electromagnetic wave.

All the further equations are conveniently written in
terms of ω0 and kl0, which are the real solutions of the
system of equations

Α, (ω, *,) = 0,

ω — frjitn — s — = 0,

whose existence is necessary for the occurrence of the
two-stream instability in the source. This system of
equations is obviously equivalent to resonance condition
(2.1). Using (2.4), (2.7) and (2.9), we find from (2.11)
the real and imaginary parts of the frequency (ω — ω

| / | \'/3 1 π

"2l~arg"J· (2.12)
δω =

It is not difficult to see that the integer η in (2.12) is the
length of the resonator divided by the half-wavelength.

From the condition δω = 0 we find the relation we
have been seeking for the threshold beam current for
excitation of the source with a forward wave7):

| / C T | = _ ^ ^ ( l n ^ . (2.i3)

The situation is completely different for excitation by
the beam of a backward wave with a negative group
velocity vt0<0 (intersection points 2 in Fig. 4). Such
waves may be excited in the limit of a large detuning
Δω even if there is absolutely no reflection from the
radiating device or, in other words, if the radiator is
perfectly matched with the resonator. In this case the
feedback in the system is provided by the resonant

6'The reflection coefficient κ for this model of the radiator is

x= [*}' (ω) — ε ο * ο (ω)) [Jcj1 (ω) + βο*ο ( ω ) ] " 1 ;

where ϋ>0(ω) corresponds to the forward wave in region I,
i .e . , D0{w, k0) = 0 and fc^ico) =V εο(ω2 /c2) - (μ'^/Λ2) > 0, where
μ ls are the roots of the Bessel function, <7,(μ to) = 0, or of its
derivative, ^(μ^ϊ^Ο, for the Ε and Η waves, respectively.
In the case of Η waves, the quantity εο in the expression for
x should be replaced by unity. The reader is referred to 548
of Ref. 8, for example, regarding the field configuration of
Ε and Η waves in a plasma-filled waveguide.

7) Strictly speaking, the analysis above of the excitation of the
forward wave is valid only under the condition η »1.

waves themselves, which carry energy in opposite di-
rections, according to (2.10). As a result we find the
dispersion relation

2 aiex-p(ik,iL) = 0,
i-I

Mi. 16*3
(2.14)

(6*2-ό*,) (6*3-6*,, *) ' α , = (6*3-6*!) (δ*3-6

where the 6k{ are given by (2.8). Using (2.8) and (2.10)
we find from (2.14) the real and imaginary parts of the
frequency (ω — ω + ΐδω):

(2.15)

Here « = 1,2,... is the index of the longitudinal elec-
tromagnetic mode excited by the beam, and/t h deter-
mines the threshold beam current for excitation of the
source with the backward wave. For the case η = 1 the
expression for f th is9 [cf. (2.13)]

l/a,l-8-£. (2-16)

For the η = 2 mode the quantity |/ t h | is nearly six times
the value in (2.16). This means that the threshold cur-
rents for excitation of the fundamental (n = l) longitu-
dinal mode and the second harmonic (w = 2) of the back-
ward wave differ by a factor of about six, while the
difference in the case of the forward wave is a factor
no greater than two. In backward-wave sources it is
thus a relatively simple matter to arrange single-mode
operation in terms of the longitudinal wave numbers.
In forward-wave sources it is a considerably more
complicated matter to arrange these conditions. Fur-
thermore, forward-wave sources are generally multi-
mode sources in the case of intense beams. A unit
change in the number « in (2.12) changes the frequency
ω by Δω = nvt0/L. On the other hand, the width of the
excitation band is of order | δ&, | un » Δω in high-current
systems [this condition was used in the derivation of
(2.11)]. It follows that in the case of high-current
beams a forward-wave source must be a multimode
source with respect to the longitudinal wave numbers
n. Fainberg and Shapiro20 have suggested using elec-
tron beams premodulated at the resonant frequency to
overcome this difficulty, but experiments have shown21

that this approach causes a substantial contraction of
the excitation band.

3. SPECIFIC TYPES OF ELECTROMAGNETIC WAVE
SOURCES

We will now apply this general theory to some speci-
fic types of plasma sources of electromagnetic radia-
tion. In other words, we will write out Eqs. (2.12),
(2.13), (2.15), and (2.16) explicitly for the several plas-
ma microwave sources which have been used most ex-
tensively in experiments on high-current electronics.

a) Cyclotron-resonance maser for Η-wave excitation.
This maser 1 1 · 2 2 · 2 3 is a smooth metal waveguide in a
longitudinal magnetic field which satisfies the condi-
tions

Ω ~ -ψ ~ ωγ > cop, (3.1)
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In a system of this type an annular beam can excite an
Η wave only at the cyclotron resonance [condition (2.1)]
corresponding to the normal Doppler effect with s = 1
(Fig. 4). The dispersion relation written in the form
of (2.3) gives us

Do(ω, *,) = *! + * ! — £ - , (3.2)

Here G is a geometric factor which determines the ef-
ficiency of the interaction of the beam electrons with
the field of the Η wave; this factor is given by

Also, Jfej. = Mis /R, where μ,, are the roots of the deriva-
tive of the Bessel function, J'l3 (μί5)=0. From reso-
nance condition (2.1) we find the frequencies of the
electromagnetic waves excited by the beam:

(3.3)

The group velocities and longitudinal wave numbers of
these waves are

ι
«2

1 I a \ (3.4)

It is easy to see that under the condition γΗ>kLcy/Sl> 1
both roots satisfy k,01i2>0; i.e., only forward waves
can be excited in the system. If, on the other hand
fexcy/n <1, then fe,Oi>0 a n d **o2<0> s 0 that one of the
waves excited by the beam is a forward wave, and the
other is a backward wave. We also see a method for
radial selection of modes. For example, if we impose
the inequalities

3.8 > - (3.5)

then a single radial mode, with a minimum value μ η

= 1.8, will be excited in the system (this is the first
asymmetric mode, H^).

We will now use the general theory to determine the
threshold currents for excitation of the source in the
cases of the forward and backward cyclotron waves.
For excitation of the forward wave, according to (2.13),
the threshold beam current is

.(ln-JL)»(kA). (3.6)

Since kM01~n, the minimum threshold current corre-
sponds to the fundamental longitudinal mode with n-\
[we recall, however, that Eq. (3.4), like (2.13), is ap-
plicable only at large values of n, strictly speaking].
The threshold current for excitation of the η = 2 mode
differs from the minimum threshold current by a factor
of only two, and this result again demonstrates that a
real high-current forward-wave source will always be
a multimode source in terms of the longitudinal wave
numbers, unless special measures are taken.

With regard to the transverse modes, on the other
hand, there is yet another possibility for mode selec-
tion [in addition to the absolute selection method de-
scribed above, which involves the imposition of inequa-
lity (3.5)]. This other method would involve putting
the beam at the maxima of the function G, at which the
work performed by the beam electrons on the field of

the excited Η wave is maximized and at which the
threshold current is correspondingly minimized.

More promising for longitudinal-mode selection is
a source using a backward Η wave. According to (2.16)
the threshold current for the excitation of a source of
this type, with a perfectly matched radiator, is given
by the following expression for the fundamental longi-
tudinal mode with η = 1:

^ 275- (kA). (3.7)

Everything we said above about the selection of radial
modes obviously remains completely valid for this
case of the excitation of a backward cyclotron wave.
On the other hand, the selection of longitudinal modes
becomes much simpler in the case of the backward
wave, because the threshold currents for the excitation
of the η = 1 fundamental mode and the η = 2 mode differ
by a factor of nearly six, as mentioned above.

Threshold currents (3.6) and (3.7) should evidently
exceed threshold current (1.14) which corresponds to
neglecting the thermal velocity spread of the beam
electrons. We have already called attention to the fact
that condition (1.4) is very stringent. The necessary
condition for neglecting the thermal spread is | δ* | un

> (Ω/y) V(Aif)/»ic2, which reduces to

, R'c*\'S

. mc'G
k

-^ (kA) for the forward wave

(kA) for the backward wave»

(3.8)

where Δί? is the energy spread of the beam electrons
in their proper frame of reference. On the other hand,
the beam currents cannot be arbitrarily large. Neg-
lecting the terms with first-order poles in the elements
of the dielectric permittivity tensor (1.10)—these poles
play a stabilizing role with respect to the cyclotron
instability—places an upper limit on the beam current:
Jb<'ima*. ~Jth (u\ilL/c2uttf)

3. The condition J m a x >J t h
must obviously hold.

It follows from (3.3) that a>01~y2w02~y2fcxe. Accord-
ingly, a cyclotron-resonance maser with a relativistic
electron beam could in principle be used to excite
short-wavelength radiation with a wavelength λ -R/γ2

«R. Obviously, the threshold current for excitation
of the source at a high frequency must be lower than
that for a low frequency. Comparison of currents (3.6)
and (3.7) leads to the following conditions for the exci-
tation of microwave radiation:

0.2v» (In (3.9)

if a low-frequency backward wave can be excited in the
system (k±c<Q) or

r 3 1 n l l T < l n ^ r · ( 3 · 1 0 )

if a backward wave cannot be excited (y,|> k±cy/Q> 1).
The subscripts 1 and 2 in (3.9) and (3.10) refer to the
high and low frequencies, respectively (Fig. 4). It is
easy to see that at large values of γ condition (3.10) can
be satisfied much more easily than (3.9)

To complete this subsection we note that the density
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of the plasma filling the waveguide has appeared in
none of these equations. This circumstance is a con-
sequence of inequalities (3.1), under which the most
effective resonance is the cyclotron resonance between
the beam electrons and the electromagnetic wave. In
this sense the theory for a plasma source differs in no
way from the theory for a vacuum source (the discus-
sion here is being carried out in terms of the electro-
dynamics of material media, in contrast with Refs. 11
and 22). We note, however, that the plasma may play
an extremely important role even under these condi-
tions: Because of the neutralization of the electron
space charge of the beam by the plasma it is possible
to raise the current in a cyclotron source substantially,
especially for small values of the ratio u\/u*. It can
be seen from (3.6) and (3.7) that as this ratio is r e -
duced the threshold currents for the excitation of cy-
clotron sources increase dramatically and may exceed
the vacuum limit, which for this beam geometry is 5

Λρ«17-
—+21n(ff/r 0 )
1)

γ
ϊιι

(kA). (3.11)

In vacuum sources, on the other hand, the threshold
currents should be only a small fraction of the vacuum
limit in (3.11). We must recall here that the dense
plasma may shield the cyclotron radiation excited by
the beam. If this shielding is to be avoided, the plasma
density in the source must be limited to the value satis-
fying the condition8

<4 max < —r (1 + V).

Finally, we will use (3.3)-(3.7) to find the character-
istics of high-current plasma cyclotron sources using
forward and backward waves in the centimeter wave-
length range. Since such sources are well adapted for
the excitation of high radial modes, we adopt μ,, = μ 1 3

= 8.5; i.e., we consider the excitation of an H13 wave in
a resonator with | κ | ~ 10~l, radius R ~4 cm, and length
L = 12 cm by a 1-MeV electron beam with uju^ =0.3.
The average beam radius, which coincides with a maxi-
mum of the function J2(i±i3r/R), is chosen to be r 6 = 1.8

cm, and the beam thickness is Δ = 0.6 cm. At a mag-
netic field Bo» 6 kOe the frequency of the forward cy-
clotron wave excited by the beam turns out to be of
order ω ^ Ι . δ χ Ι Ο 1 1 s"1 ( λ ^ Ι . 3 cm), while the frequency
for the case of a backward wave is w2 = 1011s"1(A2« 2cm).
The mode of the forward wave which is excited in this
case is of order η = 10, and the corresponding threshold
current is Jth ~ 30 kA. For the backward wave, on the
other hand, the threshold beam current for the excita-
tion of a matched source is J t h = 10 kA. In this case it is
the fundamental longitudinal mode with η = 1 which is ex-
cited. These threshold currents are above the longitudi-
nal vacuum limit, which is of order t7sp~3 kA for this
beam geometry, according to (3.11)

b) Cyclotron-resonance maserfor Ε-wave excitation.
This maser1 1 is structurally the same as the //-wave
source discussed above, and conditions (3.1) must be
satisfied again in this case. Furthermore, Eqs. (3.2)
and (3.3) remain valid, if we understand μΐ 5 as the
roots of the Bessel function, J ^ l s ) = 0, and

Α = — ϋ - i - l ^ t — «i-5T-G, ίί = —k—=—- . /? 1Ο\
c* V ω2 / ·"• fla ' jf+i(k±R) («J.12J

It follows that the threshold currents for the excitation
of cyclotron-resonance masers using forward and back-
ward Ε waves differ from (3.6) and (3.7) by a factor
AEIAH, where AE and AH are given by Eqs. (3.12) and
(3.2), respectively. Therefore, the entire analysis
above for Ή waves remains valid for £-wave sources.
There are some quantitative changes, because of the
changes in the quantities μ,3, which in this case are
equal to the roots of the Bessel functions themselves,
rather than of their derivatives. As a result, there are
quantitative changes in inequality (3.5), which is the
condition for the selection of a single radial mode with
excitation of the fundamental symmetric mode, μο1 = 2.4
(the Eol mode):

iff., Ω

->2A- (3.13)3.8 >-

Also associated with the excitation of the Ε wave is the
circumstance that the minimum threshold current is
reached when the beam is put at the maxima of the func-
tion J,_1(MIi r/β), in which case the work performed by
the electrons on the field of the Ε wave is maximized.
There are also changes in inequalities (3.9) and (3.10);
they become far more difficult to satisfy for excitation
of a high-frequency Ε wave.

Finally, we note that we have discussed the excitation
of Η and Ε waves which are traveling in the azimuthal
direction [see (1.8)]. All the equations above, however,
are easily generalized to the case in which the beam ex-
cites waves which are standing waves in the azimuthal
direction. For this purpose, the obvious replacement

Jf±i (kxrh) — - i [Jf±i (ft,

must be made in the equations.

c) Plasma Cherenkov source working at alow -frequence Ε
wave. This device23' 2 4 i s a smooth cylindrical waveguide
which is completely filled with a strongly magnetized
plasma whose properties satisfy the conditions.

Ω » ω ρ ~ - Η . ~ ω » - ϊ ^ . (3.14)

Under these conditions, both purely Cherenkov excita-
tion (s = 0) of a forward plasma wave and cyclotron ex-
citation of forward and backward plasma waves may
occur through the normal Doppler effect (s = 1) and
the anomalous Doppler effect (s = - l ) , respectively (see
the lower curves in Fig. 4). It is easy to see that in
this limit of a strongly magnetized plasma the waves
excited in the plasma at the cyclotron resonance are
to a large extent electrostatic waves. Such waves are
trapped in the plasma and are essentially not radiated
out of it; From the standpoint of the excitation of elec-
tromagnetic waves, therefore, these particular waves
are of no special interest, and we will discuss them no
further.8*

8'See Ref. 25 regarding the particular features of the excita-
tion of electrostatic plasma waves by an electron bean in the
case of the anomalous Doppler effect.
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In the Cherenkov interaction of a beam with a forward
wave in the plasma, the dispersion relation, written in
form (2.1), gives us

Arb

here fex= iLts/R, where μ,5 are the roots of the Bessel
function, J , ^ , s ) = 0. From resonance condition (2.1)
we find the frequency of the wave excited by the beam
to be

It follows in particular that under the condition

3.8>- •>2.4

(3.16)

(3.17)

only a single radial mode can be excited in the plasma,
with μ ο 1 =2.4 (this is a fundamental axisymmetric £ 0 1

mode).

From (3.16) we easily find the group velocity and the
longitudinal wave number of the forward wave in the
plasma:

„ ill ι. _ "Ό Λ» io\

The threshold beam current for Cherenkov excitation of
a source using such a wave is found from general ex-
pression (2.13):

In this case the threshold current falls off with increas-
ing n, in proportion to n~8; when the electron beam is
put at the maximum of the function J((fe1>'), and the work
performed by the beam electrons on the field of the Ε
wave in the plasma is maximized, Jtb reaches its mini-
mum value.

Finally, we note that the condition under which we
can ignore a thermal velocity spread of the beam elec-
trons, 6k > (fei0/y2)VA#/mc2 , leads to a restriction on
the beam current; only above the following value do
Eqs. (3.15)-(3.19) hold [cf. (1.14)]:

(3.20)

Obviously, threshold current (3.19) is meaningless if
it lies below this lower limit.

Finally, let us find the characteristics of a Cherenkov
source using an Ε wave in the plasma for the centi-
meter wavelength range. It is simple to show that for
a plasma density η,,=3· 1012 cm"3 and for Λ = 2.5 cm a
1-MeV electron beam (with u^O and u,, = 2.8· 1O10 cm/
s) will excite the £ 0 1 fundamental radial mode with a
frequency ω = 6 · 1010 s"1. In a relatively low-Q reso-
nator with |x, | «0.3 and L »20 cm the threshold current
for rb»l cm is of order J t h = 6 kA, according to (3.19).
This value is not much higher than the vacuum limit
for a beam of this geometry in a vacuum waveguide.
The longitudinal wave number of the excited wave is
η «12.

Special note should be taken of the fact that the
threshold current in (3.19) increases very rapidly as

the beam electrons become more relativistic, in pro-
portion to y7, while the vacuum limit on the current
increases in proportion to γ, according to (3.11). Ac-
cordingly, by increasing γ it is possible to use pro-
gressively more intense electron beams in plasma
sources. Also noting that the plasma density at which
the instability sets in increases at large values of y,
according to (3.16), as does the maximum frequency
of the excited radiation, wcy/R, we clearly see the
advantages of sources using plasma waves for exciting
short-wavelength radiation in the millimeter and, per-
haps, submillimeter ranges.

d) Cherenkov source with a slightly corrugated slow-
wave structure. This device10'26 is a metal waveguide
whose lateral surface is specified by the equation R(z)
= /?o + ̂ cosfe02, where fl0 is the mean radius, h is the
corrugation depth, and 2n/fe0 is the corrugation period.
If cyclotron excitation of high-frequency Ε and Η waves
and also the Cherenkov excitation of a low-frequency
plasma Ε wave are to be prevented, the following condi-
tions must be satisfied:

-^- > G)y, kou, X y . (3.21)

For simplicity we assume that the beam is rectilinear
( ? ? « 0 ) and fills the waveguide completely. Under these
conditions, a high-frequency Ε wave may be excited in
the system; its spectrum will differ only slightly from
that of Ε waves in a vacuum waveguide, since the wave-
guide corrugation is slight, Λ2«#0

2. The mechanism
for wave excitation in such a system can be thought of
as the induced transition radiation of an electron which
is moving in a periodically inhomogeneous medium, so
it might appear that the theory for such sources would
be different from that outlined above. However, it is
simple to show that this is not the case. If we trans-
form to a curvilinear coordinate system in which the
corrugated waveguide surface becomes flat, then we
find that the motion of the beam electrons in this sys-
tem is oscillatory with a frequency feow. The problem
is thus reduced to the problem of the induced radiation
of accelerated electrons—a problem which was discussed
above in the analysis of cyclotron-resonance masers.
There is another way to approach the mechanism for the
interaction of the electron beam with the corrugated
waveguide. In any periodic structure the electromag-
netic field is a superposition of Brillouin waves, among
which there are slow waves with a phase velocity below
the speed of light. The two-stream instability in the
periodic structure can thus be interpreted as the in-
duced Cherenkov radiation of the beam electrons, as
it was above9' in the analysis of the plasma Cherenkov
source. Which of these interpretations will prove more

9>In corrugated systems there can in principle be cyclotron
excitation of slow waves by rectilinear electron beams (ux

= 0) in the case of the anomalous Doppler effect (s = - l ) , in
addition to the Cherenkov excitation. It is easily shown, how-
ever, that in the limit of strong magnetic fields, under which
conditions (3.21) hold, the beam wave with the anomalous
Doppler effect can be coupled only with a high Brillouin har-
monic of the field with a very low amplitude (h"/Rn, where
η » 1 ) . This type of wave excitation should accordingly be
very inefficient.
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successful is difficult to say, and in fact this question
is not really pertinent. The only important circum-
stance is that the formalism of the theory remains the
same and reduces completely to Eqs. (2.11)-(2.16). In-
cidentally, this assertion holds for other types of
microwaves sources, such as undulators, ubitrons,
free-electron lasers, scattrons, etc. 1 0 " 1 2 ' 2 7

As mentioned earlier, the theory for sources with a
slightly corrugated slow-wave structure is completely
analogous to the theory of cyclotron-resonance masers
for the case Of the excitation of the Ε wave. In Eqs.
(2.1), (2.3), (3.3), (3.4), and (3.13) we should replace

/by kou and take A from the expression10'

A =
1 h^l ω'- ι k\c* \ r _/f£M . (3.22)

here kL= μ θ 5 /β ο , where μΟίι are the roots of the Bessel
function, Ι/0(μθ5) = 0; I0(x) and Ii(x) are modified Bessel
functions of argument χ = ωΛ0 /uy; and for simplicity we
are restricting the analysis to axisymmetric Ε modes.

Now, following general equations (2.13) and (2.16),
we can easily determine the threshold beam currents
for excitation of the resonator with the forward and
backward waves. For the forward wave we have

Analogously, for the backward wave we find

J t* ~ ~mf"'V (' ~~ ~Φ&) I1 TWJ ; (3.24)

here y,i 2=a)0 1 t 2R0/«y. I f y > f e i A 0 > l , then both the
waves excited by the beam are forward waves, but if
kL<k^, then the wave o!01 is a forward wave, while ω0 2

is a backward wave.

We could pursue this analysis of specific microwave
sources. The analysis would be completely similar to
that above and would actually reduce to putting general
equations (2.12), (2.13), and (2.15), (2.16) in explicit
form. We have restricted the analysis here to the most
common types of Cherenkov and cyclotron sources.

4. NONLINEAR THEORY OF THE PLASMA SOURCE
OF ELECTROMAGNETIC WAVES AND ITS EFFICIENCY

In the preceding sections we have been dealing with
the linear theory of plasma sources and amplifiers of
electromagnetic waves, which operate by means of the
two-stream instability. The linear approximation re-
veals that excitation occurs in the electrodynamic sys-
tem [there is a growth of the field E(t) which is un-
bounded in time] only if the beam current is above the
threshold. There are several other important ques-
tions, however, which require a nonlinear theory: How
long will the field in the system continue to increase?
What will be the consequence of the field increase?
What will the efficiency and output power of the source
be ? How can this efficiency and power be maximized ?

""Obviously, this is true only if the frequencies of the excited
waves ω0ι,2, lie far from the opaque zones of the corrugated
waveguide (the Bragg-reflection zones)28 and if the corruga-
tion depth is small, k1 «R2.

In this section we will outline such a nonlinear theory
for the case of the Cherenkov mechanism for the two-
stream instability, i.e., for the interaction of a recti-
linear (wi = 0), monoenergetic, annular electron beam
with a forward, axisymmetric, plasma electromagnetic
Ε wave in a smooth metal waveguide which is com-
pletely filled with plasma and immersed in a strong
longitudinal magnetic field. For the solution of this
problem, the starting point consists of Maxwell's
equations for the Ε waves (this rectilinear electron
beam can interact with only these waves) and the Vla-
sov kinetic equations for the plasma and beam elec-
trons.7'8

As shown in Refs. 29-31, the plasma can be treated
in the linear approximation if the electron density in the
beam is low. Furthermore, since the beam is narrow,
it is natural to assume that the radial structure of the
fields in the waveguide will not be perturbed by the
beam. We should thus seek a solution of the field equa-
tions, e.g., for the field component Ez, in the follow-
ing form:

E,( t) J,,^,-^-) z. t)); (4.1)

here ω and * r are related by the dispersion relation
Dt(u>,kl) = Q, which determines the spectra in the sys-
tem without a beam. Strictly speaking, in this problem,
as in any nonlinear process, solution (4.1) must contain
harmonics of integral multiple frequencies. As shown
in Refs. 29-31, however, these harmonics can be ig-
nored if the electron beam has a low density.

Since the beam is assumed to perturb the system only
slightly, the following inequalities hold for the ampli-
tude E(z,t) and the phase a(z,t):

1. (4.2)

Substituting (4,1), (4,2) into the basic equations, and tak-
ing the average over the wavelength involved, \ — 2Ti/kll,
we find equations for the slowly varying functions24 Ε
and a, which are written as follows in terms of dimen-
sionless variables:

1 dE
*

1 dE
dz

d , \ d

^ + T " ^ ) e ^ ~ ^ 2 ^ cos (τ-*„ + «), (4.3)

Here
z, t)y~ τ - co/, --= λ · 2

are the dimensionless electric field, the unperturbed
group velocity of the electromagnetic wave, the time,
and the coordinate, respectively; u is the unperturbed
longitudinal velocity of the beam electrons. The value
of ν is given by v= \bk/ke |

3 , where 6k is the linear
growth rate of wave (2.7) equal to

I fifc I -k Γ Δ Γ " •/'(*-!-rh) " 6 ] ' (4.4)

System (4.3) is written in a form convenient for nu-
merical integration by the method of finite-size par-
ticles,3 2 which is the method most frequently used in
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problems of this type for simulating the dynamics of
the two-stream instability. Consequently, we under-
stand xt = ktzp and vp-vp/u inthissystemtobethedimen-
sionless coordinate and velocity of particle/»; yp

= [1- (vl/c*)Y!\l- (MVC2)]"»/2; and Ν is the number
of finite-size particles per wavelength \ = 2ti/ke. As in
the linear theory, the requirement that the perturba-
tions in the plasma-filled waveguide caused by the elec-
tron beam be small reduces to the requirement that the
parameter ν be small.111

System (4.3) describes the self-consistent interaction
of a monoenergetic rectilinear electron beam and a
quasimonochromatic plasma wave (4.1). To go over to
the source problem, we must supplement this system
of equations with boundary conditions; these boundary
conditions are found from the following considerations.
In addition to wave (4.1), there is a nonresonant wave
in the resonator which is propagating opposite to the
beam and which provides feedback in the system. If
we assume that, on the average, the electron beam
does not interact with this wave we find the feedback
equation

ε,

e(0, τ ) = | κ | ε ( Ζ , τ—γ). (4.5)

which is one of the boundary conditions which we need.
Here κ is the reflection coefficient for wave (4.1) at the
z = L boundary, and L=ktL is the dimensionless length
of the resonator. System (4.3) should also be supple-
mented with the condition that the electrons enter the
resonator at the 2 = 0 boundary:

5ρΙ'Ρ-» = ̂  = 1· (4.6)

Equations (4.3), (4.5), and (4.6) permit a comprehen-
sive study of the nonlinear stage of the operation of a
plasma Cherenkov source, and the solution of these
equations describes all the processes which occur in
a single-mode plasma source, in particular, the pro-
cesses of setting up the oscillations. In the present
review, however, we will not discuss the setting-up
processes; we will limit the discussion to the steady-
state solution, i.e., to the steady-state operation of
the source. There is always a steady state if the elec-
tron beam current exceeds the threshold current
(steady- state linear solutions exist only if the beam
current is equal to the threshold current).

Figure 5 shows, in relative units, the steady-state
field profile of ε (pc) for the case of the reflection coeffi-
cient |κ | = 0.5. We see that the amplitude of the field
ε (#) reaches a maximum at a certain point in the reso-
nator and then falls off toward the right boundary of the
resonator. At the point at which z(x) reaches its maxi-
mum amplitude, the beam electrons are captured in
the wave field; then the electrons begin to acquire en-
ergy from the wave, and the field decreases (see Refs.
29-31 and 24 for more details on this capture pheno-

11'inequalities (4.2), which allow us to ignore the second de-
rivatives of the amplitude Ε and phase α in the field equa-
tions, hold if v 1 / 2 « 1. This condition furthermore allows us
to ignore in the field (4.1) the integral harmonics ~n(u>t-k,z)
for n>2.

FIG. 5.

menon). If, however, we choose the resonator length
L and reflection coefficient |κ| appropriately, we can
arrange conditions such that the maximum field ampli-
tude is equal to the capture amplitude and is reached at
the exit from the resonator, i.e., at z=L (Fig. 6).
This situation is evidently the most favorable for max-
imizing the excitation efficiency and the output power.

Figure 7 shows the optimum length of the resonator
(curve 1) calculated as a function of the reflection co-
efficient |κ |. In resonators with parameters corre-
sponding to this curve, a field approximately equal to
the capture field is established at the exit. Also shown
in this figure is the threshold functional dependence of
L on |κ | (curve 2) found by equating the beam current
to the threshold current for excitation of the source
[in dimensionless units, the equation of this curve is
£ΐ^1/3 = 1η3|κ|· 2/3VT, according to (2.13)]. The opti-
mum curve lies above the threshold curve, as expected.
Curves 1 and 2 are not continued into the region of lar-
ger values of Lvi/Z (above the dashed line) since in this
region the excitation is multimode excitation in terms
of the longitudinal wave numbers, so that we cannot
seek a solution in the form (4.1). In this region the
problem should be solved by the methods of the quasi-
linear theory.5

To conclude this section we will find the efficiency of
the steady-state plasma source. By definition, the
energy flux of the electromagnetic field (the radiation
power) in a cylindrical waveguide is

R 2π

Pi = {^(i-\x\i) j r d r j dq>[EB]2U=I..
ο ο

(4.7)

The efficiency of the source should thus be taken as the
ratio

(4.8)
' 2nbrtlni,mc1u (γ — 1) '

For a nonrelativistic electron beam, system (4.3) can
be reduced to a "universal" steady-state system, i.e.,
one which is independent of the parameters of the sys-
tem, through an appropriate choice of dimensionless
variables.51 Taking this approach, we find a general
analytic expression for the amplitude of the capture

FIG. 6.
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field, 2

eEm -/„ (k±rb) χ 2.Himu2v2'3. (4.9)

Substitution of (4.9) into (4.8) leads to the following ex-
pression for the efficiency of a nonrelativistic Cheren-
kov plasma source:

η«2.75(1- |κ |2)ν'/3. (4.10)

For a relativistic electron beam, Eqs. (4.3) can also
be put in a universal form if the motion of the beam in
the frame of reference of wave (4.1) is nonrelativistic*29

In this case the amplitude of the capture field for a beam
with γ» 1 is given by

- Jo (A^r 2.34muV\>2/3, (4.11)

and the source efficiency is

η « 1.37(1 - | κ |J) YV<*. (4.12)

It can be seen from (4.12) that an increase in the
beam current is accompanied by an increase in the
source efficiency also, and at y2y1/3 £ 1, in which case
the beam current is above the vacuum limit, (3.11), the
efficiency can formally be even greater than unity, ac-
cording to (4.12). In this case, however, Eq. (4.12) is
not applicable. The assumption that the motion of the
beam electrons is nonrelativistic in the frame of refer-
ence of the wave reduces to the assumption that the
relative change in the electron energy is small, as is
easily shown12':

^-TT^-W1"^· (4Λ3)

This parameter is the same as the efficiency in (4.12).

For arbitrary relativistic beams, i.e., for arbitrary
values of the parameters Λ 1 / 3 , it is not possible to
find universal expressions for the efficiency of the
plasma sources. In this case, Eqs. (4.3) must be
solved numerically, and the efficiency must be deter-
mined from (4.8). Calculations of this type have been
carried out for the following parameters: Λ = 4.1 cm,
rb = 2 cm, Δ = 0.1 cm, ω, = 12 · 1010 s'1, w = 2.81-1010

cm/s(y = 3), ω» = 5· 1010 s"1, £,= 3.93 cm'1, and ω
= 11·1010 s"1 (i;1/3 = 0.046«l,yV/ 3 = 0.42). The re-
sults of the calculations show that the optimum length
of the resonator for K = 0.23 is 19.6 cm (if1'3 = 3.5),
while the efficiency calculated from (4.8) is η = 16%.
The power radiated from the source, P i = TjJ1(wjc2/e)(y
- 1), is Ρ, = 0.55· 109 W for these parameters. The
beam current is of the order of the vacuum limit.

The efficiencies of the other plasma sources discus-

12> If Ay « y, then the condition %= 1 holds in system (4.3).
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sed in the preceding section could be calculated in a
similar way. These calculations may be omitted, how-
ever, since the efficiency of sources of high-frequency
waves in which the plasma does not play a governing
role could hardly be very different from the efficiencies
calculated in Refs. 9-11 for the vacuum case, which are
20-30%.

5. EXPERIMENTAL PROGRESS IN INTENSE-BEAM
PLASMA MICROWAVE ELECTRONICS

Although this review has concentrated on a descrip-
tion of the present state of the theory of plasma micro-
wave electronics, we will devote this last section to a
brief account of the recent experimental progress in this
field. We will limit this review of experimental work
to a discussion of microwave sources which use intense
relativistic beams and which operate by the Cherenkov
and cyclotron mechanisms, for which the theory was
outlined above and for which the fundamental arrange-
ment is shown in Fig. 1.

Immediately after the appearance of the first intense
relativistic electron accelerators, in both the USA and
USSR, attempts were made to harness intense electron
beams to excite intense microwave pulses. The first
of these experiments, carried out in the 1970's, must
be judged unsuccessful, however, since the excitation
efficiency was very low—less than 1%. These experi-
ments suffered from the disadvantage that the param-
eters of the sources had not been completely optimized,
and this circumstance was responsible for the low effi-
ciency. We will not discuss this early work below;
we will discuss only the work which led to relatively
efficient sources of electromagnetic radiation.

A 1973 experiment carried out in the Lebedev Physics
Institute, Moscow, in collaboration with the Gor'kii
Radiophysics Institute should be acknowledged as the
first successful experiment on microwave emission.33

The theory had been used to design a Cherenkov source
with a slow-wave structure in the form of a corrugated
waveguide for the En mode (this is the fundamental
radial mode of an axially symmetric Ε wave) with a
wavelength λ «3.1 cm. The length of the slow-wave
structure was £ = 12 cm; the inner radius was 1.6 cm;
the corrugation period was 1.6 cm; and the corrugation
depth was 0.4 cm. The entire system was immersed in
a strong magnetic field of order 3-5 kG and evacuated
to a pressure of 2 · 10"5 torr, to prevent a plasma from
forming during the beam injection, for a time τ = 30 ns.
An electron beam with a current up to 8 kA (the vacuum
limit) and an energy of 670 keV was passed through the
structure. The radiation reached a maximum at a cur-
rent ^ = 5 kA, in comparison with the threshold cur-
rent Jfr = 3 kA. The efficiency of this source reached
77 = 15% at an output power P t = 400 MW with a radiation
pulse length Ta = 15 ns. The width of the output line was
s5%. Finally, the observation that the nature of the
excitation was basically independent of the magnetic
field over the range B0 = 3-5 kG confirmed that a vacu-
um Cherenkov slow-wave source was in fact operating
(at Bo<3 kG, there was still a rather intense loss of
electrons because of the expansion caused by the beam
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space charge). This experiment was repeated in the
USA in 1974 (Ref. 35); a radiation power of 500 MW,
corresponding to an efficiency of 17%, was achieved
in a source of the same type, with an electron beam
having approximately the same properties.

A recent increase34 of the magnetic field to 18 kG in
this source has made it possible to produce a radiation
power of 1000 MW at an efficiency «30%.

Two papers on a Cherenkov source using a relativistic
electron beam appeared simultaneously in 1975. The
first3* reported a study carried out in the Khar'kov
Physicotechnical Institute on the excitation of 3-cm
radiation during the injection of an electron beam with
an energy 8s «1 MeV and pulse length τ «30 ns into a
slow-wave structure of length L =70 cm, loaded with
irises and designed to slow the E01 mode at the wave-
length λ = 3.3 cm to the beam velocity. The entire sys-
tem was immersed in a longitudinal magnetic field
(which could be adjusted up to 12-kOe) and filled with
gas to a pressure in the range ΙΟ^-ΙΟ"2 torr. At low
pressures (/>0 slO"4 torr), at which a plasma could not
form, and at which the device was operating as a vacu-
um Cherenkov source, the maximum radiated power
was P,«200-300 MW at an output pulse length of 15-
20 ns. The vacuum current limit for this source was
«/„ = 12 kA; the injection of this current through the
vacuum source resulted in an efficiency η «2-3%. At
the higher gas pressures (^«lO"3 torr) the beam was
capable of ionizing the gas, and the current through the
source rose to Jt «20-22 kA, i. e., to a level less than
twice the vacuum limit. The output power tripled,
reaching P,«600 MW at an efficiency η «6-7%. At a
very high gas pressure (/>o s 10" 2 torr), the radiation
was cut off. Tkach et al?6 attributed this cutoff to the
formation of a dense plasma with ωρ > ω, which shield-
ed the radiation.

In a more recent study,37 Tkach et al. repeated their
experiment with an electron energy £"« 0.7 MeV at a
fixed beam injection current Jt« 5 kA. At low gas pres-
sures, po< 10"* torr, the output power at the wavelength
λ«3.3 cm was P.*200-300 MW. As the gas pressure
was raised, the output power rose, reaching P,e 700
MW, corresponding to a high efficiency η «22% at po
«10"2 torr. At />0 > 10'2 torr the excitation was cut off,
apparently because of shielding by a dense plasma.
Tkach et al. explained their results by appealing to the
concept of a double resonance, such that both high-fre-
quency and low-frequency (plasma) Ε waves could be
excited in the resonator, with approximately equal fre-
quencies. This assumption is supported by the fact that
the maximum radiation power was observed experimen-
tally at ω = ωp.

The second 1975 study38 was carried out in the USA
with an annular electron beam with an inner radius of
0.8 cm and a thickness of 0.3 cm. The energy of the
beam electrons was #«450 keV, and the current reach-
ed 7 kA at a pulse length τ «50 ns. The beam was in-
jected into an iris-loaded vacuum (/>0 < 10"5 torr) wave-
guide of length of 1 m, which slowed the radiation at the
wavelength λ «10 cm to the electron velocity. The
maximum radiation power was P,«600 MW at a radia-

tion pulse length TU« 30-40 ns. The radiation efficiency
was τ? «20%.

The last experimental study on Cherenkov vacuum
sources using rectilinear relativistic electron beams
which we will discuss here was carried out in the Le-
bedev Physics Institute in collaboration with the Insti-
tute of Applied Physics of the Academy of Sciences of
the USSR, on the excitation of short-wave radiation with
λ « 8 mm (Ref. 39). These experiments used a minia-
ture slow-wave structure [a corrugated waveguide with
a square cross section (4X4 mm) and a length =6 cm]
in a vacuum p0 % 2 · 10"5 torr. The electron beam had an
energy S? = 670 keV and a current up to Jh * 500 A with a
current pulse length τ «20 ns. The En mode was ex-
cited; the output power was 10 MW at an output pulse
length TU = 15 ns, with an efficiency of 3%. This source
is inefficient in comparison with the Cherenkov sources
described above because of the low beam current, which
is just barely above the threshold current. If the beam
current could be raised to 1-2 kA we would expect a
substantial increase in the efficiency, to at least ΙΟ-
Ι 5%. The output power would correspondingly reach
100 MW. However, this has not been possible, and at
present it has not been possible to reach beam current
densities much above 10* A/cm2 while keeping the en-
ergy spread of the electrons at the low level required
for coherent radiation.

Efficient sources using the cyclotron mechanism for
the interaction with relativistic electron beams ap-
peared somewhat later. Here again, first-place hon-
ors went to the USSR. In work at the Lebedev Physics
Institute, published in 1975 (Ref. 40), it was shown
that the injection of a relativistic electron beam with
& «300-400 keV and a current up to 10 kA into a smooth
metal waveguide at an angle with respect to the longi-
tudinal magnetic field resulted in the excitation of radi-
ation at a frequency ω « ίΐ/γ, demonstrating a cyclotron
mechanism for the radiation. In addition, an important
effect was discovered: When the waveguide was filled
with a relatively low-density plasma the output power
rose sharply, by a factor of 30-40, while the current
carried by the electron beam through the waveguide in-
creased by a factor of only 2-3. This observation im-
plies an increase in the efficiency of the cyclotron ex-
citation when there is a plasma in the system which
neutralizes the electron beam. At high plasma den-
sities the excitation was cut off; the radiation was
shielded. This system was not optimized, and it would
not be appropriate to judge its efficiency. The maxi-
mum radiation power at the wavelength λ»3 cm appar-
ently did not exceed 10 MW, at an efficiency 77 «1-2%.

This shortcoming was subsequently eliminated,*1 and
a cyclotron source ("gyrotron") operating at the H13

mode with a wavelength λ = 3 cm was designed. This
was a smooth waveguide «7 cm in diameter and 10-12
cm long, through which an annular electron beam with
a mean radius of 1.5 cm and a thickness of 1 cm was
passed. The beam was at a maximum of the H13 field
and excited this mode. The angle between the electron
velocity and the magnetic field was 45°. The maxi-
mum radiation power in the vacuum version was Pt
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= 25 MW at <7> = 0.5 kA (half the vacuum limit), gf=350
keV, τ = 40 ns, and η «20%. When the system was
filled with plasma,42 it became possible to triple the
beam current without changing the excitation efficiency;
i .e . , the current was raised to Jb~1.5 kA, which is 1.5
times the vacuum limit. The output power thus rose
to .Pr = 70 MW at η =20%. The length of the beam pulse
in both the vacuum and plasma cases was about τ « 30-
40 ns, and the length of the radiation pulse was about
T U « 20-30 ns.

An ultrahigh-power vacuum gyrotron was constructed
in the USA in 1975 (Ref. 43). An electron beam with
9 « 3.3 MeV and Jb ~ 80 kA, with a pulse length τ *70 ns,
was injected into a smooth waveguide at an angle =7°
from the strong magnetic field. An output power Pt

= 109 W was achieved at the wavelength λ = 6 cm. Al-
though this power figure is extremely impressive, the
device was clearly not operating under optimum condi-
tions, since the efficiency was f)~l%.

The ultrahigh-power gyrotron constructed for the
wavelength λ = 10 cm at the Institute of Nuclear Physics,
Tomsk Polytechnical Institute, in 1976 operated under
conditions much closer to the optimum.44 Here an
electron beam with an energy of 900-1200 keV, a cur-
rent up to Jb ~ 30 kA, a pulse length τ » 60 ns, and a
radius r»~2 cm was injected into a smooth waveguide
9.8 cm in radius. The length of the source and the
threshold current were calculated for the Hu mode
for an injection angle determined by the scattering of
the beam by a 50-μ titanium foil. Optimum excitation
in the vacuum version was observed at 8? = 900 keV and
Jt = 8 kA and yielded a power Pt~ (1.4-2) · 10e W. In
other words, the efficiency was ~30%. When the sys-
tem was filled with gas to a pressure />0 ̂ 10"2 torr, a
plasma formed, and the radiation power decreased;
the increase in the efficiency and the output power with
increasing plasma density at relatively low plasma den-
sities which was observed in Ref. 38 was not observed
in these experiments.

These papers at this point essentially exhaust the lit-
erature on high-current relativistic Cherenkov and cy-
clotron sources using rectilinear beams. In all the
experiments described above the plasma either neutral-
ized the beam current and charge, thereby increasing
the current through the system, or shielded the radia-
tion excited by the beam, but it did not determine the
excitation mode or frequency; the mode and frequency
were determined by the vacuum electrodynamic system.
So far, there have been no systematic experimental
studies with intense relativistic beams on purely plasma
sources in which a plasma wave is excited. For non-
relativistic beams, such studies have been carried out,
and they are reviewed in Refs. 15 and 45. We will not
discuss this work here, especially since it also could
not and did not lead to the development of purely plas-
ma sources of coherent electromagnetic radiation. The
theoretical papers mentioned above show that such a
source could operate highly efficiently under conditions
such that Q>P>UY/R ^ω = 2ττο/λ, i .e . , with γ z2trR/\,
and this condition can be met in beams with energies
above 0.3-0.5 MeV. So far, there have been no sys-

TABLE I.

Year

Type of source

«, MeV
•̂ b· kA
τ, ns
Bo, kG
Po· torr
λ, cm
Pt, MW
ru, ns

η (eff),%

Year

Type of source

* , MeV
/b. kA
τ, ns
Bo, kG
Po, torr
λ, cm
Pi, MW
TU, ns
η (eff),%

1973 33

Slow-wave

structure

0.67
5

20
2 - 5

2-10"6

3.1
400

15
15

1974 35

Slow-wave
structure

0.67
8

40
4—10

10-"—10"1

3.1
500

30
17

1975 3«

Slow-wave
structure

0.45
5

50
10

io-5

10
600
30-40

20

1975 36

Slow-wave
structure

1
12
30
12

3.3
200—300

20
3

19783»

Slow-wave

structure

0.67
0.5

30
5

2-10"s

0.8
10
15

3

1975 38

Slow-wave
structure

1
22
3Γ
12

10-3-10-2
;

60f
2C

-

1978«1

Gyrotron

0.35
0.5

40
6
io-5

3
25
30
20

.3

1975 37

Slow-wave

structure

0.7
5

30
10
10"*
3.3

200-300
20

. 7

1978«

Gyrotron

0.35
1.5

40
4

3
70
30
20

1975 37

Slow-wave
structure

0.7
5

30
10

10-3—10-2
3.3

700
20
22

1 9 - 7 5 "

Gyrotron

3.3
80
70
20
10-*
6
103

50
1

1976"

Gyrotron

0.9
8

60
3
10-'

to
103
30
30

tematic experiments on plasma excitation with such
beams. The development of purely plasma sources is
thus a timely problem.

In conclusion we would like to point out that high-cur-
rent pulsed electron beams are also being used suc-
cessfully in sources of different types, which use curvi-
linear beams. Examples are the magnetron, in which
the beam as a whole is rotating in the slow-wave struc-
ture, and the ubitron, in which the beam is moving along
a periodic magnetic field. We will not discuss these
sources in detail here, but we would like to point out
that important results have also been achieved in these
devices; the excitation power and efficiency are as
good as those which have been achieved with Cherenkov
and cyclotron sources. The experimental progress on
high-current microwave electronics is reviewed in
Refs. 10-12, 97, 46, and 47 [an entire recent issue
(No. 10, 1979) of the journal Izvestiya Vysshykh Uch-
ebnykh Zavedenii, Seriya Fizika was recently devoted
to the topic].

We can draw the conclusion that relativistic electron-
ics has now emerged from the purely research stage
and has found widespread applications. Also noting
the report4 8 of successful experiments on the develop-
ment of microwave sources with a high pulse repetition
frequency, we may say that we are seeing the begin-
nings not only of a new scientific field but also of a new
field in energetics: relativistic microwave energetics.

We wish to thank N. I. Karbushev, V . I . Kurilko,
M. I. Petelin, N. F. Kovalev, and M. V. Nezlin for
discussions which clarified several points in this re-
view.
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