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"There's nothing simpler than a star."
Sir Arthur Eddington.

INTRODUCTION core).

Of particular interest in the field of geophysical hydro- For the sun, the principal global hydrodynamic prob-
dynamics (i.e., the hydrodynamics of the natural flow of lems are the differential rotation and the generation of
rotating baroclinic stratified fluids), which emerged the 11-yr cycle in the solar activity. These problems
after World War n, are "global" problems, which in- are evidently related, and they have attracted theoreti-
volve the analysis of hydrodynamic processes with scale cal interest for a long time. Now that man has begun to
dimensions of the order of an entire planet or star. venture forth into the solar system, an understanding of
Some global problems concerning the earth, for exam- the origin and nature of the planetary and solar mag-
pie, are the problems of the general circulation of the netic fields has come to be considered a necessity. Ap-
atmosphere, the circulation of the world ocean, the proaches for solving these problems have been pointed
shaping of the climate, and the generation of the geo- out, and they hold the promise of rewarding effort with
magnetic field (the magnetohydrodynamic processes success in the very near future. This situation has
which operate in the liquid shell around the earth's motivated the present review.
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Interest in the differential rotation of the sun is not
limited to solar physicists: A differential rotation also
occurs on Jupiter and Saturn, and there are some
analogous effects (the so-called jet streams) in the
earth's atmosphere and oceans (the equatorial counter-
currents). Many leading meteorologists, beginning with
Wilhelm Bjerknes, one of the founders of modern dy-
namic meteorology, studied the differential rotation of
the sun. Rossby offered an explanation for the equatorial
acceleration of the solar rotation on the basis of a
meridional transport of angular momentum against the
gradient of the average zonal velocity (a negative vis-
cosity). As Starr (1968) showed, an energy transfer
from smaller to larger scales is a general charac-
teristic of the photosphere as well as terrestrial atmo-
spheric and oceanic flows. Golitsyn (1972, 1973) demon-
strated that the problem of the general atmospheric cir-
culation of planets was related to that of the sun by ap-
plying to the sun his scaling- theory for the circulation of
planetary atmospheres. The extension to the sun re-
quired some modification of this theory, since the mo-
tions in the atmospheres of the terrestrial planets arise
from their nonuniform heating by the sun, while for the
sun itself the driving force for the circulation is not a
heating by some external source but the solar rotation
and the convection caused by heating from within.
Golitsyn's theory led, in particular, to the estimate that
the depth of the solar convection zone was 0.2-0.3 of the
solar radius, in agreement with several other estimates.

The differential rotation of the sun is of course ac-
companied by the expenditure of energy to overcome
viscous forces (most important is the turbulent vis-
cosity caused by the small-scale convective motions
in the granules and supergranules); without some mech-
anism to replenish this energy, the angular rotation
velocities at the various heliographic latitudes would
become equal in a few rotations of the sun, according
to estimates. According to current ideas, this re-
plenishment mechanism is the meridional and radial
transport of angular momentum in the convection zone
by giant convection cells, which affect the rotation of
the sun. These cells form a spiral macroturbulence (in
which the curl of the velocity is not orthogonal to the
velocity itself). Proof of this hypothesis should come
from numerical simulations of the overall circulation
of the convection zone, with an individualized descrip-
tion of the giant convection cells and of the parame-
trized turbulent viscosity; these calculations would be
analogous to the numerical simulations which have been
carried out for the general circulation of the earth's
atmosphere, with an individualized description of cy-
clones and anticyclones.

Turning to the 11-yr cycle, we note that its obvious
consequences in the earth's magnetosphere and its pos-
sible consequences in many other phenomena on the
earth have attracted a great deal of interest (perhaps
unwarranted in some cases) from workers in a wide
variety of fields. In addition to the familiar and undis-
puted consequences of the solar activity on the earth—
the aurorae, magnetic storms, the bombardment of
space vehicles and astronauts—thereare some less
familiar effects, such as the variations in the level of

radioactive carbon in the atmosphere (in particular, the
"de Vries fluctuation" in the 16th through 19th centu-
ries), which raise the possibility of reconstructing the
history of solar activity in the past centuries and even
millenia. Some investigators are seeking correlations
with climatic variations.

I take the position, however, that any direct effect of
the solar activity on the earth's weather has yet to be
proved. This opinion is based, in particular, on the
failure to find evidence of the dominant periods in the
solar activity (11 yr and 22 yr) in the oscillation spec-
trum of the air temperature, that of the amount of
precipitation, or those of several other meteorological
characteristics and climatic indicators [see, for exam-
ple, p. 21 in the book by Monin (1969)]. This opinion
has been defended elsewhere by Khromov (1973), who
analyzed in detail many pieces of evidence which seemed
to link the terrestrial weather with the solar activity.
Finally, Pittock (1978) has recently reviewed the sta-
tistical relationships between the solar activity (the 11-
yr and longer cycles) with variations in the weather,
concluding that all the existing evidence for such rela-
tionships with periods in the range 11-22 yr is based
on either an incorrect use of the methods of mathemati-
cal statistics or a biased selection of data, which re-
sults in an apparent correlation between several weather
effects and the solar activity. Pittock believes that,
" . . . if in the future more data and better analysis enable
the detection of statistically significant relationships,
these will account for so little of the total variance in
the climatic record as to be of little practical value."

We know that the 11-yr sunspot cycle is also the cycle
for the polarity reversal of the solar magnetic fields,
so that the generation and oscillation of the solar activ-
ity and of the solar magnetic field result from the same
mechanism, and an explanation for the solar cycle
should emerge from the theory for the solar magnetic
dynamo. It is presently believed that the poloidal solar
magnetic field forms from an existing toroidal field as
the result of a spiral macroturbulence which consists of
giant convection cells (and which continuously sustains
the differential rotation), and a new toroidal field forms
from the poloidal field because it is stretched out by the
differential rotation (the energy loss which occurs in the
course of these events is so large that the oscillation
of the magnetic field acquires a relaxation nature).
Proof for these arguments, and a quantitative explana-
tion for the differential rotation, should emerge from
numerical simulations on the magnetohydrodynamics of
the spiral macroturbulence in the convection zone.

These global hydrodynamic problems of the sun have
not yet been solved, but significant progress has been
made, by the approaches mentioned above. We will be
reviewing the latest work on these problems in this
paper.

1. THE SUN AS A WHOLE

For a summary of what is known about the sun the
reader is referred to the collection edited by Kuiper
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(1953), the book by de Jager (1959), and the paper by
Pikel'ner (1966).

a) Dimensions

We see the sun in the sky as a small disk with an angu-
lar size of only half a degree (more precisely, 31'36" in
January, 31'28" in July, and 1919".26 on the average).
At the mean distance to the sun, aQ—1.4953 x 108 km (it
takes light 494 sec to travel this distance), we have 1"
= 725 km, so that the radius of the sun is £0=695300
km, or more than 100 times that of the earth. The mass
of the sun is a third of a million times that of the earth:
wo=332 958 m@= 1.9901 x 1033 g. Hence we find the
very low mean density pmean = 1.408 g/cm3, and the
gravitational acceleration at the surface of the sun turns
out to be £=Gmo/.R£):= 273.98 m/s2—a huge figure,
nearly 30 times that for the earth.

b) Rotation

The motion of visible details on the disk (primarily
the dark spots) shows that the sun is rotating about its
axis; the solar equator is inclined at an angle of 26°.4
with respect to the earth's equator and at a small angle
of 7°.2 with respect to the plane of the earth's orbit (the
ecliptic); and the longitude at the ecliptic of the as-
cending node of the solar equator is 73°.7 (these figures
refer to the epoch 1850 and change slowly over time).
The direction of the rotation is the same as that in
which most of the planets, including the earth, rotate
around their own axes and revolve around the sun. The
mean sidereal (stellar) period of the sun's rotation is
27 days (mean solar days); the corresponding angular
rotation velocity is w = 2.7x 10"e s"1, and the corre-
sponding linear velocity at the equator is about 2 km/s
(this is slow; linear surface velocities at the equator
have been found to be tens of times higher for many
more massive stars of spectral classes O, B, A, and
F. As far back as 1863, Richard Carrington showed
that the rotation of the sun was differential: There is
an "equatorial acceleration," i.e., an increase in the
angular rotation velocity toward the equator. An em-
pirical expression for the variation of the rotation ve-
locity a) with the heliocentric latitude was offered by
Newton and Nunn in 1951:

to = 14°.38 — 2°.77 sin2 q> (day)r 1 . (l.D
The rotation period turns out to be about 25 days at the
equator and 29 days at a latitude of 60°. Section 3 below
is devoted specifically to the rotation of the sun.

c) Radiation

From the measured value of the solar constant, Jo
= 1.96 cal/(cm2# min), we find the luminosity of the
sun, i.e., the total power of its electromagnetic radia-
tion, to be 3.8 x lo33 erg/s. This is equivalent to the
explosion of 1011 megatons of TNT per second. The
mean output of electromagnetic energy per unit mass
of solar matter is then e «1.93 erg/(g' s). The corpus-
cular emission of the sun (mainly electrons and pro-
tons) is much weaker, and the same is true of the neu-
trino emission, according to the information available.
The effective radiation temperature T*, found from the
equation oTi=qa, where 0o = 6.31x 1010 erg/(cm2' s) is

the radiation flux density at the solar surface, is 5798
K. The sun is then a star of the yellow-dwarf class
(spectral class G2J. Spectral analysis shows that in the
outer part of the stun, which is what is visible to us (we
will call it the solar atmosphere), hydrogen atoms make
up about 91% of the total number of atoms, helium ac-
counts for about 9%, and heavier elements account for
less than 0.1%. Correspondingly, the specific concen-
tration of hydrogen is X «0.70, that of helium is Y
s0.27, and that of heavier atoms is Z <0.025 [see Aller
(1961)].
d) Atmosphere

To describe the solar atmosphere we will make use
of a reference level at the spherical surface r—If^,
which corresponds to the sharp visible limb of the
solar disk. This level is that at which the optical depth
is T = T5o0flA = 0.003 (i'e'» t h e intensity of radiation at
a wavelength A. = 5000 A emitted in the radial direction
from this level would be reduced by absorption in the
atmosphere above this level by a factor of e0#003). The
brightly emitting gas below this level from which the
radiation still manages to pass through the atmosphere
above without suffering severe absorption is called the
photosphere. It is about 400 km thick. Above the photo-
sphere is the chromosphere, which can be seen during
eclipses as a "grassfire": a dark red strip with teeth
(spictdes) at the top. It appears a few seconds before
the sun emerges from behind the lunar limb. The
chromosphere is of the order of 15000 km thick. Above
the chromosphere is the bright corona, which can be
seen during total eclipses. Its rays may extend out to
a distance of several R@ .

1. Photosphere. Theoretical models of the photo-
sphere are based on the assumption that the photosphere
is in a state of local thermodynamic equilibrium. In
other words, each infinitesimal volume of the photo-
sphere is assumed to emit and absorb radiation as if it
were an absolute black body at the same temperature.
In particular, therefore, Kirchhoff's law holds: The
ratio of the spectral absorptivity and the spectral emis-
sivity is independent of the nature of the optically active
substances and is a universal function of the wavelength
and the temperature (the Planck function). Under this
assumption, the various models for the photosphere are
found through a joint integration of the hydrostatic equa-
tions and the radiation-transport equations, with some
particular dependence of the absorptivity on the tem-
perature, the pressure, and the wavelength. The prin-
ciples underlying the construction of these models are
set forth in the book by Muster (1960) and by M.
Mnnaert's paper in Kuiper's collection (1953).

From the models emerge the following conclusions
about the photosphere:

1. At depths greater than 350-400 km, the gas be-
comes essentially opaque.

2. The photosphere is an extremely low-density gas,
with a typical density of (1-3) x 10"r g/cm3 and a typical
pressure of the order of 5-150 mbar.

3. Slightly above the photosphere, the temperature
goes through a minimum of about 4170 K, at an altitude
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of 200 km; this is the coldest part of the sun. The
velocity of sound, c, is 7-8 km/s at the temperatures
prevailing in the photosphere. The photosphere is
hydrostatically stable not only above this cold layer,
where the temperature increases with altitude, but also
below it, down to a depth of about 350 km. Further into
the interior, the temperature gradient becomes "super-
adiabatic," and this region is the upper part of the sub-
photospheric convection layer. The local scale height,
H=P/pg=RT/vg, in the photosphere is 100-150 km
ill «0.6 is the average molecular weight); the adiabatic
temperature gradient ya =g/cp is 17 deg/km. The
Vaisalai-Brunt period 2ir/N, where

falls off with altitude in the photosphere; its typical
values are 200-210 s, and it reaches a minimum (of
about 180 s) at 200 <z < 500 km.

The electron gas pressure pe falls off with altitude in
the photosphere (the only increase is between 300 and
600 km), but the ratio pjp, which is a measure of the
degree of ionization of the medium, behaves different-
ly: It is at a minimum (below 1 x 10"4) over most of the
photosphere (at 200 km > z > - 200 km, below which the
ionization increases rapidly with depth), while above the
photosphere it increases with altitude, reaching pjp
*l/3 at 15000 km.

The normal (unperturbed) photosphere has a grainy
structure (granulation). The granules are bright poly-
gonal areas, separated by darker lines, with diameters
ranging from 200 to 1300 km (the average is 760 km),
with a brightness 10—30% greater than the average
background, and with an average lifetime of 8-10 min.
The granules have conventionally been interpreted as
reflecting BSnard cells, i.e., laminar-convection cells
which develop in the upper part of the subphotospheric
convection layer and which penetrate by virtue of their
inertia to some altitude in the hydrostatically stable
photosphere. The gas rises at the centers of these cells
and drops along their edges, at velocities of the order
of 0.3 km/s [according to the Doppler shift of spectral
lines; the same measurement technique has revealed
oscillations in the solar atmosphere with a period of
about 300 s (i.e., of the order of the Vaisalai-Brunt
period in the region above the photosphere), which evi-
dently reflect internal waves]. The intergranular net-
work, on the other hand, is apparently the structure of
the magnetic field.

One of the most important discoveries in recent years
was the discovery by Severny et al% (1976) of an oscilla-
tion in the solar atmosphere with a period of 160 min.
They found this oscillation by analyzing voluminous data
on the velocities along the line of sight in the solar at-
mosphere at the equator and at the poles. Brooker et
al. (1976) found the same period independently from the
Doppler shifts of Na and Ca absorption lines; they also
found periods of 29, 40, and 58 min. These periods do
not correspond to natural modes, according to calcula-
tions based on existing models for solar structure [see,
for example, Vorontsov and Zharkov (1978)] so that,
possibly, these models will need to be revised.

2. Chromosphere. Let us take a brief look at the
situation higher in the solar atmosphere. The chromo-
sphere can be seen not only at the limb of the solar disk
but also over the entire disk, in some particular spec-
tral line which is emitted only, or predominantly, by
the chromosphere. Examples are the red Balmer line
of hydrogen, Ha 6563 A, and the lines K3934 A and H
3968 A of ionized calcium, Ca*II. The chromosphere is
described as consisting of a lower part, in which the
ionization of hydrogen is still slight, and an upper part,
which is highly ionized [according to H. C. Van de Hulst,
the corresponding altitude interval is z = 7000-14 000
km, with a temperature increase from 2.5 x 104 to 3
x 105 K and a decrease in the number density of elec-
trons from 5X109 to 5x 108 cm"3; see Kuiper (1953)].
In the upper chromosphere we can no longer expect a
local thermodynamic equilibrium; the kinetic tempera-
ture of the electron gas, for example, is not equal to
the ionization temperature or to the excitation tempera-
ture of the spectral lines.

The chromosphere is apparently very inhomogeneous,
with a filamentary structure; intense turbulence has
been decected in it, with velocities ranging from 5 km/s
at an altitude of 500 km to 20 km/s at 5000 km.

Spicules and supergramdation are constantly observed
in the unperturbed chromosphere. The spicule thickness
is of the order of 500-600 km; they reach an average
altitude of 7500 km at the equator and 7800 km at the
poles; their lifetimes are 2-5 min; and the gas is rising
in them with a velocity of the order of 20 km/s. They
are found in the greatest number at the poles (where the
number is 30% higher than at the equator) and in the
smallest number at a latitude of 35° (where the number
is 10% lower than at the equator). The spicules are
straight and usually inclined; the polar spicules are in-
clined toward the equator, while in the active regions at
latitudes of 20°-40° the spicules are inclined toward the
nearest pole, probably following the direction of the
magnetic field.

The supergranulation is a large-cell structure in the
solar atmosphere, which can be seen both in the photo-
sphere and (particularly well) in the chromosphere. In
the photosphere the correlation functions of horizontal
brightness inhomogeneities in white light have a second-
ary maximum at a scale dimension of 12 000 km, which
corresponds to supergranules, in addition to the one
corresponding to the granules. In the chromosphere it
is possible to observe in, for example, Ca* lines, a
chromospheric grid formed by chains of large "nodules"
(bright calcium flocculi), which are groups of small
nodules (granules) and which are distinguished by a
descent of the gas at about 1-1.5 km/s. The super-
granules are of the order of 30 000 km in diameter, so
that there are only about 2500 of them on the solar disk.
Their lifetime is about a day. They are interpreted as
manifestations of large convection cells in the interior.

There are apparently also some even larger, giant,
convection cells (detected by their magnetic field; see
the end of Section 2, where it is stated that regions of
opposite magnetic-field polarity alternate over longitude
with a predominant wave number m=6). These giant
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cells should be sensitive to the solar rotation, so that
they may be a manifestation of Rossby waves in the
outer convection zone. The supergranules and giant
cells are morphologically similar to the clusters of con-
vection clouds in the tropical atmosphere of the earth
above the oceans. Finally, it is suspected that there
may exist very long-lived supergiant cells, which are
responsible for the so-called "active longitudes" in the
spot-formation activity on the sun and for the sector
structure of the solar wind (see Subsections 2a and 3b).

3, Corona. With a coronograph, the solar corona can
be observed on any clear day; it is not necessary to
wait for an eclipse. Out to a distance r~2RQit is pos-
sible to see light emitted by the corona in the lines of
highly ionized iron, nickel, and calcium (the most in-
tense lines are the green line Fe XIV 5302.86 A and the
Fe XIII ultraviolet lines). The corona also emits x rays
and radio waves (especially at meter wavelengths). Out
to r~4Ee, it is possible to see white sunlight scattered
and polarized by free electrons in the corona; out even
further, we see the inner zodiacal light (light scattered
by interplanetary dust). The light from the inner corona
is 106 times fainter than that from the disk, and the
light from the outer corona is 103 times fainter yet.
The corona consists of a very highly ionized plasma,
far from local thermodynamic equilibrium.

In the inner corona [r= (1.03-1.2)i?o] the tempera-
ture rises from 1 x 108 to 1.5 x 108 K; the electron num-
ber density Ne drops from 2 x 108 to 4 X 107 cm"3; and
the mass density p~mHNe (where mll = 1.67 x 10"24 g is
the mass of the proton) drops from 5x 10"16 to 1 x 10"18

g/cm3. Here the scale height H is of the order of 103

km, and the velocity of sound is of the order of 15 km/
s. At higher points, the gas temperature is constant,
on the average, because of the high electron thermal
conductivity. In the central part of the corona, at r
~2RQ, we have JVe~2x 108 cm"3 and p~5x 10"18 g/cm3;
in the outer corona, at r~3.Ro, these values are lower
by another order of magnitude (at r~10i?©, we have Ne
~104; Ne~10z at r~50iJo; and Ne~2.5 cm"3 at r~215JRo).
The corona is believed to be heated by the energy dissi-
pated by acoustic (shock) and MHD waves, which bring
about 10"5 of the solar radiation, and the radiative
cooling is believed to be slight because of the negligible
mass density.

e) Interior

There is no directly determined information of any
sort on the part of the sun below the photosphere, and
the structure here must accordingly be calculated theo-
retically, using hydrostatic equations and the equations
for radiative equilibrium:

(1.2)

(1,3)

TABLE I.
(1964).

Internal structure of the sun, according to Sears

dor* 3xp AL

where H is the opacity (a weighted average over wave-
length of the spectral absorptivity xx), and e is the specific
rate at which energy is released in thermonuclear fusion
reactions. Both these quantities must be specified or
calculated separately. In addition, use is made of the
equation of state of an ideal gas, and the convection

r, I0U CIB

0.00
0.06
0.10
0.15
0.20
0.26
0.32
0.3S
0.48
0.62

*m
*©

O.J39
0.05"?
Q.2
0.4
0.6
0.8
0.9
0.95
0.99
0.99955

'%, p, g/cmB

,153
103
59
31,5
15.2
5.0 .
1.84
0.74
0.117
0.0063

T, 106K

15.7
13.8
11.3
9.0
7.1
5.1
3.9
3.0
1.73
0.66

L, 1033 ag/s

0.00
1.30
3.09
3.77
3.90
3,90
3.90
3.90
3,90
3.90

X

1.09
1.32
1.78
2.42
3,2
4.5
6,0
7.4
9.6
—

X

0.36
0.52
0.65
0.69
0.70
0.71
0,71
0.71
0.71
0.71

zones are treated as adiabatic [see the papers by B.
Stromgren in Kuiper's collection (1953) and in the col-
lection of Aller and McLaughlin (1965)]. The evolution
of the chemical composition of a star which results
from the fusion reactions can be taken into account. A
calculation of this sort has been reported by Sears
(1964), who found the structure described in Table I for
a star of age of 4.5 x 109 yr with the mass, radius, and
luminosity of the sun and with a chemical composition
described by specific concentrations of X=0.708 for
hydrogen, r=0.272 for helium, and 2=0.020 for heavy
elements. According to this model, the pressure at the
center of the sun is pc = 3.5 x 105 Mbar, so that pcQ/
Pc® ~ mo/2m@- At r S0.7.R© in the interior, there is a
state of radiative equilibrium with a hydrostatistically
stable stratification (according to certain solar models,
there is a small convective core with a radius of about
O.O5.R0). The temperature at the center of the sun ac-
cording to this model is 15x 108 K. Curve I in Fig. 1
shows the subadiabatic temperature profile in the zone
of radiative heat transfer (where there is no convection,
but there may be internal waves). Curve II shows the
superadiabatic profile T(r) in the upper convection zone;
curve in shows the subadiabatic profile T{r) in the zone
of radiative heat transfer in the photosphere; curve IV
shows the profile in the chromosphere, where the tem-
perature increases with altitude because of the energy
absorbed from mechanical waves (the upper part of re-
gions IV and V corresponds to the boundaries of super-
granules); curve V shows the profile in the corona,
where heat conduction also comes into play; and curve
VI shows the profile in the outer corona, where the
temperature falls off with altitude because of the heat
carried off by the solar wind and because of heat con-
duction.

Figure 2 is a full logarithmic plot of the radial profile
of the mass density. In the interior, the logarithm of
the density varies comparatively slowly: from p~ 150
g/cm"3 at the center of the sun to a value 1000 times

FIG. 1. Radial profile of the temperature in the sun.
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FIG. 2. Radial profile of the density in the sun.

lower at the lower boundary of the convection zone
[r~ (2/3)Ro]. In the convection zone, the density falls
off by another factor of 106, reaching a level of the
order of 10"7 g/cm~3 at the lower boundary of the photo-
sphere. The density falls off almost discontinuously (by
a factor of 106 over a distance of 2000 km) in the photo-
sphere and lower chromosphere, near the visible sur-
face of the sun. In the corona and beyond, in the solar-
wind region, on the other hand, the density decrease is
much slower.

1. Solar neutrinos. At present the temperature at the
center of the sun may be lower than that calculated ac-
cording to the model in Fig. 1. In this connection, let
us review the results of some neutrino experiments by
Raymond Davis in 1967-1968 and 1972, in which an at-
tempt was made to measure the flux density of electron
neutrinos, ve, formed in the solar interior in the course
of fusion reactions. Davis made use of an idea -which
had been proposed in 1946 by B. M. Pontecorvo: to use
the "inverse beta decay" of chlorine, Cl37 + vt— Ar3T

+e~, which is sensitive to the highest-energy particles
in the flux of solar neutrinos. (Their energies are above
0.814 MeV. These high-energy neutrinos can be formed
in one of the various possible branches of a proton fusion
reaction, in which a He3 nucleus combines with a He4

nucleus to form Be7; the latter combines with a proton
to form B8; and the beta decay of this boron nucleus,
B8— Be8 + e + ve, generates the neutrinos. The effi-
ciency of this neutrino production is an extremely strong
function of the temperature—it is proportional to r20—
so that the number of these neutrinos in the solar radia-
tion would give us a reliable value for the temperature
in the solar interior.) The detector used by Davis con-
sisted of 610 metric tons of liquid CC14, which was
placed in a deep mineshaft for shielding against cosmic
rays. The radioactive argon, Ar37, formed in the CC14
was accumulated for 100 days and then extracted by
blowing helium through the volume and adsorbing the
argon on activated charcoal at - 196° C. The number of
decaying Ar37 atoms was measured with a proportional
counter.

According to the theory based on the model which has
the temperature at the center of the sun equal to 15 x 108

K, the counter in this experiment should have found 45
Ar37 atoms per run. The actual result, however, was
negative: No more than eight Ar37 atoms were de-
tected. This number corresponds to the estimated
background noise level. Attempts can be made to ex-
plain this negative result in several ways: hidden sys-
tematic errors in the experiment; errors in the labora-

tory data on the rates of neutrino reactions, which were
used in the calculations; changes in the properties of the
solar neutrinos during their passage to the earth (for
example, Pontecorvo has suggested that there may be
"oscillations," consisting of the conversion of electron
neutrinos into muon neutrinos or into antineutrinos);
or, finally, an incorrect solar model (the temperature
in the interior might, for example, be lower than that
predicted by the models). This latter possibility was
pursued by W. A. Fowler and, later, by D. Ezer and
A. G. W. Cameron and by Sakurai. According to their
hypotheses, there is a periodic mixing of the solar in-
terior (the period would be 10s yr) which results in a
state with a reduced temperature (over a time of the
order of 107 yr) in which there are decreases in both
the neutrino emission (by an order of magnitude) and
the photon luminosity (by 20-35%). This is the state
which would be prevailing today. However, I believe
that it would be at least premature to adopt this particu-
lar hypothesis in order to explain the negative results of
Davis's neutrino experiment.

2. Convection zone. The outer part of the sun,
starting at about 0,3RQ (or even OARQ, according to
some estimates), turns out to be convective,1' since the
adiabatic index y= (dln/>/dlnp)a there is approximately
unity (during compression of the plasma, energy is ex-
pended primarily on ionizing hydrogen, rather than
raising the temperature), and the absorptivity of the
plasma is high. Thus the dimensionless temperature
gradient in the medium, V = sinr/31n/>, is higher than
the adiabatic gradient Va= (y- l)/y, and convection sets
in. A more detailed calculation of the structure of the
convection zone can be carried out by the following pro-
cedure: 1) Equate the specific dissipation of the kinetic
energy of the convective motion, ~ws/l, to {gq/CppT)Q
[I is the mixing length; w is the velocity of the convec-
tive motion; and q=cppwT is the convective heat flux,
about 6x 1010 erg/(cm2* s), with a correction Q=l
- (31n^/31nT), where n is the average molecular
weight of the solar plasma, T'=Z(T/#)(V - V,) is the
heating of the convection cells, V = (H/T)dT/dz is the
normalized temperature gradient in the medium, and
Vj is that in the rising convection cell]. 2) Require that
the sum of the convective heat flux, q, and the radiative
heat flux, (16.3)frr4/>«,pff)V, be constant (equal to
oT$). 3) Equate the radiative heat loss of a spherical
convection cell of radius I over its lifetime l/w, which
is (16/3)frr 4/>tpff)(v- - Vt). 4vl2l/w, to the change in its
enthalpy, (4.3)afse,pJ(r/ff)(V, - VJ. The resulting three
equations are used, with fixed values of T, p, and I,
to find V, V u and w. Then the hydrostatic equation is
used to calculate the stratification of the convection

"in the outer layers of the sun, the lithium level is very low,
and the beryllium level is slightly low, in comparison with
their abundances in other parts of the solar system. The
situation may be a consequence of the consumption of lithium
and beryllium in thermonuclear reactions In the solar in-
terior. According to calculations, lithium is consumed at
distances r < 0.63jRo from the center of the sun, while beryl-
lium is consumed at r <0.47flo- It can thus be concluded
that a t r>0.63R o the radial mixing is important, while at
0.63flo < r < 0.¥1RO it is not.
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FIG. 3. Vertical profile of the dimensionless specific entropy
in the convection zone below the photosphere, from BBhm
(1967).

zone, i.e., the depth profiles of T, P, and p in this
zone. Bohm (1967) has carried out such calculations,
making two hypotheses regarding the mixing length,
I =H and 1= \z\, finding very nearly the same results
in the two cases. The results show that the upper part
of the convection zone has some "mesostratification."
This stratification can be seen clearly on the profile
of the dimensionless entropy in Fig. 3, which shows
that over most of the convection zone the specific en-
tropy falls off only very slightly with altitude, but in a
thin upper layer about 400 km thick (with a scale height
H of the order of 200-300 km) it drops sharply; it is
in this least stable layer that the convection cells which
induce the granulation care formed. The specific en-
tropy increases in the photosphere, but the convection
cells entering it from below continue to float up active-
ly, until they reach an altitude where the specific en-
tropy of the gas is higher than in these cells (inertia
may carry the cells slightly above this point).

2. PHENOMENA IN THE SOLAR ATMOSPHERE

In addition to the granules, supergranules, and
spicules, which are all present in the normal (unper-
turbed) solar atmosphere, there are also several "per-
turbations," i.e., inhomogeneities with relatively short
lifetimes. The most important perturbations are spots,
faculae, chromospheric flares, prominences, coronal
streamers and holes.

a) Sunspots

These are the most apparent inhomogeneities on the
surface. In fact, they can sometimes be seen with the
naked eye, through smoky glass or simply smoke. Such
observations date back more than 2000 yr. The invention
of the telescope in 1611 was followed immediately by
drawings of sunspots and the first information on their
shape and abundance. Fabricius inferred the rotation
of the sun from the motion of the spots over the solar
disk, and Galileo found the first estimate of the rotation
velocity.

The spots are generated as small dark pores with a
diameter of 2-4 seconds of arc. A typical mature spot
consists of a dark central umbra, with an average di-
ameter of about 17 500 km and a brightness 20-30% of
that of the surrounding unperturbed photosphere, en-
closed by a less dark, annular penumbra, with an av-
erage outer diameter of about 37 000 km and a bright-
ness 75-80% of the background brightness. The area
of a spot is typically of the order of 10"4 of the area of
the visible surface. Balancing this reduced emission

level in the umbra and penumbra is a ring of elevated
brightness (about 3% above the background level) around
the spot, at an average distance of 50 000 km from the
center of the spot. iThis ring is defined most sharply in
the upper chromosphere above the spot.

An individual sunspot lasts for a time ranging from a
few days to a few months. High-resolution photographs
of the spots at the center of the visible disk reveal an
important difference in the granulation at the surface
of the photosphere outside the spots and in their umbras
and penumbras. The granules in a penumbra are thin,
bright, radial filaments with a diameter on the order of
300 km, which end abruptly at the boundary of the umbra
and which have lifetimes ranging from half an hour to
several hours (i.e., several times the lifetime of the
granules of the unperturbed photosphere). On photo-
graphs taken at especially high resolution the granules
are usually seen as bright points even in the umbra;
they are slightly smaller than the granules of the unper-
turbed photosphere and have longer lifetimes—com-
parable to that of the granules of the penumbra.

As early as 1769, Alexander Wilson noted that as a
spot approached the western limb the eastern half of the
penumbra would gradually contract and then disappear
completely; when the spot reappeared at the eastern
limb, the western half of the penumbra would initially
be missing altogether and would then appear and
gradually expand. This effect means that the optical
density of the gas directly above the umbra is much
lower than at the same level in the surrounding atmo-
sphere; i.e., the surfaces of constant optical density
funnel downward above a spot. Sunspots are shallow
funnels at the surface of the photosphere.

In 1907, E. Walter Maunder discovered an east-west
asymmetry in the distribution of spots visible on the
disk: The number of spots which are observed, which
form, and which emerge from behind the solar limb on
the eastern side is higher than the number of spots
which are observed, form, and disappear behind the
limb on the western side. This effect can be attributed
to an inclination of the vertical axes of the spots toward
the west (for young spots, 1 day old on the average, the
inclination is 0°.44; for spots seen a second time, i.e.,
more than 27 days old, the inclination is 7°.6), which
occurs because the angular rotation velocity of the sun
increases with altitude in the photosphere and the lower
chromosphere.

The spots are dark only in contrast with the unper-
turbed photosphere; their apparent blackness means
only that their emission in the visible range is less
than that of the unperturbed photosphere. If we assume
that the spots, like the photosphere in general, radiate
as heated blackbodies, we can compare their radiation
temperatures (which will be equal to the ordinary gas
temperatures, since the photosphere is in local thermo-
dynamic equilibrium). The average temperature in the
umbra of the larger spots, according to measurements
of the integrated emission intensity, is about 4200 K,
or 1600 K lower than the temperature of the unperturbed
photosphere.
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The temperature of an umbra falls off noticeably with
increasing spot area. The radiation temperatures found
for a given spot in different spectral lines are different.
Even for spots of the same area, however, the radiation
temperatures measured in the same spectral line may
vary by more than 1000 K (because, for example, the
generation depths for the given line are different). The
lowest umbral temperatures, below 1000 K, have been
detected from the intensity ratio of the emission lines
of thermally unstable TiO" molecules.

Measurements of the gas velocities in spots on the
basis of the Doppler shift of the centers of gravity of
certain spectral lines allowed J. Evershed to conclude,
already in 1909, that at the level of the unperturbed
photosphere and deeper the gas flows out of a spot with
a certain anticyclonic twisting, along directions defined
by the filaments of the penumbra (and with an ascending
component), at velocities of the order of 2 km/s. These
velocities increase with depth in the photosphere to 5-6
km/s. Later measurements showed that this motion can
be seen at altitudes up to 500-1000 km above the surface
of the sun; above this level, the motion reversed, and at
altitudes of the order of 2000 km in the chromosphere
there is a cyclonic twisting flow of gas into a spot, with
a descending component.

Sunspots are observed only in certain latitude inter-
vals (in the "royal latitudes"), from 5° to 52° in each
hemisphere. The overwhelming majority of spots appear
between 8° and 30° (the record high latitude of 52° was
noted on 13 August 1953). As early as 1889, A. Wolfer
noted that an increased number of spots could be ob-
served for several years, or perhaps even tens of
years, in certain active longitude intervals. These in-
tervals change slowly over time.

The overwhelming majority of spots appear and spend
their lives as part of groups. The groups exist for an
average of 10 days, but 37% of the groups have lifetimes
greater than 10 days, 0.4% greater than 50 days, 0.03%
greater than 100 days, and 0.01% greater than 150 days.
The lifetime of a group is most sensitive to the area
occupied by the group, varying roughly in proportion to
this area: The lifetime of a group occupying 1 x 10"* of
the surface of the visible hemisphere is 10 days, while
that of a group occupying 4x 10"4 of the visible hemi-
sphere is 40 days. About 3000 groups are observed
over one solar cycle (which lasts an average of 11.2
years; see Section 4).

b) Magnetic fields of spots

The discovery of strong magnetic fields in spots is
crucial to an understanding of the nature of spots. The
magnetic fields in the solar atmosphere are measured
by exploiting the Zeeman effect: the splitting of spec-
tral lines in a magnetic field.

The splitting of certain lines in the spectra of sun-
spots had actually already been noted in 1866, by Sir
Joseph Lockyer, but it was not until 1910 that George
Hale observed opposite circular polarization of the lines
in these doublets and found that they were produced by a
normal longitudinal Zeeman effect, to this manner,

Hale discovered the strong magnetic fields in sunspots.
Hale's measurements at the Mt. Wilson observatory
over the years 1908-1924 (the results were published
in collaboration with S. B. Nicholson in 1938) laid the
foundation for what we know today about the magnetic
fields of sunspots. Hale used the iron line at 6173.348
A almost exclusively, and the error of his measure-
ments was ± 50 G. His students Horace W. Babcock and
Harold D. Babcock later constructed a more accurate
magnetograph, which used a spectrograph with two
narrow slits, which were aligned at the wings of the
spectral line under study (the iron line at 5250.218 A in
most cases), where there are inflection points. This
device detected the difference between the photocurrents
corresponding to the light transmitted through these
slits and modulated by a circular-polarization analyzer.

The accuracy of this magnetograph was of the order of
0.1 G; the horizontal resolution was 70", later improved
to 23".

It was learned that all sunspots have strong magnetic
fields. The magnetic lines of force at the generation
depth of the spectral lines which undergo the Zeeman
splitting run roughly perpendicular to the solar surface
at the center of a spot and bend outward with increasing
distance r from the center, so that the inclination angle
6 varies approximately as described by 0=90°(r/r0),
where r0 is the radius of the outer edge of the penumbra.
The lines of force within the penumbra follow the fila-
mentary granules and become approximately horizontal
at the outer edge of the penumbra.

The magnetic field at the center of a spot, Hc, in-
creases with increasing spot area, from something of
the order of 100 G for the smallest spots to perhaps
400 G for the large spots. The field H falls off with dis-
tance from the center of the spot approximately in ac-
cordance with H=HC [ 1 - (?Vrjj)]. The magnetic flux
through the surface of a typical spot is of the order of
1021 Mx (1 Mx= 1 G'cm2). As a spot grows, the magnetic
flux in its increases rapidly at first and then remains ap-
proximately constant for much of the spot lifetime; the
area of the spot increases, and the field decreases.

Differences in the nature of the magnetic field in spot
groups lead to the classification of groups as "unipolar,"
"bipolar" (or "dipolar"), or "multipolar." The over-
whelming majority are bipolar; for example, 91% of the
6384 groups observed over the years 1919-1946 were
bipolar, 8.6% unipolar, and only 0.4% multipolar.

Clearly, we should focus our attention on the bipolar
regions. Each has a "preceding" spot (in the sense of
the direction of the solar rotation), which we will
designate as "p," and one or more "following" spots
("f"). The magnetic polarities of the pand f spots in
a given bipolar region are always opposite (and the
magnetic fluxes in the p and f parts of a bipolar region
are approximately equal).

On the average, the p spots are larger than the f
spots and have longer lifetimes; the magnetic flux in
the p spots is three times that in f spots, on the av-
erage. The bipolar groups are usually oval, with the
long axis f p inclined with respect to the circles of
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latitude in such a manner that the p spot is closer to
the equator than the f spot. The actual inclination
angle decreases with increasing age of the bipolar
group and with decreasing latitude. At latitudes in the
range 5°-9°, the average angle is 3°; in the range
10°-14° it is 5°.5; in the range 15°-19° it increases to
6°. 5; in the range 20°-24° it increases to 9°.4; in the
range 25°-29° it increases to 11°.9; and finally, in the
range 30°-34° it is 14°.9. The spots within a bipolar
group move with respect to each other. During the first
5-7 days in the life of a bipolar group, the p spot moves
westward rapidly (the average velocity is of the order of
0°.2 per day) but in a decelerating manner; the f spot,
on the other hand, remains at rest or moves slowly
eastward. The group becomes longer, frequently
reaching a length of 10°-12°. Then the p spot stops and
sometimes moves slowly eastward, frequently returning
to its original position; at this time the f spot disap-
pears. Finally, the group as a whole changes latitude
slightly (of the order of 1° per solar rotation), moving
toward the equator if the group is in the latitude band
| <p\ <16° and moving toward the poles otherwise.

The formation of a bipolar group may possibly result
from the ascent of some part of a magnetic force tube
(which has a small inclination with respect to a circle
of latitude in the horizontal plane), from below the
granulation layer under the photosphere. The ascent
may result from a local intensification of the magnetic
field (because of, for example, a nonuniform stretching
of the tube by the differential rotation). With the natural
tendency toward an equalization of the total pressure,
p +Hi/8ir (the hydrodynamic pressure plus the magnetic
pressure), the result would be a decrease in the pres-
sure p because of a displacement of some of the gas
from the field-intensification region. A further result
would be a decrease in the gas pressure, which would
lead to an Archimedes buoyant force. An attempt can
be made to explain the differences in the shape and
evolution of the p and f spots in terms of the effects
exerted on the p and f regions of the magnetic force
tube by the angular rotation velocity of the photospheric
gas, which increases with altitude (as mentioned earlier
in connection with the east-west asymmetry of the
number of visible spots). This mechanism for the
formation of bipolar groups is described in more de-
tail by, for example, Babcock (1961).

The spots form in bipolar groups probably as a result
of a modification and partial suppression of the convec-
tive motion in the granulation layer below the photo-
sphere caused by a strong magnetic field (which makes
it exceedingly difficult for plasma to move across mag-
netic lines of force): The reduction of the convective
heat transfer results in a cooling of the gas in the photo-
sphere and thus the appearance of relatively cool spots.

c) Faculae

These are comparatively long-lived bright regions
near sunspots (small faculae may exist without being
associated with spots, but no spots exist without facu-
lae), which can be seen both at the limb of the disk in
white light (i.e., in the photosphere) and over the entire

disk in the bright chromospheric lines, especially Ha
and Ca n. (Measurements are usually made in the K2S2
part of the KjQa. q; line, at whose center there is a
narrow absorption! line K3, which is enclosed by a nar-
row emission band Kz and an even broader, deep ab-
sorption bandJf j . The bright elements of chromospheric
faculae are called flocculi.)

Photospheric faculae have a granular structure; their
brightness averages 10% higher than that of the unper-
turbed photosphere, and the difference becomes 40-45%
in the brightest facula granules and sometimes as much
as 150%. Granules in faculae live longer (about an
hour, on the average) than those in the unperturbed
photosphere. These granules, with dimensions of the
order of 1000 km, are grouped in cells 4000-6000 km in
size and form chains 5000-10 000 km wide and of the
order of 50 000 km long. These chains continue the
chromospheric network into the photosphere.

Most faculae appear in a latitude interval which in-
cludes the "royal latitudes" important for sunspots but
extends 10° further toward the poles and 5° further
toward the equator. In addition, a few polar faculae are
observed, distributed roughly uniformly aver the lati-
tude band | q> \ > 68° (these are small, rounded, bright
spots, 1800-3000 km in size, with an average lifetime
of half a day; they are apparently associated with the
polar coronal streamers and appear most frequently at
minimum solar activity).

The large faculae associated with sunspots frequently
appear a few hours, or even a few days, before the
spots themselves and continue to be observed long after
the spots have disappeared (this is especially true of
the p and f spots in bipolar groups), so that their life-
times average three times those of the spots. These
large faculae frequently remain visible over several
solar rotations.

Chromospheric faculae are present in all bipolar spot
groups with magnetic fields stronger than 2 G. They
have long lifetimes, reaching 200-300 days. They fre-
quently form elongated regions whose western ends are
nearer the equator than the eastern ends. The angles
made by these elongated regions with the circles of
latitude are noticeably larger than those in the case of
the fp axes of bipolar groups. The temperature in these
faculae increases with altitude more rapidly than that
in the unperturbed chromosphere^ so that their tem-
perature contrast increases with altitude. In the Lot
1215 A line, this contrast is twice that in the K3 Ca n
line, and in x radiation (i.e., in the corona) the faculae
are 70 times brighter than the background.

d) Chromospheric flares

These events are sudden, short-lived increases in the
emission intensity of regions in the chromosphere near
sunspots; they can be seen best in the Ha line and in the
lines of Ca*. The area of a flare is (1-12) x 10"4 of the
area of the visible hemisphere (1.6 x 10"4, on the av-
erage). The relatively common small flares are
rounded, while the relatively rare large ones are
elongated formations, with dimensions of the order of
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10* x 106 km and a filamentary structure. The integrated
brightness may increase by a factor as High as ten
during a flare. Flares last from a few minutes to a few
hours (the average lifetime is 20m), and this time tends
to increase with increasing flare area, although there is
a large scatter in this dependence. The brightness in-
creases rapidly; the maximum brightness is maintained
only briefly (less than 1"); and the brightness decays
comparatively slowly (the decay time averages three
times the rise time).

Flares are not rare events: One flare occurs, on the
average, during each 7" of the lifetime of a spot group
(flares occur particularly frequently between the 8th and
15th days in the life of a group), so that some 30-50
flares occur as a spot group travels across the disk.
At maximum solar activity, a flare occurs evey 2 h, and
about 300 occur per rotation. Flares usually appear at
faculae and begin with a rise of the bright elements of
faculae.

Two-thirds of the flares are flat, extended, static
formations, but one-third exhibit intense motion, with
velocities of hundreds of kilometers per second (the
parabolic velocity at the sun is 618 km/s). This motion
sometimes results in surges of matter at an arbitrary
angle from the vertical, to altitudes of the order of 105

km; then the matter returns along the same path. Flares
are also accompanied by x-ray emission, UV emission
(primarily in the La line), large bursts of radio emis-
sion, and the emission of corpuscular fluxes and cosmic
rays.

The emission of particles implies that some mecha-
nisms are operating to accelerate particles during
flares, and these mechanisms evidently involve varying
magnetic fields. Direct measurements of the magnetic
fields have shown that the flares seem to be associated
with zones between magnetic fields of different polarity,
in which zones the magnetic field changes most rapidly.
Finally, flares are condensations of chromospheric
plasma, with a density 102-104 times that of the sur-
rounding chromosphere, and this point is crucial to an
understanding of their nature. This condensation also
explains the sharp increase in emission (and the subse-
quent cooling of the flare region). The picture which
emerges is thus one in which the flares form as the re-
sult of a compression of gas in the region in which in-
creasing magnetic fields "collide."

e) Prominences

These are ribbon-shaped, cool condensations of gas
in the inner corona, which appear as bright outcrops at
the solar limb but appear as dark filaments on the disk,
in the light of the cores of Fraunhofer lines (e.g., the
hydrogen Balmer line Ha). A typical quiescent promi-
nence is of the order of 200 000 km long (a length as
great as 1900000 km has been observed), 50000 km
high, and no more than 6000 km wide, consisting of
filaments of the order of 1000 km in diameter. The
average lifetime of a prominence is three solar rota-
tions. They are observed, first, in the latitude band
10°-40°, which includes the sunspot band but extends
further toward the poles, and, second, at high latitudes

(in a polar-prominence crown).

The prominences associated with spots frequently are
shaped like arcs, arches, fountains, or loops, probably
following magnetic lines of force. The material con-
densed in them is moving predominantly downward.
Prominences almost always arise near a facula, and
usually on the polar side of the facula; the filament is
usually directed toward the spot (80% of the filaments
are directed toward a p spot), and at the time the spot
forms the filament is apparently aligned with a meridian.
Then the filament stretches out (by an average of 100 000
km per rotation) and acquires a characteristic shape, a
meridional arc deformed by the differential rotation;
the high-latitude part of the filament approaches an
east-west direction. Furthermore, the filament moves
slightly poleward (at a velocity ranging from 2°.3 of
latitude per rotation in the latitude band 0°-10° to 0°.8
of latitude per rotation in the band 51°- 69°). This dis-
placement occurs through the erosion of the low-latitude
end of the filament and the growth of the high-latitude
end. Finally, nearly all the filaments go through a
stage of sudden disappearance: In the course of a few
hours, they move downward into the chromosphere or
upward into the corona, or they simply contract. A few
days later, they reappear in their previous form.

At the altitude of the prominences, 50000 km, the
temperature in the corona is of the order of 700 000 K,
and the electron number density is of the order of 2
x 10s. In the prominences, at the same pressure, the
temperature will be approximately inversely propor-
tional to the density: The typical temperature is 15000
K, and the typical electron density is 2x 1010. The mass
density is 2 x 10"14 g/cm3, and at a velocity of the order
of 5 km/s the kinetic-energy density is 0.002 erg/cm3.
A magnetic field with this energy density would have an
intensity of 0.2 G, while a field of intensity of the order
of 3 G will exist at an altitude of 50000 km above a spot
with a field of 3500 G. The motion of matter in the
prominences is thus controlled by the magnetic field.

The increase in the density of the cool matter in the
corona may result from a thermal instability; the emis-
sion there is proportional to the square of the density.
For free-free transitions of protons and electrons, the
emission is proportional to T~i/2, while for free-bound
transitions it is proportional to T ~3/2, so that the den-
sity increase and the temperature decrease should con-
tinue as long as the "heat of condensation" can be radi-
ated off.

f) Coronal streamers and holes

Streamers with a base thickness of the order of 7000
km and with an electron density five times that in the
surrounding medium can be distinguished in the corona.
The streamers are closely associated with prominences
(they frequently coincide at the solar limb) and apparent-
ly are usually coronal shells around filaments. The
latter determine the general isophot (or isolux) dis-
tribution in the white corona. Among the common struc-
tural forms in the corona are fan streamers: rays
which are inclined above a system of concentric arcs
which envelop a relatively dark dome around a pro-
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tuberance.
An important event in solar science in the mid-1970s

was the discovery of radial regions of reduced density
in the corona—coronal holes—and their association with
fast streams of solar wind [see the review by Zirker
(1977)]. Most of what we know about holes was learned
from the Skylab observations, although ground-based ob-
servations have also contributed. These holes form in
the photosphere but are controlled by the magnetic field
of the inner corona. Although they tend to group in the
polar regions of the sun, their rotation is rigidly tied
to the rotation near the equator. The divergence of the
magnetic lines of force in the corona acts as a Laval
nozzle: The motion of the gas in the divergence regions
is accelerated to a supersonic level, and the gas density
decreases.

g) Centers of activity

These are the regions on the sun in which the events
discussed above occur, in a certain order.

Small facula spots appear on the first day and rapidly
stretch out in the east-west direction, with their
western ends closer than their eastern ends to the equa-
tor. The first spot appears in the western part of the
facula region on the second day. A second spot forms in
the eastern part of the facula region on the fifth day;
a multitude of small spots, the first chromospheric
flares, surges, and short-lived filaments appear be-
tween the>p and f spots. On the 11th day, the spots
reach their maximum development and are surrounded
by large penumbras; the facula region continues to
grow; and the flare activity increases. By the 27th day,
all the spots except the p spot have disappeared, and the
flares have become less frequent, but the facula region
continues to grow, and the filament on its polar side,
which makes an angle of about 40° with the meridian and
is pointed toward the p spot, stabilizes.

By the 54th day, no spots remain; the facula region
becomes less bright and is bisected by a filament, which
reaches a length of about 100 000 km and is approaching
an east-west orientation. By the 81st day, the facula
converts into a widely spaced network, while the fila-
ment is still being lengthened by the differential rota-
tion. By the 108th day, the facula has dissipated,
leaving only the chromospheric fine structure and the
filament, which has reached its maximum length. By
the 135th day, all that is left is a shortened filament,
displaced slightly toward a pole. Between the 162nd

and 270th days, the filament reaches the polar promi-
nence crown and merges with it. The guiding factor in
the evolution of % center of activity seems to be the
magnetic field,

h) Solar magnetic field

An overall description of the solar magnetic field was
given by Babcock (1981). The results of global mappings
of the solar magnetic field were published by Bumba and
Howard (1965); see also the review by Howard (1967).
Starr and Gilman (1965-1968) have offered a magneto-
hydrodynamic interpretation of these results. Figure
4 shows an example of a global map of the magnetic field
(recorded in August 1959, right after a solar maximum).
This map reveals many bipolar and unipolar spot groups
with typical magnetic fields 1-20 G (outside spots). In
the latitude band | <p\ <40°, the bipolar groups are pre-
dominant. At each fixed latitude in this band, regions
of positive and negative polarity alternate, with a pre-
dominant longitudinal wave number m = 6. The axes of
these regions are inclined with respect to circles of
latitude, with their western ends closer to the equator
than their eastern ends. Since the motion is roughly
along magnetic lines of force, the contours of these re-
gions apparently describe Rossby waves in the east-
west flow. In each of the polar regions, | <p\ > 40°, uni-
polar spot groups of the corresponding polarity are
predominant, and this observation can be taken as evi-
dence for the existence of a poloidal component in the
magnetic field.

3. ROTATION OF THE SUN

The data on the rotation have been reviewed by Gilman
(1974), Howard (1975), and Durney (1976).

a) Observational data

There are two ways to measure the rotation of the
solar atmosphere: by studying the motion of long-lived
inhomogeneities in this atmosphere (i.e., by studying
the motion of sunspots, filaments, faculae, magnetic
fields, coronal streamers, etc., although these features
may have a motion of their own with respect to the ro-
tating atmosphere) and by studying the Doppler shift of
spectral lines emitted from some part of the atmosphere
(although the useful signal will have to be studied
against an intense background caused, in particular,
by motion in the granules and especially supergranules
and by scattered light from other parts of the solar at-

FIG. 4. Solar magnetic field over one solar rotation period (August 1959), according to Bumba and Howard. Black and shaded
regions correspond to magnetic field component along the line of sight greater than 2G; black regions correspond to positive and
shaded regions to negative polarity of the magnetic field.
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mosphere).

The first measurements of the differential (over lati-
tude) rotation of the visible surface (the photosphere)
were carried out by following the. motion of sunspots;
the spots chosen for this study were long-lived spots
which crossed the central solar meridian at least twice
(the p spots in certain centers of activity). This method
can be used, of course, only with the royal latitudes.
The empirical formula of N.ewton and Nunn [Eq. (1.1)]
was constructed in this manner. The most extensive
measurements of the motion of spots have been carried
out on the basis of the data in ihe Greenwich sunspot
catalog over a period of 76 yr by Ward (1964,1965a,
1965b, 1966a, 1966b, 1966c). Ward found that, averaged
over all spot groups, the rotation velocity at all lati-
tudes is 1% higher than predicted by Eq. (1.1); the
small groups are moving faster than the large groups,
and those stretched out along the longitude are moving
faster than the rounded groups. Ward also observed
significant deviations of the motion of the spots from a
uniform differential rotation, and we will discuss these
deviations below. Here we wish to recall that the east-
west asymmetry in the visibility of spots which was
noted by Maunder as well as the differences in shape
and evolution of the p and f spots can be interpreted as
resulting from an increase with altitude of the angular
rotation velocity in the photosphere and lower chromo-
sphere.

According to results found by Wilcox and Howard
(1970), the large-scale photospheric magnetic fields of
the type in Fig. 4 rotate at the same velocity near the
equator as at higher latitudes—faster than the sunspots
(their rotation velocity undergoes large fluctuations;
the differential rotation is much less apparent in the
very long-lived magnetic fields in the latitude band
10°-25° than in the short-lived fields or absent alto-
gether). Among the photospheric formations, we might
also recall the polar faculae at latitudes \<p\> 60°, which
exhibit a definitely differential, and especially slow, ro-
tation.

Turning our attention to higher layers in the atmo-
sphere, we note that for the filaments in the inner
corona a differential rotation has been detected (this
rotation stretches the filaments out) which is just slight-
ly faster than that of sunspots. Almost exactly the same
rotation velocities have been found for the inner corona
by spectroscppic techniques by Hansen et al. (1969) and,
later, by several other investigators. We should em-
phasize here that in most cases no significant variation
with altitude has been observed in the angular rotation
velocity of the chromosphere and the inner corona (out
to a distance of about 2RQ).

Results slightly different from all those described
above were obtained from the Doppler shift of spectral
lines emitted from the photosphere. The most exten-
sive Doppler measurements were carried out with the
solar magnetograph at the Mt. Wilson Observatory; see
Howard and Harvey (1970) and Howard (1971). These
measurements were carried out daily, beginning in
1966, at an array of points covering the entire solar
disk. The error in the measurement of the velocity

component of the photospheric gas along the line of sight
was 10 m/s. These measurements revealed, first, a
slower rotation of the photosphere at all latitudes than
that found from the motion of sunspots (the rotation
periods were about a day longer). Second, significant
variation with time was observed in the rotation veloc-
ity; the changes reached 10-20% of the average value.
Some of these variations apparently result from the
superposition of large-scale motions on the mean dif-
ferential rotation; these large-scale motions are radial,
at 50-75 m/s, with horizontal scale dimensions much
larger than supergranules, and horizontal, at 40- 50
m/s, with a longitudinal period of the order of 25°.
Third, it was found that there is a slight tendency
toward an increase in the rotation velocity with de-
creasing solar activity.

All these results are summarized in Fig. 5, from
which we see that the rotational velocities of the photo-
spheric magnetic fields, sunspots, filaments, and
coronal streamers are approximately the same, at
least in the equatorial region; these velocities apparent-
ly characterize primarily the rotation of the magnetic
lines of force. The lines of force probably are rotating
along with the highly ionized matter below the granules
and supergranulation and in turn entrain the highly
ionized, low-density gas of the upper chromosphere and
corona. In the photosphere, on the other hand, and in
the lower chromosphere, the gas is only weakly ionized,
and it almost completely escapes entrainment by the
magnetic lines of force moving through it. On the av-
erage, it lags behind the motion of the lines of force,
as can be seen from the Doppler shift of the photo-
spheric emission lines. If we accept this picture, the
primary effect is a differential rotation of the matter
with the magnetic field below the layers of granulation
and supergranulation; the rotation of the photosphere
and the lower chromosphere is a secondary effect, re-
sulting from the downward transfer of momentum from
the originally rotating layers provided by convective
motion of the supergranules and granules. Also a
secondary effect is the rotation of the upper chromo-
sphere and the corona, caused by the rotation of the
magnetic lines of force, perhaps with some effect of a
downward momentum transfer by acoustic, gravitational,
and MHD waves.
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FIG. 5. Angular rotation velocity of the solar atmosphere at
various latitudes.
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b) Rotation of the solar wind

The solar plasma propagates along with the magnetic
field far beyond the corona, although in an extremely
low-density form, as the "solar wind" [ see the review
by Lust (1972)]. The density is so low at a few R0trom.
the sun that there are essentially no collisions between
the particles making up this plasma. The rotation of
the solar wind around the sun can be inferred from the
directions in which cometary tails point [see Brandt
and Heise (1970)] and from direct measurements from
space vehicles. Measurements carried out in 1962-
1967 near the earth's orbit (215#o

f r0m the sun) on the
Mariner 2 probe and on several satellites (Vela 2,3, and
4 on IMP 1) showed that the average particle density in
the solar wind at this distance is 5 cm"3 [of the positive-
ly charged particles, 95% are protons and 4.5% are a
particles; the charge flux density carried by the posi-
tively charged particles is 1.75 x 108 electron charges/
(cm2 • s); the average proton temperature is 4 x 10* K,
and this temperature is twice as high along the lines of
force of the interplanetary magnetic field as across
them; the a-particle temperature is four times the pro-
ton temperature; and the electron temperature is three
times the proton temperature]. According to the data
acquired on the Vela satellites, the average velocity of
the solar wind is 320 km/s, and this velocity makes an
angle of 1.5° with the radius vector from the sun, in the
direction of the solar rotation. This deviation corre-
sponds to an azimuthal velocity of 10 km/s, five times
that at the solar surface (the same value is found from
the directions of cometary tails). From angular mo-
mentum conservation, rvx = const, we find the azimuthal
velocity vx at the earth's orbit to be r/R©=215 times
smaller than at the solar surface. Consequently, there
must be a significant angular momentum flux F moving
away from the sun. Let us estimate this flux.

The average magnetic field in the solar wind near the
earth's orbit turns out to be about 5x 10"5 G. The en-
ergy density of the magnetic field is much smaller than
the kinetic-energy density, so that the field is carried
off by the solar wind, and its lines of force are Archi-
medes spirals coming from the sun. If the radial
velocity of the solar wind, vr, is constant, then this
field can be described by Parker's equations (1958):

or sin 6 (3.D

where Br0 is the field on the same magnetic line of force
at the surface of the sun, and co is the angular velocity
of rotation of this line of force. This field creates a
retarding torque (i.e., the outgoing angular momentum
flux) which acts on the sun:

= r3 J (3.2)

where the right side is calculated under the assumption
Br0 = const. With «r=400 km/s and B r t=2G (this figure
leads to Br= 5x 10"5 G at the earth's orbit) we find F
=4x 1030 dyn- cm. Furthermore, since there is azi-
muthal motion with a velocity vK in the solar wind, there
is an additional transport of angular momentum by gas
(and by the waves propagating through the gas, pri-
marily MHD waves). Consequently, F can reach (7-8)

x 1030 dyn- cm. If the sun is rotating approximately as
a rigid body, its resultant angular momentum will be
of the order of 2̂ x 1048 g* cm2/s; one-tenth of this angu-
lar momentum wjll correspond to the outer convection
layer, and the torque F will be able to stop the rotation
of the entire.sunin 1O10 yr and that of only the convec-
tion layer in 109 yr.

Schatten (1973) presents several arguments to sup-
port the assertion that over much of the solar cycle
(especially at minimum activity) the solar wind is
coupled by magnetic lines of force to the polar regions
on the sun, so that the retarding torque F is applied to
these polar regions., Then if the turbulent viscosity t\
in the differentially rotating layer were not too high,
the torque F would be able to create a differential ro-
tation 6w (6w = 3xiO~7 s"1 is the difference between the
angular rotation velocities in the equatorial and polar
zones) over a time bt=I6w/{F/2), where/ is the mo-
ment of inertia of the rotating layer in the polar zone.
Assigning this volume a mass m =0.002»«© =4X 1030 g,
we find the moment of inertia/ = (l/2)mr| = 1052 g-cm2,
and with.F/2 = 5xiO30 dyn-cm we find 6f = 2xiO7 yr;
i.e., the observed differential rotation would be esta-
blished comparatively quickly. To reach this conclu-
sion we have had to assume a small viscosity; specifi-
cally, the viscous stress (ij're)9a/20 must be much
smaller than the stress created by the torque F, which
is estimated to be 6 x 10"2 dyn/cm2. Since we have
(l/re)8<7/ae«3xi0-7 s"1 in the differential rotation,
the viscosity r\ must be much smaller than 2x 105

g/(cm-s). The average value of the turbulent viscosity
in the convection layer of the sun, however, is estimat-
ed to be ij = 5xiO9 g/(cm's), or six orders of magnitude
larger than the value assumed by Schatten. Conse-
quently, contrary to Schatten, we must recognize that
the convection layer reacts to the retarding effect of
the solar wind essentially as if it were a rigid object,
so that this retardation, even though applied predomin-
antly to the polar regions, cannot cause a differential
rotation. Kohler (1970) notes that with this large vis-
cosity the observed vertical flux of angular momentum
in the convection layer can be provided by a very small
vertical gradient in the angular rotation velocity.
Specifically, from the condition

(3.3)

with 6 = ir/2 andrj = 5xio9 g/(cm-s) we find Aw/w~10~6.

In summary, although the angular momentum carried
off by the solar wind is responsible for slowing the ro-
tation of the sun over its entire evolution (and explains
why the outer layers of the sun, at least, are rotating
slowly at the present), this process is apparently un-
important for the differential rotation of the sun.

c) Oblateness

While the rotation of the solar wind is accessible to
direct measurement, we must rely completely on in-
direct evidence if we wish to study the rotation deeper
in the interior of the sun. One piece of evidence may
be the oblateness of the sun's surface along its rotation
axis, 6r/ro, where 6r=req-rpoi is the difference be-
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tween the equatorial and polar radii. B we ignore all
the magnetic and hydrodynamic stresses in the surface
region, except for the stresses caused by the rotation
of this region, w=u>(R), where R=raind, we can find
the oblateness from the condition for the equilibrium
of the surface region: *

(3.4)

where *0 is the gravitational'potential, written as the
sum of a monopole and a quadrupole [J2 is a measure of
the quadrupole gravitational moment, and P2(x)= k&x2

- 1) is a Legendre polynomial], and * is the effective
potential, which incorporates the centrifugal-accelera-
tion potential. From the first equation in (3.4) we see
that the surfaces of p = const and * = const coincide.
Taking the curl of this equation we find Ap x &* =0;
hence the surfaces of * = const and p = const coincide
[and, since the molecular weight is constant, these sur-
faces also coincide with the constant-temperature sur-
faces, T=T(p,p) = const]. We know that the visible
edge (limb) of the sun, defined by the condition that a
ray tangent here will penetrate a medium with a unit
optical thickness, agrees very closely with the surface
p = const. The limb is thus also a surface of * = const.
Then, assuming the oblateness to be small, and as-
suming w »const in (3.4), we find

6r
(3.5)

For the solar surface, the second term is 0.93 x 1O~5

and corresponds to a difference between the equatorial
and polar radii of only 7 km or only 0.01" on the visible
disk. Nevertheless, Dicke and Goldenberg (1967) under-
took an effort to measure this tiny quantity. They
covered the sun with a rotating disk with two diametri-
cally opposite slits of slightly different size, which
transmitted light (they used two different parts of the
spectrum) from narrow strips along the limb (they used
three different strip widths: 6.5", 12.8", and 19.1" on
the visible disk). Analysis of the transmitted light sig-
nals led to the value 6r/r=(5.0 ±0.7)* 10~5, i.e., to a
difference of 0.05" between the equatorial and polar
radii on the visible disk. (With a slit width of about 20",
the variation in the transmitted light flux was of the
order of 0.05/20 = 2.5 x 10"3, which is apparently much
larger than the variation in the brightness of the sun at
the limb between the equator and the poles. This latter
variation is extremely small, according to measure-
ments by Dicke and Goldenberg, corresponding to a
temperature difference of no more than 3 K between the
equator and the poles,)

Dicke and Goldenberg interpreted their result as the
discovery that the solar gravitational field has a sig-
nificant quadrupole moment, which could be caused by
a rapid rotation (with a period of 1 or 2 days) and thus
by significant oblateness of a dense solar core. How-
ever, more recent, and extremely careful, measure-
ments by Hill et al. (1974) have failed to confirm any
significant contribution of J2 to the solar oblateness in

(3.5). Then Dicke and Goldenberg's conclusion that
there is a rapidly rotating solar core, and thus a de-
crease in the angular rotation velocity with increasing
radius, has not been confirmed. We might note that
these studies provoked much interest and have gen-
erated an extensive literature.

d) Hydrodynamics of the differential rotation

Turning now to attempts to derive a theoretical expla-
nation for the observed differential rotation of the outer
layers of the sun, we first note that the maintenance of
a differential rotation against viscous forces requires
an angular momentum flux toward the equator, caused
by both "circulation wheels" in the meridional planes
and "turbulence," i.e., convection in the form of
granules, super granules, and giant convection cells
and/or Rossby waves. Giant cells subject to the effects
of solar rotation and Rossby waves in the solar convec-
tion zone are nearly the same thing. To calculate this
angular-momentum flux we should use the hydrodynamic
equations for turbulent motion. For the convection zone
of the sun, the hydrodynamic equations can be written
in the Boussinesq approximation. The first part of this
system of equations consists of the familiar equations of
motion in the spherical coordinate system r, 8, \ (r is
the radius, 8 is the complement of the latitude, and A.
is the longitude) which is rotating at the average angu-
lar rotation velocity of the sun, Jl = const. Then we
write the result found by taking the average of these
equations, using the following notation: vr,ve,vx are
the velocity components; P= (p*/po)(p-Po) is the
normalized deviation of the pressure from its static
value Pl)=Plj(r), which is related to the static density
Po=Po(r) b v t n e hydrostatic equation dpQ/dr=-gp0,
where g ag^(rn/r)2 is the acceleration due to gravity
(g-8 is the value at the solar surface, r=r0) and p* is
the potential density, defined by

S 9P* _ e I 3Po . gPo \ _ »ra

Here c^^c^r) is the static value of the velocity of
sound; £ is the normalized deviation of the specific en-
tropy from its static value, linearized in the deviations
of the pressure and the density (the normalization is
carried out by dividing by the specific heat at constant
pressure); and tl} is the viscous stress tensor. The
second part of our system of equations is the continuity
equation, which we will take in the form of the condition
that the velocity field be divergence-free (the condition
that the mass flux be divergence-free would be more
accurate). The third part is the entropy evolution equa-
tion, in which we incorporate, among the nonadiabatic
factors in the convection zone, only the heat influx due
to the molecular thermal conductivity,

. (3.6)

To calculate the characteristics of the turbulent mo-
tions, we should take the average of these equations,
assuming that the average characteristics (which we
will denote by superior bars) are independent of the
time and the longitude, so that they can depend only on
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r and 6. Averaging the continuity equation, we find Equator

ae
sin 8i>9 = 0, (3.7)

from which we see that the average meridional circula-
tion can be described by means of the stream function
0, defined by

p r =___JI__J*. i jT ... * W _ (3>g)

Taking the average of the equations of motion, and ig-
noring the molecular momentum fluxes in comparison
with the convective fluxes, we obtain Reynolds equa-
tions:

Q2r sin* 0 + 2Q sin Suj, - -—• - ^ -

QV sin2 6 + 20 cos 6i7i —-%-

; (3.10)

where &{i =

(3.11)

Here the primes denote fluctuations,
i.e., deviations from the average values. Analogously,
averaging puts the entropy evolution equation in (3.6) in
the following form:

where £i= £ - £0, and £0 = £0(r) is determined from
dr = N2/g.

e) Reynolds stresses

Ward (1964, 1965a, 1965b, 1966a, 1966b, and 1966c)
obtained empirical estimates of the Reynolds stresses
bm, bn, and bn in the photosphere from data on the
motion of sunspots. The values he found of the order
of /5^T ~0o4 deg/day =25 m/s and V&̂7 ~°»8 deg/day
" 50 m/s (the second of these values is of the same
order of magnitude as the difference between the linear
velocities of the differential rotation between the equa-
tor and a_latitude of 35°), while the average meridional
velocity v$ is significantly different from zero only be-
tween the latitudes of + 5° and - 5° (where this velocity
is directed toward the equator but has an average value
of only ~0.03 deg/day »2 m/s). We see that the Rey-
nolds stresses should be extremely important in the
Reynolds equations in (3.9)-(3.11).

Ward observed a significant positive correlation be-
tween the motion of spots toward the west and their mo-
tion toward the equator, so that those spots which are
moving westward more rapidly than the average have
a tendency to move toward the equator, while those
moving westward more slowly than the average have a
tendency to move toward the poles or to move toward

60' 30*
- Latitude/
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"W 60'. '

\
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FIG. 6. Angular velocity of the differential rotation of the sun,
in units of 10"' rad/s; meridional turbulent angular-momentum
flux 11 = 27^ sin2e&ex, iniinitsof 3.14xl029g-cm2/s3; rate at
which the kinetic energy of the irregular motion is converted
into differential-rotation energy, Il2&>/20, from Starr (1971).

the equator more slowly than the average (Leighton
disputes the importance of this correlation, taking it to
be a consequence of the specific way in which the spots
behave, in particular, the inclination of the axes of spot
groups along circles of latitude).

Since rsinev'^ is the fluctuation in the angular momen-
tum per unit mass with respect to the rotation axis, n
= rsvciQty'x is the turbulent flux of this angular momen-
tum along the meridian (from north to south is the posi-
tive direction), and 1 = §WsinBdX = 2Tir'lsvc?6bek is the
resultant value of this flux at a circle of latitude, the
correlation found by Ward (&a > 0 in the northern hemi-
sphere and &a <0 in the southern) means that angular
momentum is transported along a meridian toward the
equator, in the direction opposite to the gradient in the
angular velocity of the differential rotation, o> = vx/
rsinfl, so that the irregular motions traced out by the
sunspots statistically create a negative viscosity [see
Starr and Gilman (1965a, 1965b, and 1968) and Starr
(1971)]. Figure 6 shows the empirical values of w, IT,
and the rate ff3w/30> 0 at which the kinetic energy of
the irregular motions is converted into the energy of
zonal flow (differential rotation) as a result of the nega-
tive viscosity, which were found by Starr (1971) from
data on sunspots and from measurements of the Doppler
shift.

Analogous effects are seen in the earth's atmosphere,
in the latitudes around tropospheric jet streams in both
the northern and southern hemispheres. By analogy
with the earth's atmosphere, the correlation between

FIG. 7. Asymmetry of the waves in the east—west flow in the
solar photosphere.
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v't and v{ can be interpreted as a result of an asym-
metry of the waves in the east-west flowf (Fig. 7): In
the solar photosphere, the axes of the crests of these
waves (these axes are directed toward the poles) should
be inclined toward the eastern limb, so that the angular
momentum and the flux of angular momentum toward the
equator ahead of the waves (at points B and B') are
greater than the angular momentum and its flux away
from the equator behind the waves (at points A and A').
Since the electrical conductivity is extremely high in
the solar plasma, the magnetic field is frozen in the
moving gas, and its contours are marked by current
lines, so that this inclination of the axes of the waves
can also be seen in the configurations of the regions of
identical magnetic-field polarity, as in Fig. 2.2. Starr
and Gilman (1965a) found that in this case the Maxwell
stresses (l/4ir)H'eH{ create a flux of angular momentum
away from the equator toward the poles, i.e., retard the
differential rotation (an irregular magnetic field is gen-
erated from the kinetic energy of the differential rota-
tion). For the mean square values H'e,H^ ~ 7 G, the
Maxwell stresses would balance the Reynolds stresses
bex, but in actuality the large-scale fluctuations in the
solar magnetic field seem to have a mean square value
less than 7 G, and they simply reduce, but do not com-
pletely suppress, the effect of the negative viscosity.

f) Hypothesis of an anisotropic viscosity

To calculate the differential rotation, we can single
out from the equations in Subsection 3d three equations
for w, cp, and £,, so that Eq. (3.11) becomes

(3.13)
We can eliminate p from (3.9)- (3.10) by cross differen-
tiation (assuming that the potential density p , is ap-
proximately constant); we find

where J\ is the curl of the meridional circulation
velocity,

Finally, from (3.12) we find

The three equations in (3.13)-(3.15) contain, in addition
to the three major unknowns ip, w, and £l9 some other
unknowns: the Reynolds stresses bit and the turbulent
entropy fluxes 64e. These equations are thus not closed.
The simplest way to close them would be to express
these other unknowns in terms of the major unknowns
by making use of hypotheses from the semiempirical
turbulence theory (although this approach introduces an

excessive arbitrariness). This method is used in at-
tempts to explain the differential rotation in terms of
the anisotropy of the turbulent viscosity caused by con-
vection (this anisotropy results from the special role
played by the vertical direction, along which the gravi-
tational force is acting; the other direction which is
singled out—the axis of solar rotation—should not be
important for the motion in the granules and super-
granules, for which the typical periods are very short
in comparison with the period of the solar rotation).
The turbulent viscosity is introduced by means of the
basic hypothesis of the semiempirical theory of turbu-
lence, according to which the Reynolds stress tensor
btj is a linear function of the velocity gradients of the
average motion, Le., of the tensor Vtvm. The coeffi-
cients of this linear function serve as the coefficients
of the turbulent viscosity. Generally speaking, these
coefficients form a fourth-rank tensor, but it is as-
sumed in the theory of anisotropic viscosity that this
tensor can be expressed in terms of a second-rank ten-
sor K{ which is diagonal in spherical coordinates, with
diagonal elements which are either constant or functions
of r only:

K^Kl^sKl, (3.16)
where s is the anisotropy coefficient. In the first paper
in this direction, which was unfortunately neglected by
most later workers, Lebedinskii (1941) introduced Eq.
(3.16) and showed that with s +1 a rotation of the sun as
a rigid body could not satisfy the Reynolds equations, so
that the rotation would have to be differential (since the
convective turbulence results from a thermal instability,
not from the energy of the average motion, and the an-
isotropic part of the Reynolds stress tensor, b{- (1/3)
x&JJSf, is a linear function of Vjvtl not of the rate-of-
strain tensor * 4 i = V ^ - Vtvt, so that it does not vanish
when * { i = 0).

This idea was introduced again by Biermann (1958,
1961) somewhat later. Reynolds equations with an an-
isotropic viscosity, (3.16), were written by J. Wasiutyn-
ski (1946). A detailed derivation of these equations was
reported later by Elsasser (1965). Kippenhahn (1963)
found an approximate analytic solutioja of these equa-
tions (under the boundary conditions vr=bre = 6rX = 0
at the upper and lower boundaries of the convection
layer); Kippenhahn showed that with s * 1 the solution
necessarily includes a meridional circulation. With s
> 1, the gas rises at the poles, flows toward the equa-
tor in the upper part of the convection layer, and de-
scends at the equator; in this case, the equatorial zone
of the solar surface is rotating more rapidly than the
polar zones, and the rotation in the convection layer
accelerates with increasing altitude. In the case s <1,
the opposite situation prevails. This research was con-
tinued by Cocke (1967), who showed that the angular ro-
tation velocity u> turns out to be approximately a func-
tion only of R=rain6; Cocke found the optimum value
s»l ,2 for the sun. Finally, the equations were inte-
grated numerically by Kohler (1970) with various values
of s from the range 0.8-1.5 and with a viscosity v=K\
= 4.5x 10e cm2/s (and also for s = 1.2 with viscosities
from 0.1^ to 200P; for the large viscosities, the w dis-
tribution turned out to be approximately centrally sym-
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metric, while at the low viscosities it was approximate-
ly cylindrically symmetric; the highest meridional-
circulation velocity was found with v— 5x 1013 cmz/s,
falling off at both higher and lower values of v. With
s = 1.2 and p = 4.5x 1012 cm2/s, the highest meridional-
circulation velocity turned out to be less than 2 m/s,
i.e., too low for detection by available equipment. Weu
might also recall the work by Ruzmaikin and Vainshtein
(1978), who studied the depth variation of s, finding that
s falls off from the value 1.2 at the surface to 0.4 at a
depth of 110000 km and then increases to 0.6 at a depth
of 190000 km.

It is difficult to judge the plausibility of these results.
For example, with values s> 1, which would lead to the
correct sign for the differential rotation with respect to
latitude at the surface, the angular rotation velocity in
the convection zone would increase with altitude, but
this behavior would be difficult to reconcile with the fact
that the rotation of the photospheric gas lags behind the
rotation of the magnetic fields, as mentioned earlier.
But even if we put this objection aside, we would still
have to say that the model of anisotropic viscosity, with
its arbitrary elements, could hardly be taken as an ex-
planation of the differential rotation. The same com-
ment can be made about models of the type offered by
Roxburgh (1970) and Durney and Roxburgh (1971) [see
also Durney (1976)], which introduce an effect of the
rotation on convection which causes the turbulent vis-
cosity and the thermal conductivity to depend on the
latitude (the latitude dependence is required to be of
such a nature that the meridional circulation and the
resulting differential rotation turn out to be similar to
those observed; however, there turns out to be a large
temperature difference between the equator and the
poles, which has not been observed, and furthermore
the stabilization of convection by rotation would have
to be stronger at the equator than at the poles—and this
situation would seem to be just the opposite of the
probable situation).

g) Equations for the second moments

It is possible to eliminate, or at least reduce, the
arbitrariness in the method used to close the Reynolds
equations in (3.13)-(3.15) by dropping the attempt to
somehow specify the additional unknowns bit and bic or
to express them in terms of $, co, and £x and instead by
supplementing Eqs. (3.13)-(3.15) with the dynamic
equations for the single-point second moments of the
fluctuations bij} biK, bK, found from the hydrodynamic
equations. Although such dynamic equations would
have to be simplified, so that again some arbitrariness
would creep in, this arbitrariness would now have far
less effect on the major unknowns, 4>, <t>, and £x. As one
approach for simplifying the dynamic equations for the
second moments, we can ignore the third moments in
these equations. These simplified equations for the
second moments are derived from the hydrodynamic
equations, linearized with respect to fluctuations and
written as follows, in tensor notation:

where / ' are,the fluctuations in the Coriolis accelera-
tion, and X{ is the unit vector in the vertical direction. The
physical meaning o| these equations is that in the calcula-
tion of the characteristics of the average motion the inter-
action of this average motion with the fluctuations is
taken into account, but the interaction of the fluctuations
with each other is not. From (3.11?) we find the fol-
lowing equations for the moments btj:

t+bltx,)

(3.19)
Here the average parts are the single-point second
moments of the fluctuations, but in order to express
them in terms of our additional unknowns b%j we must
adopt some new semiempirical hypotheses. We take
the approach used in the theory of the turbulence of the
boundary layer of the atmosphere [Monin (1965a, 1965b,
and 1965c)]. The quantities cls c2, c3, and c4 on the
right sides are numerical constants; b2=brr +bm+b ̂ \ is
the mean square fluctuation velocity; I is the vertical
scale dimension of the turbulence; and g{j is the metric
tensor. The first term on the right describes the
tendency of the pressure fluctuations to move the sys-
tem toward isotropy; the second, in contrast, describes
the tendency toward anisotropy at the boundaries of the
convection zone; and the third describes the anistropic
viscous dissipation of turbulence energy.

Then we find the following equations for the moments
blt from (3.17)-(3.18):

»-««T'it-^-j- . (3.20)

Finally, we find the following equation for bK from
(3.18):

(3.18)

—$-^v%' «_C8±6K. (3.21)

Now Eqs. (3.13)-(3.15) and (3.19)-(3.21) do constitute
a closed system of equations for the unknowns 4>, <*>, £1;
bis> bn> 6«» ^ w e specify the vertical scale dimension
of the convection turbulence, i, in- some fashion. These
equations contain six numerical constants, cu c3, c4
= c4 - (c2/6), c5, ce + c1, and c8. According to Monin
(1965a, 1965b, and 1965c), these constants can be ex-
pressed in terms of the values of certain character-
istics of the turbulence in the boundary layer of the
atmosphere, in the limit of neutral stratification. They
turn out to be c^ 0.21; cs~ 0.035; c4» 0.0025; c5« 0.2;
ce + C7 = - 0.00226; c8 = 0.0292. As the boundary condi-
tions at the upper and lower boundaries of the con-
vection layer, r = r0 and r = ru we should apparently
assume a zero mechanical stress, while at the lower
boundary, v = vl, we should assume a given constant
value <?! = qo(ro/rj)2 for the vertical heat flux [q0
= 6.3ix 1010 erg/(cm2-s) is the radiation flux density at
the surface of the sun]; from this heat flux we can de-
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termine the vertical entropy flux 6rt« [(H - l)/v>]q/p
(H =Cp/cv is the ratio of specific heats, and^ is the
pressure). The 13 equations in (3.13)-(3.15) and (3.19)-
(3.21) have been integrated numerically by L. M.
Simuni and the author [with r, =(2/3)r0 and l = Mr

0-
r)]

on a grid with six layers of identical thickness in the
convection zone of the sun and ten latitude zones be-
tween the equator and a pole. The resulting angular
velocity of the differential rotation at the solar surface,
u> +&, increases from 0.964ft at the pole to 1.143K at
the equator; at 6 = Q-ln/20 it has maxima at the depth
r=r0- [(r0 -*i)/6], and near the equator it has maxima
at the solar surface (falling off slightly with depth; at
the equator for example, it falls off from 1.1426S2 at
the surface to 1.1413a at r = rlt while at the pole it
falls off from 0.9641Q below the surface to 0.8933&
at r = r1). The meridional circulation forms a single
cell with surface flow from the pole toward the equator
and with a flow in the opposite direction at the lower
boundary of the convection zone. These results agree
with results found by Kippenhahn for the case of an
anisotropic viscosity with s > 1. Furthermore, in our
case the quantity C, is zero at the surface, the equator,
and the pole, falling off with depth, reaching a minimum
at r = rt and e = /

h) Numerical simulations

We have just discussed one approach for calculating
the differential rotation of the sun: using the average
hydrodynamic equations—the Reynolds equations in
(3.13)-(3.15) with some semiempirical hypotheses or
auxiliary equations for the second moments of the hy-
drodynamic fields. Another approach would be to inte-
grate the unaveraged hydrodynamic equations numerical-
ly until the solutions reach a statistically steady state
and then take the time average of the solutions (within
the statistically steady state) and also take the average
over the longitude. This approach may be called the
"numerical-experiment method," and it has also been
referred to as the "method of non axially- symmetric
models." This approach has been developed by several
workers [see the review by Gilman (1974)]; here we
would like to cite the papers by Davies- Jones and Gil-
man (1970 and 1971) and a series of later papers by
Gilman (1972, 1973, 1975, 1976, 1977, and 1978).

The early papers [Davies-Jones and Gilman (1970)
and (1971)] dealt with convection in a cylindrical gap
which was uniformly heated from below and which was
rotating about its symmetry axis with a gravitational
force acting parallel to this axis (with Taylor numbers
Ta =4tt2d4/V! in the range 102-l0e, with a=2.6x 10~e

a"1 as the average angular rotation velocity of the sun,
with d=O.2i?0=1.4x 1010 cm as the thickness of the
convection zone, and with i/=l012-l014 as the turbulent
viscosity coefficient). The first and second order per-
turbations were calculated analytically. The numerical
calculations carried out by Gilman (1972,1973) for an
equatorial cylindrical gap agreed best with the solar
data with the value Ta=3 x 104 (here the energy of the
differential rotation becomes equal to the energy of the
convection cells), but these calculations led to an un-
realistically strong dependence of the radiation flux

density at the solar surface on the latitude, with a max-
imum at the equator. The meridional circulation at the
surface was found to be directed from the equator
toward the poles, opposite the direction found in cal-
culations with an anisotropic viscosity with s>l. The
rotation of the sun in the convection zone was found to
accelerate with increasing altitude.

Gilman (1975) was the first to study the actual ge-
ometry (a spherical shell, of thickness Q.2RQ in Gil-
man's paper). Originally, Gilman used only the linear
equations (with the boundary conditions that there were
no stresses, and the temperature was constant, at the
boundaries of the shell). The amplitudes of the longi-
tudinal Fourier components of the perturbations (with
wave numbers m = 0 , 1 , . . . , 24) were calculated nu-
merically on a grid of points in a meridional plane.
Among the most unstable solutions were many modes
with large values of m and with peaks near the equator,
which at large values of Ta became "rollers" with axes
running parallel to the rotation axis of the sun. These
rollers carried momentum toward the equator. In addi-
tion, there were a few modes with small values of m
and with peaks near the poles, corresponding to circum-
polar chains of eddies. However, even preliminary cal-
culations from the nonlinear equations [Gilman (1976)]
showed that at Prandtl numbers Pr = v/x of the order of
unity the equatorial acceleration of the rotation of the
solar surface occurs only with a predominance of equa-
torial modes [at Rayleigh numbers Ra=^oad35e(i/x)"1

in the range 0.84 Ta2/3 < Ra <78 Ta2/3]; this result led
to the prediction that the vertical heat flux would depend
significantly on the latitude, contrary to observations.

In the detailed calculations from the nonlinear equa-
tions carried out by Gilman (1977), the Rayleigh num-
bers were chosen so small that convection was possible,
but the convection cells would be significantly affected
by the rotation; here the ratio of the Coriolis frequency
to the typical rate of growth of the convection cells,

(3.22)

should be of the order of unity or greater (for granules,
ir~3x 10"4; for supergranules, F~ 10"1; for giant cells,
F~ 1-10). Most of the calculations were carried out for
Pr =1 , Ta =1O5, and Ra =(l-4)x 10* (this is 4-16 times
RaCT). With Ra = (l-2)x 104, a differential rotation with
the correct sign was found: There was an increase in
co toward the equator and upward (the increase in the
upward direction probably occurred only below the super-
granule layer, 2 x 104 km thick, in which &> increases
with depth). With Ra =4x 104, a differential rotation of
the opposite sign was found, but in both cases the radia-
tion flux density reached maxima at the equator and at
the poles. These variations in the radiation flux density
over latitude can be reduced significantly, if Ra is not
too large, by replacing the boundary condition of a con-
stant temperature at the lower boundary of the spherical
shell by the condition that the radial heat flux remain
constant [Gilman (1978)]. Figure 8 shows one of the re-
sulting w(r, 6) distributions, this one for Pr =1, Ta
= 8xlO5, Ra=3xl05, and d= 0 / 3 . This distribution
shows that these alternative boundary conditions lead
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FIG. 8. The distribution w(r.fl) for P r= l , Ta=8xlO5 , Ra
= 3xlO5, and d^R^/Z. This distribution was obtained by Gil-
man under the boundary conditions of absence of stress at the
boundaries of the spherical shell, and constancy of the tem-
perature at the upper boundary of this shell and of the radial
flux at the lower boundary.

to encouraging results. We might note that, according
to Gilman's results, if the boundary conditions of zero
stress are replaced by the condition that there be no
slippage at the boundaries of the spherical shell (espe-
cially the upper boundary) there would be sharp de-
creases in the convection and in the extent to which the
rotation is differential, so that the conditions prevailing
in the liquid core in the interior of the earth are quite
different from those in the sun, and the mechanisms for
the geomagnetic and heliomagnetic dynamos may be
quite different.

4. THE SOLAR CYCLE

The solar activity manifested by perturbations in the
solar atmosphere (which were described in Section 2)
varies with time. This is true primarily of the number
of sunspots and their distribution over the solar disk.
Already in 1843, Samuel Schwabe observed that the spot-
formation activity on the sun varies approximately
periodically, with a period of about 10 yr.

a) Wolf numbers

In 1847, the Zurich astronomer Rudolf Wolf intro-
duced the number W=*(iV1 + 10iV2) as an index of the
solar activity; here Nx is the number of spots on the
visible disk at a given instant, regardless of spot size,
N2 is the number of groups of spots, and k is a coeffi-
cient which converts the results (averaged over a long
time) from a given observatory to the results obtained

1650 ftoa 1750

FIG. 9. Variations in the Wolf number over the period 1610-
1974.

at the observatory in ZBrich, adopted as a standard.
Wolf plotted the time dependence of the daily values of
W (now called Wolf numbers) over the years since 1818,
the average monthly values since 1749, and the approxi-
mate average annual values since 1700. He also deter-
mined the years at which these values reached maxima
and minima since the beginning of telescope measure-
ments, in 1610, through 1699. The average length of
the cycle in the oscillation of Wolf numbers (which we
will call simply the solar cycle) turned out to be 11.2
yr, so that there have now been 20 complete cycles
since the 1755 minimum. During each cycle, the Wolf
number has varied from a few units to values of the
order of 100-150 (here we might also note that the total
area of the spots, A, averaged over a year, and ex-
pressed in millionths of the area of the visible hemi-
sphere, i.e., in units of 3.02 x 1016 cm2, is proportional
to the Wolf number: A = 16.7W). Figure 9 shows the
Wolf numbers since 1610; we will be discussing this
record further.

b) Sporer's law

The changes in the number of spots over the solar
cycle are accompanied by changes in the distribution of
spots over heliographic latitude. As early as 1858,
Richard Carrington noted that the latitudes at which
spots appear, in both the northern and sourthern hemi-
spheres, decrease on the average during the solar
cycle: The first spots of a cycle appear at the polar
edges of the "royal latitudes," i.e., around 30 °N and
30° S, on the average; later spots usually appear pro-
gressively closer to the equator. At the maximum^ they
appear at 15°N and 15°S, and the last spots of a cycle
appear near 8°N and 8°S. This behavior was soon con-
firmed by Wolf; it was rediscovered in 1867 by Gustav
Sporer and P. A. Secchi; and in 1894 Sporer traced it
back to 1621. The effect is sometimes called "Sporer's
law." It can be demonstrated well by plotting all spots
on a latitude vs time diagram (Fig. 10); this was first
done in 1922 by Maunder, and the plots are referred to
now as "Maunder butterfly diagrams." This diagram
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FIG. 10. Latitude distribution of sunspots over the period 1874-1913 ("Maunder butterflies").
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shows, incidentally, that the first spots of a given cycle
appear at the high latitudes before the last spots of the
preceding cycl©>ppear at low latitudes; this overlap of
cycles, which amounts to 3 yr on the average, tends to
smooth over1 the minima in the, time dependence of the
Wolf number. At the same time, adjacent cycles are
independent in the sense that the corresponding "butter-
flies" do not intersect.

c) Hale-Nicholson laws

George Hale and S. Nicholson showed that within a
solar cycle all the p spots in bipolar magnetic regions
in one hemisphere and all the f spots in such regions in
the other hemisphere have the same polarity, and in the
next cycle the polarities of all such spots reverse, so
that each solar cycle is an epoch of constant polarity of
the solar magnetic field. A transition between cycles
corresponds to a magnetic field reversal, and a com-
plete magnetic cycle contains two successive spot
cycles. These Hale-Nicholson laws show, on the one
hand, that the mechanism which generates the solar
magnetic field acts in an oscillatory fashion, causing
quite regular (quasiperiodic) reversals of the field
polarity; on the other hand, they show that the same
mechanism is responsible for generating the solar mag-
netic field and the oscillation in the solar activity. It
thus becomes clear that the theory of the solar cycle is
a global problem of the magnetohydrodynamics of the
sun.

The oscillation in solar activity can be seen not only
in sunspots and magnetic fields but also in other phe-
nomena in the solar atmosphere (Section 2), including
the frequency of chromospheric flares and associated
intensification of the x-ray, UV, and radio emission of
the sun; the emission of corpuscular streams and cosmic
rays; the number and distribution of protuberances (the
major prominences zones shift toward the equator during
the cycle, while the high-latitude prominence zones shift
toward the poles, reaching them at the activity maxima);
and the distribution of coronal streamers. [At activity
minima, these rays are well-defined only at lower lati-
tudes, and with distance from the sun they slope more
and more toward the equator. In the polar regions, they
form short, regular sheafs, which apparently corre-
spond to magnetic lines of force. At activity maxima,
on the other hand, when the polar prominences nearly
reach the poles, the coronal streamers are identical in
all directions, on the average.]

d) Waldmeier eruption hypothesis

Let us examine the irregularities observed as the
solar cycle repeats itself. There are changes in the
length of the cycle, in the shape of the curve giving the
time dependence of the average annual Wolf number,
W(t), and in the maximum and minimum values of this
number. Over the period 1755-1947, for example, the
time intervals between successive minima varied from
9.0 to 13.6 yr; that between successive maxima varied
from 7.3 to 17.1 yr (with a far greater scatter); the
value of the minimum varied from 0.0 to 11.2; and the
value of the maximum varied from 48.7 to 189.5. The

shape of the W(f) curve is determined primarily by the
value of Wmax: The area under the rising branch of the
W curve is nearly independent of Wmax (so that large
values of Wma mean short rise times and, in general,
short cycles), while the area under the descending
branch is proportional to Wma. While the spots are
moving along the latitude, the scatter is smaller than
during oscillations in the Wolf number. The latitudes
at which the spots appear increase with increasing Wma.

The average annual value of Wwx in a given cycle
might be predictable from the value of Wma at the be-
ginning of the cycle or, more precisely, from the ex-
tent to which the geomagnetic field is perturbed at the
beginning of the cycle, as measured by the average
annual value of the so-called AA index (the sum of the
intervals over which the geomagnetic field changes in a
3-h time interval at two antipodal points on the earth's
surface), Kane (1978) has shown that the average annual
value of Wmax correlates well with the average annual
value of AA at the beginning of the cycle (the correlation
coefficient is about 0.9).

All attempts to predict the characteristics of a solar
cycle from those of the preceding cycle have failed. In
1935, M. Waldmeier offered an "eruption hypothesis,"
according to which solar cycles are completely indepen-
dent of preceding cycles, as if each given cycle were a
manifestation of some new eruption which has occurred
within the sun. A clearer quantitative formulation of
this property of the solar cycles was worked out by
Gudzenko and Chertoprud (1964a and 1964b) [see also
Gudzenko (1972)] through an interesting statistical anal-
ysis of data on the oscillations in the Wolf number W(t).

e) Relaxation nature of the solar cycle

Gudzenko and Chertoprud plotted sliding annual av-
erage values of W(t) over 19 cycles on the plane of x
= w,y =dw/dt. They found an average closed curve
Jf={x=x(t),y=y(t)} to describe the average solar
cycle. For each point M(t)={x(t),y(t)} they determined
its projection M'(t) on the curve if along the normal to
this curve; the distance n(t)=MM'; and the phase 8(t)
= t + y(t) of the point M'{t) on the if curve, so that y(t)
is the distance along i"from the point M'(t) to the point
M(t), which is moving uniformly along the average cycle
if. Now an attempt can be made to describe the tra-
jectory M(t) by means of the differential equations of an
oscillator:

d»
IT5 . -N[8]n + Fn(t),

(4.1)

where N[e] is the "stiffness" of the oscillator [it de-
scribes the stiffness of the "spring" which pulls the
point M(t) toward the cycled]; x[0] is the "deviation
from isochronism" for the oscillator [it describes the
rate of change of the oscillation frequency as the point
M{t) moves away from the cycle if]; and the functions
Fn(t) and Fe(t) describe the fluctuation noise which per-
turbs the operation of the oscillator. For the simplest
harmonic oscillator—a frictionless pendulum—the cycle
if is a circle. During the oscillation, there is a peri-
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odic conversion of potential energy into kinetic energy
and back.' A periodic conversion of energy from certain
forms into other forms is a general property of con-
servative self-excited oscillatory systems (here "con-
servative" means that the systems do not exchange en-
ergy with the external medium). For oscillators which
are nearly conservative (for which the energy acquired
from, or lost to, the external medium is small) most
of the trajectories M(t) are spirals which run repeatedly
around the cycle if, approaching it slowly (in compari-
son with the period of the cycle, T). For these spirals,
the average stiffness N is positive and small (N«1/T).

The opposite property is exhibited by "relaxation os-
cillators," in which energy is not converted from cer-
tain forms into others but is instead accumulated up to a
certain level and then rapidly discharged from the sys-
tem, so that upon an excursion from the cycle i^the
point M(t) returns to it rapidly (in comparison with T).
Here the average stiffness is large (N» 1/T). An ex-
ample might be a water tank which water enters from
the top at a constant velocity v and flows out the bottom
through a small-aperture valve in drops of mass m.
This mass is determined by surface tension alone and is
independent of the water level U in the tank, while the
drop-formation period does depend on U (and only in the
steady state does the equality T =nt/v hold).

Gudzenko and Chertoprud studied the stiffness of the
oscillator generating the solar cycle, finding, first,
that it was independent of T, confirming the validity of
Eqs. (4.1) in this case, and second, that the average
stiffness was large, N> 20/T {the largest values of
N[ 6] were found before the W(t) minimum, where
N[ 0] > 60/ T} , so that the solar-cycle oscillator is
clearly a relaxation oscillator: It quickly "forgets"
early excursions from the average cycle .5?, and this
behavior is a quantitative formulation of the Waldmeier
explosion hypothesis. It can thus be concluded that the
variations in the solar activity are not a consequence of
a periodic conversion of certain forms of energy into
others (in particular, these variations are not a conse-
quence of an energy transfer between the poloidal and
toroidal components of the magnetic field or between
kinetic energy and magnetic energy) and are instead a
consequence of an accumulation of energy, followed by
discharges of energy from a self-excited oscillatory
system.

An estimate of the deviation from an isochronous be-
havior for the solar-cycle oscillator yielded a value of
approximately zero, x.»0. We see from the second
equation in (4.1) that the fluctuations in the phase of the
solar cycle, y(t) = tfFe(t)dt, should behave by analogy
with the coordinate of a free Brownian particle, so that
the phase dispersion should increase over time in a
"diffusion manner," {-^(t)) =2Dt. Data on the Wolf num-
bers over 19 cycles yield a statistically significant de-
pendence of the phase dispersion on the time only for
times t < 4 T , no greater than four periods of the cycle.
For such short times, Gudzenko and Chertoprud con-
firmed the diffusion law.

A far longer time interval can be spanned by making
use of historical data on auroral observations (the num-
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FIG. 11. Number of auroral observations over the period
1550-1750, according to Fritz. The small squares represent
observations in the Far East.

ber of nights with auroral displays at intermediate lati-
tudes correlates well with the Wolf number). The most
complete catalog of such events was compiled in 1873 by
H. Fritz (Fig. 11 is taken from his catalog for the
period 1550-1750). In 1898, he published the dates of
solar-activity maxima over the past 2000 ywr correspon-
ding to this catalog. In 1935, E. E. Slutskii noted an ex-
tremely long-term relationship between the fluctuations
in the phase of the solar cycle (including a relationship
between the lengths of cycles). Using Fritz' data to cal-
culate the phase dispersion (y^(t)) over a long time in-
terval, Gudzenko and Chertoprud found a curve de-
scribed by

(Y2 (()> = YIO (1 e-2"To), (4.2)

which corresponds to the dispersion in the coordinates
of a bound Brownian particle (y« turned out to be larger
than T/4). Accordingly, a phase feedback must also be
introduced in Eq. (4,1). This is a general property of
relaxation oscillators. In our example of drop forma-
tion, the phase feedback makes the drop-formation
period dependent on the water level in the tank.

f) Maunder minimum

In addition to the irregularities from cycle to cycle
in the solar activity, there are apparently some irregu-
larities with far larger time scales and amplitudes. For
example, exceedingly few sunspots were detected over
the 70-yr period between 1645 and 1715 (Fig. 9). Sporer
addressed this question in papers in 1887 and 1889,
which were summarized in 1890 by Maunder. In 1894,
in a paper on "A prolonged sunspot minimum," Maunder
published the results of a further study of the reality of
the effect. In 1922, he returned to this question in
another paper with the same title. For a long time
thereafter, however, this work received no further at-
tention, until Eddy (1976 and 1977) published several
more pieces of evidence showing the reality of the sharp
decrease in solar activity in 1645-1715. Eddy called
this period the "Maunder minimum" (it nearly coincided
with the 1643-1715 reign of Louis XIV, the "Sun King").

According to the historical record, no sunspots at all
were observed in 1656-1660, 1661-1671, 1689-1695,
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1695-1700, and 1710-1713. During the Maunder mini-
mum, the observation of sunspots was treated as a dis-
covery warranting publication in a special paper. Dis-
covering a spot in 1671, the well-known Parisian as-
tronomer Giovanni Cassini fvrote that for about 20 yr
before this event astronomers had seen no significant
sunspots. The same was reported by Jean Picard, John
Flamsteed, Derham, and other astronomers, and these
comments were published in several books on astrono-
my, including Astronomy by J. Lalande in 1792 and a
book by Sir William Herschel in 1801. The situation
was the same in observation's of sunspots with the naked
eye in the Far East: Of 143 such observations between
28 B.C. and 1743 A.D. which were published by Sigura
Kanda in 1933, none fall in the Maunder minimum (ac-
cording to this catalog, the longest period without
visual observation of sunspots was 579-808, while the
highest frequency of visual observations was in 1080-
1280), Further confirmation of the reality of the
Maunder minimum comes from catalogs of observations
of auroras (see, for example, Fig. 11). For example,
the first recorded auroral observation during the
Maunder minimum was in 1708; the second, in 1716,
served as the subject of a special paper by the Astrono-
mer Royal Edmond Halley, who, 60 at the time, had
never before observed an auroral display. We might
also note that descriptions of the solar corona as it was
observed during total eclipses of the sun contained
nothing about coronal rays until 1715 (R. Cotes). All
the earlier descriptions of the corona read like modern
descriptions of the zodiacal light.

Yet another piece of evidence is the increase by more
than 10% in the relative abundance of radiocarbon, c" ,
in the annual rings of trees which occurred in 1640-
1720, peaking about 1690, as discovered in 1958 by H.
de Vries (and the effect is now called the "de Vries
fluctuation"). This fluctuation has since been confirmed
by extensive data from several countries. (C14 forms
in atmospheric CO2 as the result of bombardment by
galactic cosmic rays, which reach a maximum intensity
in years of a quiet sun, when their partial shielding by
the magnetic fields of the solar wind is reduced. On the
other hand, fluctuations in the C14 level in the atmo-
sphere and thus in tree rings can result from other fac-
tors, for example, oscillations in the intensity of the
geomagnetic field. Furthermore, in the twentieth cen-
tury we have seen the "Suess effect": a decrease in the
amount of C14 in atmospheric CO ,̂ due to a dilution by
C14-poor products of the combustion of fossil fuels.)

Data on the variations in the C14 relative abundance in
annual tree rings have been summarized by Suess (1965)
and Lerman et al. (1970), among others. Interpreting
these data in solar-activity terms, Eddy (1976) dis-
tinguished in the variations over the past 1000 yr a
"century-average maximum" in 1100-1250, a "Sporer
minimum" in 1460-1550, a "Maunder minimum" in
1645-1715, and a modern maximum. Later (1977),
Eddy went back even further, finding 12 extrema in the
solar activity over the past 5000 yr on the basis of the
C14 data: Sumerian, Pyramid, and Stonehenge maxima;
Egyptian, Homeric, and Greek minima; a Roman
maximum; a Medieval minimum; and the four ex-

trema listed above.
Eddy et al. (1976) analyzed observations of the motion

of spots over the solar disk which had been carried out
by Christoph Scheiner in 1625-1626 and by Johannes
Hevelius in 1642-1644, finding that for the 20 yr pre-
ceding the Maunder minimum the differential rotation
of the sun was the same as at present; that the rotation
at the equator accelerated by 3-4% at the beginning of
this minimum; and that the difference between the rota-
tion velocities at latitudes of 0° and 20° tripled. Howard
(1976) has noted a similar acceleration (but only half as
strong) in the rotation at the equator in years of quiet
sun by examining the data from recent Doppler mea-
surements. It may be that at activity maxima the equa-
torial rotation is retarded by Maxwell stresses in the
magnetic field.

g) Babcock model

As mentioned earlier in connection with the Hale-
Nicholson laws, a successful theory of the solar cycle
would be expected to explain the mechanism which gen-
erates the global solar magnetic field and the quasi-
periodic reversals of its polarity. The vortical part of
the solar magnetic field is conveniently written in the
form

H = rot (Tr) + rot rot (Pt), (4.3)

where the first term, which is perpendicular to the
radius vector r, is called the toroidal field (in the axial-
ly symmetric case, its vector lines are circles centered
on the symmetry axis and lying in planes running per-
pendicular to this axis), and the second term is the
poloidal field (in the axially symmetric case, its vector
lines lie in meridional planes). In modern models of the
heliomagnetic dynamo it is generally assumed that the
toroidal field is created from the poloidal field through
the differential rotation of the convection zone. Babcock
was one of the first to advance a model of this type
(1961).

According to this model, a poloidal magnetic field
(with a total magnetic flux on the order of 8 x 1021 Mx)
forms three years before the beginning of a solar cycle.
The lines of force of this field run along meridians be-
low the solar surface, at a certain depth in the convec-
tion zone, at low and intermediate latitudes (at, say,
|(p|<55°), while at polar latitudes (\<p\> 55°) the lines
of force emerge from below the surface and close far
above it, like the lines of force of a magnetic dipole.
The differential rotation (with respect to latitude) (w
= 14°.28 - 2°.77 sinV per day, according to Newton and
Nunn) stretches out the parts of the lines of force which
lie inside the convection zone, causing a longitudinal
displacement of these lines equal to 6x=17.6(» + 3)sin2<p
rad over the course of n+3 yr, and converting these
lines into spirals, which make angles $ with the meri-
dian, where tgip = d6X/dq> = 35.2(n + 3)x sirup cosip. These
spirals have an intensityH =H0 sec<pxsec$= 35.2
(n+3)Hosia<p, whereH0~b G is the intensity of the
original poloidal field at the equator. In 3 yr, the
extension (« = 0) of the field at latitudes |<p| = 30°
reaches a critical value Hc (the average value of this
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critical field over the entire magnetized layer is He
= 264 G, but it is several times higher in certain mag-
netic tubes). When this critical value is reached, spot
formation begins at these latitudes (because the
stretched parts of magnetic tubes rise), and further
extension is stopped. At lower latitudes, the extension
continues, so that in n + 3 yr the critical value ffc~is
reached at latitudes <p determined by the equation
|sin(p| = 1.5/(n + 3), which describes Sporer's law in
this model. The Hale-Nicholson polarity laws evidently
hold also. Let us assume that the original "buried"
poloidal field consists of, say, eight magnetic tubes
with lengths of order 2fl0; then in 3 yr they stretch out
into spirals which girdle the sun five times in each
hemisphere; they reach a total length of the order of
500.RL, and eventually, over the entire solar cycle,
they reach a length on the order of 10s RQ . If each sec-
tion of the extended tube of length Ro is capable of gen-
erating three or four bipolar magnetic regions, then
about 3000 such regions will form over the solar cycle,
in good agreement with observational data.

Babcock's model goes on to the formation of a new
poloidal field of opposite polarity, but here the argu-
ments become far more hypothetical. Now it is argued
that loops of magnetic force lines (with p segments
closer to the equator than / segments, so that these
loops now contain a contribution to the new poloidal
field of opposite polarity) form above bipolar magnetic
regions, rise high into the corona, and are pinched and
carried off by the solar wind. The ends of the lines of
force in the chromosphere reconnect, contributing to a
new poloidal field, which then drops below the photo-
sphere.

h) Leighton's equations

In a quantitative description of the MHD generation of
a magnetic field, the evolution of the field is described
by the induction equation

•§--rot[VHl = vm divH = O, (4.4)

where vm= cz/4iro is the magnetic viscosity coefficient
(c is the speed of light, and a is the elctrical conduc-
tivity of the medium). Taking the average of this equa-
tion, by analogy with (3.9)- (3.12), and assuming that the
average magnetic field is a time-varying field, we find
the following equations, in components along the axes of
a spherical coordinate system:

^Lj-riVM-VWr), (4.6)

(4.7)

(4.8)

Leighton (1969) suggested calculating the charac-
teristics of the solar cycle from a semiempirical modi-
fication of Eqs. (4.5)-(4.8) adopted as a quantitative de-
scription of Babcock's model. Leighton's equations ig-
nore the average, meridional circulation, Vr, Ve; the
angular velocity of the differential rotation, u>, is given
by

o) = («>o+ 18 sin2 6) 4- (a -f p sin" 6)- (4.9)

where the first expression in parentheses describes the
differential rotation with respect to latitude according to
Newton and Nunn (in radians per year), and the second
term, with the adjustable parameters a, j3, n, and h,
describes the radial differential rotation. The equations
are integrated over depth; in the case e =0, with h small
in comparison with the thickness of J:he magnetized
layer, it is assumed that H = 0 and Hr= (Hr)F. in the
shear layer RQ- h « r « R in the case e = 1, on the
other hand, with h equal to the thickness of the mag-
netized layer, He is assumed constant over depth, Hr
« 5 (#,)r=s©. and if x. is assumed to vary approximately
linearly with depth. After the averaging over depth,
the equations become

6H,
lit

Gh d g-
""50~; (4.5")

^ = sin 8[-(a+p sin" 6) ^-{Hr

^ L _ ^ . , (4.7')

(4.8')

Here the time t is expressed in years; (x = cos6; and the
factor 8, which is zero at \Hx\*He and one at [HX\>HC,
describes the ascent of the sections of the magnetic
tubes of the toroidal field which have been stretched
above the critical intensity Hc. The first terms on the
right sides of (4.5')-(4.5") describe the increase in the
radial field during the ascent of the stretched parts of
Che toroidal field, and they describe the formation of
groups of spots of length a (the empirical value is a/
4VRQ «l/80) and making angles y with the parallels
which satisfy (siny « n/2). Here F is a correction fac-
tor, which may differ from unity because of an inaccu-
rate specification of a and y (clearly, as oscillatory
solution is possible only if F & F^, and Fob, must not
be much greater than unity). The time T specifies the
relative rate of formation of the ascending regions. The
second term on the right side of (4.5) describes the
meridional diffusion of the radial field which is caused
by the supergranules (the scale time for this diffusion is
TD = 20 yr). K we wish to avoid the possibility of a
complete damping of weak fields (weaker than Hc) by
this diffusion, we single out a small part #r0 of the
radial field (representing a fraction G*0.003.F), which
does not diffuse (but which decays with a scale time of
50 yr). The first term on the right side of Eq. (4.7) de-
scribes the formation of the toroidal field from the
poloidal field as a result of the differential rotation; the
second describes the weakening of the toroidal field due
to the ascent of some of its stretched regions (this
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weakening is aHx/2vRQT; with a = a0 \HX \/Hc and a0/
2^0*1/100). The third term describes field decay
with a scale time of 50 yr.

Equations (4.5')-(4.8')jvere integrated for a given
field B^bi) and for Hr = Hx*±0 at t = 0. The value
adopted for Fwas the minimum value at which an os-
cillatory situation could still be attained, and T was
chosen in each step in such a manner that the oscilla-
tion period approached 22 yr. It turned out that, even
in the absence of a radial differential rotation (Q= jS=O;
heree = l, .F = 10, T = 0 . 4 2 , and He = 20Ro/h), the
curves of constant level ofthe field Hx(6, t) (and also
those of the fields Hr and H$) are extremely similar to
Maunder butterflies. Here, however, the value F^,
»6 is too large. To reduce Fa^ we must choose posi-
tive values for a or 0 (i.e., we must assume that w
increases with depth). With a = 0 and 0=18 (the change
in o) across the shear lay.er at the equator is the same
as that between the equator and the pole at the surface),
the value of F^ turns out to be of the order of 0.6 (so
that, in terms of the value of 1^, the radial gradient
in w is ten times more effective than the latitudinal
gradient). With 0 = - 18 and « = 2, the bottom of the
shear layer is in a state of rigid rotation, and with a
= 18 the period is the same as that for the equator at
the surface. At very large values of a, the period is
much smaller, but in such cases the Maunder butter-
flies lie at latitudes which are too high. The best quan-
titative agreement with Sporer's law comes from the
"standard" model with Q = 0, /3 = 10,« = 8,e = l.

In one of his numerical simulations, Leighton ran-
domized the standard model, choosing the value of r
at each latitude from a log-normal distribution three
times each year; this distribution provided a mean
period of 11 yr for the solar cycle and a standard dis-
tribution of 1.6 yr in this period (F=2, T0 = 0.6, and
CM = 1). This method was used to calculate 20 succes-
sive solar cycles. Their statistical characteristics
turned out to agree well with the actual data.

i) Hydromagnetic dynamos

The most important term in Leighton's equations is
the first term on the right side of (4.5'), which de-
scribes the generation of a poloidal magnetic field by a
toroidal emf:

bFh
- s ine • (4.10)

Equations for a hydromagnetic dynamo with a toroidal
emf of the type Fx = aSx (the "a effect") were first de-
rived for the model of fine-scale "cyclonic convection"
by Parker (1955) [see also Parker (1970,1971)]; they
were subsequently derived for slow, large-scale con-
vection by Braginskii (1964a, 1964b, 1965). Analogous
equations can be derived for a turbulence which does
not have reflection symmetry and which thus has a
nonzero spirality, VrotV#0. In the field of this turbu-
lence, an emf E = aH - QrotK forms, where a - - 1/
3rVrotVand / 3 = ( 1 / 3 ) T W . Here r is the correlation
scale time of the turbulence. The effectiveness of this
dynamo mechanism was demonstrated by M. Steenbeck,
F. Krause, and K. Radler at Potsdam [see, for exam-

pie, the review by Krause and Radler (1971)] and also
by Moffatt (1970). Work on the heliomagnetic dynamo
is reviewed by Vandakurov (1976) and Stix (1976). In
many of the papers, the authors restrict the problem to
the "kinematic formulation," in which the velocity field
V is given, rather than calculated, and the magnetic
field is calculated from the induction equation with the
a effect, e.g.,

-!^-=rot|VH|~aH-Tiot-£-, (4.11)

where M is the magnetic permeability of the plasma,
which is equal to unity outside the convection zone and
satisfies (u « 1 in this zone [this diamagnetic property
of a turbulent plasma was discovered by Zel'dovich
(1956), who showed for the case of a two-dimensional
turbulence that a large-scale magnetic field is "ejected"
from turbulence regions into regions with less intense
turbulence. The ejection of the magnetic lines of force
should increase the scale times for changes in the mag-
netic fields in the convection zone, eliminating the diffi-
culty of finding too short a period for the solar cycle if
the diamagnetic effect is ignored.

As examples, we can cite the numerical simulations
carried out using (4.11) by Ivanova and Ruzmaikin
(1976,1977), in which w, a, y, and jn are assigned sim-
ple functional dependences on the depth [in the nonlinear
model of 1977 it was assumed that a = a0(r)(l + £H2)~',
where the coefficient | depends on the intensity of the
spiral part of the turbulent velocity field and deter-
mines the amplitude of the steady-state magnetic field].
These simulations showed that the variations in the
magnetic field over the cycle are wavelike [Parker •
(1955) described them as a "dynamo wave"]. The direc-
tion in which this wave propagates depends on the sign
of the product adu/dr: Sporer's law and the correct
shape for the Maunder butterflies are found if adw/dr
< 0 in the northern hemisphere [analysis of the phase
relations for the oscillations in the poloidal and azi-
muthal fields by the method of Stix (1976) yields dw/dr
<0]. A steady-state cycle is found only for a certain
value, Do, of the dimensionless dynamo number D= (a0 /
/3jj )S«0/ar. At D<D0, the oscillation is damped; at D
> Do, it grows, and in order to stop the growth it is
necessary to introduce an inverse effect of the magnetic
field on the motion, i.e., a nonlinearity. The simplest
way to introduce a nonlinearity is to allow a decrease in
a with increasing H (the magnetic field should first and
foremost suppress the factor primarily responsible for
its own increase: the spirality), as recommended by
Vafnshtein and Zel'dovich (1972). The introduction of a
nonlinearity opens up new possibilities, for example,
finding an explanation for the long-period variations in
the solar cycle, such as the Maunder minimum [see
Yoshimura (1978)].

Gilman (1968,1969a, 1969b) has discussed a model of a
heliomagnetic dynamo in which the elements of the spiral
turbulence are Rossby waves which are excited in the
convection zone by a presumed latitudinal temperature
gradient. The vertical motions in the Rossby waves
produce large-scale vertical fields from the toroidal
magnetic field, and the Rossby waves transport these
vertical fields to the poles, creating a poloidal field,
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The differential rotation (again produced by Rossby
waves) uses this poloidal field to form a new toroidal
field, of the opposite sign.

However, Gilman carried out corresponding numerical
simulations only for an extremely simplified model for
the convection zone: a cylindrical annular gap with
solid, electrically conducting walls, instead of a spheri-
cal shell. Gilman used a two-layer model instead of a
continuous stratification, and he used very few Fourier
components for the MHD fields. The calculations
yielded quasiperiodic polarity reversals in the solar
magnetic field, but the quantitative results were quite
different from observations: The period was about 2 yr
instead of 22 yr, and the maximum poloidal magnetic
field in the polar regions was about 40 G, instead of 1-2
G. These quantitative discrepancies may result from
the extremely simplified model or from the fact that
something different is happening in the sun: Instead of
ordinary Rossby waves, excited through the /3 effect in
the presence of a latitudinal temperature gradient, there
may be giant convection cells, twisted by the Coriolis
force. These cells could form due to a vertical tempera-
ture gradient in an unstably stratified convection zone.

In summary, a theory for the solar cycle can probably
be constructed through numerical simulations on the
MHD of a set of giant convection cells. It will not be a
trivial task to carry out these simulations without the
simplifications adopted by Gilman, i.e., by using the
actual geometry and a model with a large number of
layers and a large number of Fourier components for
the MHD fields. On the other hand, this problem is
completely comparable to the problem of simulating the
overall circulation in the earth's atmosphere, which
has been pursued successfully at several research cen-
ters. The outlook for the solar problem is accordingly
quite favorable.
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script.
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