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The present state of theoretical and experimental research on collective spontaneous emission (superradiance)

in a system of radiators (atoms, molecules, or nuclei) is reviewed. The distinction between superradiance and

the amplification of spontaneous emission is discussed. There is also a discussion of conditions under which

the effect can be observed and of various theoretical methods for describing superradiance: the quantum

single-mode and multimode models and the semiclassical approach. Theoretical papers on superradiance in

systems with dimensions smaller than the wavelength of the radiation and also in extended systems are

reviewed. It is shown that superradiance may occur in weakly amplifying media. A situation in which the

superradiance is oscillatory is described. The possible use of superradiance to generate coherent emission in

the x-ray and γ ranges is discussed. The superradiance accompanying Raman scattering of light in atomic and

molecular media is studied. The theoretical results are compared with experimental observations of

superradiance in the optical range. In an appendix, the nature of the phase transition in a system of radiators

interacting through an electromagnetic field is discussed.
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I. INTRODUCTION

In his pioneering 1954 paper,1 Dicke showed that a
system of Ν two-level atoms with a population inversion
could spontaneously revert to the ground state in a time
inversely proportional to the number of atoms, τ β

~l/N. This effect occurs because a correlation is in-
duced between the transition moments of spatially sepa-
rated radiators as they interact with each other through
the radiation field. As a result, the atoms in a volume
of macroscopic size emit coherently. Since the total
energy radiated by Ν atoms is ΝΗω0, where ω0 is the

transition frequency, the emission intensity is Ι~
re~Ni. This emission has been labeled "collective
spontaneous emission" and "Dicke superradiance."1'
For ordinary spontaneous emission, in contrast, in
which case the atoms decay independently of each other,
with a spontaneous-decay time Tt which is independent
of the number of radiators, the emission intensity is
proportional to the number of radiators, Ι~ΝΗω()/Τί

"The effect Is also referred to as"superfluorescence" In the
non-Soviet literature.
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~N. (See Agarwal's book82 for an up-to-date review
of the theory of spontaneous emission.)

An effective self-induction of correlations between
dipole moments can occur only if the characteristic
time of this process (TC) is shorter than the relaxation
time of the atomic dipole moment, T2, and also shorter
than Tj (usually, T2 < Tt). From the standpoint of the
dynamics of the atomic subsystem, therefore, super-
radiance is a transient process, which occurs over
times shorter than Tt and T2. We emphasize that this
onset of correlations between radiators is an event
which occurs spontaneously in the course of the emis-
sion process. This circumstance represents a funda-
mental distinction between superradiance and other
transient coherent processes, such as the decay of free
optical induction,78 self-induced transparency,78 and the
photon echo,79 in which cases the individual radiators
are in phase, and the emission intensity is also propor-
tional to N2, but the phase coherence has been imposed
by a coherent external pump.

The properties of superradiance and the conditions
under which it can be observed are qualitatively dif-
ferent from those for ordinary spontaneous emission
and also for stimulated emission. The distinctive fea-
tures of superradiance can be seen on the example of a
typical experiment carried out to observe it.2 4 We as-
sume that there are Ν two-level atoms in a macroscopic
cylinder, of length L and case area A, which is long and
open at both ends (L>> v5T, V=AL,n=N/V). All the
atoms are initially put in the upper state by a short
pump pulse (TBump< τβ), in such a manner that the initial
state of the system is noncoherent (in other words,
there are no correlations between the dipole moments of
the working transitions of the different atoms) (Fig. 1).
Then the system of atoms with a population inversion
begins to decay freely; the nature of the decay depends
on the relations among the characteristic times Tu T2,
Te, and also τ =L/c, which is the transit time of a pho-
ton through the medium (c is the speed of light). We
assume that the number density of atoms is so low that
the following inequality holds:

(d is the dipole matrix element of the transition). Then
each atom decays independently of the others, and the
energy stored in the atomic system is radiated in a
characteristic time Tt in an isotropic fashion (Fig. 2b).

We now assume

τ < x c < Γ2, Γ,. (1.1)

The right-hand inequality means that the collective pro-
cesses occur more rapidly than the relaxation in the in-
dividual atoms. The left-hand inequality means that the
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FIG. 1. a) Working-level diagram; b) typical experimental
arrangement for observing superradiance. a, b) Working
levels; c) intermediate level.
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FIG. 2. Comparison of superradiance and noncoherent spon-
taneous emission.24 The time scale is logarithmic, a) Pump
pulse which creates a population inversion for the working
transition, a—b; b) emission intensity in the case of nonco-
herent spontaneous decay (T, ~ls) : a slow exponential decay
with an isotropic directional distribution of the intensity; c)
the observed highly directional superradiance signal (in gaseous
ΗΓ; Ref. 24). The peak intensity / „ is roughly 1010 times / „ .

photons leave the volume under consideration in a time
shorter than the characteristic time for the induction
of interatomic correlations, so that stimulated pro-
cesses can be ignored during the superradiance. Con-
ditions (1.1) determine the type of superradiance. Π
all these conditions hold, a system of Ν atoms will
emit a superradiance pulse with a peak intensity several
orders of magnitude higher than the intensity of spon-
taneous emission (about ten orders of magnitude higher
in the experiments of Skribanowitz et αϊ.).2 4 Most of the
energy is radiated into small solid angles along the
greatest dimension of the volume (Fig. 2c). This di-
rectionality results from interference of the different
radiators and is determined by the geometric configura-
tion of the medium. Under the condition τ ~ re, some
of the radiated energy reenters the atomic subsystem,
and the emission takes the form of a train of pulses of
decreasing height ("oscillatory superradiance"; Fig.
2c). An important characteristic of the superradiance
pulse is the delay time £0, determined from the time at
which the crest of the pulse is observed (Fig. 2c); this
time is roughly an order of magnitude longer than the
length of the pulse itself (ί0 ~ TelnW). The reason for
the delay is that the decay begins with isotropic spon-
taneous emission, and only gradually, as the result of
the interaction of atoms through the radiation field, do
correlations grow among the atomic dipole moments.
It is at the time f = f0 that these correlations reach their
maximum (at i0, the populations of the upper and lower
working levels are equal). The directionality of the
superradiance, along the greatest dimension of the
volume, is reminiscent of a corresponding property of
the amplified spontaneous emission in mirror-free sys-
tems. In the time-dependent case, this situation is de-
termined by the condition Γ2 < T'C = (2ττηί?ω0 /KT^1)"1

« τ, in contrast with superradiance. The inequality
at the left here means that the polarization is rapidly
adjusted by the field; the inequality at the right means
that the photons remain in the medium for a time τ
sufficient for an avalanche increase in the stimulated
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emission (which occurs over a time ~ r'e). We might
note that in the literature the amplification of sponta-
neous emission is also frequently referred to as "super-
radiance" (or "superluminescence"). Superradiance, a
collective spontaneous process, differs from this other
process in a fundamental way: Stimulated atomic tran-
sitions play no role in superradiance. To see the dis-
tinction between superradiance and stimulated emission,
we consider the example of a single-pass mirror-free
laser, with a geometric configuration and a working-
level arrangement the same as for the superradiance
which we have been discussing (Fig. la). Now, however,
the pump acts continuously. At a large gain, \iL
= 2πη(Ρω0Σ/ΚΤ21ο>1, the system of two-level atoms
will be in a saturation state (the populations of the upper
and lower working levels will be equal, at N/2). In this
state, a maximum fraction of the energy stored in the
atomic medium is converted into radiation. Since the
rate at which atoms are pumped to the upper working
level is proportional to N/2, the output intensity of this
laser (in the steady state) is also proportional to N.
Consequently, if we change (for example) the pressure
of the working gas, then the intensity of the amplified
spontaneous emission will vary in proportion to the
pressure, while the intensity of superradiance will vary
in proportion to the square of the pressure. This cir-
cumstance is exploited experimentally to identify super-
radiance.

Superradiance is of both general physical interest and
applied interest. From the physical standpoint, super-
radiance is an example of cooperative behavior of a sys-
tem of Ν particles (ΛΓ» 1) which are interacting with an
electromagnetic field. The formation of the superradi-
ant correlated state in a many-body system of this type,
the role played by the geometry of the medium in
shaping the spatial coherence of the superradiance, and
the relationship between superradiance effects and non-
equilibrium phase transitions—all these questions are
of general interest.

From the standpoint of applications, superradiance is
interesting as one method for producing coherent emis-
sion in a system without mirrors. The difficulties in
devising effective mirrors for the x-ray and γ ranges
have prevented the use of ordinary stimulated-emission
processes for generating short-wave emission. Conse-
quently, superradiance may prove successful as a
mechanism for generating coherent emission in these
ranges (this possibility is supported by the theory of
Refs. 48-52).

Superradiance can also be exploited to find spectro-
scopic information,57·58 to generate ultrashort pulses,
etc.

For a long time after the publication of Dicke's paper,
new theoretical work on the subject appeared only spo-
radically. This period of relative inactivity gave way to
a new stage of intense theoretical and experimental
work on superradiance just recently, after the first
experimental observation of superradiance in the opti-
cal range.24 A large number of experiments have now
been carried out to observe superradiance, and their
results have shown that the existing theories fall short

of satisfactory agreement with experiments in several
important ways. As a result, further effort has gone
into deriving a theory for the superradiance of extended
systems (with dimensions much greater than the radia-
tion wavelength). Among the topics which have been
treated theoretically are multimode superradiance,
superradiance in weakly amplifying media, and oscilla-
tory superradiance. The theory has been developed fur-
ther through a generalization to the case of two-photon
processes (Raman-scattering superradiance in molecu-
lar and atomic media).62'84·22 Sczaniecki and Buchert80

report that it is also possible in principle to observe
superradiance in many-photon processes.

It should be pointed out that several approaches have
been taken toward a theoretical description of super-
radiance, with significant differences in initial assump-
tions. This situation is a consequence of the complexity
of the problem in general formulation (the nonlinearity
and distributed nature of the atomic system, the need
to take into account the geometric configuration of the
medium, etc.). Approaches which focus on only one
aspect of the phenomenon may not describe other im-
portant aspects. In this review we will accordingly dis-
cuss or briefly summarize all the basic approaches to a
description of superradiance, and we will compare the
theoretical results with experiment.

2. SUPERRADIANCE OF SYSTEMS WITH
DIMENSIONS SMALLER THAN THE WAVELENGTH

The system of two-level atoms interacting with radia-
tion which we discussed above is described by the
Hamilton ian

Η=-ψ ? 3 + 2 ^ t O i « k + 2 tekfli«k+£i«i/?i) = #c-f 2 fft. (2·1)
k k Ic

where α*>λ (α*,χ) is the creation (annihilation) operator
for a field quantum in the mode (k, λ), with wave vector
k, frequency cot, and polarization βλ. The coupling con-
s t a n t s ^ is

gk, λ (2.1a)

where j * is the operator representing the transition cur-
rent density (in the dipole approximation, j * = i'u)od), and
|+> and |-> are the wave functions of the excited and
ground states of the atom respectively. We will be
omitting the polarization index λ, adopting the notation
kH(k,x).

The collective atomic operators Λ{ and R3 can be ex-
pressed in terms of the Pauli spinors σ4 = (σί±ΐσ2)/2 of ,
the individual atoms:

(2.2)

These operators satisfy the commutation relations

(2.3)

where

The intensity of the emission into a unit solid angle
around the direction k is expressed in terms of the cor-
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relators of the collective Heisenberg operators,1

-jj- <αί ok> = / t (0 = hP. <Λί (Ο ΛΪ (t)>, (2.4)

where / „ = 1/4^7", is the intensity of the isotropic spon-
taneous decay per unit solid angle, and the angle brack-
ets denote the quantum-statistics average. Here and be-
low, the intensities are expressed in photons per second.

Before we take up the dynamics of the correlators
(R^R^) in the general case of extended systems, we will
illustrate the basic ideas by examining the simple case
in which the volume of the system satisfies V« λ3,
where λ is the radiation wavelength. Then for each
atom we have k· r , « 1 in (2.1), and this circumstance
can be taken into account formally by letting k— 0 in
(2.2)-(2.3) and by using the replacement flj — R*o in (2.4).

We introduce the collective operator

Λ» = ! (Λ.+Λ.- + R;K) + JK. (2.5)

and we describe the atomic system by means of the
eigenfunctions of the operator R2 (the Dicke states1):

R* | r, m) = r (r + 1) | r, m), R3 | r, m) = 2m | r, m),

where m = (Na - Nj/2 is half the difference between the
populations Wa+Nt=N), 0«r«AT/2, | m | « r . For radi-
ative transitions, the cooperation number r does not
change, since R2 commutes with the Hamiltonian in (2.1)
(where k = 0).

According to (2.4), the emission intensity at the time
ί = 0 depends on the initial state of the atomic system.
Let us assume that at i = 0 the atoms have a population
inversion: m = r = N/2. The intensity of the radiation
from this state is

(2.6)

i.e., each atom begins to decay independently of the
others, and the intensities of the various radiators are
summed.

We now assume that the system is in the state r=N/2,
m =0 (the populations of the upper and lower levels are
equal). The radiation intensity in this state is

The decay of a system of Ν atoms from a Dicke state
with r—N/2 and m =0 thus occurs in a cooperative
manner, and the emission intensity is at a maximum and
is proportional to N2 (a superradiative state).

The superradiative state can be produced by irradi-
ating a system of atoms in the ground state (r = N/2,
m = -N/2) with an intense pulse of resonant radiation,
which causes the populations to become equal at times
t«T2.

Here, however, we are interested in a different pro-
cess: the decay of a system of Ν atoms which initially
has a complete population inversion (r = m=N/2 at t
= 0), accompanied by a spontaneous transition to a
superradiative state.

To describe this process, we make use of the circum-
stance that the operator in (2.5) commutes with the
Hamiltonian in (2.1) (where Λ*— Λ$), so that its expec-
tation value is conserved at times t<T2:

where

Equation (2.6) is known as the "conservation law for
the length of the Bloch vector." Now using the commu-
tation rules in (2.3) and the expression for the intensity
in (2.4), and ignoring the mean square fluctuation (δϋ |)
(at f = 0, with a complete noncoherent population inver-
sion, (δΛ$) = 0), we obtain from (2.6)

Τ^Ι, + ψ-ψ^^^+ή. (2.7)

One of the variables, It{t) or (R3(t)), can be eliminated
by making use of the fact that energy is conserved
during the emission. Using (2.4) (where /$— flj,), we
can write this conservation law as

(2.8)

Then from (2.8) and (2.7) we obtain an equation which
describes the dynamics of the difference between the
populations of the atomic levels,

i (fl.) 2 / ΛΓ» (R,)* N + (R3) \
at ? ! I 4 4 ">" 2 I (2.9)

with the initial condition (/?3)t=0 = N. It solution (within
terms of order l/N) is

(fl3)(-_JVth
2 t c

where

(2.10)

(2.H)

(2.12)

The populations of the upper and lower levels become
equal at t = f0.

For the intensity of the radiation into a unit solid
angle, we find from (2.7) and (2.10)

(2.13)

where

Λ»

The system of Ν atoms emits in an arbitrary direction
k a pulse whose intensity reaches a maximum 7max/4ir
~N2 (superradiance) at the time i0 (the delay time).
The length of the pulse is TC. Since N»l, we have
lnJV»l in (2.12) (in a real situation, we could have
lnN«20), so that the condition f 0 » TC holds. It is thus
i0 which determines the characteristic time interval for
emission of the system. Equation (2.12) for Zo was first
derived by Fain.2 We recall that in deriving (2.13) we
used the conservation of the length of the Bloch vector,
(2.6) (t <T2), so that one of the conditions for super-
radiance is the inequality i0 < T2·

We have briefly mentioned the wave function of a sys-
tem of Ν atoms which corresponds to a superradiative
state. In Refs. 3 and 4, where a group-theory approach
to superradiance was developed on the basis of a per-
mutation group, it was shown that the superradiative
state corresponds to a wave function of a system of Ν
identical atoms which is completely symmetric with re-
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spect to interchange of particles. A wave function which
is completely antisymmetric with respect to the inter-
change of particles corresponds to a state with a zero
decay rate; in other words, radiation would be trapped
in such a state.

Shelepin5 was the first to take up the problem of
superradiance for a many-level system. The number of
papers on this subject is now quite large, and the pres-
ent state of the question is covered thoroughly in Ref. 6.

Κ should be noted that superradiance has not yet been
observed in systems significantly shorter than the radia-
tion wavelength. One possible reason is that dipole-
dipole interactions broaden the line to the extent that the
condition i0 < T2 may not hold for such systems. In a
superradiative state, the dipole-dipole level width is
(l/TUpump ~Nd2/Kr lw, where r a v is the average linear
dimension of the system; from (2.12), on the other hand,
we find l/f0 = - Ν/Τ^ηΝ « [β^Ν/ΐηΝ^/Ηλ3 « (1/
T2)Pump if

By analogy with the case of systems with dimensions
smaller than the wavelength, we introduce the operator

. The effect of the shape of the sample
s

the dipole relaxation rate in systems with V« Xs has
been discussed by Friedberg et al.1'6

That superradiance can be observed in samples with
dimensions comparable to the radiation wavelength has
been demonstrated experimentally by Gross et al.,* who
observed the effect in the Rydberg levels of the sodium
atom (in a transition from an nS level with a principal
quantum number η = 25). The emission had a wavelength
of λ = 1.5 mm, and the active region had dimensions L
= 5 mm and d = 1 mm.

3. SUPERRADIANCE OF EXTENDED SYSTEMS

a) General considerations

Developments in quantum electronics spurred much
new interest in superradiance, as the appearance of
sources of high-power coherent light pulses, with pulse
lengths shorter than the relaxation time for atomic
transitions, made it possible to study in the optical
range several effects which had previously been ob-
servable only in the microwave range, among them the
photon echo, optical nutation, and optical adiabatic in-
version. Common to all these effects is a macroscopic
induced transition moment which arises because the
radiators come to act in phase. As mentioned above,
it is the onset of correlations between the transition mo-
moments of the radiators in volumes of macroscopic
size during the decay which is responsible for super-
radiance. In order to evaluate the possibility of ob-
serving superradiance in the optical range, it became
necessary to generalize the theory to the case of large
radiating volumes. This problem has been taken up in
many papers. Afanas'ev and Kagan,10 for example, dis-
cussed the possibility of observing the effect in the y
range, and they estimated the maximum emission in-
tensity. The time evolution of superradiance in ex-
tended systems was described in Refs. 11-16, where
various approaches led to similar equations for the
dynamics of superradiative systems.

For extended systems, the Hamiltonian of a system of
Ν two-level atoms which are interacting with an elec-
tromagnetic field is given by Eq. (2.1).

As we have seen, the possibility of superradiance stems
from the appearance of correlations {R^R^) =Yjit)

xe't < ri-ri)(C T<i )aif)); i.e., the correlators of the in-
dividual radiators, (σί"σ ϋ ) ) , must be nonzero in a
volume of macroscopic size. The geometric configura-
tion of the volume occupied by the atoms is important
in determining the correlators. To see this, we assume
that the volume is isotropic in shape, so that all the
field modes k a r e equivalent; i.e., the (Λ*Λ*> are in-
dependent of the direction of k. Since the medium is
homogeneous, we can write (vii)aif))=f(rij), ru = ri

- Tt, and thus {R^R^} ~ J dr(if(Ti}) exp(tkrjy). Then it
follows that

i.e., this correlator falls off in inverse proportion to
the distance between radiators. K, on the other hand,
we discriminate among radiation modes, for example,
by using a long, cylindrical sample, so that modes with
wave vectors directed along the axis of the cylinder
play a governing role in the emission [see Eq. (3.14)
below], the correlations between radiators will span
regions of macroscopic size.

In the extreme case of a single mode k, the individual
radiators will be correlated in a volume whose longi-
tudinal dimension along the k direction, h»-, is deter-
mined by the uncertainty in the wave vector, Δ& = 2π/
Zeff. The difference Δ& may stem from several factors.
First, it may result from an inhomogeneous or homo-
geneous width of the emission line, lcirl = cTi. Second,
since the photon is emitted within a region L (L is the
length of the sample), it has a momentum uncertainty
&k = 2n/L, so that the corresponding value of Zeff2 is
equal to L. Furthermore, if a radiation pulse of length
Te results from the decay of the system, the correspon-
ding value is Kit3 =

 cTc (Ref. 16). The maximum size of
the coherence region— the region within which the
radiators can be put in phase—is thus determined by the
length of the system. This maximum value is reached
in systems with L/c < τ β , Τ2.

Ressayre and Tallet17 have shown that the situation in
a cylindrical sample with Fresnel numbers F=A/xL
~1 corresponds approximately to the single-mode case.
The single-mode model has been used widely to describe
the superradiance in extended systems because of its
simplicity.1 4·I a'1 9 Let us review the basic results ob-
tained from this model.

b) Single-mode model for superradiance

In the single-mode approximation [in which there is
only one definite mode k in (2.1)], a theory can be con-
structed for superradiance in complete analogy with the
case of a system with dimensions smaller than the
wavelength. The commutator for the operator R% in
(3.1) with the Hamiltonian in (2.1) is
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where
'υ = ft — ?./, ρι; = r, + r,.

Π; follows that in the single-mode approximation (gt
=St^it·) the operator R\ commutes with Ht and is con-
served (over times t < T2).

For Rl we thus find an analog of the conservation law
for the length of the Bloch vector, again in the form of
(2.6), where we must use the substitution Λ$ — R\. Then
in (2.8) we must allow for the fact that in this case the
radiation is now emitted into a small solid angle ΔΩ,
=* λ2/A determined by diffraction instead of into a solid
angle of 4 π. This small solid angle is around the axis
of the cylinder (which is parallel to k):

-JT —^ + AQk/t= 0. (3.2)
at 2 x '

This means that Eq. (2.9) remains valid for an extended
system in the single-mode case if we use the substitu-
tion

ι
7Ί 4π (3.2')

Repeating the arguments which were made for the case
of a system with dimensions smaller than a wavelength,
we find that the intensity of the radiation into the solid
angle ΔΩ* is

^ - , (3.3)

where

x.-igl-L·-. (3.4)
«o = TclniV. (3.5)

In the case of an extended system, the pulse length r e

and the delay time f0 are thus greater by a factor 4nA/
λ 2 » 1 than in the case of a system with dimensions
smaller than a wavelength [cf. (2.11) and (2.12)]. A
more rigorous derivation14" of Eq. (3.3) shows that this
equation holds only if le = cre> L, in which case the
change in the envelope of the superradiance pulse along
the medium can be ignored.

In the semiclassical approximation, the expression
for R\ in (3.1) can be converted to the form R\ = R\
+ R\ +R\ by using the change of variables R^ = RX

+ iRy, R^ = RX- iRv, \R3-Re. The conservation of R\
over times t < T2 allows us to describe the superradia-
tive decay formally as the motion of a vector of con-
stant length with components Rx, Rv, Rt (a Bloch vector)
along the surface of a sphere of radius r . Introducing
the new variable θ (the azimuthal angle) by means of
Ri = -rco&e-) using (2.9), where we ignore the term
(N + R^/2; and using (3.2'), we obtain

-^- + — rsin9 = 0. (3.6)

This equation, which is frequently used, describes
superradiative decay except near an initial state of
complete inversion θί= 0 = 0O = π. The description of
superradiance in the Bloch representation will be re-
viewed more thoroughly in Subsection 3e.

c) Quantum multimode theory of superradiance

The single-mode model of superradiance is simple,
graphic, and a close analogy of a system with dimen-

sions smaller than a wavelength. On the other hand, it
does not tell us about many important characteristics
of superradiance (in particular, the very condition for
the applicability of the single-mode approximation).
Some important questions which cannot be studied in the
single-mode theory are how the non-conservation of the
length of the Bloch vector over short time intervals af-
fects the superradiance delay, the angular distribution
of the superradiance, the role played by the geometric
configuration of the medium in forming the superradi-
ance, and the relationship between superradiance and
nonequilibrium phase transitions. We must turn to the
multimode theory for a complete description of super-
radiance.

A multimode theory can be formulated either in the
atomic-field representation, in which case we would use
the dynamic equations for both the atomic and field sub-
systems, which are interacting with each other; or in
the purely atomic representation, in which case the
field variable would be eliminated through a solution of
the space-time Maxwell equation.15·1T·22

In this subsection we will take the first of these ap-
proaches, which is the one commonly used in the quan-
tum theory of radiation. The second approach, which
is more convenient, particularly for determining the
relationship between superradiance and nonequilibrium
phase transitions, will be discussed in Section 6 for the
case of superradiance in two-photon processes (Raman
scattering).

1. Conditions for the occurrence of the effect. The
Hamiltonian in (2.1) with the relaxation terms, the
commutation relations in (2.3), and the commutation
rules for the operators a* and at lead to the following
system of equations in the mode representation for an
atomic-field system which is interacting with its sur-
roundings18·20:

i (<Ok ~ ω ο ) G k '

dS t

dfl,

(3.7)

where «t = <a^ak) is the number of photons in mode k,
Ti = Lt/c, Lt is the length of the sample along the di-
rection of the vector k (the term η^/τ^ effectively al-
lows for the radiation which leaves the volume),

(3.8)

So = I <«<+)<'-)>. S* = 2 <σίί'ο<?> exp (ikr,,),

and l / r * is the rate of radiationless relaxation of the
population difference. An equation for Gk, can be found
from (3.8) by changing the sign of g\.

If the atomic system is homogeneously broadened,
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then ω* β ω 0 and Gk = 0, and we will adopt these assump-
tions everywhere below except in Subsection 3e. The
system of equations in (3.7) simplifies substantially if

Λ3.ι-ι· = ΛΑ.*.. (3.9)

This condition holds quite accurately if the field ampli-
tude varies only slightly over the length of the sample,
i.e., if the pulse length τ β is much longer than the
transit time τ . In this case we have (σ^") =(σ ϋ ) ) for
any values of i and j , so that (Ri,t.t-)=N{a3)5tk., since
Zyj exp[i(k- k')r, ] = 6t t .. In systems satisfying the
condition τ « Te, the second equation in system (3.7)
thus becomes

(3.10)

Let us examine the right side of Eq. (3.10) in more de-
tail. The variable Fk is the rate at which the energy
stored in the atomic system is transferred to the k-th
field mode (or in the opposite direction, depending on
the sign of Ft). This energy exchange occurs through
induced emission (nkR3), the spontaneous-decay pro-
cesses described by the term St=Jj?*i(aii)a<Jt) = (JV
+ R3)/2 (which is equal to the number of excited atoms),
and collective spontaneous emission, described by the
term Sk. The term Sk results from a correlation
which arises among the various radiators as light is
emitted from the system. It is this correlation which
can lead, under certain conditions, to a cooperative
decay of the system.

The first two equations in system (3.7), (3.10) show
that the time evolution η^(ί) is determined by the right
side of Eq. (3.10), i.e., by the resultant effect of in-
duced, spontaneous, and collective processes. Let us
compare the effects of induced and collective processes
on the emission intensity. From the first and fourth
equations in system (3.7), (3.10) we have

, (f) {Λ3 (t) exp [ - -ί=^] + R, (f) exp [ - ±£- ]} if.

(3.11)
In systems with r=L/c« T2, the emission intensity
is thus determined primarily by collective processes
(Sk) (since in this case the first term in braces is much
smaller than the second at times t> τ), while in sys-
tems with τ » Γ2 the induced processes are predomi-
nant.

We have thus found two conditions which must be sat-
isfied if we wish to observe superradiance: First, the
length of the sample must satisfy the condition L « cT2

(the dimensions of the coherence region are maximized
when the condition L«le also holds). Second, as was
shown above, there must be a discrimination among
radiation modes.

To see how we can arrange this discrimination, we
consider the kinetics of the appearance of super radia-
tive states in a completely excited and initially uncor-
related system of two-level atoms, Si this case, sys-
tem (3.7), (3.10) must be supplemented with the initial
conditions

The set of eigenvalues of system (3.7)-(3.10), which is
linear in the initial stage, while the condition N- R3

«R3 holds, is given by [t^tf) ~ e**']

Exponentially growing solutions thus arise only if

This mode discrimination can thus be arranged by using
a needle-shaped sample. In this case, axial modes, for
which Lt « I , where L is the length of the sample, will
play a governing role.

Let us assume that the number of axial (working)
modes is x^. Summing separately over the working and
the nonworking modes in (3.7), we find a system of
equations in which the working and nonworking modes
are coupled only by the equation for the population
difference:

(3.15)

where F*u and Fa> are the sums of Ft over the working
and nonworking modes, respectively. In the first part
of the equation for Fn\ the term with So is dominant.
Si systems with τ « Τ2, the induced term is much
smaller than the collective term, according to (3.11).
Let us compare the terms Σ)*'ί>0 and Z/k<Sk. in order of
magnitude, where k' are the wave vectors of the non-
working modes. The first of these sums is equal to
the product of iV2 and the number of nonworking modes
[in long samples, the number of nonworking modes is
essentially equal to the total number of modes; see
(3.44)]:

•<o c Vk» ,.

where L cfl is the effective length of the sample for the
nonworking modes. For the second term we find

^j ~K - ^ ^ j k r \ V / *s '
k' i>

Si systems with N/v~lOi0 cm"3 (this condition usually
holds in experiments carried out to observe super-
radiance; see Table I in Section 5), with As 10~2 cm,
we have

SSk.«£s0.
k· k'

Then it is not difficult to see that the expression for Fa}

is

i*2) = -ff. (3.16)

where l/TJ is the rate of the isotropic spontaneous de-
cay into a solid angle of 4π (after the effect of the
working modes has been subtracted), and system (3.15)
can be rewritten as

AS

n (0) = 0 , f (0) = 0, S (0) = 0, fl, (0) = JV. (3.12)

(3.17)
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where l/Tl e l, = (1/T\) + (l/TJ) is the effective rate of
the noncoherent decay; all the variables refer to the

;
working modes; l/T2, =!*,[„ (Ι/Γ»); and
wave vectors of the working modes.

are the

To determine the number of working modes, we sum
the values of St, which appears in (3.7) and which de-
termines the directionality of the emission, according
to (2.4):

Σ S* = Σ Σ. β « - Ι Ί - ' . > = ν _C|,<o«>o«>>, (3.18)

where C(/ = sinfeorj//feo/r(/ is the interaction matrix,
and feo = wo/c.

To determine the number of modes which effectively
contribute to (3.18), we adopt the procedure of Ref. 17,
introducing the eigenfunctions ??(?() and the eigenvalues
λ of the matrix C( J:

Σ (3.19)

The eigenfunctions ψλ(ι\) satisfy completeness and
orthonormality conditions:

(3.20)

(3.21)

From (3.19) and (3.20) we obtain

Using this expression in (3.18), we obtain

where

The eigenfunctions >px and the corresponding eigen-
values were determined by Ressayre and Tallet17 for a
cylindrical volume in the limits of small and large
Fresnel numbers 2~+A/L\. All the largest values of
λο are κ-fold degenerate and are given by

- ~
(3.22)

for

The other eigenvalues satisfy \«\. The eigenfunc-
tions are

—i= (cos kor, + sinkor,), (3.23)

where k, = u>0/ck0, and k,, is the unit vector along the
axis of the cylinder.

It follows from system (3.7) that the quantity (2 τ/
Tjj)\ determines the rate of superradiative decay in the
given mode λ, which is determined by the shape of the
sample. The number of working modes in (3.17) is thus
determined by (3.22); i.e., κο=κ.

Physically, the introduction of the functions φλ{τ{)
corresponds to a transformation from the two-dimen-
sional modes of the quantization volume to the eigen-
modes of the volume of the sample.

2. Analysis of the solution of the system of equations
for multimode superradiative decay. The solution of

system (3.17) depends on the relations among the re-
laxation times τ, T2, and Tl e f f and the collective-decay
time τ0. fii the low-density gases in which superradi-
ance is observed, we have T2, T[« Τ* (Τ* is of the
order of the characteristic time for collisions between
atoms), so that l/Tltff «l/TJ. Κ we ignore transverse
and longitudinal relaxation and set T2 = Ti eff = °° in the
last two equations in (3.7), we obtain the conservation
law

κ.
which is a generalization to the case of multimode
superradiance of the law stating the conservation of the
Bloch vector in (3.1). This conservation law holds be-
cause of (3.9). Using (3.24), we find the following ex-
pression for the integrated radiation intensity in the
working modes:

(3.25)

where now we have

f0 = t c In -ij-,

j j

(3.26)

(3.27)

Although T2 •& T[, the relaxation term with the relaxa-
tion time T[ is frequently more important than the
transverse relaxation in systems with τ β « Τ2. The
reason is that the superradiative decay begins from
noncoherent spontaneous decay, so that the processes
governing T[ can have a significant effect on the delay
of the superradiance pulse. From system (3.17) for
the case of pure superradiance (τβ>> τ), we easily ob-
tain the following expression22:

di
j _ (3.28)

where l/Vl=(l/T[)+(l/Tix) is the total probability for
the spontaneous decay, and 1/Tlx is the probability for
spontaneous decay into the working modes.

Taking the relaxation with the time Tt into account
leads to a breakdown of the conservation of the length
of the Bloch vector described by (3.24). In this sense,
Eq. (3.28) replaces (3.24).

The importance of processes which do not conserve
Λ2. was first pointed out by Lee,21 who derived the fol-
lowing expression for the moment of the transition from
a state of isotropic spontaneous decay (with Rt not con-
served) to a state of correlated emission, in which the
most important processes conserve A*:

ί
I,

The effect of the nonconservation of the length of the
Bloch vector on the superradiance pulses, which has
been studied by Emel'yanov and Seminogov,22 will be
discussed in more detail in Section 6.

3. Superradiance in weakly amplifying media. We
will now see how transverse relaxation affects super-
radiance. The solution of system (3.17) with the initial
conditions (3.12) can be broken up into three stages. In
the first stage, correlated states are formed from
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states which are completely uncorrelated initially. In
this stage, the condition N-R3«N holds, and system
(3.17) becomes linear. The set of eigenvalues of the
problem for this stage is given by (3.13), where all the
Tk satisfy T^L/C. System (3.17) also becomes linear
in the third stage, where N- \R3\«N. In this stage,
the correlated states decay. Depending on the pa-
rameters of the system, the decay is either exponen-
tial or oscillatory. Such parameters of the system as
the delay time f0 and the oscillation frequency can thus
be found by analyzing the set of eigenvalues of the
linearized system. Using (3.13) for example, we
easily find the following expression for the delay of the
super radiance pulse:

^ ) 2

 + 4 ^ - ( l + ̂ ) ] - \ (3.29)

fii the intermediate (second stage, the superradiance
pulse is formed. This stage is described by definitely
nonlinear equations, but again in this case we can find
ways to simplify the analytic solution of the problem.
For example, for systems with τ « TC we have d2R/
dfi«l/rdR/di. In this case, T(t) is determined by

and the radiation intensity is determined by

where

23

(3.32)

Equation (3.31) shows that the condition Γ 2 » ί 0 , i.e.,

μ0Ζ, > In N,

which is usually stipulated for superradiance, is actual-
ly not a necessary condition for the observation of
superradiance. From (3.31) we find the following de-
pendence of the maximum radiation intensity on the
amplification of the medium:

/max=4^(l—|^) 2 . (3.33)

Then the condition for superradiative decay is

^L > 1. (3.34)

From (3.30)-(3.32) we see that, while all JV radiators
come into phase in a strongly amplifying medium, only
a certain effective number JVefr =ΛΤ[1 - (ΐ/μο1,)] do so in
a weakly amplifying medium, and it is only this number
which is involved in the cooperative decay. The popula-
tion difference immediately after the superradiance
pulse is thus

(3.35)

Let us compare the equations for the delay time in
(3.29) and (3.32). The first was found by equating the
sum of ? exponential functions with the arguments (3.13)
to their maximum value, N. The second was derived
through an approximate solution of the nonlinear system
in (3.17). A numerical solution of (3.17) shows that in
the case τ « re this approximate solution is essentially
exact. The analysis above thus shows that the most gen-
eral equation for the delay time is Eq. (3.29) with Ν

ι
1,0

0.5

W 20

FIG. 3. Maximum radiation intensity as a function of the am-
plification of the medium. The intensity is normalized to the
maximum intensify of strongly amplifying media. The circles
are the results of a numerical solution of system (3.17) (see
Fig. 4).

replaced by Ncrr =N[1 - (1/μ0Ζ,)] in the logarithm. It is
not difficult to see that the coefficient of the logarithm
in (3.32) follows from the corresponding coefficient in
(3.29) in the case τ « reT2.

Figure 3 shows the dependence of the maximum in-
tensity, normalized to the maximum intensity in strong-
ly amplifying media, I0 = N/4TO, on the amplification of
the medium. We see that at μ0Ζ, «3 the radiation in-
tensity is lower than that calculated from the equations
for a strongly amplifying medium by a factor of only
two. Clearly, the behavior in Fig. 3 is not correct,
since the value of /0 itself depends on μ ο £. Figure 4
shows how the shape of the superradiance pulse is af-
fected by the amplification of the medium; these curves
were found through a numerical solution (3.17) for sys-
tems with τ / τ β = 2· 10"3.

4. Oscillatory superradiance. The successful ex-
periments by Skribanowitz et al.,2i which revealed the
basic features of the effect—the highly directional
radiation and the quadratic dependence on the intensity
on the density of radiating particles—generated a wave
of interest in the problem. An interesting feature of the
decay intensity was its oscillatory structure. Some
typical oscilloscope traces with superradiance pulses
from Ref. 24 are reproduced in Fig. 5. Many papers
have been devoted to a derivation of kinetic equations
describing the oscillatory superradiance and to deter-
mining the conditions under which the oscillation oc-
curs. 1 8 " 2 0 · 2 4 ' 2 6 " 3 2 The equations of oscillatory super-
radiance were analyzed numerically in Refs. 29-32.
An analytic expression has been derived for the oscilla-
tion frequency, and the threshold for the oscillatory
case has been determined.18"20

i.o
I

as

o.s

0.4

0.2

2-/0* i-m*

FIG. 4. Dependence of the shape of the superradiance pulse
on the amplification of the medium.31 T / T C = 2 . 1 0 " 3 . 1) μ̂ Ζ,
= 200; 2) 4; 3) 2.
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FIG. 5. Oscilloscope traces of superradiance pulses (from
Ref. 24; gaseous HF, λ=84 μπι).

η is simple to see the reason for the oscillation: In
the case Te<r, cooperative emission occurs only with-
in regions with dimensions of the order of16 le = CTe.
As the radiation propagates from the central regions
of the sample through adjacent "coherence regions,"
energy may be transferred from the field back to the
medium. In other words, the field may induce transi-
tions of atoms, which have decayed, back to the ex-
cited state (in complete analogy with the events which
occur during propagation of radiation in a resonantly
absorbing medium).33 The subsequent decay of these
twice-excited atoms leads to the additional peaks.

The set of eigenvalues of the problem in the third
stage is18*20

2fl 0

We see from (3.36) that in the case Ro <0 there may
be an oscillation in this stage. The condition for the
occurrence of the oscillation is

and the oscillation frequency is

(3.37)

< 3 · 3 8 *
5. Superradiance of itihomogeneously broadened

systems. We assumed above that the atoms were sub-
ject only to homogeneous broadening, and we corre-
spondingly assumed that the photon energy Ko)t was
equal to the atomic excitation energy, #ω* = βω0. Con-
sequently, taking a multimode situation in the trans-
verse direction into account, i.e., in considering the
dependence of ŵ  on the direction of k, we are not
taking into account a multimode situation in the longi-
tudinal direction; i.e., we are not considering a depen-
dence of «* on the magnitude of the wave vector, |k |
= w^/c. We introduce the average frequency of the
atomic transition, oJ0=SuiW0,/iV; the photons^r
arise in the system now have a frequency wk = w0

From system (3.7), instead of (3.17), we now have the
system of equations
An , η _ „
At τ '

At
AR, . - 2 F ,

(3.39)

in the initial stage, system (3.39) has the eigenvalues

(3.40)

where
1 Γ 1 / 1 1 \2 2ΛΓ -τ—;Ί

ν '=τίτ(τ-57) +ΤΓ"ΔωΊ·

A growing solution thus exists if

(3.41)

For systems with τ « T 2 « T l e f f , we easily find the
following expression from (3.39):

< 3 · 4 2 )

where

Using (3.42), we can show in a straightforward manner
that all the equations of the two preceding sections re-
main the same, except that μ0 is replaced by μ. For
example, the maximum radiation intensity is now

'-•Eri1-^)1· < 3 · 4 3 >
An important characteristic of inhomogeneously

broadened systems is that the radiation intensity is al-
ways an oscillatory function, since the two eigenvalues
in (3.40) are always complex. The reason for the os-
cillation, however, is twofold. One of the mechanisms
leading to the oscillation was explained in the preceding
section. The second reason lies in the longitudinal
multimode nature of the radiation. While the first
mechanism leads to an oscillation after the radiation in-
tensity reaches its maximum, the second leads to an
oscillation which occurs immediately after the end of
the pump pulse. This oscillatory structure is in fact
visible in Fig. 5.

Changes similar to those described above also occur
in the third stage of the evolution of the superradiance
pulse.

Let us summarize the basic changes caused in the dy-
namics of superradiance decay by the processes re-
sponsible for inhomogeneous broadening. In systems
with Δω5 « Ι / τ 2 , the main features of the effect remain
the same; there is simply an insignificant change in the
parameters of the pulses. The only distinctive feature
of the decay of such systems is the appearance of an
additional small-scale oscillation, whose frequency in
this case is higher than Ω, as shown in Ref. 20. Ih-
homogeneous-broadening processes are important in
systems with Δω 2 ~ΐ/τ 2 . to this case, even if the con-
ditions for oscillatory superradiance, (3.7), are not
satisfied in the given system, the emission pulse will
break up into a train of pulses of comparable height

502 Sov. Phys. Usp. 23(8), Aug. 1980 Andreev et al. 502



(see Figs. 9 and 11 below). In this case there are sig-
nificant changes in the parameters of the superradiance
pulses, and the threshold condition for observation of
the effect becomes \iL > 1.

6. Competition between collective and spontaneous
processes. We turn now to the decay of slightly aniso-
tropic systems. In studying the decay of extended sys-
tems, we summed over the working and nonworking
modes separately in (3.7). For nearly isotropic sys-
tems, all modes are equivalent, and Eq. (3.7) must now
be summed over all modes. The quantity χ in (3.17) is
now determined by the total number of modes, and Tl e ( T

is equal to Τ*. Ε is a simple matter to calculate κ:

Va* Via1

(3.44)

On the other hand, the probability for spontaneous decay
is

7 Γ = ̂ Ι ? Ρ Ρ ( Μ = ̂ , (3.45)

where ρ(Κω) is the density of final states. Accordingly,

__ _
to ~ ΖΊ '

to a completely isotropic system, withn = iV, there is
absolutely no correlated emission. If *siV, on the
other hand, a slight correlation may be observed. The
following equation can be derived20 in a straightforward
fashion from (3.17) with the help of (3.44) and (3.45):

where

(3.46)

(3.47)

The maximum radiation intensity is

where the first term describes the intensity of the non-
coherent spontaneous decay, while the second describes
the intensity of the coherent decay. The coherent com-
ponent of the radiation is thus lost when Τ1 = [(ί/τβ)
- (l/Tj)]"1. In this case, the radiation intensity is de-
scribed by I=N/Tl; i.e., there is a purely spontaneous
decay in such systems. We note that the time i0 given
by expression (3.47) vanishes in this case.

We note that the decay of systems with rc~ T2 ~ Tx

can no longer be referred to as superradiance, since
the intensities of the coherent and noncoherent com-
ponents of the radiation in such systems become com-
parable, according to (3.48), so that / ceases to vary
in proportion to n2.

d) Semiclassical theory of superraidance. Spatial
variation of the field envelope

The semiclassical system of equations for the slowly
varying field amplitude E(r,/) = A(x, t)eUat~™ + c .c ,
the polarization P, and the density of the population dif-
ference (R3) is widely used in research on laser kine-

tics. If Doppler broadening is ignored, this system can
be written in the form

(3.49)

£• </?3> = —iRe (AT),

where P~ R* and %n is the fluctuation source. Since we
are using the plane-wave approximation in (3.49), this
system of equations is applicable only for large Fresnel
numbers, i r » l .

Equations (3.49) were applied to the superradiance
problem in Refs. 24, 25, and 34. For these equations,
the fluctuation source ξΒ is important in the initial stage
of the superradiance. Skribanowitz et al,u determined
ξπ on the basis of other considerations, as a source of
polarization noise. Polder et al.u derived semiclassi-
cal equations by a quantum-mechanical approach,
finding an expression for the source in the equation for
Ρ resulting from zero-point field fluctuations. The ex-
pression differs from that used by Skribanowitz et al.u

The approaches discussed above have made use of a
splitting of ternary correlations of the type

or

(3,50)

(3„51)

while the semiclassical equations instead use a splitting
of binary correlations,

{a+R-i = (a*HR-), <o+a> -» <a*><a>, (3.52)

and this difference leads to a slightly less accurate de-
scription of the initial stage of the avalanche. Trifonov
et al.35 have reported a comparative analysis of the
semiclassical and quantum approaches. One of the most
important achievements of the semiclassical approach
has been the incorporation of the change in the field en-
velope along the length of the sample. This effect leads
to results different from those found by other ap-
proaches. For example, instead of Eq. (3.6), the semi-
classical method leads to2 4

(3.53)

where

3 6

R3 (χ, t) = — Ro cos θ, (Λ+> = Λο sin θ.

An asymptotic solution of (3.53) which satisfies the
boundary condition θ(χ = 0,1) = θ0 is

e = !t--^LcoS (η—1 + -^ 1ηη + φ0)

where η = 2^χϊ/ΣΤβ, and C and <p0 are constants.

Equation (3.53) yields the following value for the delay
of the superradiance pulse:

Ό - χ In (3.54)

where τ0 = (το/2)Ιη(π/2θ0) is the time over which the
intensity falls by a factor of e from its maximum. The
value of 0O depends on which source of fluctuations is
used in the calculations.24'34
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Vrehen and Schuurmans37 have recently reported a
direct experimental determination of 0O. In those ex-
periments, a cell holding cesium vapor was irradiated
with a superradiance pulse from a second, identical cell
immediately after the pump pulse. The intensity of the
superradiance pulse was adjusted with an attenuator. If
the area of the incident pulse, θρ is greater than 0O,
such a pulse causes a decrease in the delay of the decay
pulse of the test cell. Π, on the other hand, θρ < 0O,
this pulse should not affect the delay of the pulse from
the second cell. The results found in those experiments
agree quite well with the theory of Polder et al.u

β) Role played by fluctuations in superradiative decay
(Bloch representation)

As mentioned in the preceding section, closed kinetic
equations for superradiance can be derived only by using
approximations like those in (3.50) and (3.51), i.e., only
by ignoring the fluctuations in the number of photons.
When these fluctuations are taken into account, they lead
to a system of coupled equations which are too compli-
cated to analyze analytically or even numerically.27

Gronchi and Lugiato40 have shown that the solution of
the problem of limiting the system of coupled equations
can be physically interpreted with the greatest clarity
in the so- called Bloch representation, which was used
to describe superradiance in Refs. 38-40. The Bloch
or coherent atomic representation was also introduced
independently in Refs. 41 and 42. This representation
is introduced on the basis of the conservation of the
vector ft2 with the components Rf,Rv,Rt, the square of
whose length is given by (2.6). While the state of the
atomic system in the Dicke representation is deter-
mined by specifying the cooperation number r and the
population half-difference m, the state of the system
in the Bloch representation is determined by specifying
the azimuthal angle θ and the polar angle φ of the vector
R in pseudospin space. The transformation from the
wave functions in the Dicke representation to the wave
functions in the coherent atomic representation is made
by38

τ

Ι θ, (f>= Υ, \r, m){r, m | θ, φ)

(3.55)

Arecchi et al.i2 have demonstrated the analogy between
the coherent atomic representation and the coherent
representation of the electromagnetic field introduced
by Glauber.43 In particular, the state of a system of
atoms with specified values of θ and φ has a minimum
uncertainty; i.e., the product of the mean square devia-
tions of canonically conjugate quantities is at a mini-
mum in these states. This formal analogy has served
as a basis for a further use of this representation. For
example, by expressing the eigenvalues of the operator
representing the density of the atomic subsystem in
terms of the vectors of the coherent states in (3.55), we
can calculate the normally ordered products of the op-
erators R* and R~ by means of the following correspon-
dence rules:

(R*)' (R-)' -* (r sin Θ)21,
R"-+( — rcos9)n.

We denote by PA(t) the density matrix of the atomic
subsystem. ]h the diagonal representation,42 we have

pA(«)= , φ, ί ) | θ , φ)(θ, (3.56)

where άΏ^Βϊηθάθάφ, and the weight function Ρ(θ,ψ, f)
has a meaning analogous to a probability density for the
distribution of the values of θ and φ over the (θ, φ)
Bloch sphere. Narducci et aZ.88 derived an equation for
the function

2n

θ. i) = sin9 \ , φ, t).

The result is

+ £ [ ! = » ! · 0(9,»,]}. (3.57)
The Fokker-Planck equation (3.57) describes the be-
havior of the function Q(9, t) on the Bloch sphere. The
term with the first derivative on the right side of (3.57)
describes the motion of the maximum of the function
Q(0, t); the diffusion term with the second derivative de-
scribes the distribution of the function Q(0, t) on the
Bloch sphere. Far from the completely inverted state,
θ= π, the first term in brackets with the first deriva-
tive is dominant. This term gives us the ordinary
classical description of superradiance. If we retain
only this term in (3.57), we find the following equation
for the evolution of the angle Θ;

(3.58)

which is the same as Eq. (3.56). The second term in
the expression with the first derivative spontaneous
sources into account. Analysis of Eq. (3.57) has
shown38 that the average product {R*'RlR~') can be fac-
torized in the form of the product {R*R-)'(Ri)

n every-
where except in a region near the completely inverted
state, with θ = π. Glauber and Haake39 have shown that
the classical description becomes progressively poorer
as the initial state approaches the state with θ=π, and
in the limit in which the initial state is a state of com-
plete inversion the maximum intensity and the delay
calculated from (3.57) may differ from the classical re-
sults by 20%. Gronchi and Lugiato40 showed that there
is yet another factor, neglected in (3.57), which can be
important: A term 2gp2T2r2 βΐαθ/Κ must be taken into
account in the term with the second derivative on the
right side of (3.57). In other words, we must make the
replacement

in (3.57). This new term describes fluctuations of a
collective nature, while the term ( 1 - cos0)/2 results
from the spontaneous decay of individual atoms. In fact,
the quantity N(l - cos0)/2 is none other than the number
of atoms in the excited state. Another difference be-
tween these two terms is that while the term propor-
tional to 1 - cos θ is important only near θ—η the
second term is important throughout the formation of
the superradiance pulse.
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4. SUPERRAOIANCE AT SHORT WAVELENGTHS

a) Superradiance in the y range

The difficulties in developing resonators for electro-
magnetic waves in the x-ray and y ranges make the
single-pass y-ray laser, in which the directionality
of the radiation is achieved through the use of needle-
shaped active crystals, the most promising possibility.
As a result, the very first papers in which y-ray lasers
were proposed discussed the possibility of producing
superradiative states of a system of excited nuclei.
Terhune and Baldwin44 and Zaretskii and Lomonosov45

have suggested that this could be arranged by choosing
a lattice satisfying the condition

k = 2jib, (4.1)

where k is the wave vector of the y ray, and b is the
reciprocal lattice vector. Ε is not true, of course, that
just any arbitrary system of excited nuclei satisfying
condition (4.1) would be put in a superradiative state as
a result of the decay. Further developments in the
theory for superradiance yielded the conditions for
superradiative decay. Ε should be noted that the
periodic nature of the crystal lattice should neverthe-
less play a key role in a possible observation of super-
radiative decay of nuclei. The reason is that it is the
anomalous transmission of y rays along Bragg direc-
tions which leads to the mode discrimination [see
(3.14)] required for the appearance of a macroscopic
polarization.48 Consequently, condition (4.1), which
corresponds to the particular case of Bragg diffrac-
tion, is not a relation which must be imposed between
the radiation wavelength and the period of the crystal
lattice if we are to observe the effect.

The possibility of achieving superradiance in the y
range has recently been discussed in Refs. 19, 23, and
46-49, where this question was examined in the light
of recent developments in the theory of superradiance.
One of the most important conclusions reached in Refs.
19, 47, and 48 was that a system of excited nuclei would
be put in a superradiative state if the condition \iL
> lniV were met. The attainment of a high amplification
coefficient at short wavelengths is extremely prob-
lematical, however, so that the possibility of arranging
superradiance in weakly amplifying media, with 1 < μ £
<lnN, which was demonstrated by Andreev,23 has
opened up more realistic opportunities. Andreev et
eZ.49 have shown that relatively narrow lines for Moss-
bauer transitions, combined with the large cross sec-
tions for photoabsorption of y rays in the Mossbauer
energy range, has the consequence that collective spon-
taneous emission should play a leading role in the
generation of coherent Mossbauer y radiation.

To illustrate the consequences of the conditions for
the superradiative decay of a system of excited nuclei,
we will estimate the critical number density of nuclei
required. The characteristic lifetimes of low-lying
Mossbauer levels range from 10~9 s to several hours.
For isomers with a lifetime Tt <10"5 s the line width is
equal to the natural width, while for isomers with Tt

> 10"5 s we have Γ = l/T2 ~ ! 0 5 Hz. Strong photoabsorp-
tion of y rays in the Mossbauer energy range has the

consequence that the range of a y ray in a solid is Zabs

s 0.1 cm. Since the coherence length is smaller than
or equal to the range, we would not want to use a crys-
tal with dimensions larger than Zabs. The Borman effect
may have the consequence that Zabs increases to Zabs ~1
cm. The transit time r~llbs/c in the Mossbauer re-
gion is thus always shorter than T2. For the isotope
AgJ°7, for example, we have 7^ = 44.3 s, T2 = 10"5 s,
Zabs = 0.05 cm, «ω = 93.1 keV, and (iV/v)I!r=1020 Γ7\
cm"3. Accordingly, when a y line without narrowing
is used, the critical number density of nuclei reaches
a value beyond the densities of solids.

The possibilities for achieving superradiance in the y
range are more restricted than in the optical range,
since now the distance between radiators is comparable
to the wavelength. While it is possible in the optical
range to arrange mode discrimination (i.e., to supress
the secondary maxima which result from the spatial
distribution of the radiators), by using needle-shaped
samples, it is essentially impossible to satisfy the
condition of a unit value for the Fresnel number in the
y range. This condition on the Fresnel number deter-
mines the optimum shape of the sample. Accordingly,
superradiance can be observed in the y range only if
the nuclei are in a regular arrangement, i.e., in a
crystal lattice, since in this case there are directions
along which interference maxima are observed: Bragg
directions. The interference maxima do not them-
selves, however, lead to an anisotropy of the threshold
conditions; only the Borman effect,48'49 i.e., the sharp
increase in the range of y rays along the Bragg direc-
tions, will lead to the anisotropy of the directional pat-
tern of the radiation which is required for the occur-
rence of superradiance.

b) Superradiance in the x-ray range

When we examine the possibility of generating co-
herent χ radiation, we run into the same problem as in
the y range: the absence of reflecting mirrors.
Another problem, this time unique to the x-ray range,
is the absence of long-lived isomer levels. This latter
circumstance imposes some very stringent require-
ments on the pump intensity and forces a search for new
types of pump sources: pumping by a travelling wave,
transverse pumping by an electron beam, pumping by a
scanning ion beam, etc.5 0 In these cases, the atoms are
in an excited state at precisely that time at which they
are reached by the radiation emitted by previously ex-
cited atoms. Clearly, the properties of such systems
will be quite different from those of ordinary laser sys-
tems. A second interesting feature of the ion-beam
method is that the Doppler line broadening is eliminated
in this case, so that the transverse relaxation time is
determined by the decay time for the population dif-
ference. Ε can thus be hoped that effects related to the
phase memory of the system will influence the kinetics
of the decay. This possibility has been analyzed by
Hopf etalj1

Miller81 has recently analyzed the possibility of ob-
taining coherent χ radiation by making use of the Dop-
pler shift and the 2P - I S transition of one-electron
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atoms accelerated in a high-energy accelerator. Miller
showed that superradiative processes may lead to co-
herent emission in this case also.

MacGillivray and Felds2 used the theory of Refs. 24
and 25 to analyze the possibility of superradiance in the
x-ray range. Here again, as in the preceding section,
we might note that the more stringent conditions [LL
> inN, which McGillivray and Feld identified as neces-
sary for observation of the effect,52 are relaxed by the
possibility of arranging superradiance in a weakly am-
plifying medium, which was demonstrated by Andreev.23

The possibility of arranging conditions for super-
radiative decay in the x-ray range can be demonstrated
by the example of the La line of sodium at λ = 372 A.
The mechanism for producing a population inversion
for this transition was discussed by Duguay and
Rentzepis,53 Here P=0.02 torr, Γ1 = 4·10"1 08, T\
=*0.17· 1O"10 s, and Zai»=9.3· 104 cm, so that in sam-
ples with a length less than L < T*c = 0.5 cm one of
the necessary conditions for superradiative decay is
satisfied.

The conditions μ£>1 and τ ρ ω Ι 1 ρ <τ β , where rvmv is
the length of the pump pulse, determine the pump power
required. Under the conditions of Ref. 53, with 0.3%
of a pump with Κω = 50 eV absorbed in the medium, the
power of the pump pulse must be /= 4 GW/cm3.

5. EXPERIMENTAL WORK ON SUPERRADIANCE

Superradiance has been observed successfully in the
IR range in several experiments. The characteristics
of the superradiance pulses observed in these experi-
ments are listed in Table I.

a) Superradiance of rotational transitions of molecules

The first experiment carried out to observe super-
radiance in the IR region was that reported by Skribano-
witz et al.,u in which they observed the effect in HF
vapor. The key parts of their experimental apparatus
were (1) a HF laser which emitted pump pulses with a
wavelength λ = 2.5 μπι and a length of 50-100 ns and
(2) a cell holding HF vapor at room temperature, with
dimensions from 30 to 100 cm and an inside diameter
between 12 and 28 mm. The HF vapor pressure was of
the order of 1-2 mtorr. Since the first vibrational ex-
cited level of the HF molecule lies 20 kBT above the
ground level at room temperature, all the rotational
sublevels of this vibrational level are essentially un-
populated. Consequently, an optical pump pulse which

TABLE I. Summary of the characteristics of superradiative
media and of the temporal characteristics of the superradiance
pulses.

Gas

Tl
Na
Ca
Na
HF
CH3F

λ, μπι

1.3
2.21
2.9
3.4

84
496

L, cm

15
14

5
14

100
600

τ, ns

0.5
0.47
0.17
0.47
3.3

20

T2. ns

1
1.1
5
1.7

220
(Γ, = 60)

2-10»
6.10»—2· 101»

2-ΙΟ10

6.10·—2-10»
10"

3-10»

to ns

12
2—5

15
2—7
400
100

Ref.

54

,})

2

1=0

Superradiative transition FIG. 6. Energy-level diagram
of the HF molecule.

sends the molecule from its ground state (v = 0) to one
of the rotational sublevels of the first vibrational state
(v = l) produces an essentially complete population in-
version between two coupled rotational sublevels in the
ν = 1 state. Figure 6 shows the energy diagram of the
HF levels.

Similarly, superradiance pulses could be produced by
making use of other rotational transitions of the f = 1
level. The corresponding transition wavelengths at
which superradiance was observed in Ref. 24 are sum-
marized in Table Π.

Below 5 mtorr, the superradiance pulses are delayed
500-2000 ns with respect to the pump pulse. As the
pressure is reduced, the delay and length of the super-
radiance pulse increase, while the intensity falls off.
At these pressures, the radiation has an oscillatory
structure; i.e., there is a train of pulses of decreasing
height (Fig. 5a). At pressures above 10 mtorr, a single
superradiance pulse is observed (Fig. 5b).

If we ignore the relaxation of the molecules with two
rotational levels between which the superradiance tran-
sitions occur, we can adopt a three-level model for the
superradiance in this case. A similar arrangement for
producing superradiance was used by Rosenberger et
aZ.54 They observed superradiance in purely rotational
transitions of the CH3F molecule. For the optical
pumping they used a pulse from a COjTEA laser with
λ= 9.55 Mm, exciting the ^Q(12.2)-mode of CH3F. The
length of the cell holding the CH3F was varied from 2.3
m to 9.7 m, and the gas pressure was varied from 0.08
to 0.8 torr. When the cell was less than 6.3 m long, the
superradiance pulses emitted toward the two ends of the

TABLE Π. Summary of the rotational
transitions of HF at which superradiance
was observed in Ref. 24.

Pump

B,(J)

Λ,(0)

Hi (2)
JM3)
iM4)

λ, μτη

2.50
2.48
2.45
2.43
2.41

Pi (2)
Pi (3)
Pi (4)
Pi (5)
Pi (6)

λ, Mm

2.58
2.61
2.64
2.67
2.71

Superradiative
transition

V L

1-0
2 - 1
3—2
4—3
5—4

λ, μπι

252.7
126.4
84.4
63.4
50.8

Rl(J) denotes the transition (v — l, / + l)->- (u = 0, /),
? ! < / ) d e n o t e s t h e t r a n s i t i o n ( D = 1 , / — 1 ) - • ( i > = 0 , / ) .
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Pump pulse

FIG. 7. Experimental arrange-
ment of Ref. 56.

cell had the same shape. In this case, therefore, the
pumping was homogeneous. As the length of the cell
was increased, the shapes of the pulses leaving the two
ends of the cell became different. This change corre-
sponded to a transition to a travelling pump. The de-
pendence of the properties of the superradiance pulses
on the pressure and length of the sample, for short
lengths, were the same as in the experiments of Ref.
24.

b) Superradiance of optical transitions of atoms

Level degeneracy can strongly affect superradiance,
as has been demonstrated particularly clearly in the
experiments of Refs. 55 and 56, where the effect was
observed during electronic transitions in a vapor of
cesium atoms. The experimental arrangement used in
Refs. 55 and 56 is shown in Fig. 7. In some of the ex-
periments, the cesium vapor was held in a cell from 1
to 10 cm long at 30-100° C; in other experiments, it was
injected through a slit with dimensions of 0.5 x 3 mm
from an oven containing several grams of cesium at
200-300° C. Figure 8 shows the level diagram of the
cesium atom. In Ref. 55, the effect was observed in
two situations. In a first experiment, a pulse from a
N2 laser with a spectral width of 400-500 mHz excited,
from one of the sublevels of the hyperfine structure of

FIG. 8. Energy-level diagram of the cesium atom.
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FIG. 9. Quantum beats in the superradiance intensity caused
by hyperfine structure of the 7P1 / 2 level of the cesium atom.55

The abscissa scale shows the time in nanoseconds.

the 6S 1 / 2 state, a hyperfine sublevel of the IP state,
which decayed through superradiative decay to one of
the hyperfine sublevels of the IS state. Since the de-
tector did not resolve the beats which resulted from the
hyperfine structure of the IS state (of the order of 2
GHz), the observed beats were due entirely to the
hyperfine structure of the IP level. Figure 9 shows os-
cilloscope traces of the superradiance pulses for the
case of the excitation of the 7P 1 / 2 level. The beats are
at 400 MHz, which corresponds to the hyperfine struc-
ture of the ΤΡχ/2 level. In the second experiment, a
transverse magnetic field of 2.8 kOe was applied to the
sample, and excitation was brought about by a pulse
with linear σ polarization.

Figure 10 shows the Cs level diagram in a magnetic
field. The Μ = -5/2 sublevel of the IP state could be
excited independently of the M=- 3/2 sublevel, and in
this case a superradiance pulse was observed without
beats. S, on the other hand, the intensity of the ex-
citing pulse was such that the nutation frequency ex-
ceeded the splitting of the ground level, 1.3-GHz beats
appeared (Fig. 11). It should be noted that these beats
cannot be observed in spontaneous decay, since the sub-
levels of the IP state were excited from different sub-
levels of the ground level and decayed to different sub-
levels of the final state.

-112

FIG. 10. Energy-level diagram of cesium in a magnetic field
of 1.8 kOe.
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TABLE ΠΙ. Comparison of the theoretical and exper-
imental delay times.

SO

FIG. 11. Quantum beats in the superradiance intensity in a
magnetic field of 2. 8 kOe (Ref. 55).

Gibbs et al.w observed single superradiance pulses.
Their observation conditions corresponded to the second
experiment of Ref. 55, but they varied the vapor density
and the characteristics of the cells over broad ranges.
The results of their experiments are shown in Fig. 12.

The experiments by Gross et al,57 were an extremely
interesting continuation of the experimental research on
superradiance with cesium. Here beats were observed
from the interaction of two groups of atoms with dif-
ferent veloicites within the Doppler width (500 MHz).
In contrast with Refs. 55 and 56, the sublevels of the
7-P1/2 state were excited in Ref. 57 by a pulse from a
iV2 laser with a bandwidth of 100 MHz, i.e., less than
the distance between the hyperfine levels of the TPi/2
state. Consequently, the atoms excited to the 7P1 / 2

state were those whose velocities vf (vf.) satisfied
VEF = VL — fcLUp, V f F . = VL — kLVF ,

where vL and k£ are the average frequency and average
wave vector of the exciting pulse, and vtr(vtr·) is the
difference between the frequencies of the upper (lower)
sublevel of the 7-P1/2 state and one of the sublevels of
the 6St/2 state. Accordingly, this method leads to the
excitation of two groups of atoms, which have different
velocities and accordingly emit pulses with different
frequencies, v/r + ksrvF and vtr +knvF,, respectively,
where vfr(vfr>) is the difference between the frequen-
cies of the upper (lower) sublevel of the *IP\/i state and
one of the sublevels of the 7S1 / 2 state, and fesr is the
average wave vector of the superradiance photons. We
thus expect the superradiance pulses to be modulated at
a frequency

,„
( ! _ «gL),

where
v r F . = v g P — vsr. = v f F — vtF..

For emission along the direction of the exciting field

0.1

FIG. 12. Dependence of the delay time t0 on the coherence
time TC (ref. 56). 1) Beam, L=2 cm, Λ = 273 μπι, Γ* = 32 ns;
2) beam, £ = 3.6 cm, « = 366 μπι, T* = 18 ns; 3) cell, £ = 5 cm,
Λ = 432 μπι, Τ | = 5 ns.

Experimental"

N 10-J»

(cm3)

6.7
4.3
2.0
1.9

Note:

Equation

Equation

Equation

31.3
20
13.5
8.9

3.5): io =

3.29): <i =

V "*

0.16
0.25
0.37
0.56

tc In Λ\

to, ns

6±1
8±1

10±2
15±3

l-h)'-

Theoretical, f. ,ns

Equation

(3.5)

3.2
4.9
7.1

10.5

(3.32)

3.3
5.0
7.6

11.7

(3.29)

5.5
7.6

10.3
14.3

•Hi)]"'-f·

(k»r A L > °)> t n e frequency will be red-shifted; if kBT

and %L have opposite signs, the frequency will be blue-
shifted. Such a shift was observed experimentally in
Ref. 57. An important feature of the experiments of
Ref. 57 was that the beats arose, not as a result of the
formation of a coherent superposition of states of one
atom, but because of a coherent superposition of states
of physically distinct atoms. A similar procedure can
be used to measure isotopic shifts.

Superradiance was observed in rubidium vapor by
Grubellier et a/.58 Transverse pumping of atomic beams
kept the Doppler width small. A study of the polariza-
tion dependence of the superradiance pulses revealed
several new features of the superradiative decay—not
found in the case of the isotropic spontaneous decay of
a system of atoms. These new features may find ap-
plications in spectroscopy.

Flusberg et aZ,59 observed superradiance in thallium
vapor. They observed superradiance at a record short
wavelength, λ=1.7 μπι.

Gross et <rf.eo observed superradiance in sodium vapor
vapor. This was the first observation of superradiance
in the case of cascading transitions of atoms.

To conclude this section, we will briefly compare the
theoretical and experimental results. As we mentioned
earlier, "pure" single-pulse superradiance was ob-
served in the experiments of Ref. 56, where special
measures were in addition taken to arrange conditions
conforming with the single-mode model.

It is thus natural to compare the theoretical results
specifically with the results of those experiments (Table
ID). The experimental data in Table m correspond to
the series of measurements indicated by the squares in
Fig. 12. We see, first, that the effect was also ob-
served in weakly amplifying media in Ref. 56, since
the condition 1αΑΓ«19 held in the experiments of Ref. 56.
According to the data in Table m, the results calculated
from Eq. (3.29) agree best with the results of this series
of experiments. This conclusion is not surprising,
since Eq. (3.32) follows from (3.29) in the case τ « τβ,
as we mentioned eariler. In turn, Eq. (3.5) follows
from (3.32) in the case μΧ»1ηΝ, while for the charac-
teristics listed in Table I we have \s.L % lniV, as we men-
tioned above, and τ ~ τβ.
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Έ

FIG. 13. Scheme of intramolecular transitions in super-
radiative Raman scattering, a, b) Working levels; p) inter-
mediate level. ωΙι = ωαί + ω!; ϋωΙι is the pump photon; and
Κω, is the photon of the Stokes component of supperradiative
Raman scattering.

6. SUPERRADIANCE IN RAMAN SCATTERING
(MULTIMODE THEORY)

The questions which we have been discussing in the
preceding sections refer to the case of single-photon
superradiance, in which the frequency of the emitted
light is equal to the transition frequency, ω = ω0. There
is of course also interest in theoretical and experimen-
tal study of the corresponding effect in two-photon (or,
in general, multiphoton) processes. A first step in this
direction was taken in a study of the superradiative
Raman scattering of light in molecular and atomic sys-
tems. This scattering is an example of a two-photon
process in which the pump photon a>L generates a photon
corresponding to Stokes scattering, ws (Fig. 13).

As in the case of single-photon superradiance, there
are two ways to produce superradiative states in the
case of superradiative Raman scattering. The first way
is to excite the medium beforehand with a coherent field.
The macroscopic polarization induced by this field
leads to a transient Raman scattering whose intensity
is proportional to the square of the number of scat-
tering particles.6 1'6 2 In this case the interatomic inter-
actions caused by the field radiated by the atoms them-
selves are unimportant. This effect has been observed
experimentally.63 The second process, in which we
are also interested, is the occurrence of superradiative
Raman scattering in an originally noncoherent system
of atoms by virtue of the spontaneous induction of inter-
atomic correlations in the course of the scattering.8 4'2 2

The approach taken below22 toward a description of
multimode superradiative Raman scattering automa-
tically also yields the results for the case of single-
photon superradiance. (In this sense, this approach is
an alternative to that used in Subsection 3c). The basic
advantages of this approach are the clarity of the physi-
cal interpretation of the formation of the superradiative
state, the description of the angular distribution of the
superradiance, and the identification of the relationship
between superradiance and nonequilibrium phase tran-
sitions.

Basic equations of the theory of superradiative Raman
scattering and analysis of their solution

We assume that a plane electromagnetic pump wave
acts on a system of Ν multilevel atoms (or molecules)
in a volume of arbitrary geometric shape:

EL (r,, i) = Ejj (t) + Eli (t) = eL {Ehexp [ - i (o>Li-kLrj)i + ;c.c. }, (6.1)

where £ L = 0 for t < 0 and EL = const for t > 0.

All the atoms are initially in the ground state (b), and
the average polarization of the medium is zero. Raman
scattering in the medium gives rise to a Stokes field at
the frequency ω8= u>L- ωβ >, where we t> 0 is the fre-
quency of the transition between the pair of levels in
which we are interested:

E8 (t), t) = Eli (t) + Eh (t) = (6.2)

To describe the superradiative Raman scattering we
introduce operators representing the fields, E(TJft),
instead of the creation and annihilation operators for
the photons, ak and αζ, which we used previously. The
relationships between these operators are described by
Eq. (6.6) below. This description is the conventional
one for stimulated Raman scattering, and it makes it
easier to compare the theory of superradiative Raman
scattering with the theory of transient stimulated Raman
scattering.65

Equations for the atomic variables which describe the
population difference and the dipole moment of the se-
lected pair of levels, a and b, are written in the form22

H.c. , (6.3)

(6.4)

where

(di>peL) d p a <WL) -|

Solving Maxwell's equation, we can express the Stokes
scattered field in terms of the sum of the contributions
of the individual atomic dipole moments at the Stokes
frequency, P M =drf7ie- ' i w * '- K * r ' > +H.c. (with as = ratEL),
to the vacuum field Eso:

Esj = —τ~ / ι ' " P_ (̂  ) [[«S^j/J Π; f] f\p I — i 1

where

p<o (C) = σ») exp [i (u>abt' - t t r , ) ] , i' = t - U ,

(6.5)

(6.6)

and «j and at are the creation and annihilation operators
for the field quanta, which satisfy the conditions

<«ka£'> = 8k k., <aiak.} = 0. (6.7)

Here and below, the angle brackets denote the average
of the operators over the vacuum field and over the en-
semble.

By virtue of (6.5), a study of the scattered field
Eg reduces to an analysis of the dynamics of the polar-
ization of the atomic system, which is governed in turn
by the dynamics of the population difference σ3 and by
the fields EL and E^. At this point it is convenient to
introduce

and the total population difference R3=T/J(o3>). Substi-
tuting (6.5) into (6.3) and (6.4), using expansion (6.6)
for Ego, and averaging the resulting equations over the
vacuum state and the ensemble,22 we find the following
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(6.8)

"ifcW*)· (6.9)

system of equations:

/ d 1 \ 1
\ αϊ * 2 ' " i S

1 sn • 1

_f· • 27"jS

Here Ο,ί = 8ίη(ω5»',//ε)(ω8/ο^( ί is the matrix of the
effective interaction between atoms which results from
the radiation at the Stokes frequency. In deriving (6.8)
and (6.9) we ignored the retardation in the slow part of
the density matrix, setting t' = t-r()/c* t in (6.5), as
we are justified in doing under the condition L/c « τ β :

~dfl~~
1 d(/V — R,)_ 1

' r , s d<

I r ι •4|Σ(- - ,ωι,ρ—ο

(6.9')
Equation (6.8) describes the dynamics of the total

population difference. At / = 0 we have SU = Q, and
Λ3(0) = - Ν. The beginning of the time evolution of R3

is determined by the spontaneous Raman scattering,
which corresponds to the last term in (6.8). The first
term on the right side of (6.9) describes the induction
of interatomic correlations by virtue of the spontaneous
emission of a Stokes photon by one atom and a reaction
to it by another atom. Β this term were not here, we
would have SU = Q at all times, and there would be no
superradiance, as can be seen from (6.9) and the given
initial conditions (Sti=0 at f = 0). Since the spatial
dimension of the superradiative Raman scattering pulse
satisfies c re > L by assumption, we can assume that
all the population differences are the same in (6.9):

The incorporation of the dynamics of the populations
is a fundamental distinction between superradiative
Raman scattering and transient stimulated Raman scat-
tering, which is usually described by ignoring popula-
tion changes.65

We can use Eq. (6.9) to relate the theory of super-
radiance to the theory of phase transitions. Κ we set
(d/dt)St/ = 0 in the equation for Sfl, this equation as-
sumes the form of the Ornstein- Zernike equation for
a binary correlation function in the theory of equilib-
rium phase transitions.86 From this standpoint, super-
radiance could be interpreted as a nonequilibrium phase
transition described by a time-dependent equation. This
analogy has not been pursued elsewhere, and we would
like to do so here.

To solve Eqs. (6.3) and (6.9), we use the eigenfunc-
tions φχ and the eigenvalues of the matrix λ in Eqs.
(3.19) and (3.20).

Transforming to the collective quantity S (λ, t)

=Z)i*/ s i i ( i ) ! M r i) i M r i) i n (6·8) a n d (6.9). and using the
properties (3.20), we obtain the system of equations

(6.10)

(6.11)

In deriving (6.10) and (6.11) we used the relation
Z5X\S(\, t)*H\S(XQ,t) and we set l/T 2 = 0.

Eliminating S(X,,,f), we obtain an equation for R3(t):

(6.12)

with the initial conditions R3(0) = -N, dRfy/dt
After the replacement R3 R3, Tla~ Tu Eq. (6.12)
describes the superradiative dynamics of the population
difference in a system of two-level atoms which is ini-
tially inverted [cf. (3.28)]. This equation contains two
important generalizations compared to Eq. (2.9), which
was derived for the case of a system with dimensions
smaller than a wavelength. Equation (6.12) corresponds
to (2.9) if we set its right side equal to zero. Then its
exact solution is

*3№ = .<vr(i+|)thi^_i|, (6.13)

t* = τ 0 In λ0, ξ = λ0, (6.14)

which corresponds to an increase in the duration of the
pulse of the distributed system, TC, by a factor of N/)^
in comparison with the case of the system with dimen-
sions smaller than a wavelength [cf. (2.11)].

Ignoring the spontaneous terms, we obtain from (6.10)
and (6.11) an analog of the law expressing the conserva-
tion of the length of the Bloch vector:

(6.15)

Using (6.13), we then find

At the time t=t%, we have R3(tll) = 0, S(xo,i0)=max,
and the system is in a superradiative state. The com-
plete equation (6.12) cannot be solved analytically, but
it follows from the general form of this equation that
the delay f0 must in fact be greater than predicted by
Eq. (6.14), since the right side of (6.12) vanishes when
the spontaneous "seed" in (6.11) (the first term on the
right) is increased by a factor of N/\K »1. tt is easy
to see that with such an increase in the spontaneous
term the initial growth rate S which follows from (6.11)
becomes the same as the corresponding expression
which we obtain from the conservation law (6.15) with
the help of (6.10). Thus, the increase in the delay £0

results from a violation of the conservation law (6.15)
at early times.

We can approximate i0 in the following manner. As-
suming R3(t) «- ΛΓ for 0 <f« f0, we obtain from (6.11)
and (6.16)

Hence we have

-ln-u-. (6.17)

It follows from (6.17), (3.22), and (6.9') that the delay
of the superradiative Raman scattering pulse i0 (and
also the pulse length, TC) is in the case f» 1 inversely
proportional to the product of the number density of
scattering particles, n = N/V, the pump intensity \EL\l,
and the length of the medium, L,

Using (6.12) and (6.13), we can write f0 as
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f 2 3

FIG. 14. Shape of the superradiative Raman scattering pulse;
comparison of the delay times f0 and i*. 1-3) Numerical solu-
tion of (6.10) and (6.11); l*-3*) calculation from Eq. (6.16).
£ = 10 cm, A = \ cm2, W=1014. 1, 1*) V5=27ru>s/c = 10~5 cm;
2, 2*) λ ^ Ι Ο " 4 cm; 3, 3*) λ, = 10"3 cm.

.r«l,

? ? = ? , we find, by using \=Nv/k\A in (6.17), that
the result in (6.17) is the same as Eq. (3.5), which
holds for the single-mode model. Thus, the condition
for the applicability of the single-mode approximation
in describing superradiative Raman scattering is the
condition κ — 1, i.e., &—\. A numerical solution of the
system (6.10), (6.11) confirms the estimate (6.17).
Figures 14 and 15 show the results found for S(\,t) and
R3(t) through a numerical solution of (6.10), (6.11);
shown for comparison are the results on S(\, t) and
R3 found from Eqs. (6.13) and (6.16).

It follows that the results derived above hold under
the condition f 0 « T2. If, on the other hand, f0 £ T2, then
we must add a term - r^Spi^, f) to the right side of
(6.11). Then by analogy with the derivation of (6.17),
we obtain from (6.11) and (6.16)

Superradiative Raman scattering is thus also possible
in the case t0 <r T2, but with TC < T2. This situation cor-
responds to resonant superradiance in weakly ampli-
fying media (see Subsection 3c, part 3).

We turn now to the shape of the superradiative
Raman-scattering pulse and the angular distribution of
the radiation. Using (6.5), we can express the energy
scattered per unit time into a unit solid angle along the
direction of the unit vector £ in terms of St] and R3;

FIG. 15. Dynamics of the population difference in superradia-
tive Raman scattering. The parameters and notation are the
same as in Fig. 14.

then we can transform to the collective quantiy S(\, t).
We find22

In the limits 9~« 1 and . 7 » 1 we find with the help of
(3.23) explicit expressions for / & ; explicit expressions
for 7s > i

where R3(t) and S(\, t) are given by Eqs. (6.13) and
(6.16) (with ij — i0), and the angular-directionality fac-
tor of the superradiative Raman scattering is

2 [β"Ρ («(to + k) ttl) + exp (i (k0 - k) r u )]

Bere H = u}sL/c) h=<j)aR/c,

(6.19)

(we recall

khlkol),that kj is directed along the cylinder axis,
and Jl is the Bessel function of order one.

The first term in (6.18) describes isotropic spon-
taneous Raman scattering which occurs at i = 0; the
second term describes the collective emission which
takes the form of a pulse whose maximum is reached
at the time £0. It can be seen from (6.18) and (6.19) that
the emission during superradiative Raman scattering
is into small solid angles in opposite directions along
the cylinder axis. We see from (6.16) and (6.18) that
at the time i0 the scattered power is at a maximum and
we have I8,i(t0) ~Νΐ. When we use the replacements
ω8— ω0, Tm—Tu R3— - R3, we see that Eqs. (6.18) and
(6.19) describe the pulse shape and the angular distribu-
tion of the superradiance in a system of two-level atoms
which are initially inverted in a noncoherent manner.
Using Eqs. (6.13) and (6.16) for Rs and S^J), we can
write, for this case

' ft - 44πΓ,
(6.20)

Κ we set ξ = \, then we find that (6.20) assumes the
form of the result found by Eberly and Rehler,13 which
was derived for a medium excited beforehand by a short
pulse of coherent light with wave vector k,,. There is a
difference: The expression for r(k) in (6.19) contains
two terms which describe the symmetric formation of
superradiance in opposite directions along the cylinder
axis, and k,, is now the wave vector of the eigenfunction
of the interaction matrix in (3.23). If we take into ac-
count, that we should in fact actually use the replace-
ments fj — f0 and ξ — N/y. in (6.13) and (6.16), we find
that Eq. (6.20) remains valid if we set ξ=Ν/χ. in it.
This approach corresponds to an increase in the delay
of the superradiance pulse to the value i0 in (6.17).

Equation (6.20) clearly shows the time evolution of
the intensity and angular distribution of the superradi-
ance (and, correspondingly, the superradiative Raman
scattering). At t = Q we have

/. in) iiiu-w
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FIG. 16. Spatial distribution of the superradiance from a
cylindrical medium [according to Eq. (6.20)]. The cylinder
axis coincides with the χ axis. The distribution is found by
imposing a symmetry with respect to the two directions along
the χ axis on the diagram in Ref. 13 (the result of a numerical
calculation). The Fresnel number is F^A/XL, where λ is
the wavelength, V= (ΙΟ^/βιτ2) i s the volume of the cylinder,
and the density of active atoms is 61.2/λ3. The scale is ra-
dially logarithmic; each successive point along the axes repre-
sents an Increase in the intensity by an order of magnitude.
We see that in the superradiative state the emission intensity
along the axis of the cylinder is roughly six orders of magni-
tude higher than that in the perpendicular direction. The dia-
gram also shows the intensity distributions for superradiative
Raman scattering.

which corresponds to isotropic spontaneous scattering.
At the time t = f0 = TC lniV/κ we have

(6.21)

(We used ξ =Ν/κ» 1 in the derivation of the last equal-
ity.) Thus, at the time f0, the system radiates in op-
posite directions along the cylinder axis, for which we
have r(fe) — 1, at a rate N2 higher than the rate of the
spontaneous emission from an individual atom (see
Fig. 16).

This analysis shows that in the approximation of a
given pump field the problem of describing superradia-
tive Raman scattering turns out to be completely analo-
gous to the problem of describing single-photon super-
radiance. Correspondingly, in this approximation, the
condition for observation of Raman-scattering super-
radiance turns out to be analogous to the condition for
superradiance: L/c« TC« Τ2(τβ~l/n). Then for a
given pump intensity /L there is a lower limit on the
density of the medium, w>«m i n(/£).

For clarity, we can express the conditions for ob-
servation of superradiative Raman scattering in the
approximation of a given pump field in terms of the
amplification coefficient for steady-state stimulated
Raman scattering, G = 2irwd2^s/^T2"

1c. Using the ex-
pression for TC in (6.14), with λ,, given by (3.22), we
find

(6.22)

In time-dependent stimulated Raman scattering, which
occurs (like superradiative Raman scattering) over
times shorter than T2, the growth of the amplitude of
the Stokes wave over the length of the medium, L, is
proportional to expVGLyTZC. By virtue of the inequality
at the left in (6.22), we have VG£2/T2e«l in super-
radiative Raman scattering, and we can ignore stimu-
lated amplification.

The pump field can be assumed given if the input en-

a )

b)

«0

20 40 60 Sfft.n

FIG. 17. Oscilloscope traces of various pulses, a) Pump;
b) anti-Stokes component of superradiative Raman scattering;
c) Stokes component of superradiative Raman scattering.68

ergy over the radiation time 2 τ 0 is greater than the
energy drawn from the pump field, i.e., if

Also using (6.14), (3.22), and the expression for Ti8

in (6.9'), we obtain

η < ηη

cIL

π V2a>so>i. I
(6.23)

Accordingly, depletion of the pump leads to an addi-
tional upper limit on the number density of scattering
particles. F o r i ~ l cm, a>s~a>t~1015 s"1, and \r\
~1O"24 esu, we find nm a ! l~101 9 cm"3. The calculation
for superradiative Raman scattering in the single-mode
model in Ref. 7, with allowance for pump depletion,
confirms (6.23).

Superradiative Raman scattering was apparently first
observed by Pivtsov et al.ss In their experiments, they
studied the Q01(l) Raman line in H2, for which T2

~7.5· 10~9 s · atm and Tt» T2. The pump wavelength
was λ£ =694.3 nm; Xs = 976 nm; the length of the cell
was £ = 3 0 cm; and η~7.2· 1019 cm"3. The pump energy
was W=0.2-0.5 J; the pulse length was 50 ns, the rise
time was 2-3 ns (Fig. 17); and the light was focused to
a spot 0.2 mm in diameter. The most important result
of those experiments was the observation of a substan-
tial delay of the Stokes and anti-Stokes Raman-scat-
tering pulses with respect to the peak of the pump
pulse. With P=2.7 atm and W=0.35 J, this delay was
17 ± 5 ns, falling off with increasing pump power and
with increasing pressure, roughly in proportion to the
reciprocal of the product η \EL | 2 . The pulses had an os-
cillatory structure (Fig. 17).

7. CONCLUSION

As mentioned above, the basic characteristics of
superradiance are a high directionality, a quadratic
dependence of the maximum intensity on the particle
density, and an inverse proportionality between the
pulse length and the particle density. These charac-
teristics determine the possible applications of the ef-
fect as a source of intense coherent pulses whose in-
tensity and length can be varied over broad ranges in a
rather simple manner. Furthermore, while superradi-
ance sources would become alternatives to existing co-
herent laser sources in the infrared, visible, and ultra-
violet ranges, they would be the only possible type of
coherent sources in the vacuum-UV, x-ray, and γ
ranges, as mentioned above. The two-photon super-
radiance may prove pertinent to the development of a
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tunable laser which makes use of two-photon emission
in an inverted medium.

Research on superradiance is continuing, and the
number of papers on this subject is continuously
growing.

A complete theory of superradiance will require fur-
ther work on such questions as how to incorporate the
field propagation in the quantum model for an arbitrary
geometric configuration of the medium, for both single
photon and multiphoton processes: the spatial and
temporal coherence of superradiance; and the relation-
ship between superradiance and nonequilibrium phase
transitions. So far, most of the experimental work on
superradiance has been restricted to single-photon
transitions in the optical part of the spectrum. It would
be interesting to see a demonstration of superradiance
corresponding to multiphoton transitions, an experi-
mental study of the spatial and temporal coherence of
the superradiance, and a demonstration of superradi-
ance at shorter wavelengths.

In this review we have been interested in electro-
magnetic superradiance. Methods using effects similar
to superradiance (for example, the photon echo78·79) are
widely used in spectroscopy.

Corresponding methods have been developed exten-
sively in acoustics.7 5'7 6 They have been used to develop
new types of acoustic sources, to find a more detailed
explanation of the relaxation of impurity centers, and
to improve substantially our ability to study metals and
impurity centers, by supplementing rf-spectroscopy
methods.

The method of exciton superradiance77 promises to
become an effective tool for studying molecular crystals
and semiconductors.

This progress raises the hope that optical superradi-
ance will also find widespread applications in spec-
troscopy, where it may prove effective as a method for
amplifying the response of systems to transitions with
small dipole moments.

APPENDIX. PHASE TRANSITION IN AN
EQUILIBRIUM SYSTEM OF TWO-LEVEL ATOMS
INTERACTING THROUGH AN ELECTROMAGNETIC
FIELD

The superradiance which we have discussed here is a
process of relaxation to equilibrium in an originally
very non-equilibrium system of two-level atoms which
are interacting with a radiation field. It is also of in-
terest to examine equilibrium properties of this sys-
tem.

Hepp and Lieb89 (see also Ref. 70) have found that in
the equilibrium system with the Hamiltonian in (2.1),
taken in the single-mode approximation, a phase tran-
sition may occur with the appearance, at a temperature
above a certain critical level, Ta, of an average pho-
ton-mode occupation number (αί«»> ~ N, where Ν is the
number of atoms (Bose condensation of photons). At
T> Ta, («ία») is determined by the Planck formula and
is independent of N. A necessary condition for the phase

transition is 8ffwrf2Aw0 > 1, where d is the dipole matrix
element, and η is the density of atoms.

Ε should be noted that the fundamental question of the
frequency at which the Bose condensation occurs was
not discussed in the original papers,6 9'7 0 and in some
subsequent papers it was asserted that there is a con'
densation of photons with a frequency ω» or with the
frequency of the atomic transition, ω0 (phase transition
to a "superradiative state"). The reader is referred
to Refs. 71 and 72 for a critical analysis of the possi-
bility of an equilibrium phase transition to a super-
radiative state and for a more extensive bibliography.

The frequency of the Bose condensate was studied in
Refs. 73 and 74. Elesin and Kopaev74 used a model
with the Hamiltonian in the Dicke approximation.1

Emel'yanov and Klimontovich73 studied the situation
for extended systems on the basis of the total Hamil-
tonian, and they found the relationship between the
Dicke approximation and the concept of an effective
field. It was shown in these papers that there is a
"soft" mode, with a frequency which vanishes at Τ
= Ta, in the spectrum of collective excitations of this
system. This result means that the frequency of the
Bose condensate is zero, and the phase transition is
accompanied by the spontaneous appearance of a macro-
scopic polarization at zero frequency or a constant
electric field Ε = lim»_ 0V (2τω,,Κ/ V){a;ak). toother
words, a ferrolectric phase transition occurs.

We wish to thank S. A. Akhmanov, who stimulated
this paper, for critical comments and useful advice.
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