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1. INTRODUCTION

A broad class of varied phenomena pertaining to non-
linear optics is based on various elementary nonlinear-
optical phenomena that occur at the atomic level. As a
typical example of such a phenomenon, we can point
out the process of multiphoton excitation of an atom.
In recent years the elementary nonlinear-optical phe-
nomena have been studied experimentally in detail,
many studies have been devoted to describing them
theoretically, and the results of the studies have been
generalized in a set of monographs.1"4 As is well
known, a sufficiently high intensity of the light field
is required to allow observation of nonlinear phenom-
ena. We must bear in mind that not only does the
strong field give rise to multiphoton transitions in the
atomic spectrum, but the very spectrum of the atom
suffers substantial changes. Laser radiation is em-
ployed in experiments in practically all cases involving
a strong light field. However, as a rule, the experi-
mental data and the results of calculations pertain to
external fields having substantially different proper-
ties. While most calculations have assumed the field
to be strictly monochromatic, most of the experiments
have been performed with nonmonochromatic laser
radiation. This review will discuss the elementary
nonlinear-optical phenomena that arise in the interac-
tion of nonmonochromatic radiation in the visible fre-
quency range with an isolated atom. Although the de-
gree of monochromaticity Δω/ω of laser radiation is
very high in comparison with the radiation of incoherent

light sources, yet the width Δω of the laser radiation
spectrum is always finite. In many cases it is not at
all small in comparison, e.g., with the width of the
atomic levels, while the intensity F of the radiation
fluctuates in time. The consequences of the nonmono-
chromaticity of laser radiation are nonlinear interac-
tion characteristics differing from the case of ideal,
strictly monochromatic radiation. A different absolute
value of the probability is realized, as well as different
dependences of the probability on the frequency and in-
tensity of the radiation. The differences between the
result of action of monochromatic and nonmonochro-
matic fields in exciting nonlinear optical phenomena
can be most easily be described in the special case in
which the nonmonochromatic field is a Gaussian ran-
dom quantity. Although, strictly speaking, the non-
monochromatic laser radiation field is not Gaussian,
yet it can be treated as such to a certain degree of ac-
curacy. This situation is very important, since it sim-
plifies the analysis of various phenomena.

In writing this review, we have eschewed the aim of
presenting the entire variety of different phenomena
that can arise in the nonlinear interaction of nonmono-
chromatic laser radiation with various objects at the
atomic level. We wished to discuss only the fundamen-
tal phenomena that are most essential in drawing an
overall picture of the interaction, and also essential
in practice. Correspondingly, as a rule, an atom
serves as the object, while the radiation field of a
multifrequency laser serves as the nonmonochromatic
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field.

A laser is generally said to be a multifrequency one
when it emits many longitudinal modes having the
lowest transverse index. The radiation of a multifre-
quency laser is a typical example of nonmonochromatic
radiation. Whenever the modes are not mutually cou-
pled, the radiation field of a multifrequency laser is
random. Both the number of generated modes and the
character of the mutual coupling between them deter-
mine the averaged characteristics of the laser radia-
tion: the width Δω and the form F(ID) of the spectrum,
the intensity distribution P{F), and the higher-order
correlation functions. An important feature of multi-
frequency laser radiation is the presence of temporal
fluctuations of the emission intensity, so that the radia-
tion field intensity proves to be a random quantity that
can be described in the language of correlation func-
tions.5 The time scale of the fluctuations of the radia-
tion field is determined by the correlation time Tcor

~1/Δω, i.e., the reciprocal of the spectral width of the
radiation. Since the widths of the radiation spectra of
multifrequency lasers lie in the range 0.1-10 cm"1, the
correlation times lie in the range 10~10-10"12 s. For
multifrequency laser radiation, the quantity F(t) varies
weakly within a time interval Δί< r c c r ) while in a time
interval Δ/» TC O I, the quantity F(t) fluctuates and takes
on all possible values to realize the distribution P(F).

In describing the nonlinear interaction of multifre-
quency laser radiation with an atom, one must estab-
lish which field it is that leads to the observed effect—
the instantaneous value of the field or the value of the
field averaged over some time interval? There is no
unambiguous answer to this question. In various spe-
cial cases the answer is determined by the relationship
between the correlation time of the radiation and the re-
sponse time of the atom (we assume that the observa-
tion time is always longer than the response time of the
atom). Si the case of an instantaneous response, when
we can consider the fluctuation of the intensity to be
slow (rc o r large) the interaction with the nonmonochro-
matic radiation is equivalent to the interaction with
monochromatic radiation having a slowly varying in-
tensity (as compared with the response time). Here the
width of the radiation spectrum plays no role, so that
the yield of the nonlinear process is determined only
by the distribution P(F). Below we shall call this the
case of a narrow radiation spectrum. In the case of a
noninstantaneous response, in which the intensity fluc-
tuates rapidly in time (TCOI small), the character of the
time variation of the field becomes important. Then the
correlation functions of the field of increasingly higher
order must be manifested in the probabilities of the
nonlinear processes with increasing degree of non-
linearity of the process. Thus a dependence of the yield
of a nonlinear process on the width and form of the ra-
diation spectrum arises. We shall call this the case of
a broad radiation spectrum.

We can point out three observable characteristics of
nonlinear optical phenomena that are governed by the
properties of the nonmonochromatic radiation. They
are the mean yield of the nonlinear process over the

time interval of observation, the fluctuations of the
yield of the nonlinear process about the mean, and the
dependence of the yield on the frequency of the radia-
tion and the form of its spectrum. Although the listed
characteristics are of equal importance, both from the
standpoint of their role in the nonlinear interaction and
from the standpoint of their mutual relation to the con-
crete properties of the radiation, we shall mainly dis-
cuss the mean yield and its dependence on the radiation
spectrum, since the problem of fluctuations in the non-
linear interaction of laser radiation with atoms has
been studied in insufficient detail.

The problem of the nonlinear interaction of nonmono-
chromatic radiation with an atom is often treated in two
counterposed aspects. The point is that currently both
the properties of the radiation of multifrequency lasers
and the elementary nonlinear-optical phenomena per se
are objects of study. Therefore nonlinear phenomena
are sometimes viewed as a detector for studying the
properties of the radiation, and sometimes radiation
having some specified properties is employed for
studying nonlinear phenomena. Both approaches to the
problem under consideration will be closely interwoven
below.

2. FUNDAMENTAL PROPERTIES OF
MULTIFREQUENCY LASER RADIATION

As we have said above, we are considering as non-
monochromatic laser radiation the radiation that arises
in a multifrequency generation regime of lasers that
operate in pulsed and continuous-wave regimes. Multi-
frequency laser radiation is characterized by fluctua-
tional intensity excursions in time that alternate with
deep gaps (almost to zero). Correspondingly, multi-
frequency laser radiation must be characterized by the
intensity distribution P(F), the width Δω and form
-F(co) of the spectrum of the radiation, and also by the
corresponding correlation functions. In principle, in a
pulsed generation regime one should also take account
of the finite pulse duration. However, in practice it
does not contribute to the width of the multifrequency
radiation spectrum.

Multifrequency laser radiation can be described in the
language of the time variation of the amplitude A(t) and
the phase <p(t) of the electric field intensity

% (t) = A (t) eWo'+W) (2.1)

and of the radiation intensity F(t) = &(t)W*(t)=A2(t)
[in Eq. (2.1), ω0 is the central frequency of the radia-
tion spectrum of the laser].

One can also use the language of the mode composition
of the radiation. In this language, the radiation amounts
to the sum of the fields corresponding to the established
intrinsic oscillations in the laser resonator (modes) at
the different frequencies:

8 (0 = Σ Aj^+^n .

Here An, ωπ, and φπ are respectively the amplitude,
frequency, and phase of the nth mode. The case in
which we are interested concerns the longitudinal
modes, whose frequencies form an equidistant sequence.
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An obvious condition that allows us to employ the mode
language is that the character of the radiation is stabil-
ized. This arises when the duration of emission con-
siderably exceeds the time of passage of the light
through the laser resonator (the so-called axial period).
The evident advantage of the mode language for de-
scribing multifrequency laser radiation consists of the
fact that the amplitudes and phases of the modes are
either constant, or are slowly varying functions of the
time as compared with the duration of the excursions.
The excursions themselves result from beating of the
modes differing in frequency. Here the sequence of
fluctuational excursions repeats in each axial period,
while the number of excursions per axial period, i.e.,
the number of statistically independent values of the
radiation intensity, is approximately equal to the num-
ber of modes being generated.

When one is employing multifrequency laser radiation
to study nonlinear optical phenomena, the optical radia-
tion is that whose fluctuations are described by a Gaus-
sian random process. A well-known example of such
radiation is the radiation of a thermal source. In this
case the intensity distribution of the radiation is de-
scribed by the exponential function

Ρ (F) =-^ exp ( --j£-). (2.2)

The correlation functions of higher orders are ex-
pressed in terms of the first-order correlation function,
which is the Fourier image of the radiation spectrum
F(<JJ). The interpretation of the experimental data is
most unambiguous when one employs such a laser radia-
tion, while it suffices to know the mean intensity (F)
= Ft and the form of the spectrum F(w) in order to char-
acterize the radiation.

The possibility of obtaining from a laser radiation
having properties resembling those of a thermal source
stems from the fact that laser radiation evolves from
spontaneous noise. Evidently a regime of generating
many modes is optimal for imitating the properties of
the radiation of a thermal source. That is, the radia-
tion spectrum must be sufficiently broad. Only under
these conditions can the distribution P(F) be close to
the exponential distribution of (2.2). The width of the
spectrum of the laser radiation, i.e., the number of
generated modes, is determined by the properties of the
active medium, the design of the laser resonator, and
the generation regime. The distribution P(F) for laser
radiation can differ from exponential, not only owing to
an insufficient number of generated modes, but also to
nonlinear effects that arise in the laser resonator and
which are manifested as coupling of modes.

First let us turn to the phenomenon of mutual cou-
pling of modes. Many concrete factors are known that
interfere with the independence of the generated modes.
All the factors are based on the nonlinear interaction
of the radiation with the material of the resonator. The
appearance of these phenomena, together with their
concrete influence on the mutual coupling of modes,
substantially depends on the design of the laser, the
particular fabrication of the standard design elements,
and the operation regime of the laser. Examples of the

appearance of a nonlinear interaction in the active me-
dium of a laser resonator are well known, both from
direct measurements of the metrics of the radiation,8

and from the results of measurements performed with
multiphoton detectors.7 The nonlinear interactions shave
one common property: their role increases nonlinearly
with increasing intensity of the radiation in the resona-
tor. The effect of the nonlinear interaction on the quan-
tity P(F) is qualitatively clear. The nonlinear phe-
nomena that curb the most intense fluctuation excur-
sions limit the region of intensities in which P(F) dif-
fers from zero. Automodulation and stimulated scat-
tering possess this character. The effect of curbing
of intense excursions is most clearly demonstrated by
a model experiment8 in which the laser radiation was
subjected to the action of a nonlinear medium and then
detected with a two-photon detector. The nonlinear phe-
nomena that increase the amplitudes of the most intense
fluctuational excursions expand the region of intensities
in which P(F) differs from zero. A well-known exam-
ple is the bleaching of a nonlinear medium placed in a
resonator under the action of the radiation field in the
resonator. This effect has been observed by using the
method of a multiphoton detector, with Q-switching of
a neodymium-glass laser by means of a bleaching fil-
ter.9 The essential point is that the nonlinear effects
can arise directly in the active medium of the resona-
tor.

The aggregate of experimental and theoretical data
on nonlinear interaction in the active medium of a laser
resonator allows us at present to realize a generation
regime in which the modes of the laser radiation are
independent. In practice, to do this, one must not ex-
ceed a certain field-intensity level in the resonator.

In contrast to the role of nonlinearity, the role of the
number of modes can be taken into account in the form
of rather general relationships. For continuous-wave
laser radiation, the specific property that qualitatively
distinguishes it from the radiation of a thermal source
is the constancy of the energy emitted during the time
of an axial period. The constancy of this energy stems
from its strict correspondence to the number of active
particles in the laser resonator, which is held constant
in time.

We recall that the form of the fluctuations in one axial
period in a continuous-wave generation regime differs
somewhat from the form of the fluctuations in an adja-
cent period. Upon accumulating, these differences are
expressed in the fact that the amplitudes and phases of
the modes slowly vary in time (as compared with the
axial period). However, in spite of these changes, the
fundamental statement—the constancy of the energy
emitted per axial period, remains in force. The energy
emitted per axial period equals the sum of the energies
of all the fluctuational pulses. Therefore the energy of
the maximal fluctuational pulse cannot in any case ex-
ceed the energy per axial period. Consequently, the
radiation intensity in a maximal excursion cannot ex-
ceed the mean intensity of the radiation per axial period
by a factor of more than Τ /τ,», (here Τ is the length of
an axial period, and Tecr characterizes the duration of
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the fluctuational excursions). Thus the distribution
P(F) for continuous-wave laser radiation always differs
qualitatively from the distribution (2.2) for a thermal
source, in which the amplitude of a maximal excursion
is not bounded, and the maximal intensity in an excur-
sion can exceed the mean intensity by an arbitrary fac-
tor. Since the number of fluctuational excursions per
axial period is unambiguously associated with the num-
ber of generated modes, we can establish the relation-
ship of the distribution P(F) to the number Ν of gen-
erated modes. The derivation of this relationship,
which is given below, is based on the constancy of the
energy emitted per axial period. The dependence of
P(F) on the number of generated modes is described by
the relationship;

N(F) r (2.3)

As ΛΓ— «, this goes over into the exponential distribu-
tion of (2.2) for the radiation of a thermal source. The
relationship (2.3) has been derived in Refs. 10 and 11
under the assumption of a very simple, rectangular
form of spectrum, tt is important to note that differ-
ences between the distributions (2.3) and (2.2) exist
throughout the interval of variation of F. We can see
this well from Fig. 1, which shows the P(F) relation-
ship for different numbers of modes. Naturally these
differences increase with decreasing number of modes.

The actual form of the radiation spectrum of a multi-
frequency laser differs from rectangular, being close to
a Gaussian curve. An account taken of the Gaussian
form of the spectrum, which has been carried out nu-
merically in Refs. 12 and 13, has shown that Eq. (2.3)
qualitatively describes correctly the intensity distribu-
tion, while it can be used quantitatively with sufficient
accuracy if we employ in Eq. (2.3) the number of modes
corresponding to twice the width of the Gaussian dis-
tribution.

Thus the distribution P(F) is close to exponential
when there is a large enough number of modes, and in
practice we can neglect the dependence of P(F) on the
number of modes and on the form of the laser radiation
spectrum. We note that the criterion of closeness of the
actual distribution P(F) to the exponential distribution
of (2.2) is determined by the degree of nonlinearity of
the process excited by the laser radiation. This cri-
terion is given in Sec. 6.a.

Now we shall turn to the features of the pulsed regime

F/<F>

FIG. 1. Form of the distribution P(F) of the radiation inten-
sity of a multifrequency laser with varying numbers of gener-
ated modes N = 5, 10, <*>.

of multifrequency generation of laser radiation.

The pulsed regime of generation, which can be real-
ized by ^-switching of the laser resonator, amounts to
a sequence of pulses the intervals between which exceed
their duration by many orders of magnitude. A radia-
tion pulse of a multifrequency laser contains a consid-
erable number of fluctuational excursions. When one
records the laser radiation with a detector whose time
resolution is larger than the duration of the fluctuations,
but smaller than the duration of the pulse, one can mea-
sure the time variation of the mean intensity (F), or the
envelope of the pulse. The envelope of an individual
pulse has the shape of a smooth, bell-shaped curve
with fronts approximately equal to the duration of the
pulse. As a rule, the latter lies in the range from sev-
eral units to several tens of nanoseconds.

Since the radiation pulses are relatively rare, and
we are measuring the result of the action of an indi-
vidual pulse on the material, we are interested in the
properties of the radiation in an individual pulse. The
radiation in an individual pulse is characterized by
practically invariant phases of the generated modes,
and also by an invariant relationship between the ampli-
tudes of the modes. As a rule, the energies of the in-
dividual modes differ substantially, reproducing the
spectrum of the radiation only in the mean. When the
phases and the relationships between the amplitudes of
the generated modes are invariant, the distribution
P(F) does not vary functionally during a pulse, but only
the mean intensity of the radiation varies. In a series
of successive pulses, the values of the amplitudes and
phases of the modes take on random values.

The energy in a pulse is bounded by the same factors
as the energy emitted per axial period in a continuous-
wave regime of generation, and also by the fact that the
process of Q- switching of the resonator is reproduced
in a sequence of successive pulses with sufficient ac-
curacy. Thus the ideas expressed above on the nature
of the distribution P(F) hold also for a pulsed regime.
Equation (2.3), which relates P(F) to the number Ν of
generated modes, also holds. Here, just as in the case
of a continuous-wave emission regime, the quantity
(F) must be measured in an interval of time exceeding
the axial period.

Although the pulsed regime is a very widespread
generation regime, and it is precisely in this regime
that most of the data have been obtained on the nonlinear
interaction of laser radiation with matter, yet due atten-
tion has not been paid to the model of pulsed radiation
described above, in which not only the phases, but also
the amplitudes of the modes are random. A model that
assumes a deterministic character of the amplitudes of
the modes has been employed in a set of studies1 4·1 5 to
describe laser radiation. We note that it allows one to
draw only individual qualitative conclusions on pulsed
radiation, and it does not give a correct quantitative
answer to a number of problems.

We must also note that the widely employed model of
laser radiation with a randomly "diffusing" phase is not
applicable for describing multifrequency laser radia-
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tion. This model reflects correctly the fundamental
features of continuous-wave single-frequency radiation,
for which the intensity is practically constant, while the
phase is a random quantity. In this case the main ef-
fect that gives rise to the width of the spectrum is the
variation of the phase. As we have stated above, in a
multifrequency generation regime, the intensity of the
radiation fluctuates substantially. Here the width of the
radiation spectrum is primarily determined by the large
number of generated modes, rather than by their phase
variation.

3. POWER-FUNCTION PROCESSES IN A
NONMONOCHROMATIC FIELD

This section will examine one of the very simple cases
in which the nonlinearity of the studied phenomena
arises solely from the multiphoton character of the
transition of the electron from the initial to the final
state, and the field intensity is substantially less than
the atomic field intensity, while we can neglect the per-
turbation of these states by the exciting field. Thus we
have restricted the treatment to power-function pro-
cesses for which the probability in a monochromatic
field is associated with the intensity of the radiation by
the power-function relationship:

W~ F" •

Here k is the number of photons that must be absorbed
to satisfy the law of conservation of energy. Very sim-
ple examples of such processes are the direct multi-
photon ionization of atoms and the multiphoton excita-
tion of atoms.

The multiphoton ionization of atoms in a field of fre-
quency ω and intensity g" is direct in character if we
can neglect the probability of resonance transitions in
comparison with that of nonresonance transitions, while
the Keldysh adiabaticity parameter is y = u>/a>tim

= ci)V2ITn/gf»l, where ω,β is the frequency of tun-
neling, and En is the binding energy of the electron.16

In practice the direct process occurs in the visible fre-
quency range at a field intensity # < ?fat and with a de-
tuning of the intermediate resonances that substantially
exceeds the width of the resonance states.

The probability of the direct ionization process in a
monochromatic field is described by the relationship:

Wm (F) = ah (ω) F*. (3.1)

Here α»(ω) is the multiphoton cross-section of this pro-
cess. The multiphoton cross-section ak(a>) of the direct
ionization process far from resonances is a slowly
varying function of the frequency of the radiation. We
shall neglect the variation of the cross-section as the
frequency varies within the limits of the width of the
radiation spectrum of the multifrequency laser. There-
fore the width of the radiation spectrum plays no role
in the direct process of multiphoton ionization. Corre-
spondingly, the difference between ionization in a
monochromatic and a nonmonochromatic field consists
of the fact that we can assume the intensity to be con-
stant in the former case, but to be a random quantity
described by the distribution P(F) in the latter case.
The probability of ionization in a nonmonochromatic

field is described by the obvious relationship:

= j Wm (F) P(F)dF. (3.2)

Here Wm(F) is the probability of ionization in a mono-
chromatic field of intensity F, while (F) is the mean
intensity of the nonmonochromatic radiation, which is
a parameter of the distribution P(F). In line with (3.1),
the probability is:

W ((F)) FhP (F) aF = ak <f*>. (3.3)

Here the angle brackets denote averaging of the yield
of this process over the ensemble of values of the radia-
tion intensity that are realized in the time of measure-
ment, while (JF1*) is the feth moment of the intensity dis-
tribution P(F). The standard problem arises: by
starting with the measured values of the ionization
probability in a nonmonochromatic field, to derive data
on the probability in a monochromatic field. We note
that the role of nonmonochromaticity becomes more
substantial with increasing degree of nonlinearity
(multiphoton character) k of the ionization process.

The accepted manner of taking into account the role of
nonmonochromaticity is by employing the so-called sta-
tistical factor. When the frequency of the monochro-
matic radiation equals the central frequency of the non-
monochromatic radiation and the intensities of the two
radiations are equal (Fm-{F)), the statistical factor
is commonly defined by the quantity:

(3.4)

In the case that the nonmonochromatic radiation is
radiation from a thermal source and accordingly P(F)
is described by the exponential relationship (2.2), we
can easily see from (3.4) that the statistical factor has
the well-known value1:

gh = M (3.5)

The statistical factor has the same value for laser
radiation if the latter is equivalent to the radiation
from a thermal source.

The relationships derived above, which describe
multiphoton bound-free transitions in a nonmonochro-
matic field, break down if the ionization process begins
to acquire a tunneling character with increasing radia-
tion intensity (cf. Sec. 6,b), intermediate resonances
arise (cf. Sec. 6, c), or if the concept of the transition
probability per unit time proves inapplicable, owing
to a long pulse duration of the exciting field.

Now let us turn to the case of multiphoton excitation
of an atom, in contrast to bound-free transitions,
bound-bound transitions exhibit a multiphoton cross-
section of the transition that substantially depends on
the frequency in the resonance region. Therefore the
width of the spectrum of the laser radiation affects the
transition probability. However, in the case that we
have been treating, the character of this dependence
does not vary with varying field intensity, since we
assume that the perturbation of the resonance level is
smaller than its natural width (the converse situation in
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which the perturbation of the resonance state plays a
substantial role is treated in Sec. 5).

A dependence of the cross-section on the frequency
of the radiation in multiphoton excitation has the re-
sult that the feth moment of the intensity distribution
does not suffice for characterizing the radiation, but
we need a knowledge of the fcth-order correlation func-
tion. In the absence of intermediate resonances, when
the multiphoton transition amounts to a series of
virtual single-photon transitions, the probability of
the multiphoton transition is determined by the fcth-
order simultaneous correlation function1·17:

Gk(t) = (IS* ( t ' ) t ( f + t)]k). (3.6)

Qualitatively the function Gk{t) behaves in the same way
as Gj(O. When t=0, the value of the correlation func-
tion equals the fcth-order moment of the intensity dis-
tribution P(F):

2Γ

(3·9)

G»(0)= </*>. (3.7)

As t increases from zero, the function Gk(t) substantial-
ly declines from the value (Fk) within the correlation
time interval rh<Tt = Tc o r. In this interval Gk(t) is
modulated at the frequency feu>0, where ω0 is the central
frequency of the emission spectrum. The averaging in
Eq. (3.6) is performed over the large number of inde-
pendent values of ${t). Since in the generation regimes
that we have examined (continuous-wave and pulsed re-
gimes of generating axial modes) the mode composition
of the radiation does not change, the choice of the in-
stant of time t' plays no role. In this sense we can con-
sider the laser radiation field to be stationary.

The probability of a ^-photon bound-bound transition
per unit time is described by the following relation-
ship1·1 7:

-.Ak j G» (i) « - * « « < - r " I d i . (3.8)

Here Ah is the compound matrix element of the transi-
tion, ω0 1 is the frequency of the transition between the
states 0 and 1, and Γ is the natural width of the ex-
cited state, which is introduced phenomenologically.

As Eqs. (2.1), (3.6), and (3.8) imply, the frequency-
dependence of the transition probability W(w) is deter-
mined both by the lifetime of the atom in the excited
state and by the decay time of the correlation function
Gh(t). The lesser of these times is the determining
factor. A complete solution of this problem has been
given in Ref. 17.

To simplify the analysis, it is expedient to single out
two opposite cases—the cases of a narrow and of a
broad spectrum of the exciting radiation.

For the present treatment we shall call a spectrum
narrow when it obeys the relationship Γ»Δω~1/τ».
Here the character of the process of multiphoton ex-
citation is analogous to the direct process of multi-
photon ionization of atoms that was treated above.
When the above-cited inequality is satisfied, we can
neglect the decay of the correlation function in Eq.
(3.8), so that the probability of excitation is described
by the following relationship18:

Let the frequency of the monochromatic radiation equal
the central frequency ω0 of the nonmonochromatic radi-
ation and the intensities be equal (Fm = (F)). Then we
can characterize the role of the nonmonochromatic
radiation by the statistical factor for bound-bound tran-
sitions whenever we can neglect the frequency-depen-
dence of the probability, just as in the case of bound-
free transitions. Here we have:

If the fluctuations of the radiation are described by a
Gaussian random process (as we know, this is true of
the radiation from a thermal source), then the higher
correlation functions can be expressed in terms of the
lowest function:

Gk (t) = ft! IG, (01*.

That is, we have

Gft (0) = (f*> = ft! (.F)h

and consequently we obtain gk — k\.

Thus, for bound-bound transitions with unperturbed
resonance levels and under conditions of narrow-spec-
trum exciting radiation, the value of the statistical fac-
tor is the same 1 7 · 1 ' as in the case of bound-free transi-
tions.

We know of no direct experiments pertaining to
power-function processes of multiphoton excitation of
an isolated atom. However, qualitatively analogous
phenomena occur for effects in atomic vapors and in
excitation of molecules. As an example we can point
to Ref. 20, in which sodium vapor was irradiated with
dye-laser radiation and a two-photon excitation pro-
cess was observed. Multifrequency radiation was em-
ployed with two different spectral widths, which were
approximately 0.1 and 0.01 cm"1, In the former case
the width of the effective spectrum of the laser radia-
tion was of the same order of magnitude as the Dop-
pler absorption line of the vapor. In the latter case
the spectral width of the radiation was an order of
magnitude smaller than the width of the absorption
spectrum, so that the case of a narrow laser-radiation

<F>, arbitrary units

FIG. 2. Relationship of the number η of excited atoms to the
radiation intensity < F) in a process of two-photon excitation
with radiation having different spectral widths: 1—Δ^« 0.1
cm" 1 , 2—Δi"» 0. 01 cm"1; the width of the absorption line
« 0.1 cm"1 (from the results of Ref. 20).
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spectrum was realized. Figure 2 shows the experi-
mental results in the form of the relationship of the
number of excited atoms to the intensity of the radia-
tion. Li both cases the yield of the process is propor-
tional to the square of the mean intensity of the radia-
tion. However, for equal mean intensities, the yield is
larger for the smaller width of exciting spectrum. The
measured ratio of yields under the action of radiation
with narrow and broad spectra is 1.8 ±0.3. This agrees
well with calculations by a formula such as (3.8), which
give the value 1.7 ±0.2.

Experimental data on a process of two-photon ab-
sorption by dye molecules have been obtained in Refs.
21 and 22. In both cases the statistical factor was
measured, which proved close to 2! The small devia-
tions from 21 found in Ref. 21 are hard to interpret
unambiguously, since perhaps one-photon excitation
processes also contribute to the yield. (The results of
Ref. 22 are discussed in greater detail in Sec. 6, since
the most valuable result pertains to the dependence of
the statistical factor on the number of modes being
generated.)

In the opposite limiting case of a broad radiation
spectrum, in which the relationship Γ « Δω obtains,
the frequency-dependence W(u) in Bq. (3.8) is substan-
tially determined by the character of the decay of the
correlation function G»(f). As Eq. (3.8) implies, in
this case W(u) is determined by the Fourier transform
of the correlation function G»(f). That is, it is deter-
mined by the quantity S»(co) = /:«,G»(i)e" ia*dt. Since
F(w) = iZ,Gi{t)e-iatdt is the spectral intensity distribu-
tion of the laser radiation, we can naturally call the
quantity S»(w) the effective intensity spectrum corre-
sponding to the fe-photon process. Whenever the fluctua-
tions of the radiation amount to a Gaussian random pro-
cess, the feth- order effective spectrum is described by
the k-told convolution of the radiation spectrum .F(u>).23

If here the spectrum ί"(ω) of the radiation has a Gaus-
sian form, then the effective feth order spectrum S,(u>)
also has a Gaussian form with a width larger by a fac-
tor of VF.

Although formally one can introduce the statistical
factor for the case of a broad spectrum,19·24 yet here
the factor loses its universality, since it is determined
not only by the properties of the radiation, but also by
the properties of the atomic system. In particular, the
ratio of the probabilities can be either larger or smaller
than unity.

4. PERTURBATION OF THE ATOMIC SPECTRUM IN
A NONMONOCHROMATIC FIELD

As we have stated above, apart from the high prob-
ability of multiphoton transitions, the action of a strong
light field on an atom is manifested also in a substan-
tial perturbation of the atomic spectrum that is ex-
pressed in shifts and broadenings of the atomic levels.
The perturbation of the atomic spectrum has been de-
scribed in rather great detail in the scientific litera-
ture in the case of a monochromatic external field.2'3·25·26

As a rule, two limiting cases have been singled out-
resonance and nonresonance perturbation. A perturba-

tion is commonly termed a resonance perturbation
whenever the matrix element governing the mixing of
pairs of resonance levels exceeds the infinite sum of
matrix elements that characterize the nonresonance in-
teraction. In practice, this corresponds to having the
frequency of the external field close to a transition
frequency in the spectrum of the atom.

Below we shall adhere to the traditional classification
of perturbations as resonance and nonresonance cases.
However, in a nonmonochromatic field, this classifica-
tion is considerably less sharp than in a monochromatic
field, owing to the finite width of the spectrum of the
radiation. Actually, as one increases the detuning be-
tween the central frequency o>0 of the spectrum of the
radiation and the central frequency of the atomic tran-
sition, a situation can arise in which the external field
exerts both resonance and nonresonance types of ac-
tion on the studied pair of levels.

Just as in other cases, the manifestation of nonmono-
chromaticity of the exciting field in the perturbation of
atomic levels depends substantially on the spectral
width of the radiation, i.e., on the correlation time of
the laser radiation. The intensity of the nonmonochro-
matic field, being a random function of the time, can
be considered practically invariant only over a time
interval that does not exceed the correlation time τ ^ .
During this time interval, we can speak of the energy of
the atom with an accuracy no greater than K/re<r (on the
basis of the time-energy uncertainty relationship). If
this energy uncertainty is smaller than the shift in the
atomic level, i.e.,

η

*COT
(4.1)

then the shift can be fixed. At each instant of time it is
determined by the instantaneous value of the intensity.
That is, the shift "follows" the variation of the intensity.
Yet if the energy uncertainty exceeds the shift:

— >«£„, (4.2)
Tcor

then the energy of the atomic level does not follow the
intensity variations, and a shift is realized that corre-
sponds to the mean value {F} of the intensity.

In frequency language, the condition (4.1) corresponds
to the case of a narrow spectrum of the perturbing
field:

Here δωη is the shift of the atomic level expressed in
frequency units; the condition (4.2) corresponds to a
broad radiation spectrum.

We have assumed above that τ № and Ι/δω, are much
smaller than the lifetime of the atom in the excited state
with respect to the process of spontaneous relaxation.
Evidently, this assumption is fulfilled in practice in all
the cases of interest to us.

a) Resonance perturbation of the atomic levels

At first glance, the simplest system to examine is the
two-level system: a ground state and an excited state in
an external field at resonance. However, as we know,
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FIG. 3. Shape of the absorption line K(Sl) of a weak field at
frequency Ω for an atom in the presence of a strong resonance
field of frequency ω0 (diagram of levels at upper right), ac-
cording to the data of Ref. 28. 1—case of a broad spectrum
of the perturbing radiation; 2—case of a narrow spectrum.
The arrows indicate the positions of the components of the
absorption line of the atom in the presence of the strong res-
onance monochromatic field at the same intensity as in case 1.

the theoretical analysis of this system requires taking
into account the variation of the population of the reso-
nance levels, which is a complicating circumstance.
One must employ the language of the density matrix for
a mathematical description of this case.

We can trace the fundamental regularities of the phe-
nomenon under consideration considerably more simply
on the example of a three-level system in which a
double optical resonance arises.1' Let us treat the case
in which there are two external fields— a strong field
at the frequency ω0, which is close to the frequency of
the transition 2-3, and a weak "probe" field at the fre-
quency Ω, which is close to the frequency of the transi-
tion 1-2 (Fig. 3). Here one poses the problem of de-
scribing the absorption of the probe radiation as a func-
tion of the various properties of the strong field $(t)
and of the two-level system 2-3. The shift of the levels
is manifested in the form of the absorption line of the
probe field. When the problem is posed in this way,
there is no need to take into account the variation of
the populations of the atomic levels. This substantially
simplifies the analysis.

There is at present no theoretical description of the
perturbation of an atomic level in the case of an arbi-
trary random field g(t). Results have been obtained for
two special cases: for a field %(t) that amounts to a
discontinuous Markov process,27 i.e., a process in
which the amplitude and phase that characterize the
nonmonochromatic radiation vary in jumps at random
instants of time, and for a Gaussian field,28 i.e., in a
special case and for the radiation from a thermal
source. The results for the limiting cases of broad
and narrow radiation spectra proved to be qualitatively
analogous. Here a radiation spectrum is broad if (Δω)2

» | V321
2, where V32 = 1̂ 321 # is the matrix element that

describes the process of resonance mixing of the states
2 and 3, and it is narrow when the sense of the inequal-
ity is reversed. With a broad radiation spectrum, the
absorption spectrum of the auxiliary light at the 1-2

transition is Lorentzian in shape with a width ~ | V321
2/

Δω, which depends on the intensity and on the spec-
trum of the radiation (Fig. 3). With a narrow spec-
trum, the shape of the absorption line of the auxiliary
light reflects the set of positions of the atomic level
that are realized in the ensemble of random values of
the field amplitude. In this case, in order to describe
the shape of the line in the nonmonochromatic field,
one must average the expression for the shape of the
line in a monochromatic field over the amplitude dis-
tribution of the field &(Α)=2ΑΡ{ΑΖ), where A = VF.
Here the absorption line has the shape of a two-humped
curve with a gap in the center. This is qualitatively
analogous to the line splitting in resonance mixing in
a monochromatic field2 (Fig. 3). Here the spectrum
of the laser radiation proves to be unessential. As we
shall see from the description below, a qualitatively
similar situation is always characteristic of a narrow
laser-radiation spectrum. We note that the character
of the random variation of %(t) is manifested in the
transition region from a narrow to a broad spectrum.29

Now let us turn to the case of resonance perturbation
of atomic levels in which a strong nonmonochromatic
field exists in resonance with a transition of the atom
from the ground state 1 to 2, while the weak field is
responsible for the transition 2-3 (see the level scheme
in Fig. 4). As we have stated, the change in populations
of the resonance states is considerable, and saturation
occurs, which must be described in the language of the
density matrix. Owing to mathematical difficulties, the
theoretical analysis of this case has been performed
only numerically under conditions of a narrow radiation
spectrum.30 Figure 4 shows the results of calculations
of the shape of the absorption line of the weak field
when the strong field is at exact resonance. The strong
nonmonochromatic field is described by a discontinuous
Markov process with a randomly fluctuating amplitude.
For comparison, the same diagram shows the results
of calculations corresponding to excitation with radia-
tion having a constant amplitude. As we should expect,
the absorption line is split for a narrow spectrum of
the perturbing radiation (Fig. 4) analogously to the
splitting in a monochromatic field.2 We must note that
the width of the maxima is broader for a nonmonochro-

/f(W, arbitrary units

"The perturbation of the levels of the atom in this case is
sometimes called the Autler-Townes effect.

-/ -as 0 as t
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FIG. 4. Shape of the absorption line Κ(ΐΐ) ai a weak field at
frequency Ώ for an atom in the presence of a resonance field
of frequency ωα (diagram of levels above), according to the
data of Ref. 30. Solid curve—nonmonochromatic field, dotted-
constant-amplitude-field.
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FIG. 5. Shape of the absorption line of a weak field at fre-
quency a (transition 2-3 in the diagram at upper right) in the
presence of a strong resonance field at frequency a>0, according
to the data of Ref. 31. The number of ions in this experiment
is proportional to the number of atoms in state 3.

matic field than for a monochromatic field, while the
spacing between them is smaller. The overall charac-
ter of the phenomenon is analogous to the case of a
double optical resonance (cf. Fig. 3). The data obtained
for the nonmonochromatic field qualitatively corre-
spond to the result of averaging over the amplitude dis-
tribution of the field.

The role of nonmonochromaticity of the laser radia-
tion in the resonance perturbation of atomic levels has
been studied experimentally on the example of the
sodium atom under conditions in which the strong laser
radiation field was in resonance with a transition of the
atom from the ground state31 (Fig. 5). Thus the popula-
tion of the resonance levels 1 and 2 proved essential.
The perturbation of the atomic level 2 was analyzed
from the shape of the absorption line for the transition
of the atom from 2 to 3 when acted on by the weak radi-
ation field of a second laser that was tunable in fre-
quency. The number of atoms that had undergone tran-
sition to the state 3 was determined by observing the
ionization from this state under the action of the strong
field. The width of the spectrum of the strong radia-
tion field was small, being «0.03 cm'1 (about 10 longi-
tudinal modes), whereas its field intensity was so large
that the scale of the perturbation considerably exceeded
the width of the spectrum. That is, the case of pertur-
bation by narrow-spectrum radiation obtained. Figure
5 shows the dependence of the ion signal on the fre-
quency of the weak radiation field, which reflects the
resonance perturbation of level 2. We distinctly ob-
serve the splitting of the line, which corresponds to the
case of a narrow spectrum of the perturbing field. The
authors of Ref. 31 also obtained experimental data on
the variation of the shape of the absorption line of the
weak radiation field with detuning of the strong per-
turbing field. The results that they obtained qualita-
tively agree with the calculations.30 However, a quan-
titative comparison is impeded by the need to take the
spatial inhomogeneities of the perturbing field into ac-
count.

b) Nonresonance perturbation of the atomic levels

The character of the nonresonance perturbation of the
atomic levels in a monochromatic field is rather well
known.2'25 The shift of the level η is described by a
power-series expansion in the intensity of the external

field:
δ£η = alnF + a,nP + . . ..

Here al n is the dynamic polarizability, and a h is the
dynamic hyperpolarizability of the atom. Henceforth
we shall restrict the treatment to the case in which
the shift is determined only by the first term of the ex-
pansion (4.3).2) As a rule, this is precisely the case
realized in practice at a field intensity ?f« fit.

One can perform a theoretical analysis of the role of
nonmonochromaticity of the external field in nonreso-
nance excitation of the atomic levels on the example of
the three-level system that we studied above in de-
scribing resonance perturbation. The condition for
realizing nonresonance perturbation of the levels 2
and 3 (Fig. 3) consists in having both the intrinsic
width Γ23 of the 2-3 transition and the matrix element
of the interaction between these levels much smaller
than the detuning Δ of the resonance between the fre-
quency of the external field and the frequency of the
2-3 transition: Γ23, | V32 \« Δ = | wS2 - ω01. When this
condition is satisfied, we can derive from Eqs. (4.5)-
(4.7) an expression for the shape of the absorption line
of the weak probe light that manifests the shift of the
levels. Just as in the earlier case, we shall single out
the cases of narrow and broad spectra of the perturbing
radiation.

The criterion for realizing the case of a narrow spec-
trum has the form

«n j = δω2 ^ Δω. (4.4)

When this criterion is satisfied, we obtain the following
relationship for the shape of the spectrum:

(4.5)

Just as in the case of resonance perturbation, the shape
of the line reflects the set of positions of the atomic
level that are realized in the ensemble of random
values of the radiation intensity. It can be obtained by
averaging the shape of the line in a monochromatic field
over the distribution P(F) (Fig. 6). We note that the
shape of the line does not depend here on the shape of
the spectrum of the laser radiation.

The criterion for realizing the case of a broad spec-
trum of the perturbing radiation is evidently the oppo-
site of that for a narrow spectrum in (4.4): δω2« Δω.
In this case the shape of the absorption line is Lorent-
zian with a width ~ (δω2)

2/Δω (Fig. 6). Its maximum is
displaced by the magnitude of the mean shift δω2.

33 We
note that above we have neglected the dependence of the
dynamic polarizability on the frequency of the laser
radiation. In fact, such an assumption may not be valid
at frequencies close to resonance, where the dynamic
polarizability varies sharply with varying frequency.
Here a nonmonochromaticity of the field blurs out the
resonance maxima.32

The analysis that we have made allows us to point

2)The perturbation of the atomic levels in this case is some-
times termed the quadratic Stark effect In an alternating
field.
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FIG. 6. Shape of the absorption line Κ(Ω) of a weak field at
frequency Ω for an atom In the presence of a strong nonreso-
nance field. 1—case of a narrow spectrum of the perturbing
field; 2—case of a broad spectrum. The natural width of the
perturbed level is assumed infinitesimally small.

out the fundamental qualitative difference of nonreso-
nance perturbation in a nonmonochromatic field from
the case of a monochromatic field—the perturbation
can be described as a shift in the level only for a broad
radiation spectrum. It is not expedient to employ the
term "level shift" in the narrow-spectrum case, since
the center of gravity of the absorption line is altered
by a magnitude comparable with that of the broadening
of the line. In any case, this statement is valid for the
exponential distribution P(F) that is realized in prac-
tice.

The experimental observation of nonresonance per-
turbation of atomic levels by a laser radiation field is
considerably complicated by the spatial and temporal
inhomogeneity of the intensity distribution of the laser
radiation. The authors of Ref. 33 were able to avoid
these difficulties. Both cases of broadening of atomic
levels were observed experimentally upon perturbing
the spectrum of the cesium atom by an external non-
monochromatic UHF field. The use as a radiation
source of a UHF noise generator enabled the authors33

to create a field that was homogeneous in the interaction
volume and in time. Figure 7 shows the results of these
experiments. Good quantitative agreement with the
calculations is observed.

The treatment that we have carried out above of per-
turbation of atomic levels in a nonmonochromatic field
allows the general conclusion that one can reconstruct
the properties of the radiation from perturbation data

in the narrow-spectrum case: in the resonance case
one can reconstruct the field amplitude distribution
&(Α), and the intensity distribution P(F) in the nonreso-
nance case.

5. MULTIPHOTON EXCITATION OF ATOMS

Above in Sec. 3 we have discussed the power-law
process of excitation of an atom in which the probability
was assumed proportional to Fk, where k is the number
of photons absorbed in the transition. Such a process
occurs if the shifts and widths of the atomic levels in-
duced by the field are smaller than the natural widths.
In the opposite case of strong perturbation of the
atomic spectrum, in which δω(.Ρ), r(F)> Γ, the in-
duced shifts 6u)(F) and widths F(F) essentially govern
the process of multiphoton excitation. Generally the
latter is not of a power-law type. Here the nonmono-
chromaticity of the exciting field is manifested both in
perturbation of the resonance states and in the probabil-
ities of the multiphoton transitions. Just as was done
above, it is also expedient in treating multiphoton ex-
citation in a nonmonochromatic field to single out the
cases of narrow and broad spectra of the exciting radia-
tion.

The condition for realizing a narrow spectrum has
the form

Δω < Γ (F), 6m (F). (5.D

The decisive factor is the greater of the two quantities
standing on the right-hand side of the inequality (5.1).
As we have noted above, in the case of a narrow spec-
trum, one must use the value of the probability in a
monochromatic field averaged over the intensity dis-
tribution P(F) to describe the probability of the non-
linear process in a nonmonochromatic field34'35:

w~ f Ρ^ί^-ϊ^ττ: -dF. (5.2)

Here ω/ is the frequency of the transition in the unper-
turbed atom.

Let us examine the special case in which the shift
dominates, i.e., δω(.Ρ)» r(F). Here Eq. (5.2) gives
rise to an expression for the excitation probability that
depends on the detuning of the &-photon resonance

W~((o,-ko>o)hP(- (5.3)

Β β,Ηζ

FIG. 7. Shape of the absorption line K(O) of a weak field at
frequency Ω for an atom in the presence of a strong nonreso-
nance field according to the data of Ref. 33. 1—case of a
broad spectrum of the perturbing field (Δω = 30 Hz), 2—case
of a narrow spectrum (Δω = 2 Hz). Dotted line—case of a
monochromatic field.

Equation (5.3), which was derived in Ref. 24, is valid
when two additional conditions are satisfied. First,
resonance with the shifted level must be realized. That
is, the relationship (uf-ku>ii)/(aifK)>Q must hold.
Moreover, the condition Ιω,-&ωο|» r(.F) must be
satisfied to allow one to write the value of the probabil-
ity W in the analytic form of (5.3). Thus the relation-
ship amounts to an asymmetrically broadened line (Fig,
8). In principle one can reconstruct the distribution
P(F) from this relationship. H one has an exponential
intensity distribution and a one-photon transition from
the excited state to the continuous spectrum (i.e., when
V(F)~ F), one can derive an analytic expression for
IT for an arbitrary relationship between the shift and

481 Sov. Phys. Usp. 23(8), Aug. 1980 Delone et at. 481



δ

I*

I'
fc^-^it^, relative units.

FIG. 8. Frequency-dependence of the probability of five-pho-
ton excitation of an atom in the presence of perturbation of the
atomic levels (shift dominating) under conditions of narrow-
spectrum laser radiation (according to the data of Ref. 34).

the broadening of the resonance state.35 Qualitatively,
the character of the W(u>) relationship in the special
case that we have treated naturally matches the charac-
ter of the relationship in the general case.

In the case of a broad spectrum, in which Δω » 6u)(F),
r(F), as the qualitative analysis performed above in
Sec. 4 implies, the mean shifts and mean widths of the
levels must be manifested in the transition probability.
There are currently no studies that have quantiatively
analyzed multiphoton excitation of atoms with account
taken of strong perturbation of the spectrum by a non-
monochromatic field with a broad radiation spectrum.
Qualitatively there is no doubt that the width of the
resonance is determined by the width of the effective
spectrum of the laser radiation for fc-ρ hot on excitation,
while the degree of nonlinearity is determined by the
quantity k, i.e., by the number of absorbed quanta. We
should note that there have been no direct experiments
on the role of nonmonochromaticity in multiphoton ex-
citation under conditions of perturbation of the atomic
spectrum.

6. NONLINEAR IONIZATION OF ATOMS

The character of the process of nonlinear ionization
of an atom in an alternating field in which the quantum
energy Κω is smaller than the binding energy E, of an
electron is governed by three parameters—the intensity
and the frequency of the field and the binding energy
of the electron. Depending on the relationship between
these quantities, the ionization process has the charac-
ter of a direct multiphoton process, a tunneling effect,
or a transition via an intermediate resonance state
(resonance ionization process).17 All three cases have
been described in detail in many studies, while the di-
rect and resonance processes have been studied experi-
mentally in detail.1"3 However, as in a number of other
cases, the field was assumed monochromatic in the
overwhelming majority of calculations, whereas a non-
monochromatic laser radiation field has been employed
in the overwhelming majority of experimental studies.
We shall assume in this section that the fundamental
regularities of the process of nonlinear ionization in a
monochromatic field are known,2'3 and we shall treat
the specific phenomena that arise in nonlinear ioniza-
tion in a nonmonochromatic field.

a) The direct process of multiphoton ionization of atoms

As we have shown in Sec. 3, in the direct process of
multiphoton ionization, taking account of the role of
nonmonochromaticity is reduced to introducing the sta-
tistical factor, whose magnitude is determined by Eq.
(3.4).

One takes the mean intensity (F) of the nonmonochro-
matic radiation in Eq. (3.4) to be the energy of the radi-
ation per fixed interval of time that exceeds the corre-
lation time. As a rule, the correlation time for the
multifrequency laser radiation under study is shorter
than 10"' s.

Si order to measure correctly the mean radiation in-
tensity of a multifrequency laser, one must employ
single-photon detectors that satisfy the evident require-
ment: the time constant of the detector must exceed
by a large factor the characteristic duration of the fluc-
tuations of the radiation. This requirement is satisfied
by the standard detectors, e.g., photodiodes. In a
pulsed generation regime, one must take into account
also the shape of the envelope—the time constant of
the single-photon detector must be shorter than the
duration of the pulse. When the pulses of a single-fre-
quency and a multifrequency laser have the same shape,
the requirement of equal mean radiation intensities is
equivalent to the requirement of equal energies of the
radiation per pulse. If the shapes of the pulses differ,
then in consideration of the nonlinear interaction that
they cause, we require not that the energies be equal,
but the quantities

Here Fiv(t) is the envelope of a pulse of the multifre-
quency laser of duration τ, while Fm(t) is the envelope
of a pulse of the single-frequency laser of duration r0.

Let us turn to the experimental and theoretical data
on the effect of the number and mutual coupling of the
modes on the magnitude of the statistical factor.

If we start with the distribution of (2.3), then the ex-
pression for the relationship of the statistical factor to
the number of modes has the form10·11

-Di (6.1)

We see from this relationship that the statistical factor
increases with increasing number of generated modes,
while approaching the value k\ asymptotically (see also
Ref. 36). In the other limiting case with ΛΓ=1, Eq. (6.1)
gives the value gk(l) = 1 for the statistical factor. This
corresponds to the value of the statistical factor for the
radiation from a single-frequency laser. Figure 9
shows the relationship of the statistical factor to the
number of modes for different values of the degree of
nonlinearity k.

Let us formulate the criterion of resemblance of the
laser radiation to that of a thermal source as a function
of the number of modes. We base this on the asymptotic
character of the gk(N) relationship for large N. Re-
semblance exists when the number of modes N>N*,
such that the relative deviation gk(N) from k\ does not
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FIG. 9. Dependence of the statistical factor gk(N) on the num-
ber Ν of modes generated by the laser for values of the degree
of nonlinearity k = 2, 5, and 11 [calculated by Eq. (6.1)].

exceed the quantity C. That is, in line with the asymp-
totic behavior of (6.1), the following relationship is
satisfied

*<*=*>. (6.2)

In practice one takes the quantity C to be the accuracy
of measurement of the statistical factor gk.

As Eq. (6.2) implies, the higher is the degree of non-
linearity k of the process, the greater is the number
of modes that the multifrequency laser must generate
to make the action of its radiation equivalent to that of
a thermal source. When N>N* [see (6.2)], the result
of the interaction depends neither on the number of
modes nor on the shape of the spectrum. As is implied
by all that we have said above, the criterion for real-
izing such a generation regime is the observation of a
statistical factor gk = k 1.

The relationship (6.2) allows certain conclusions to
be drawn concerning the expedience of employing the
radiation of various multifrequency lasers for studying
nonlinear effects on the basis of the width of the laser
radiation spectrum and the attainable accuracy C of
measuring the statistical factor. Thus, for example,
the radiation spectrum of the widespread ruby laser has
the width Δω s i cm"1. That is, the laser emits no
more than 102 modes. On the basis of the data of Eq.
(6.2), we can treat the radiation of such a laser as
equivalent to that of a thermal source only for two- or
three-photon processes. A neodymium-glass laser
offers considerably greater possiblities (Δω «10 cm"1,
N~103 modes). We can treat the radiation of this laser
as being equivalent to that of a thermal source in ex-
periments with fc« 20, i.e., up to the limiting value that
has been currently realized in experiments with radia-
tion in the visible frequency range.

At present, experimental data on the gk(N) relation-
ship have been obtained only for the radiation of the
neodymium-glass laser22·37 operating in a Q-switched
regime. The results of these experiments clearly indi-
cate that the statistical factor falls below k\ when there
is a small number of modes such that Ν <Ν*.

rs' /ι

FIG. 10. Experimental values of the statistical factors g2(N)
for neodymium-laser radiation for various numbers of gen-
erated modes.22 Solid curve—calculation by Eq. (6.1).

The process of two-photon ionization was employed in
Ref. 22 as the laser- radiation detector instead of the
direct ionization process. The experimental data on the
magnitude of the absorption obtained for JV = 1, 3-5, and
300 yield Ag2(N) relationship that fits Eq. (6.1) within
the limits of accuracy of the measurements (Fig. 10).
However, the accuracy of this experiment is not high
enough to draw any conclusions on the role of the shape
of the spectrum. In Ref. 37, the process of eleven-
photon ionization of the xenon atom was employed as
the detector. The results of the measurements qualita-
tively coincide with the relationship (6.1), but there is
no quantitative agreement (Fig. 11). The discrepancy
can arise from various factor (cf. Ref. 38). One of them
is the non-power-function character of the interaction
that is characteristic of this process.39 Moreover, non-
linear effects can also arise in the laser resonator that
distort the distribution P(F). However, the assumption
that they play a dominant role that was expressed in Ref.
40 is not substantiated by independent experimental
data.

The results of these experiments indicate the need of
carrying out extensive studies of the gh(N) relationship
and the promise offered by multiphoton detectors for
such studies. We note that one must test independently
the power-function character of the interaction of the
radiation with the detector and of the spectrum of the
laser radiation to allow an unambiguous interpretation
of the results of such experiments.

The possibility of realizing a generation regime of

FIG. 11. Experimental values of the statistical factors gu<N)
for neodymium-laser radiation for various numbers of gen-
erated modes.3' Solid curve—calculation by Eq. (6.1).
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many independent modes has been tested experimentally
for a neodymium- glass laser for processes of degree
of nonlinearity k « 5. Rather precise results have been
obtained41·22 for a pulsed generation regime with Q-
switching of the resonator. In Ref. 41, data were ob-
tained on the value of g5 by employing a five-photon
process of ionization of the sodium atom as the detec-
tor. This experiment was performed with a number of
generated modes ΛΓ=4χ 103, which is an asymptotically
large value at the degree of nonlinearity k = 5. The
value g5 = io2·04*°·25 = 51 was obtained. Another experi-
ment22 has observed the process of two-photon absorp-
tion in the dye rhodamine 6G. The laser generated Ν
= 300 modes, which is also an asymptotically large
quantity for k =2. The measured value was gz = 2.1 ±0.2
= 21. The results of these experiments show that one
can realize a generation regime of multifrequency radi-
ation with a neodymium laser in which this radiation
is equivalent with sufficient accuracy to the radiation
from a thermal source for processes of degrees of non-
linearity k « 5. We should note that these data do not
permit analogous conclusions to be drawn for processes
having k > 5. Actually, interaction between the modes
must lead to a larger effect with increasing k. There-
fore, in principle, it may not be manifested within the
experimental limits of accuracy for small ft while being
manifested for large k.

Observation of statistical factors equal to fel is a
necessary condition for equivalence of the properties
of the radiation of multifrequency lasers to those of the
radiation from a thermal source. Correspondingly, the
requirement of a sufficiently large number of modes in
(6.2) is also a necessary condition. Although these con-
ditions are not sufficient, their fulfillment can serve in
a number of cases as an indirect justification for em-
ploying the exponential intensity distribution function
P(F) inherent in the radiation from a thermal source
in calculations describing the interaction of multifre-
quency laser radiation with an atom.

We must bear in mind that the measured value fluc-
tuates in any procedure for measuring the statistical
factor. For a fixed mean radiation intensity, the yield
of the process fluctuates more for a smaller number of
generated modes (smaller number of fluctuational ex-
cursions per axial period) owing to fluctuations of the
instantaneous values. We note that the fluctuations of
the yield substantially exceed those of the radiation in-
tensity, owing to the nonlinear character of the interac-
tion. References 11 and 13 are devoted to analyzing the
dependence of the fluctuations on the degree of non-
linearity of the process and on the number of generated
modes of the laser radiation. Measurements of the
fluctuations of the yield of a multiphoton process of
ionization of atoms have not been performed with an
accuracy sufficient for comparison with the results of
these calculations. The only known data show that the
amplitude of the fluctuations of the yield in multimode
laser radiation considerably exceeds the amplitude with
single-frequency radiation.39

We note that, in addition to the effect on the probabil-
ity of the direct ionization process, the nonmonochro-

maticity of the field can also alter the frequency-depen-
dence of the ionization probability in the frequency re-
gions in which the multiphoton cross-section has sharp
inter-resonance minima.42

b) The tunneling effect in an alternating field

It is well known that the process of ionization of an
atom in an alternating field has the character of a
tunneling effect if the adiabaticity parameter is smaller
than unity: y= (ω/$)τ/Σ1Γη « 1. As before, $ and ω are
the intensity and frequency of the field, while £„ is the
binding energy of the electron occupying the level n. In
this case the ionization probability depends exponentially
on the intensity of the field but does not depend on its
frequency. Accordingly, the difference between ioniza-
tion in nonmonochromatic and monochromatic fields at
equal mean intensities reduces only to a change in the
ionization probability, and does not depend on the width
of the laser radiation spectrum. Thus the role of non-
monochromaticity of the radiation in tunneling ioniza-
tion can be taken into account by introducing the corre-
sponding statistical factor.

A transition from the multiphoton limiting case (γ
» 1) to the tunneling case (y« 1) at a fixed radiation
frequency takes place as the field intensity increases.
It is of interest to elucidate how the magnitude of the
statistical factor varies here. Qualitatively it is evident
that since the ionization probability increases more
slowly with increasing intensity of the radiation when
γ decreases in the region where γ s 1, than under condi-
tions when γ» 1, then this should lead to a statistical
factor depressed below the value of gk. Actually, as we
have seen above, in the case being studied, the differ-
ence between multifrequency and single-frequency radia-
tion at a fixed mean intensity of the radiation reduces to
the existence in the former case of instantaneous values
of the intensity that considerably exceed the mean value.
Owing to the weaker W(F) relationship for γ« 1 as
compared with the corresponding relationship for y » 1,
the role of large intensity excursions in the former case
is relatively smaller than in the latter case. Corre-
spondingly the statistical factor is smaller.

In order to determine the statistical factor in tun-
neling ionization and its dependence on the field inten-
sity, one must derive an expression describing the
tunneling probability in the nonmonochromatic field.
Evidently, in this case the probability W is described
by Eq. (3.2):

W((F))=\wm(F)P(F)dF.

As before, Wm(F) is the tunneling probability in a mono-
chromatic field.

Upon assuming that the intensity distribution P(F) of
the radiation is described by the exponential function
(2.2), we can calculate this integral analytically. The
probability of tunneling ionization in the nonmonochro-
matic field is described (in atomic units) with exponen-
tial accuracy by the following expression43:

(6.3)
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We note that this relationship differs from the well-
known relationship describing the probability of tun-
neling in an alternative monochromatic field17:

(6.4)

The variation given by Eq. (6.3) is smoother than Wm.
As we have said above, this seems qualitatively suffi-
ciently evident—large excursions of the radiation in-
tensity play the major role in the nonmonochromatic
field.

Although the analytic form of the relationships
W((F)) and Wm(F) differs, yet as happened before for
power-function relationships, in this case the difference
between a nonmonochromatic and a monochromatic field
can be expressed in terms of the statistical factor of
(3.4):

g _ W«F))

A number of studies3 9'4 4"4 7 has been devoted to calcu-
lating this factor, including the experimentally most
interesting intermediate range in which γ-ί. Figure
12 shows the value of the statistical factor for γ ~ 1 as
obtained by numerical integration for two special cases.
These cases reduce for y » 1 to power-function pro-
cesses with the values k = 5 and k = 11. We see that q
begins to deviate appreciably from k\ already at values
y s l . Here the deviation increases for larger k.

An experimental observation of the deviation of the
statistical factor g from k\ has been performed38 on
the example of ionization of the xenon atom in the radia-
tion field of a multifrequency neodymium-glass laser.
For y » 1 this is an eleven-photon ionization process
that has been well studied experimentally. The design
of the experiment to measure g was analogous to that
for measuring the statistical factor g5 (see Sec. 6.a).
Here the same two lasers were used, operating in the
same regimes—single-frequency and multifrequency.
In the latter case the laser emitted 4 χ 103 longitudinal
modes. In line with Eq. (6.2), this value was high
enough that the value of the statistical factor gn = 11!
could be realized with good accuracy for the eleven-
photon ionization process. Ionization was observed at a
field intensity g? = 5x 107V cm"1, which corresponds to
the value y = 5. Control experiments in which the fre-
quency of the laser radiation was varied showed that
intermediate resonances play no role. Figure 12 shows

the experimental results. We see that the value g
= 105*1 is two orders of magnitude smaller than gn

= 1O7"6. The experimentally measured value of g agrees
well with the calculated data.

As we have noted above (see Sec. 6, a), the experi-
mental data37 yielded a different value of the statistical
factor than is predicted by Eq. (6.1). Here observations
were made of the same process of ionization of the
xenon atom by light from a neodymium-glass laser,
which emitted a different small number of longitudinal
modes. One of the reasons might be the small value of
the parameter y, which was the same in the experi-
ments of Ref. 37 as in Ref. 39, i.e., y~5.

In closing we note that, if we remain within the
framework of the optical frequency range and of neutral
atoms existing in the ground state, the condition y « l
can be realized only at a field intensity Wi:fit. How-
ever, the general theory of ionization17 is valid only for
# « #at. This reflects the well-known fact that the atom
practically instantaneously (within the atomic time of
~10~17 s) ceases to exist as a bound system at SP~ %α.
Therefore the deviation of g from gk is of fundamental
interest as the limit below which the factorial expres-
sion for the statistical factor is valid.

We must also bear in mind that a value of the param-
eter y « l can also be realized when i?«i?at in the case
of ionization from highly excited states (small En) in a
field in the infrared frequency range (small ω). Thus
the value of the statistical factor can differ considerably
from kl.

c) The resonance process of ionization of an atom

The process of multiphoton ionization of an atom is
commonly termed a resonance process whenever the
energy of a transition allowed by the corresponding se-
lection rules from the initial state £ 0 to any excited,
bound electronic state Ex matches the energy of one or
of several quanta of the external field (Fig. 13). The
criterion for realizing resonance with an isolated level
has the form

| Δ |, Γ < | Ey - £„ I .

The detuning of the resonance

Δ = £i — £ 3 — kfim

FIG. 12. Dependence of the statistical factor on the param-
eter γ in two special cases of ionization of atoms that reduce
for y » l to power-function processes with A = 5 and fe = l l
Solid curves—calculation46; circle—experimental value.3

FIG. 13. Diagram of atomic levels explaining the conditions
of the resonance ionization process, k=kt +k2.
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and the width Γ of the resonance state must be small
compared with the energy of the resonance transition.
The strongest manifestation of resonance is usually
restricted to a range of detuning that does not exceed
the width of the resonance level:

Ι Δ Γ.

Here, whenever we are dealing with strong fields, both
the detuning of the resonance and the width of the reso-
nance state are functions of the field intensity.

In a weak monochromatic field in which the shift and
broadening of the resonance state are smaller than its
natural width, the probability of resonance ionization
is described by the well-known formula2:

m ^
ι2

•F\ (6.5)

Here the V are the matrix elements of the transitions,
and Γ is the natural (spontaneous) width of the reso-
nance state.

The relationship (6.5) is not valid for strong fields,
in which the shift and/or the broadening of the reso-
nance state, being per se functions of the field inten-
sity, are larger than its natural width. It is well known
that three different physical phenomena can perturb the
resonance state. They are, first, the mixing of the
ground and resonance states, which leads to appearance
of the so-called field width of the resonance:

r^d.^^do.F1"'2. (6.6)

Second, there is the nonresonance shift of the states
0,1, which alters the transition energy by the amount

δωΟι = -τ- at' -aF. (6.7)

Finally and third, there is the broadening of the reso-
nance state owing to transitions of an electron to the
continuous spectrum—the so-called ionization broad-
ening:

Γ (6.8)

In (6.6)-(6.8), dol is the matrix element of the dipole
moment for fet = 1 and the corresponding compound ma-
trix element for kt> 1; a is the difference between the
dynamic polarizabilities of the ground and resonance
states; a1B is the cross-section for the process of
ionization from the resonance state. In the relationship
for the nonresonance shift δω01, we have given only the
first term, quadratic in the field intensity, from the
expansion of the dynamic polarizability. As a rule, the
restriction to the first term of the expansion is valid at
not very high field intensities #«#«> with the excep-
tion of narrow spectral intervals in the inter-resonance
intervals where the dynamic polarizability changes sign
in pass through zero.2·3 We note that the functional de-
pendence of the field perturbation rf and the ionization
perturbation V{ is determined in each concrete situation
by the multiphoton character of the corresponding tran-
sitions fej and k2. Depending on the values of kx and k2,
some particular perturbation process may dominate,
or else one may not be able to single out the dominant
process on the basis of the analytic relationships;
sometimes one can do this via numerical estimates of
the corresponding matrix elements. Many studies have

been devoted to describing the process of resonance
ionization in a strong monochromatic field, and their
results are summarized in Refs. 2 and 48. In most
cases, the probability of ionization in a strong mono-
chromatic field in the presence of an intermediate
resonance is described by a relationship of the type
of (6.5). Here the role of Γ is played by a combina-
tion of the quantities Γ, and Γ(, while the quantity δω01

is added to the detuning Δ. Certain special cases exist
in which the relationship for the probability of reso-
nance ionization has a different, more complicated
character.48 However, we shall not treat them, since
their probability of realization in practice is small.

The effect of the perturbation of the resonance state
is reduced to: a) a shift of the resonance maximum as
a function of the probability of the frequency of the field
WV)|<ir> = coti»t; b) a change in the width of the reso-
nance compared with the weak-field case; c) observa-
tion of a W((F)) | u = 0 0 M t relationship either more or less
steep than the original power-function relationship for
the weak-field case where W~(F)k; d) inapplicability of
a simple formula of the type of (6.5) in a number of
cases.

In resonance ionization in a weak field in which the
perturbations of the resonance state are smaller than
its natural width, nonmonochromaticity of the external
field affects only the character of transitions of the
electron from one state to another. In resonance ion-
ization in a strong field, nonmonochromaticity of the
external field is also manifested in the character of the
perturbation of the resonance state. In contrast to
resonance ionization in a monochromatic field, the new
effects inherent in a nonmonochromatic field involve
both the random nature of the intensity distribution of
the external field in time and the finite width of the
radiation spectrum. We shall not consider the finite
duration of the radiation pulse, whose manifestation
was taken into account in describing the resonance ion-
ization process,48 since the reciprocal of the pulse du-
ration for multifrequency lasers is smaller than the
width of the spectrum.

We shall treat the process of resonance ionization in
a nonmonochromatic field in two limiting cases— in
which the width of the radiation spectrum is greater or
smaller than the perturbation of the resonance state.49

Just as in the case of a monochromatic field, the
governing factor is the larger of the widths that oc-
curs.

We shall term a radiation spectrum broad if it satis-
fies the relationship:

Δω » max {Γ,, Γ,, 6ω0 1 ) Γ}. (6.9)

A narrow spectrum corresponds to the converse re-
lationship being satisfied:

Δω -C max {Γ(, Γ,, δωΜ}. (6.10)

We note that the natural width Γ of the atomic level
has been omitted in the latter inequality. This is be-
cause, if we restrict the treatment to the interaction
of nonmonochromatic laser radiation with isolated
atoms and molecules, then the condition Δω « Γ is not
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realized in pract ice . The realization of the inequality
(6.9) or (6.10) is governed both by the width of the spec-
trum and by the radiation intensity, since the ampli-
tude of the perturbation of the resonance state depends
on the radiation intensity. For a fixed width of the radi-
ation spectrum, increasing the field intensity broadens
the resonance state, so that the broad-spectrum case
of (6.9) can reduce to the narrow-spectrum case of
(6.10).

A broad radiation spectrum is characterized by fluc-
tuations of the radiation intensity that a r e fast ( τ ω Γ

=1/Δω) in comparison with the t imes l / r / ( l / r f , and
ΐ / δ ω 0 1 . Hence the perturbation of the resonance state
is determined by the averaged character is t ics of the
external field (see Sec. 4). Correspondingly, the fol-
lowing relationships hold:

r ( = d01<f"·'2). (6.11)

&„„, = !<*<*•>, (6.12)

Γ, = α 1E (/·"'). (6.13)

A narrow radiation spectrum is characterized by fluc-
tuations of the radiation intensity that a r e slow in com-
parison with the t imes \/Vf, l / r { , and ΐ / δ ω 0 1 . Hence
the perturbation of the resonance state is described by
relationships analogous to those for a monochromatic
field, (6.6)- (6.8), in which the instantaneous values of
the radiation intensity F(t) a r e involved.

Qualitatively, the case of a narrow spectrum of non-
monochromatic radiation is analogous to the case of a
monochromatic field with a slowly varying amplitude of
the intensity (compared with the character is t ic time
scale of the perturbation process) . Correspondingly,
in the narrow-spectrum case, just as in the case of
monochromatic radiation, the presence of a perturba-
tion of the resonance state determines the character of
the dependence of the ionization probability on the in-
tensity and frequency of the radiation.

In order to determine the probability W of ionization
in a nonmonochromatic field under the action of narrow-
spectrum radiation, we must average the value of the
probability in a monochromatic field over the radiation
intensity distribution P(F) of the nonmonochromatic
field:

W = , <a)=\wm (F, ω) Ρ (F) AF.
η

(6.14)

In (6.13), Wm(F,u>) is the ionization probability in a
monochromatic field. In a narrow-spectrum nonmono-
chromatic field, the role of the frequency ω is played
by the central frequency ω0 of the radiation spectrum,
while (F) is a parameter of the distribution P(F). The
fact that the radiation spectrum in Eq. (6.14) is charac-
terized only by the central frequency ω0 reflects the
specifics of the narrow-spectrum case, in which the
shape of the radiation spectrum plays no role.

The process of resonance ionization in a broad-spec-
trum nonmonochromatic field differs in that the ioniza-
tion arises under the action of the radiation with un-
changed spectral characteristics, in spite of the change
in the central frequency and shape of the spectrum of

the resonance transition. This is because the perturba-
tion is far smaller than the width of the spectrum. Thus
the perturbation of the resonance state does not alter
the relationships W((F))\uliamat and Ψ(ω)\№),αΛΙ,ί. The
dependence of the ionization probability on the radiation
intensity is described by the power-function relation-
ship W~ (F*), while the frequency-dependence of the
probability is described by the effective feth-order
radiation spectrum. We note that the upper bound of
the interval of variation of the radiation intensity in
which the power-function relationship W~ (Fk) holds is
determined, on the basis of the inequality (6.9), by the
width of the radiation spectrum. The larger is Δω, the
higher is this bound.

The process of resonance ionization can be employed
to study the character of a perturbation of the reso-
nance levels. Here the ionization from the excited
state serves only as a method for detecting excited
atoms (the pertinent experiments are discussed in Ref.
25). Most of such experiments have been performed
with nonmonochromatic laser radiation. For a number
of reasons, their quantitative interpretation is difficult.
First, a number of the experiments pertain to the inter-
mediate case of interaction (between the narrow and
broad spectra), whose description involves considerable
difficulties. Second, quantitative comparison of the
experimental results with the theory is complicated by
the need to take into account the spatial inhomogeneity
and shape of the pulse envelope of the laser radiation.

1) Resonance ionization by narrow-spectrum radia-
tion. The probability of resonance ionization with a
narrow radiation spectrum in (6.14) is determined by
the probability of ionization in a monochromatic field
averaged over the intensity distribution P(F). Upon as-
suming that the distribution P(F) is described by the
exponential function of (2.2), a number of studies have
carried out the averaging procedure on various con-
crete cases of perturbation of the resonance state with
various degrees of nonlinearity of the transitions.3 4'5 0"5 3

We note that one must always bear in mind the space-
time inhomogeneity of the distribution of the laser
radiation in the region of formation of the ions when
comparing the results of such an averaging with the
experimental data. The inhomogeneity substantially
smooths out the distribution W(ui) 1^,.amlll, and alters
the W((-F})L = oonst relationship and the absolute value
of the ionization probability.

As is well known, the nature of the Wm(F) relation-
ship in a monochromatic field in the presence of a per-
turbation of the resonance state larger than its natural
width depends on the magnitudes of &, and k2, and can
vary in character.4 8 For certain values of kx and k2,
one can single out some particular dominant process of
perturbation of the resonance state. Thus, when &j = l
with an arbitrary value of k2, the dominant process is
the resonance mixing of the states 0,1, which gives rise
to a field width of the resonance state of Tf~ -fF. When
kt> 2 and k2> 1, the dominant process is the nonreso-
nance mixing of the levels 0,1 (if we restrict ourselves
to taking into account only the first term of the expan-
sion of the dynamic polarizability in terms of the field
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intensity), and it alters the energy of the 0,1 transition
by the amount δΕ~ F. in these two cases one can un-
ambiguously analyze the role of the perturbation. One
can conduct such an analysis for other values of k1 and
k2 only by taking into account the quantitative relation-
ships between the matrix elements describing the vari-
ous perturbing processes, since their field-dependences
are the same. Sometimes such an analysis also yields
valuable results, e.g., in the practically important case
in which the ionization process from the excited state
is of a single-photon type (k2 = l) while excitation is
substantially multiphoton (kt>2).

Let us examine the cases in which one can single out
a certain dominant perturbation process.

a) k1 = l,k2 arbitrary, single-photon resonance be-
tween the states 0,1; the perturbation of the resonance
state is determined by the resonance mixing of these
states. The special case in which k2 = l (two-photon
ionization process with a one-photon resonance) has
been treated in Refs. 50, 53, and 54. The existence of
resonance mixing (saturation of the 0,1 transition) has
the result that the populations of the states 0 and 1 are
approximately equal, and the resonance ionization pro-
cess is governed only by the transition to the continu-
ous spectrum.'48

In this case one must substitute into Eq. (6.14) the
well-known expression for the probability Wm{F, ω) in
a monochromatic field. Such a procedure for the radi-
ation from a thermal source has been carried out50 for
k2 = l. The result of this procedure is not expressed
in elementary functions, and is given in Fig. 14. The
ΐν(ω) relationship amounts to a resonance maximum of
width Γ,ιά^^ζΙ). The fluctuations of the amplitude of
the nonmonochromatic field cause the width of the reso-
nance to be somewhat greater than in a monochromatic
field. In the special case of k2 = 1 at exact resonance,
the statistical properties of the radiation in two-photon
resonance ionization are not manifested.

FIG. 14. Dependence of the probability of two-photon ioniza-
tion of an atom (fej = 1, k = 2) on the mean intensity of nonmono-
chromatic radiation (solid curves) for various detunings (ac-
cording to the data of Ref. 50). Dotted curves—the same for
monochromatic radiation. Inset—frequency-dependence of
the ionization probability.
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FIG. 15. Dependence of the probability of five-photon ioniza-
tion of an atom having a three-photon resonance %. = 3, k = 5)
on the mean intensity of nonmonochromatic radiation for vari-
ous detunings Δ. Line A—contribution of the direct process
to the ionization probability.

b) kl> 2,k2> 1; the perturbation of the resonance state
is governed by the process of nonresonance shift of the
ground and excited states. The dependence of the
probability on the intensity is determined by the initial
detuning of the resonance. Κ the detuning has a value
such that the mean shift of the levels leads to tuning the
resonance, then the W{{F)) relationship becomes faster
than W~{F)k. If the mean shift detunes the resonance,
then W((F)) becomes more gradual (Fig. 15). We
should bear in mind the fact that the realization of dif-
ferent amplitudes of shifts under conditions of a narrow
radiation spectrum corresponds to the different instan-
taneous values of the radiation intensity. Thus a broad-
ening of the resonance state arises that is inhomo-
geneous in time. At a value of the mean shift δω01 > Δω,
the magnitude of the broadening evidently weakens the
effect of the detuning of the resonance on the W({F))
relationship.

The dependence of the ionization probability on the
frequency W(u>) is of a rather complicated nature. On
the one hand, the maximal shifts 6E~F (where F is
the instantaneous value of the radiation intensity) that
are realized in the maximal field correspond to the
maximal probability of the two transitions and hence
also to the maximal ionization probability. On the
other hand, in the radiation field of a multifrequency
laser, the probability of fluctuational excursions of
maximal amplitude is exponentially small. Moreover,
the initial detuning of the resonance is of substantial
importance, since it determines the fields that con-
tribute most to the ion yield—the greater is the de-
tuning, the higher is the intensity of the "effective"
field. The joint action of these factors gives rise to the
\ν(ω) relationship. Thus, on the frequency scale, the
resonance distribution W(w) lies on one side of the
resonance frequency for zero field. The distribution
broadens with increasing mean intensity of the radia-
tion, while its shape is determined by the shape of the
distribution P(F) and the degree of nonlinearity k of the
ionization process. We note that in this case the W(&)
relationship functionally has the same character as in
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the case of multiphoton excitation of an atom with nar-
row-spectrum radiation, in which the shift of the atomic
levels dominates (Sec. 5, Fig. 8).

The above discussion implies a possibility in principle
of determining the distribution P(F) from data on the
distribution W(a>).34·52 Essentially, this possibility
arises from the fact that the perturbation is governed
by the shift of the levels.27

c) k1>2,k2 = l. The perturbation of the resonance
state is determined both by the shift of the levels and
by the ionization broadening of this state, since both
processes are proportional to the square of the field
intensity. As is well known, apart from the frequencies
at which the shift is zero, the real component of the
polarizability is numerically larger than the imaginary
component.25 Therefore, one can assume in this case
on numerical grounds that the shift dominates. Corre-
spondingly, the \ν(ω) relationship is analogous to the
case in which the shift dominates. However, it is
smoothed out by the ionization broadening of the reso-
nance state. The results of numerical calculations for
a number of concrete relationships between δΕ and r t

and for a number of concrete values of k are given in
Ref. 51.

The converse situation has also been treated in which
one can neglect the shift compared with the ionization
broadening of the resonance state.5 1 ' 5 3 Here the Ψ(ω)
relationship has a symmetrical form with a half-width
of the order of the width of the resonance level, while
we have W~(F)k~l. A practical realization of this situa-
tion is improbable. We should bear in mind that one can
in no way assume the level shift to be zero at the fre-
quencies at which the first (quadratic) term of the ex-
pansion of the polarizability in terms of the field inten-
sity is zero. Here we must pay attention to the second
term of the expansion (the hyperpolarizability), which
can attain a value comparable with the first term in a
number of cases, even whetv#>«g'a t.

2 5

The analysis performed above has assumed that one
can employ the concept of the probability per unit time
to describe the transition from the excited state to the
continuum spectrum. That is, we have not allowed for
the possible saturation of this transition. Thus we have
been treating only the case in which the relationship
holds that So WlEdt« 1, where τ is the duration of ac-
tion of the field. Yet when saturation arises, i.e., the
transition from the resonance state to the continuous
spectrum occurs with a total probability of unity, the
character of the resonance ionization process is deter-
mined only by the process of excitation of the resonance
state.4 8 In each of the treated cases, this leads to ob-
vious changes in the relationships that were presented.
The onset of saturation plays an essential role from the
practical standpoint. Actually, as we have said above,
a typical regime of operation of a laser whose radiation
is used to realize multiphoton transitions, is the regime
of Q- switching of the resonator, for which a radiation
pulse duration τ~10" 8 s is characteristic. Correspon-
dingly, saturation sets in at an ionization probability
WlE~10s s"1, or in other words, at a width of the reso-
nance state of r ,~10" 3 cm"1. That is, it arises at a

broadening on about the same scale as the natural width
of the atomic levels. Therefore, as a rule, the case of
Δω < Γ( is not realized.

A dependence of the W((F)) relationship on the de-
tuning of the resonance has been repeatedly observed
experimentally.55'56 Although the overwhelming ma-
jority of such experiments has been performed in the
radiation field of multifrequency lasers, it is hard to
compare the results quantitatively with those of theo-
retical calculations because one must take into account
the space-time inhomogeneities of the radiation intensity
in the region of formation of the ions. Reference 57 is
an example of taking time inhomogeneity into account.
Yet the results of the experiments qualitatively agree
well with the conclusions of the theory.

Finally, we must note that generally the narrow-spec-
trum case can be realized only with a spectral width of
the laser radiation not exceeding several cm"1. The
point is that, although level shifts of tens and hundreds
of cm"1 can be realized at fields % < git, nevertheless,
generally the two-level model of the atom that underlies
the analysis being conducted will break down for such
values of the shifts.

2) Resonance ionization by broad-spectrum radiation.
The criterion (6.9), which defines the condition for
realization of the broad-spectrum case, implies that
the perturbation of the resonance state is small in com-
parison with the spectral width of the laser radiation.
Thus the perturbation does not affect the ionization
probability. We recall that the magnitude of the per-
turbation of the resonance state that enters into this
criterion is determined by the averaged characteristics
of the nonmonocromatic field in (6.11)-(6.13). The per-
turbation of the resonance state, which was the cause of
the deviations from a power-function relationship in the
case of a monochromatic field, plays no role in this
case. Therefore the dependence of the ionization proba-
bility on the intensity of broad-spectrum radiation has
the power-function character W~(F)k. The probability
of resonance ionization in the case of broad-spectrum
radiation is qualitatively described by a formula of the
form of (6.5), in which the width Γ of the resonance is
determined by the effective spectrum of the radiation
of order ku

Let us examine how the process of resonance ioniza-
tion by broad-spectrum radiation differs from that by
monochromatic radiation. As before, we shall assume
in this comparison that the intensity F of the mono-
chromatic radiation equals the mean intensity (F) of the
nonmonochromatic radiation.

First, the power-function character of the dependence
of the ionization probability on the radiation intensity is
realized in the nonmonochromatic field up to higher
values of (F) than the corresponding values of F in the
case of the monochromatic field.49 An analogous effect
occurs also for that one of two nonmonochromatic fields
that has the larger spectral width. The reason for this
effect is rather obvious—the breakdown of the power-
function relationship arises from the perturbation of the
resonance state, while the latter is manifested at a
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greater radiation intensity as the width of the resonance
increases. In a sufficiently weak monochromatic field,
the width of the resonance is determined by the natural
width of the resonance state, while in a nonmonochro-
matic field in the case of broad-spectrum radiation, it
is determined by the effective fcrorder spectrum S»t(w):
the width Λω», of the latter is always greater than the
spectral width Δω. In particular, when the fluctuations
of W(t) and the shape of the spectrum F(w) are Gaussian
in type, the width of the effective spectrum is ι/¥|~Δω.

Second, in the region of variation of the radiation in-
tensity in which the ionization process in the monochro-
matic and nonmonochromatic fields is of a power-func-
tion type, the ionization probability in the nonmonochro-
matic field can be either greater or smaller than in the
monochromatic field for equal radiation intensities (.F)
and F. In particular, other conditions being equal, the
probability of ionization in the nonmonochromatic radia-
tion field of two different lasers is inversely propor-
tional to the width of the laser radiation spectra.

In a number of experiments a resonance ionization
process has been observed under conditions of a broad
laser radiation spectrum. However, one can extract
quantitative data only from the results of Refs. 31 and
58, since the width of the radiation spectrum was con-
trolled therein.

A process was observed in Ref. 58 of three-photon
ionization of the sodium atom in the presence of an in-
termediate two-photon resonance arising under the ac-
tion of radiation having two different spectral widths.
Figure 16 shows the experimental data on the depen-
dence of the ion yield on the radiation intensity. These
relationships are of a power-function type with an ex-
ponent of fe = 3, which corresponds to the conclusions
drawn above. For the radiation having the greater spec-
tral width, deviations from the power-function relation-
ship arise at a greater mean radiation intensity. This
corresponds to the conditions for realization of the
broad-spectrum criterion (6.9) in the presence of a

itr1

ο

xr*

FIG. 16. Experimental values of the ion yield of a process of
three-photon ionization of an atom having a two-photon reso-
nance that arises under the action of the radiation from a
multifrequency laser at different spectral widths.58 1—Av
«0.09 cm"1, 2—Ay «1.25 cm"1. Straight lines—approxima-
tion of the experimental data byaW~ <i">3 relationship.

perturbation of the resonance state. The ion yield at a
fixed mean radiation intensity is inversely proportional
to the spectral width of the radiation.

The same process of three-photon ionization of the
sodium atom with a two-photon resonance has been ob-
served in Ref. 31. There a study was made of the reso-
nance relationship of the ionization probability №(ω) to
the radiation of a multifrequency laser. The measure-
ments showed that the W(o>) relationship corresponds
to an effective second-order spectrum: the form of the
resonance is close to a Gaussian curve, while its width
of 0.12 cm"1 is about V2" times as great as the width
0.08 cm"1 of the laser radiation spectrum, which was
measured independently. Here the ion yield was pro-
portional to the third power of the laser radiation in-
tensity for every value of the detuning,

7. CONCLUSION

In closing the discussion of the problem of the non-
linear interaction of nonmonochromatic laser radiation
with atoms, we must note first a series of problems
germane to the topic of this review, but not duly re-
flected in it.

Upon first turning to nonlinear phenomena per se for
various reasons we have not discussed certain topics.
They include, among others, such important phenomena
as the nonlinear scattering of laser radiation, including
the generation of higher harmonics, as well as the dis-
sociation of molecules in an infrared field. As regards
the process of harmonic generation, it is well known
that it is of greatest interest in the case of an extended
nonlinear medium in which phase relations are estab-
lished between the light at the fundamental and multiple
frequencies so that a considerable fraction of the energy
of the incident light is converted into the harmonic.
Under such conditions, nonmonochromaticity of the ex-
citing light exerts the strongest influence on the estab-
lishment of phase relationships in the medium,14 so that
the treatment of the effect of nonmonochromaticity of
the light on the process of harmonic generation in an
isolated atom is not an independent problem. The pro-
cess of dissociation of molecules in an infrared laser
radiation field naturally attracts attention, since the
dissociation potential is always far greater than the
quantum energy of the radiation. Correspondingly, in
principle, the dissociation process can be of an ex-
tremely multiquantum type. Thus we can expect that
effects involving nonmonochromaticity of the radiation
will be very significant in this case. However, nu-
merous experimental facts obtained recently clearly
show that dissociation actually is not an extremely
multiquantum process. The most likely model is the
one in which the dissociation process consists of two
stages. The first amounts to an excitation of the mole-
cule involving relatively few photons, while the second
consists of collecting energy from the external field
under conditions where a quasicontinuum of excited
states appears.5 9 An elucidation of the role of nonmono-
chromaticity of the radiation in the process of dissocia-
tion of molecules is of evident interest. Only the first
steps6 0'6 1 have been taken in this direction, though not
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in connection with extreme multiquantum transitions.

The review has not discussed the effect of nonmono-
chromaticity of the laser radiation on the quasienergy
spectrum of a two-level system arising in a strong
field.62 References 19, 34, and 63-65 have derived an
analytical solution of this problem for systems having
constant dipole moments. In practice, these systems
are realized in a large number of cases. These are the
hydrogen atom and hydrogen-like states of complex
atoms, molecular systems lacking a center of inver-
sion, and systems of spin 1/2 in a constant plus a col-
linear alternating magnetic field. The results obtained
in the cited studies for various special cases indicate
the contrast in the action of monochromatic and non-
monochromatic fields. However, this set of phenomena
is important in the action of a low-frequency field. Thus
it stands apart from the main topic of this review: an
atom in a strong nonmonochromatic field in the optical
frequency range. (We note that, as applied to molecules
having large constant dipole moments in the ground or
excited state, the effects that arise can be important
also in the optical frequency range.)

Upon turning now to laser radiation, we find two im-
portant special cases that have not been studied in de-
tail: single-frequency radiation and multifrequency
radiation with phase-synchronized modes. The radia-
tion of mode-synchronized lasers has certain advan-
tages, owing to its extremely high intensity and ex-
tremely small pulse duration. Currently it is widely
applied for research, including nonlinear-optics phe-
nomena. The justification for our ignoring this multi-
frequency regime is the determinate character of the
radiation with phase-synchronized modes, A descrip-
tion of its interaction with an atom reduces to taking
into account the envelope of the pulse. As an example,
we can point out the solution of this problem in the case
of resonance ionization.48

In a number of cases, the action of single-frequency
laser radiation is equivalent to that of monochromatic
radiation. However, single-frequency radiation is al-
ways characterized by a finite spectral width. Hence it
also has features specific for nonmonochromatic radia-
tion. In a continuous-wave generation regime, the width
of the spectrum of single-frequency radiation is deter-
mined by the random phase variation. This radiation
is described by the phase "diffusion" model well known
in the scientific literature. We note that this model
does not take into account fluctuations of the intensity
of the radiation. Thus it does not reflect the fundamen-
tal properties of multifrequency laser radiation, and
hence we have not treated it.

Η finally we turn to the measured quantities, we
should note that the study of the fluctuations of nonlinear
signals, which, as we have said above, has practically
not been carried out, is a promising line of study.
Thus, for example, in principle one can extract from
data on fluctuations of the yield of a fe-photon process
information on the moments of the intensity distribution
of orders higher than fe.66

Finally we note that we have restricted the discussion

to effects that occur under conditions in which the con-
cept of the probability per unit time can be applied.
Taking into account saturation and a derivation of the
relationships for the total probabilities substantially
complicates the description of the elementary nonlinear-
optical phenomena in a nonmonochromatic field.47

In closing we must note that the set of problems that
we have discussed concerning the role played by the
nonmonochromaticity of the laser radiation field in ex-
citing elementary nonlinear-optical phenomena is not
only of general physical interest, but also has great
significance in practice. Actually, for a broad set of
applications involving the selective action of laser
radiation on atoms and molecules, the conditions of
experiment in which the interaction occurs with an iso-
lated atom are optimal. As regards multifrequency
lasers, they make it possible to obtain a considerably
larger radiation intensity than single-frequency lasers
do, so that the promise that they offer in practical ap-
plications is undoubted. Finally, the elucidation of the
physical essense of nonlinear-optical phenomena that
arise in an extended medium requires a knowledge of
the details of the character of the nonlinear interaction
with an isolated atom.
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