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analyzed. Various processes that involve atoms in Rydberg states are described, including transitions between
high-lying excited states induced by collisions with electrons and atoms, quenching by electrons and atoms,
ionization by collisions with electrons, atoms, and molecules, charge exchange with ions, and so on.

PACS numbers: 31.50. + w, 34.50.Hc, 34.70. + e, 34.80.Dp

CONTENTS

1. Introduction 450
2. Production of atoms in Rydberg states 451
3. Radiative transitions of highly excited atoms 454
4. Methods for detecting atoms in Rydberg states 457
5. Colliaons between highly excited atoms and charged particles 459
6. Ionization of a highly excited atom as a result of a collision

with atomic particles 463
7. Quenching of atomic Rydberg states by collisions with atoms and

molecules 465
8. Conclusions 468
References 468

1. INTRODUCTION

Highly excited atomic states are referred to as Ryd-
berg states. Atoms in such states are very large;
their dimensions are of the order of «0η

2, where a0 is
the Bohr radius and η is the principal quantum number.
An excited electron in a Rydberg atom moves in the
Coulomb field of the atomic core. The study of the level
structure of atomic Rydberg states provides information
concerning various types of interactions in the atom,
which determine deviations from Coulomb law de-
scribing the interaction of the electron with the atomic
core and, which, for this reason, appear as perturba-
tions.

Atoms in Rydberg states are of interest to astro-
physics. Transitions between the Rydberg states of
the hydrogen atom are responsible for the recombina-
tion lines in the radio emission spectrum.1"7 The ob-
servation of these lines gives information about inter-
stellar hydrogen, to the mid-1960's, a great deal of
attention was directed toward hydrogen atoms in Ryd-
berg states in connection with the possibility of in-
jecting excited hydrogen atoms with η = 9-15 into a hot
plasma and using this technique for producing a plasma
for thermonuclear fusion.8"10 Subsequent studies de-
monstrated that this method could not compete with
other methods for producing a plasma.

The great interest in atomic Rydberg states in recent
years is related to the development of new methods for
producing highly excited atoms with the use of a tun-
able laser. These methods permit excitation of atoms
into selected levels and investigation of various pro-
cesses that involve highly excited atoms in selected
states. Such studies provide qualitatively new informa-
tion concerning processes involving highly excited

atoms. This is the reason for writing the present re-
view.

The creation of experimental techniques that allow
production of atoms in a selected highly excited state
is also important for applications. Masers have been
constructed using transitions between highly excited
states.11·12 Atomic Rydberg states are used for de-
tecting long wavelength radiation,1 3"1 5 l l i 7 '1 8 8 in particu-
lar, thermal radiation emitted by solids with surface
temperatures below room temperature.

As long as we consider only the Coulomb interactions
between an electron and the atomic core, the electron
energy of a highly excited atom is given in atomic
units1» by1*·17

—-£-. w
where η is the principal quantum number of the state.
The state is 2n2-fold degenerate (two-fold degenerate
with respect to the electron spin and «2-fold degenerate
with respect to the spatial quantum numbers). This de-
generacy is partially removed by taking into account the
non-Coulomb interactions of the electron with the
atomic core. Denoting the operator for the non-Coulomb
interactions by V, we find that the shift in the level with
principal quantum number η as a result of this interac-
tion is given by

Δε = (ψη|ΙΊ ψη>, (2)

where φπ is the wave function of the highly excited elec-
tron. Since the interaction V is appreciable in a region
of the order of the dimensions of the atomic core, where

and subsequently we will use atomic units Η = me = e2 =
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TABLE I. Quantum defect for the helium
a t o m . 1 8 · 1 8
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We will assume that the non-Coulomb interactions of
the electron with the atomic core are spherically sym-
metrical. Then this interaction partially removes the
Coulomb degeneracy and the states of the highly excited
atom are characterized by the quantum numbers nlm
(I denotes the orbital angular momentum and w its
projection). We will represent the shift in the level as
a result of the non-Coulomb interactions in the form
Δ ε Λ , = - δ, /η 3 , where δ, is the so-called quantum defect,
which depends only on the orbital angular momentum
of the state. Adding this increment to the electron en-
ergy (1), we represent the electron energy of the highly
excited atom in the form

From general considerations, it follows that the quan-
tum defect decreases sharply with increasing orbital
angular momentum because the probability of finding
the highly excited electron in the region occupied by the
atomic core drops sharply in this case. This fact is
demonstrated in Table I, which displays the quantum
defect for a highly excited helium atom. It is evident
that the quantum defect drops sharply with increasing
orbital angular momentum and formulas (1) and (4) give
approximately equal results. Table Π shows the inter-
actions that contribute to the quantum defect. The quan-
tum defect is mainly determined by the electrostatic
interaction of the excited electron with the atomic core
when the highly excited electron penetrates into the
atomic core.

Equation (4) can be written in the form
ι (4a)

which introduces the effective principal quantum num-
ber n*. This method of representing the binding energy

TABLE Π. Contribution of vari-
ous interaction mechanisms to
the quantum defect for the D-
state of the helium atom.19
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FIG. 1. Fine-structure splitting of the D3/2-O5/2 states of the
sodium atom. Experiment: 1—Ref. 20; 2—Ref. 21; dashed
line corresponds to the asymptotic limit for η — °°.

of the electron is mainly applicable to heavy atoms, for
which the difference δ, —n-rt can attain several units
(see Ref. 11). Indeed, the principal quantum number is
enumerated beginning with the inner electrons of the
atom, so that the valence electron in an unexcited heavy
atom is characterized by a principal quantum that equals
several units, while its ionization potential corresponds
to n* = 1 - 2 . For example, for a rubidium atom (the
outer electron shell of the atom in the ground state is
5s), the quantity δ,=η-η* equals11·54 3.16 for 2S states,
2.69 for 2 P states, and 1.40 for 2Z> states. For a stron-
tium atom (the outer electron shell of the atom in the
ground state is 5s2), the quantity δ,=η-η* equals11'17

3.27 for highly excited 1S states, 2.73 for lP states, and
2.37 for u 3.D states.2'

We note that the dependence on the principal quantum
number shown in Eq. (3) is characteristic for any type
of interaction in a highly excited atom when this inter-
action is significant in a region of the order of the di-
mensions of the atomic core. As an example, Fig. 1
shows the experimental dependence on the principal
quantum number of the doublet splitting for the £>3/2

- D5/2 levels of a highly excited sodium atom.2 0'2 1 The
fine structure splitting of the levels is determined by the
inner region of the atomic core, so that the quantity A
= n35Wn (5Wn is the fine structure splitting of the levels)
does not depend on η for large values of n. This be-
havior is shown in Fig. 1, where the quantity A is ex-
pressed in units of 1010 cm"1.

2. PRODUCTION OF ATOMS IN RYDBERG STATES

Let us examine the experimental methods for obtaining
highly excited atoms. These methods make use of three
types of processes: electron impact excitation of atoms
and molecules, charge exchange of ions with atoms and
molecules, and photoexcitation. The first two methods
for obtaining highly excited atoms, namely, the process
of charge exchange of ions with atoms and mole-
cules9'10>22~33 and the process of electron impact ex-

2>In order to simplify the notation, in future we will not dis-
tinguish between the principal quantum number η and the
effective principal quantum number n* because these quan-
tities become equal for « — °°. Thus, when the principal
quantum number η is used to characterize the binding energy
of an excited electron, a more rigorous analysis would re-
quire that η be replaced by η *.
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TABLE ΠΙ. Maximum values of
σ(£), the cross section for elec-
tron impact excitation of inert
gas atoms (E m a x denotes the
electron energy at which the
maximum is attained).

TABLE IV. Value of σ(£) for an
electron with incident energy of
100 eV.

Atom

σ («max). A2

He

0.77
70

Ne

0.63
60

Ar

6.5
28

Kr

4.0
20

Xe

10
20

citation of atoms and molecules,34"43 as well as the pro-
cess of molecular dissociation by electron impact with
the formation of highly excited atoms,44"50 were widely
used in the early studies of atoms in Rydberg states.
The disadvantage in these methods is that they lead to
the formation of an entire spectrum of highly excited
atomic states. At the same time, the cross section for
producing atoms with a given value of the principal quan-
tum number n » l is described by the following function:

On(E) = - ^ - , (5)

where σ(£) does not depend on the principal quantum
number of the state.

The function (5) is easy to obtain taking into account
the fact that the interactions and transitions occur in a
region that is small in comparison with the size of the
Rydberg atom. The probability of the transition equals

«·ο-π= Ι (Ψ(Λ = οο)-ψ0|ψη>ρ,

where ψ0 and ψη are the wave functions of the atom in the
initial and final states; *(R) is the exact wave function
of the system, where R is the distance vector between
the nucleus and the incident particle. Since the inter-
action with the incident particle occurs over a limited
range of electron coordinates, the change in the wave
function of the system * - ψ0 occurs only in this region.
The wave function of a highly excited electron varies
as φη~ n~3/2 near the nucleus. From this we obtain the
function (5).

Tables ΙΠ and IV show the values of σ(Ε) in Eq. (5)
for electron impact excitation of inert gas atoms. These
quantities were measured in Ref. 42.

Only optical methods allow production of Rydberg
atoms in a selected state. Existing methods for selec-
tive excitation of atomic Rydberg states depend on the
use of tunable lasers. The advent of tunable lasers
opened up new possiblities for selective excitation of
atomic Rydberg states and raised the study of Rydberg
states to a new scientific level. At the present time,
tunable lasers in combination with nonlinear crystals
allow obtaining laser radiation that can be smoothly
tuned over a frequency range from 2,000 to 30,000 A
(photon energy ranging from 6 to 0.4 eV, respectively).

There exist various methods for laser excitation of
atomic Rydberg states. The simplest of these is single-
photon excitation, involving the excitation of a Rydberg
state by absorption of a single photon. An example of
this method of excitation is the work described in Refs.

Atom

a(£), A«

He

0.67

Ne

0.61

Ar

1.5

Kr

2.0

Xe

4.6

51-53, where helium atoms in n3P(rc = 8-17) states
were produced by exciting metastable helium atoms
He(23S) with a tunable laser using a frequency doubling
ADP crystal (ammonium diphosphate). As a result, the
laser wavelength varied over a range from 2,723 to
2,626 A. Metastable helium atoms were produced in a
gas discharge. Measurements were performed on the
afterglow of the gas discharge. Other examples of this
type of excitation are the excitation of np- states of
rubidium atoms with principal quantum numbers in the
range « = 28-60 (Ref. 54) and the excitation of np-states
of cesium atoms for « = 28-78 (Ref. 55).

Another method for laser excitation of Rydberg states
makes use of two-photon excitation, when resonant ex-
citation of a given state involves simultaneous absorp-
tion of two photons (see, for example, Refs. 56-59). In
contrast to single-photon spectroscopy, two-photon
laser spectroscopy permits studying other excited
states with a change in orbital angular momentum of the
electron ΔΙ = 0.2. It would seem that the two-photon ex-
citation method is much less effective than the single-
photon method because the coefficient for two-photon
absorption contains an additional small parameter that
depends on the ratio of the intensity of the electromag-
netic field to the characteristic magnitude of the
atomic field. However, in spite of this, two-photon
laser spectroscopy has important advantages over
single-photon processes. The single-photon absorption
coefficient increases in proportion to the decrease in
the laser line width and reaches saturation when this
width becomes equal to the Doppler width. Thus, single-
photon laser spectroscopy permits studying the struc-
ture of the absorption coefficient over a range of the
order of the Doppler width of the spectral line.

A different situation arises in two-photon laser spec-
troscopy. In the usual experimental setup, the incident
radiation turns out to be partially trapped in the region
between two parallel mirrors. For this reason, two
photons moving in opposite directions are usually ab-
sorbed so that the Doppler effect is eliminated. Evi-
dently, the advantages of two-photon laser spectroscopy
become apparent when the laser line width is small in
comparison with the Doppler width. First of all, the
two-photon absorption coefficient increases in propor-
tion to the decrease in the laser intensity, while the
single-photon absorption coefficient becomes saturated
at these intensities. Thus, the relative efficiency of
two-photon laser spectroscopy increases as the laser
line width decreases. Second, two-photon laser spec-
troscopy allows studying the fine structure of the ab-
sorption spectrum, the scale of which is characterized
by the width of the laser line. The resolution of single-
photon laser spectroscopy is determined by the Doppler
width of the line.
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We note that the methods examined above, which
make use of a tunable laser, lead to the production of
highly excited atoms with low electron orbital angular
momentum. This follows from the selection rules for
photon absorption. According to these rules, for al-
lowed transitions, single-photon absorption changes
the electron orbital angular momentum by not more
than one unit. In order to obtain atoms with high orbi-
tal angular momentum, it is necessary to use a strong
electromagnetic field. When the intensity of the field
is high enough, states with different values of the elec-
tron orbital angular momentum are mixed so that the
excited state is characterized by the parabolic quantum
numbers n, nu n2, and m. In this case, the atomic
energy levels are split by the field so that tuning over
the resonance region can be performed by changing the
intensity of the electrostatic field while keeping the
laser frequency constant.

We will describe some of the details of the experi-
ment performed by Koch, who suggested and developed
this method.60'61 A beam of 7.51 keV protons undergoes
charge exchange with xenon atoms and then passes
through two regions between capacitor plates with con-
stant electric fields Fi and F2. In these regions, the
hydrogen atoms are excited by the Λ = 22 line radiation
from a carbon dioxide laser. The initial distribution of
hydrogen atoms among the atomic states satisfies /„
~«~3. In the first capacitor, the field intensity is of the
order of tens of kv/cm and in this capacitor excitation
occurs as a result of a transition from n = 7 to η = 10.
In the second capacitor, the intensity of the electric
field is of the order of hundreds of v/cm and in this re-
gion transitions from « = 10 to η = 31 occur.

According to calculations, in the first capacitor with
an electric field intensity .Fj = 42.56 kv/cm, resonance
occurs for the transitions 7,2,4,0 — 10,1,8,0 while with
a field intensity -Fj =42.62 kv/cm, the absorption of a
laser photon corresponds to the transitions 7,1, 3,2
— 10,0,7,2. Evidently, in order to detect atoms in
sharply defined states, high precision is required for
the intensity of the electric field, which in the pub-
lished literature amounts to AF/F- 10~3; future plans
call for lowering this ratio to 10"5. In the second ca-
pacitor, the electric field of the laser, which is char-
acterized by an electric field intensity equal to 90 v/cm
at a laser intensity of 20 W/cm2, contributes to the
splitting of the levels.

Thus, the method examined above, which is intended
for producing highly excited atoms with arbitrary orbi-
tal angular momentum, requires highly stable external
fields. When using a constant electric field in a capaci-
tor, it is ultimately possible to obtain atoms in states
with η-25-30, while with an alternating electromagne-
tic field in the capacitor the range of values of η is in-
creased to n~70.

Later on, we will consider the problem of estimating
how many highly excited states can be produced with the
aid of a tunable laser. Since the absorption efficiency
drops sharply with increasing principal quantum num-
ber, we will concentrate on single-photon laser spec1

troscopy. At the same time, we will assume that the

laser line is sufficiently narrow and the gas or atomic
beam is sufficiently rarefied so that the width of the
absorption line is determined by the Doppler broadening
mechanism. Selective excitation of particular states
occurs when the width of the absorption line is much
smaller than the distance between neighboring levels.
In the case being examined, the width of the Doppler
broadened line is Δω ~wowT/c, where ω0 is the transi-
tion frequency at the center of the line, υτ is the ther-
mal speed of the atoms, c is the speed of light, and the
distance between neighboring levels is of the order of
ωο/η3. From this, we find that under the conditions
considered the possibility of selective excitation of a
Rydberg level is determined by

«'«^. ' (6)

Let us make some numerical estimates. The quantity
c/vT is of the order of 106 (the temperature of the gas
or the longitudinal temperature of the atoms in the
beam is assumed to be of the order of room tempera-
ture). This gives η < 100, i.e., it is possible to excite
a level with principal quantum number less than 100.
We note that in making this estimate we assumed that
the gas or the beam of atoms is sufficiently rarefied so
that impact broadening of the spectral line is not im-
portant.

Let us estimate the excitation selectivity due to the
instability in the wavelength of the tunable laser. For a
tunable dye laser, the line width together with its insta-
bility usually constitutes several tenths of cm"1. As-
suming that this quantity, which we will denote by Δ2Γ,
lies in the range from 0.1 cm"1 to 1 cm"1, we can de-
termine the limiting value of the principal quantum num-
ber η for a selectively excited atomic Rydberg state
from the relation

Δ* = ̂ . (7)

Here, l/n3 is the difference of the excitation energy for
the states with principal quantum numbers η and w +1
expressed in atomic units. From this relation we find
that under the given conditions the limiting values of
the principal quantum number for selectively excited
atomic Rydberg states lie in the range n = 60-130.

The estimates made above show that with the help of
a tunable laser it is possible to excite selected atomic
Rydberg states up to η ~ 100. In making these estimates
we assumed a dye laser, i.e., we assumed that the
photons that excite this state lie in the visible and ad-
jacent, parts of the spectrum, while the width of the
laser line likewise corresponds to that of a tunable dye •
laser. The experimental methods described above
allow selective production of atoms in Rydberg states
with η s 100. However, this limit on the principal quan-
tum number is not a fundamental limit. It is possible
to change the method of producing atomic Rydberg
states by carrying out the excitation in steps so that the
last step is an excitation from a Rydberg state with
principal quantum number n' % 100. Then, the condi-
tions (6) and (7) become less severe. Condition (6) in
this case has the form

n^iJ-^Y13, (8)
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where w is the principal quantum number of the final
Rydberg state. Evidently, in the scheme under con-
sideration, Doppler broadening of spectral lines does
not prohibit selective production of atomic Rydberg
states with η s 103. Condition C?) in this case takes the
form

For n'~102 and M~103, this formula yields Δω/ω ~1Ο~5.

The theoretical estimates obtained above for the
limiting values of the principal quantum number of
selectively detected Rydberg atoms cannot be achieved
experimentally. Indeed, according to these estimates
Rydberg atoms with w~103 can be selectively produced
by exciting states with η' ~ 100. This can be achieved
by using a tunable laser in the centimeter wavelength
range with a relative line width Δω/ω~10~5, which is
presently impossible to attain. Nevertheless, the
scheme described above allows increasing the range of
principal quantum numbers for selectively excited Ryd-
berg states. If a 10.6 μτα tunable carbon dioxide laser
is used at the last stage of excitation, which corre-
sponds to n' = 11, then the limit due to the Doppler
broadening of the line in accordance with the condition
(8) corresponds to M~500. According to (9), for such
values of the principal quantum number, the laser line
width must satisfy the criterion Δω/ω~10~β. These
conditions can be satisfied by using modern experimen-
tal techniques.

Production of atoms with high principal quantum num-
bers, as well as the possibility for studying processes
involving these atoms and for using these states for
other purposes, depend on the efficiency of the photo-
processes that lead to the formation or destruction of
highly excited atoms. For this reason, these pro-
cesses will be examined below.

3. RADIATIVE TRANSITIONS OF HIGHLY EXCITED
ATOMS

Let us study the production of highly excited atoms
by photoprocesses, as well as photon absorption and
emission by highly excited atoms. Studying these pro-
cesses will permit us to evaluate the potential for
producing highly excited atoms in selected states, as
well as the possibility of using them for various
studies.

Let us first determine the cross section for photo-
excitation of an atom into a given Rydberg state in
order to identify the highly excited atomic states that
can be selectively produced under real conditions. To
do so, we will make use of the similarity of the pro-
cess of photoexcitation of an atom into a Rydberg state
and the process of photoionization of an atom near the
threshold. These processes are characterized by the
same interaction mechanism for the transition, which
is determined by a region of the order of the dimen-
sions of the atom in the initial state and differ only in
that, in the former case, the electron makes a transi-
tion into a discrete state, while in the latter case it
makes a transition into the continuous spectrum. This
defines a simple relationship between the cross sec-

tions for these processes. In particular, if the width
of the absorption line significantly exceeds the distance
between neighboring energy levels of the Rydberg atom,
then the absorption cross section in the discrete spec-
trum coincides with the cross section for photoioniza-
tion of the atom. Using the analogy between these pro-
cesses, we will establish below a relationship between
the corresponding cross-sections (see also Ref. 43).

We will make use of the fact that the oscillator
strength for exciting high-lying electron bound states
with principal quantum number η varies as n~3 (see,
for example, Ref. 16). This allows writing the excita-
tion cross section in the following form:

<!„ = — Γ α ( ω — ω,,), (10)

where C is a normalization constant, while α(ω- ωπ) is
a function that characterizes the shape of the spectral
line in absorption. This function is normalized to unity
J αάω = ί, and its value depends only on the difference
in the frequency of the exciting photons ω and the fre-
quency corresponding to the transition to the line cen-
ter ωη. On the scale of frequencies for atomic transi-
tions, this function is a delta function a = δ(ω - ωη). The
width of the distribution function is determined by the
broadening mechanism (see, for example, Ref. 62).

We will begin with the fact that for large widths of the
absorption line, significantly exceeding the distance be-
tween levels with different values of n, the cross sec-
tion for photon absorption coincides with the cross sec-
tion for photoionization near threshold. Indeed, in this
case, the discrete spectrum of the excited electron is
sensed by the photon as a continuous spectrum, while
the behavior of a weakly bound and that of a slow free
electron are identical near the atomic core. Therefore
we have:

<\οη=Σσ" = Σ > ο ( ω - ω » ) · (H)
η η

In this case, σ|αη includes that part of the photoioniza-
tion cross section that corresponds to the formation of
a slow electron with the same orbital angular momen-
tum (or with the same parity) as the excited electron.

Let us determine the normalization constant in Eq.
(10). Under the conditions considered, the sum in Eq.
(11) can be replaced by an integral. Further, the en-
ergy of the atomic transition under consideration equals

where J is the ionization potential of the atom. From
this we obtain

Using the normalization condition for the distribution
function / a(x)dx = \, we obtain vlan = C, so that

(12)

In deriving this formula3', we used the assumption

3)A general relation was obtained in Ref. 43 relating the cross
section for exciting an atom into a highly excited state and
the ionization cross section of the atom near the threshold
for an arbitrary process. In the case being considered, this
relation has the form J<^ndw=aioil/ns.
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that Δω « l/«2, where Δω is the absorption line width,
because we assumed that only discrete atomic states
are involved in the process of absorbing photons with a
given frequency. However, the formula obtained is
also valid when this condition is not satisfied.

Equation (12) can be represented in a form that is more
specific and more convenient for analysis if the lower
state of the atom has a quantum number n'»1. In this
case, we can obtain a simple expression for the ex-
citation cross section using Kramer's formula63 for the
photoionization cross section of an excited atom

"\o«-jy^-^gr; ( 1 3 )

where c = 137 is the speed of light and ω = l/2w'2 - 1/
2«2 is the energy of the absorbed photon. Eq. (9) repre-
sents the classical ionization cross section for the elec-
tron, averaged with respect to the angular momentum
and its projection along a fixed axis. It is valid if η - η'
»1 so that the classical description of the electron
undergoing the transition is valid. Taking into account
(13), Eq. (12) can be represented in the form

= T (ΐ-^-)-3«(ω-ωΒ>.

(14)
Under actual conditions for producing atomic Ryd-

berg states, the density of atoms is not large so that
the spectral lines are broadened according to the Dop-
pler mechanism. In this case, the distribution function
α(ω-ωπ) at the line center equals a(Q) = l/ωVMC2/2TTT ,
where ω is the frequency of the absorbed photon, Μ is
the mass of the atomic nucleus, c is the speed of light,
and Τ is the temperature of the gas. Substituting this
expression into Eq. (14), we obtain the following ex-
pression for the cross section for the phototransition
under consideration at the line center:

σ(» 1.13 ( — ) ( 1 - — ) V - j ^ . (15)

In particular, for w = 2«' and T = 273 K, this formula
yields σ(η' — «) =a0VM", where Μ is the mass of the nu-
cleus expressed in atomic mass units, while σ0 = 10"12

cm2. We note that under the conditions being con-
sidered the cross section for photoionization of the
atom in the w-th state by the same photon, according
to formula (13), equals σί ο η = σ'η, where σ '= 1.9· 10~17

cm2. Since, realistically, η ·& 102, the ionization cross
section for the highly excited atom is about three
orders of magnitude lower than the cross section for
photoexcitation of the atom into a given level. Thus,
highly excited atoms created as a result of laser excita-
tion do not disintegrate under the action of such laser
radiation.

Another estimate, based on the formulas presented
for the excitation cross section, enables us to under-
stand what fraction of the atoms in the lower state n'
can be put into the highly excited state n. We will as-
sume in accordance with the estimates made that the
cross section for photoexcitation into the n-th state is
of the order of σ~10~12 cm2. Let the beam of atoms
move with a speed of the order of the thermal speed υ
-105 cm/s and let the length of the path irradiated by

the laser be I ~1 cm. Then, each atom in the state n'
that enters this zone is excited with a probability of the
order of unity if the flux of laser photons amounts to
j~v/la~lQv l/cm 2 · s. This requires a tunable laser
power P~0.l W/cm2, which corresponds to real tunable
dye lasers.

Let us examine the situation in which the laser pulse
used for pumping is of duration that is short in com-
parison with the transit time of the atom in the irradia-
tion zone (10 ms under the conditions considered). The
atom in the lower state n' will be excited into the state
η with a probability of the order of unity if the number
of photons per unit surface area is of the order of 1/σ
~1012 cm"2. This corresponds to a laser pulse intensity
of the order of 10~6 j /cm 2 . Such intensities are easily
attainable. Thus, we conclude that by using modern
laser technology we can selectively populate a highly
excited state by exciting a significant fraction of the
atoms in the lower state. In this manner, the existing
laser technology allows selective production of highly
excited atomic states with a relatively high density of
atoms in a given state.4' The high efficiency of modern
methods for detecting atoms in selected Rydberg states
has led to great progress in studying processes that in-
volve highly excited atoms.

Another type of radiative transition out of Rydberg
states, which we will examine below, is responsible
for the radiative lifetime of highly excited atoms. This
quantity is determined by radiative transitions into
lower states and varies as n3 with increasing excitation.
For this reason, the radiative lifetime of highly excited
states is long and they can be considered as metastable
states. In addition, the radiative lifetime of a highly
excited state sharply increases with increasing orbital
angular momentum. In order to represent the order of
magnitude of the radiative lifetimes of highly excited
states, we will present below the values of the frequen-
cies of the most intense radiative transitions out of a
highly excited state for hydrogen atoms.

The most effective such radiative transition out of the
state nl is the transition into the state n'=1,1'=1 - 1.

This transition makes the greatest contribution to the
radiative lifetime of a highly excited state. The proba-
bility of such a transition per unit time, according to
general formulas for the radiative transitions in the
hydrogen atom,1 6'6 4 equals

A(nl-*l, 2—1) = - (16)
3c' (B—f)! (2i-|-l)! («4-0™"'

Here, A is the Einstein coefficient for the transition
under consideration from the upper into the lower state
expressed in atomic units and averaged with respect to
the magnetic quantum number of the electron, while c
is the speed of light. It is convenient to compare the
quantity sought with the probability of a radiative transi-

4)Under the examined conditions, the density of highly excited
atoms in a given state per unit length of the beam attains
1012 cm"2, which for a cell length I ~ 1 cm illuminated by
the laser corresponds to a density of excited atoms of the
order of 1012 cm"3.
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TABLE V. Values of the reduced prob-
ability of a radiative transition per unit
time for different values of the orbital
angular momentum for Ζ « η .

«

A(nl-
Α(Ά

Ι, Μ )
- 1 0 )

6

1

.68 1

2

.56

»

0.498 0

4

.182 0 .0723

tion per unit time for the 2£-state of the hydrogen atom,
i.e., with the quantity A0=A(21-10) = 6.27· 108 s"1.
Using this property, we can represent Eq. (16) for
! « n a s follows:

(17)

Table V includes calculations based on this formula for
small values of orbital angular momentum.5' As can be
seen, the radiative lifetime decreases sharply with in-
creasing orbital angular momentum.

The analysis presented above allows an estimate to be
made of the order of magnitude of the radiative lifetimes
for highly excited atoms6' and of their dependence on the
quantum numbers. For n~ 50, the radiative lifetime
τ~10"5 s so that in the beam method for producing high-
ly excited atoms this quantity significantly exceeds the
residence time of the highly excited atoms in the zone
being studied.

Of particular interest are the radiative transitions be-
tween highly excited states. The oscillator strength for
the transition nl — n'l' for n,n'»1 is given by the ex-
pression65·66

where s = n-w', we = 2«n'/(n + «'), Z e

= m a x (M')> ε
= 1 - (I l/nl), and Js is a Bessel function. Due to the
unwieldy nature of this expression, we will limit our-
selves to transitions between neighboring levels. In
this case, we have for I« w:

A(n, 1.81 (19)

where A0=A(2p- Is) = 6.27· 108 s"1.

Comparing Eq. (19) with Eq. (17), we find that radia-
tive transitions from highly excited state to neighboring
levels make a small contribution (~l/«2) to the radiative

lifetime of an atomic Rydberg state. However, such
transitions can be used for obtaining long wavelength
radiation. In order to evaluate the possibilities for a
maser generating radiation in such transitions, let us
determine the cross section for absorbing a photon in
making the transition under consideration:

5*ForI » 1 , the dependence on Ζ has the form

We will assume that the levels are hydrogen-like, i.e.
the frequency at the line center is ω0 = l/w3 in accord-
ance with Eq. (2), while the broadening is Doppler-like
so that, as in Eq. (15), the photon distribution function
at the line center is given by α(0) = 1/ω0 VAicV2irT ,
where Μ is the mass of the nucleus of the excited atom
and Τ is the temperature of the gas. Then, based on
Eq. (19), we obtain

"abs =10810-' tcm'.n» |/F, (20)

where the mass of the nucleus Μ is expressed in atomic
mass units. Table VI displays the parameters for the
radiative transitions being examined: the position of the
level η that yields the assigned wavelength for transi-
tions between neighboring levels and the parameters of
these transitions.

Analysis of Table VI shows the convenience of using
highly excited atomic states as sources of monochro-
matic long wavelength radiation. Masers based on them
have many advantages over existing hydrogen and rubi-
dium masers. These advantages are connected with the
fact that in this case allowed transitions are used while
in existing masers a strongly forbidden transition is
used. For this reason, in the case being considered,
we have a large photon absorption cross section and a
high amplification factor, which makes it much easier
to generate laser radiation. In addition, many transi-
tions are available, and therefore, there are many pos-
sibilities for generating laser radiation.

In order to demonstrate these possibilities, the char-
acteristics of the radiative transitions nl — n,l +1 are
displayed in Table VTL As is evident from Table VI, it
is difficult to generate radiation in the centimeter wave-
length region because it is difficult to selectively pro-
duce atoms in states with η £100. Thus, for this pur-
pose, it is convenient to use the transitions nZ — n,l±l,
which will yield these wavelengths for relatively small
values of the principal quantum number n. The transi-
tion frequency in atomic units constitutes (σ, - alti)/ni-i

the width of the emission and absorption line for such a
transition is determined by the radiative lifetime, which
is determined from Eq. (16). The values of the quantum

6)We note that although a radiative transition to a lower state
makes a large contribution to the radiative lifetime of the
highly excited state, this transition does not determine the
radiative lifetime. Thus, for the transition n/>—n's, the
Einstein coefficients A(nl-*»'()) for transitions to the final
states Is, 2s, 3s, 4s have the ratios 1:0.58 : 0.43 : 0.46, while
for the transition nd^n'p' with final states 2p, 3p,4p the
ratios are 1; 0.82 :0.69. Thus, Eqs. (16) and (17) can be
used only for estimating the radiative lifetime of a highly
excited state and for determining its dependence on the pa-
rameters of the state.

TABLE VI. Characteristics of radiative transitions
between neighboring levels (re -»n -1) of atoms in
Rydberg states.

photon wavelength, cm

η

ii(n2-».R—1, I±t) , S"1

a a b a /V^, cm2

0,01

13

3.0-103

3.1-10-"

0 . 1

28

66

6.6-10-·

1

60

1.4

1.4-10-'

10

130

0.03

3.1-10-·
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TABLE VII. Radiative properties of the transition nf — nd.

Photon wavelength,
cm
Radiative lifetime
ofrf-state, s

A(nf^nd). s>

°abs> cm3

10

1.5

3.2-10-s

0.2-ΙΟ"3

6.8-10-»

15

5.0

1.110-5

8.1-10-»
3.4-ΙΟ"8

20

11.8

2.61O-s

i.n-io-*
1.1-10-'

23

5-10-a

6.3-10"5

2.5-1Ο-'

30

40

8.7-10"5

2.510-s
5.5-10-'

Jo

63

1.4-10-*

1.2.10-s
1.0-10-·

40

94

2.0 10-»

6.0 10-6

1.7-10-11

defects of the d- and/-states in Table VII were taken
from Table I and correspond to an excited helium atom.

Analysis of Table VII demonstrates the large photon
absorption and emission cross sections, which are de-
termined by the effectiveness of the radiative transition
used. For comparison, we point out the fact that the
frequency of a radiative transition between the compo-
nents of the hyperf ine levels of the hydrogen atom at
a wavelength of 21 cm, which is used in the hydrogen
maser, constitutes 2.8· 10"15 s"1. According to Table
VII, the allowed transition at this wavelength between
highly excited states of the atom procedes ten orders
of magnitude more quickly. The high photon emission
cross section, and therefore, the high amplification
factor, makes it easy to generate laser radiation in the
system under consideration, which operates in the
superradiant mode. Further, the power of the masers·
being considered can be estimated from the formula
P\/\m, where Ρ and λ̂  are the power and wavelength
of the tunable laser, while \m is the wavelength of the
maser. The maser power estimated according to this
formula amounts to 1O~5-1O~6 W in the centimeter
wavelength range, while the power of the rubidium
maser operating on the forbidden transition between
hyperf ine states turns out to be of the order of 1O"10

W. Finally, the possibility for choosing different tran-
sitions and the possibility for tuning them in an external
electric or magnetic field makes the maser being con-
sidered a very convenient source of long wavelength
radiation. With all the advantages of this kind of
maser, it should be noted that the wavelength stability
of the generated radiation cannot compete with the sta-
bility of the hydrogen maser.

4. METHODS FOR DETECTING ATOMS IN RYDBERG
STATES

Atoms in Rydberg states are produced in order to
study their properties and mainly for studying various
reactions in which they participate. For this reason,
an important aspect of studying atoms in Rdyberg states
is developing reliable methods for detecting such
atoms. There are three methods for detecting excited
atoms. One of these methods is related to the mea-
surement of the intensity of line radiation resulting
from radiative decay of the excited atom (see, for
example, Refs. 51-53, 58). Two other methods rely
on ionization of the highly excited atom followed by
detection of the ion formed. The first of these methods
makes use of ionization of atoms in Rydberg states near
metallic surfaces, while the second method involves
ionization in an external electric field. Below, we will
analyze each of these methods for detecting atoms in

Rydberg states.

Highly excited atoms are detected by their fluores-
cence only for small values of the principal quantum
number. This is due to the fact that the lifetime of the
excited states increases sharply with excitation (~n3

for states with small orbital angular momentum) so
that the intensity of the radiation drops sharply with
increasing excitation. In addition, the intensity of the
fluorescence itself is small, which affects the sensi-
tivity of the method. As an example of the most com-
plete exploitation of this method for detecting highly
excited atoms we present the data from Ref. 58, where-
in the two-photon absorption spectrum for the transi-
tion 5 s - 32d was measured using the fluorescence of
excited rubidium atoms. The fluorescence involving
transitions np~ 5s (n» 6) was measured for the rubi-
dium atom in the wavelength range 3,800-4,800 A. It
resulted from the steplike photodecay of highly excited
nd-rubidium atoms. The intensity of the fluorescence
signal decreased with increasing excitation as

n- (4.2* 0.6)̂  g u c n a Sharp drop in sensitivity limits the
usefulness of the method for large values of the princi-
pal quantum number. For this reason, highly excited
atoms are usually detected by the ion current formed
when such atoms are ionized.

Other methods for detecting highly excited atoms de-
pend on the detection of ions when such atoms are
ionized. Various methods are used for ionizing highly
excited atoms for the purpose of their detection. One
such method involves ionization of highly excited atoms
on collision with atoms or molecules.34·35 A second
method for detecting highly excited atoms is based on
the disintegration of such atoms near metallic sur-
faces.3 5· 3 6 ' 5 0 ' 6 7 ' 6 9 The ionization of highly excited
atoms near metallic surfaces is related to charge ex-
change at the metallic surface, accompanied by escape
of the electron into the metal. During a collision of a
highly excited atom with a metallic surface, this pro-
cess occurs with a probability of unity.70

A very sensitive method for detecting highly excited
atoms is based on the use of a thermionic detector.3 7'4 3·
56,57,59,68 in this technique, excited atoms are ionized
near a heated cathode as a result of collisions with
electrons. Subsequently, the ions penetrate into the
space charge region of the diode and influence the diode
current. This method has a high sensitivity,58'57·59·69

yielding an ion amplification coefficient of the order of
105. In particular, in Ref. 59, this method allowed
detecting highly excited rubidium atoms up to η = 85.

A disadvantage of the methods for detecting highly
excited atoms based on their ionization as a result of
collisions with atoms and molecules or as a result of
ionization near a heated cathode is the lack of selec-
tivity. These methods allow detecting atoms with dif-
ferent values of the principal quantum number with the
same sensitivity, beginning with some principal quan-
tum number. The same situation occurs when highly
excited atoms pass through a metallic grid. Depending
on the dimensions of the grid cells, this method allows
detecting highly excited atoms with identical sensitivity,
beginning with a particular principal quantum number.
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In this respect, the most attractive method of detec-
tion relies on ionization in a constant uniform electric
field. This method has been most widely used in recent
times. As a result, we will examine below the physics
of this process.

The ionization process for an atom in a constant elec-
tric field is connected with a sub-barrier transition of
the electron into the classical region of electron mo-
tion (Fig. 2). The initial experimental71 and theoreti-
cal72'73 studies of this process were carried out in con-
nection with the disappearance of the visible lines of
atoms with increasing intensity of the electric field into
which the fluorescing gas has been placed. This occurs
as a result of the disintegration of the excited atoms in
the electric field. For this reason, excited atoms that
emit photons in the absence of an electric field and
make a transition into a lower state are ionized in an
electric field, and this is what causes the disappear-
ance of the corresponding visible lines. Later on,
this process was repeatedly used as a method for ion-
izing excited atoms. For this reason, this process
has been repeatedly examined in reviews and mono-
graphs (see, for example, Refs. 74-77).

The theory of the ionization of an atom in a constant
electric field is based on asymptotic considerations,78'79

according to which the time for the sub-barrier transi-
tion of an electron into the continuous spectrum is short
in comparison with the characteristic electron times.
In this case, the classically accessible region of the
electron motion is separated from the region over
which the field of the atomic core acts by a fairly wide
barrier, so that the frequency of the electron leaking
through the barrier decreases exponentially with de-
creasing field intensity. Unfortunately, the known
ionizing transitions77 involve a barrier width that sig-
nificantly exceeds the dimensions of the atom. This oc-
curs for weakly excited atoms or for a negative ion.
For ionization of highly excited atoms, electric field
intensities for which the barrier width is comparable
with the dimensions of the electron orbit are of in-
terest.

Let us determine the parameters for the disintegra-
tion of a highly excited atom as a function of the elec-
tric field intensity. The potential, in which the electron
moves is given by

1 7 = - — -Fz, (21)

where r is the distance between the electron and the
atomic core, ζ is the coordinate along the electric
field, and JF is the intensity of the electric field. The
ionization potential of the atom equals - ε = l/2n2,
where η is the principal quantum number. Evidently,
for an electric field intensity7'

f» = W (22)

the barrier vanishes at a point zo = 4n2 on the axis. The

7)Usually, this method Is used to determine the effective quan-
tum number, which can differ from the principal quantum
number [see Eq. (4a)]. In order to simplify the notation, we
do not make this distinction in our analysis.

FIG. 2. Profile of the potential in which the electron moves
when an excited atom is ionized in an electric field.

region of action of the atomic core potential and the
classically allowed region of electron motion come into
contact at this point. For F<F0, these regions sepa-
rate.

However, Eq. (22), which has been widely used, is
incorrect. It does not take into account the real geom-
etry of the system, as well as the shift in the energy
level of the electron due to the action of the field. The
electric field intensity at which the level is expected
to emerge into the continuous spectrum depends on the
parabolic quantum numbers of the state η^,η^ For the
state ηχ = η, for which the electron orbit has maximum
elongation along the direction of decreasing electric
field, the electric field depresses the energy level of
the electron. For this reason, this level emerges into
the continuous spectrum at a higher field than that indi-
cated by Eq. (22), and which has the value .F0 = 0.13n"*.
Still higher fields will cause the energy level to emerge
into the continuous spectrum for the state «2=« be-
cause in this case the electron orbit is directed oppo-
site to the field. The field intensity in this case is
given by ir

0 = O.38n"4. Fig. 3 shows the field intensity
at which the discrete level disappears, as well as the
electron energy for this case, as a function of the para-
bolic quantum numbers. The comparison is made for
the case when the component of the angular momentum
of the electron along the field direction is m = 0, so
that ni+n2«M.

Disintegration of a highly excited atom placed in an
electric field actually occurs for F < Fo. For this rea-
son, we will determine below the ionization frequency

0

0.2

0.Ί

0.6
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' 0 0.2 0.Ί 0.6 0.8 1
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FIG. 3. The intensity of the electric field Fo at which the en-
ergy level of a highly excited electron emerges into the con-
tinuous spectrum and the electron energy ε at this field in-
tensity, nil«2—parabolic quantum numbers of the electron; the
azimuthal quantum number m = 0, so that ηχ +Π2 «η.
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TABLE VIII. Critical fields at which disintegration of a state with
given η occurred in various experiments.

Excited atom

Η
Η
He
Η
Η
Η

Ν
He, Νβ, Ar, Kr,

Xe
Na
Xe
Rb
Cs
Na

Method of producing atom

Charge exchange

Electron impact dissociation

Same

Electron impact excitation

Laser excitation
» »
» "

» <>

Range of values of the

principal quantum number

9—22
9—16
9—17
9—28

19-28
15—19

15—19
20-80

26—37
24-40
28-60
30—85
16—21, i = m = 0
16—19, i = l, m = 0
16—19, 1 = 1 , m = i
15—19, 1 = 2, m = 0
15-19, 1 = 2, m = i
15—19, 1 = 2, m=2

Average value

V/cm

6.5
6.8
5.8
6.0
6.5
6.3

6.3
6.0

3.1
4.6
3.2
3.2
4.7
3.7
3.9
3.6
3.8
4.3

4.9±1.3

Refer-
ences

82

82

of the highly excited atom as a function of the electric
field intensity in the parameter range « » 1 , Fo- F«F0.
We will limit ourselves to the exponential dependence
that is determined by the penetrability of the barrier
and is given by the formula

(23)

• w h e r e P = T / 2 ( U - E ) ; z t a n d z 2 a r e p o i n t s a t w h i c h t h e i n -

t e g r a n d v a n i s h e s : P ( z l t i ) = 0 . U s i n g E q . ( 1 6 ) a n d c o m -

p u t i n g t h e i n t e g r a l u s i n g t h e a s s u m p t i o n s m a d e a b o v e ,

we obtain:

- exp ( — 2 \ | Ρ | dz

• exp (—2n 1/2re•* Fn-F (24)

Taking into account only the exponential dependence on
the electric field intensity makes sense when the ex-
ponent is sufficiently large. Since η »1, this is in fact
the case and in a part of the parameter space being con-
sidered we have F^ - F« .Fo.

According to Eq. (24), the ionization probability for
the highly excited atom per unit time in an electric field
decreases sharply with decreasing field, when the tran-
sition has a tunneling character (i.e., F<F0). On the
other hand, the electric field intensity at which the term
of interest emerges into the continuous spectrum itself
depends strongly on the quantum numbers of the state.
For this reason, the picture of the disintegration of ex-
cited atomic states in an electric field turns out to be
quite complicated. It is easy to establish experimental-
ly the electric field intensity at which disintegration first
occurs. Since this quantity does not depend strongly on
the transit time of the highly excited atom in the elec-
tric field, it may be assumed in first approximation
that disintegration first occurs at a field intensity for
which the first level in the group of levels correspon-
ding to the given state emerges into the continuous
spectrum. The intensity of this field is described by
the similarity relation Fctn

l= const, and, in addition,
if F^n4 = 0.13, then this quantity equals 6.7· 108 V/cm.
Table VIII displays the experimental values of the
quantity F^n* obtained under suitable experimental
conditions.

5. COLLISIONS BETWEEN HIGHLY EXCITED ATOMS
AND CHARGED PARTICLES

Collisions between highly excited atoms and charged
particles lead to the most efficient transitions between
the states of a highly excited atom. This is due to the
long range character of the interactions between the in-
cident particle and the weakly bound electron. For this
reason, for fairly slow collisions, the cross section for
the electron transition is comparable to the square of
the size of the electron orbits, which equals16

Γ2 = ^ . [ 5 η 2 + 1 - 3 ί ( ί + 1))· (25)

Let us examine the collision of an atom in a Rydberg
state with an electron. Electron collisions are most ef-
fective for causing transitions between Rydberg states.
This is due, on the one hand, to the small mass and
correspondingly high electron speed. On the other
hand, the long- range character of the Coulomb interac-
tion between the incident particle and the weakly bound
electron is important so that electron impact quenching
of atomic Rydberg states is characterized by large
cross sections of the order of the cross section of the
excited atoms. Consequently, electron impact quen-
ching of atomic Rydberg states becomes important in
weakly ionized gases even with a very small degree of
ionization of the gas.

The theoretical study of collisions between an elec-
tron and a highly excited atom at first proceeded along
two directions. On the one hand, the theory depended
on the methods of quantum mechanical perturbation
theory, using the Born and the Born-Coulomb approxi-
mations and the method of sudden perturbations for de-
scribing collisions between electrons and highly excited
atoms and, often, the dipole approximation for the in-
teraction between an incident electron and a weakly
bound electron, and so on (see Refs. 83-96). As sub-
sequent studies have shown, perturbation theory can
be used to compute the correct result for transitions
to neighboring levels for sufficiently large collision
velocities.

The other direction for the theory depended on the
purely classical representation of the motion of a weak-
ly bound electron, so that the collision was described
as a collision between two classical electrons in a Cou-
lomb field. This description was first used by Grizin-
skii,97 but the specific realization of the classical con-
cepts in his work does not withstand serious criticism.
The classical approach to this problem was subsequent-
ly clearly formulated98"107 and the problem was stated
unambiguously. The electrons exchange energy as a
result of the collision in a Coulomb field, and this
uniquely determines the final state of the excited elec-
tron. The classical problem itself is a three-body
problem because in the scattering process the Coulomb
interactions between the electrons and the atomic core
are important. For this reason, the result cannot be
represented in analytic form and a more convenient
method in this case is the Monte Carlo method, which
provides a numerical solution to the problem. Analysis
shows that the classical approaches are valid for tran-
sitions to the upper highly excited levels or into the
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continuous spectrum.

A correct theory describing collisions of electrons
with highly excited atoms must use a quasiclassical
(rather than classical) concept of the weakly bound elec-
tron. Such an approach was formulated and developed
in Refs. 106 and 108-110 and is presented in Ref. 121.
The difficulties of this approach arise due to the need
of taking into account transitions between many states,
a problem which we encounter as soon as we abandon
perturbation theory. However, the problem is simpli-
fied if we assume that the excited levels are equidis-
tant. This is valid for large quantum numbers η » 1 and
results in the fact that the characteristics of the tran-
sitions depend only on the difference of the principal
quantum numbers Δη, which significantly simplifies
the problem. Such a quasiclassical approach allows de-
termining the cross section for the transition for Δη
« η. In this way, the quasiclassical approach provides
a bridge between the results obtained with the use of
normalized perturbation theory and valid for Δη = 0.1,
and the results of the classical approaches correspon-
ding to the region Δη» 1.

Experimental studies of the transitions between highly
excited atomic states as a result of collisions with elec-
trons are at the present time very limited. However,
since experimental techniques have recently been per-
fected for studying atoms in Rydberg states, there is no
doubt that experimental studies will soon proceed along
these lines in full force. The quenching of highly ex-
cited atomic states due to collisions with fast electrons
is studied in Refs. 41 and 42. A beam of electrons with
energies in the 100 eV range produced the highly excited
states in inert gas atoms and also caused their partial
quenching. The dependence on the beam intensity of the
rate at which atoms in a given state are formed allows
establishing the quenching cross section, which in the
range of parameters being considered is well approxi-
mated by the function

σ ^™!±ln(iEni) (26)
quench — £ l u γ*αητ). v '

It is of interest to compare this expression with the
Born cross section, which has the form17

(27)

10

FIG. 4. Electron collisional quenching rate constants for the
stage He(n 3P) at an electron temperature of 400 K. ·—ex-
periment52; theory: 1—Ref. 97; 2—Refs. 101,107; 3—Ref. 96;
x —Eq. (28).
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FIG. 5. Electron collisional quenching rate constants for
He(10 3P) as a function of electron temperature, «—experi-
ment52; theory: 1—Refs. 101,107, 2—Ref. 96, 3—Eq. (28).

where the numerical factor c is of the order of unity.
In obtaining this expression, we assumed that the orbi-
tal angular momentum of the electron is relatively
small (Z« n). This corresponds to the experimental
conditions and yields H\ = (5/6)n4 (dx is the dipole mo-
ment operator of the highly excited atom).

The quenching of highly excited atomic states due to
collisions with slow electrons was studied in Refs. 51-
53. In this experiment, one of the transitions in
He(28S —n'P), where n = 8-17, was excited with the
help of a tunable laser. Helium was first excited with
an electric discharge and contained a fairly large num-
ber of atoms in the metastable 2 3S state. The n3P state
was observed. The post-discharge weakly ionized he-
lium plasma contains slow electrons and collisions in-
volving these electrons caused the transitions between
the highly excited atomic states. Figs. 4-6 show the
results of these measurements with a constant quen-
ching rate for the corresponding states.

In order to interpret the results theoretically, we
will use simple considerations that include the physics
of the process and that allow obtaining the transition
rate constants as a function of the parameters of the
problem. Ε the incident electron is assumed to move
along a trajectory, then it is easy to show that perturba-
tion theory breaks down for not very large collision
speeds and for impact parameters that are small in
comparison with the dimensions of the atom. Conse-
quently, for these impact parameters, the quenching
probability of the excited state equals unity. For im-
pact parameters that are large in comparison with the
dimensions of the excited atom, the quenching proba-
bility is small because the interaction between the elec-

500
f/,cm-1

1000 ISOO

FIG. 6. Electron collisional quenching rate constants for
He(13 3i>) with a transition to other states at an electron tem-
perature of 400 K. Experiment: 1, ·—Ref. 52; theory: 2—
Ref. 96.
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tron and the atom is small. This determines the order
of magnitude of the maximum quenching cross section of
the highly excited atom by electron impact as the square
of the atomic dimensions, as determined by Eq. (25).
For this reason, for n»l, the quenching cross section
varies with increasing excitation of the atom as «4.
Taking this into account together with the experimental
data, we represent the quenching rate constant in the
form

*,u. n c h =<O/^« 4 < (28)

where the quantity σ0 ~10"16 cm2. From the condition
that Eq. (28) should describe the experiment well, we
choose σο = 3.6· 10"16 cm2. Fig. 5 shows the results of
a comparison with this formula.

We note that the semi-empirical formula (28) is valid
in the range where Te ~l/n2. As the electron energy in-
creases, for Te» 1/w2, the quenching rate constant must
decrease in accordance with the results of the Born ap-
proximation. This assertion contradicts the results ob-
tained in Ref. 53, where the data of Fig. 5 are extended
into the range of higher electron temperatures up to
Te ~ 8,000 K. According to the results of this experi-
ment, in the temperature range considered Ten

2»l,
the quenching rate constant for the state with principal
quantum number η = 10 is approximated by a function
close to kiamA~Te.

The ionization process involving the collision of an
electron with a highly excited atom is of particular in-
terest. From general considerations, it follows that in
this case the classical description of electron motion
is valid. Indeed, with the usual statement of the prob-
lem, we can assume that if as a result of the collision
the energy of the incident electron decreases by an
amount exceeding the ionization potential of the atom,
then ionization will occur. The ionization potential of
the atom is given by l/2n2, while the distance between
neighboring electron levels is given by l/n3, so that
for n» 1, the discreteness of the energy of the initial
state of the electron is not important for examining the
process. Thus, the classical description of the ioniza-
tion of a highly excited atom by an electron is correct.

The classical approach to studying the electron impact

1* de

0.5

0

1.5

1.0

0.5

0

1.5

1,0

0.5

0

1.5

1.0

0.5

η-2

n-3

0 2 4 6 S W 12 1Ί IS E/J

FIG. 7. Electron Impact ionization cross section for a hydro-
gen atom in various excited states.1 1 7 Solid line—classical
theory; dashed line—Born approximation.
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FIG. 8. Energy spectrum for electrons produced by electron
impact ionization of a hydrogen atom for incident electron
energy 9 times greater than the ionization potential of the
atom.117 Solid line—classical theory; Born approximation:
1—» = 1; 2—η = 3.

ionization of an atom was the basic approach used in
Refs. 111-113 at the early stages in studying this prob-
lem. The interest in the classical theory of electron
impact ionization of an atom decreased after Bethe14

obtained a quantum mechanical formula for the cross
section in the Born approximation. For high incident
electron energy £, this formula yielded the function
lnE/E for the ionization cross section, while any classi-
cal approach, including the subsequent classical calcula-
tions of the cross section for this process using the
Monte Carlo method (for example, Ref. 98) yielded the
dependence l/E for high electron energies. This dis-
crepancy was resolved in Refs. 115-118, wherein it
was shown that the disagreement between the Born and
the classical approximations disappears as the excita-
tion level of the valence electron increases. According
to the analysis performed in the references indicated,
in the limit n—· «> the Born approximation, as well as
the classical approach, which neglects the interaction
of the electrons with the atomic core at the instant the
electrons are scattered, give close results. As an il-
lustration of this fact, Figs. 7 and 8 show the cross
sections for electron impact ionization of the hydrogen
atom, calculated in the classical and Born approxima-
tions, as well as the spectra of the free electrons pro-
duced.117

Among the processes involved in the collision of an
ion with a highly excited atom, the most interesting pro-
cess is charge exchange between the ion and the atom.
The cross section for this process is comparable to the
dimensions of the highly excited atom. Fig. 9 illus-
trates a section of the potential surface within which the
electron moves in the case of a slow approach of an ion

nucleus nucleus

FIG. 9. Profile of the potential in which the electron moves
during charge exchange between an ion and a highly excited
atom.
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to an excited atom. For some distance Ro between the
nuclei, the potential barrier that separates the active
regions of the ions disappears so that it is possible
for an electron to move from one ion to the other along
a classically accessible path. Thus, for slow colli-
sions, the cross section for resonant charge exchange
is given by119·120

«--2^· (29)

The factor 1/2 takes into account the fact that for slow
collisions the electron has time to undergo many tran-
sitions between the potential wells so that the probabil-
ity that the electron is located in the second well equals
1/2.

The distance Ro at which the barrier between the po-
tential wells disappears is of the order of the dimen-
sions of the highly excited atom Ro ~n1. This quantity
depends on the quantum numbers of the electron. For
a given principal quantum number n, the largest value
of Λο corresponds to the state for which the electron
orbit is most strongly elongated along the axis con-
necting the nuclei (ne = 0,n, = 2n). For this state, Ro

and the electronic energy ε are equal to

*° = ̂ · —-sfer- (30)
This result is confirmed by perturbation theory122

(see also Refs. 123-125). It is also important that fl0

depends not only on η but also on other quantum num-
bers. However, if it is assumed that the main depen-
dence is related to the principal quantum number, an
assumption which according to Eq. (30) is well satis-
fied, then we can obtain a universal formula for the
charge exchange cross section. This assumes that if
during a collision between an ion and a highly excited
atom the position of the electron changes significantly,
while its energy changes very little (the electron weak-
ly exchanges energy with the nuclei during the colli-
sion), then, as before, in finding the cross section for
resonant charge exchange, we can use only the ioniza-
tion potential J to describe the state of the electron.
Since the cross section for resonant charge exchange
is related to the transition of a classical electron, then
using dimensional analysis (we have the parameters
e2, m, J, and v, the collision velocity), the cross sec-
tion for resonant charge exchange can be represented in
the form

(31)

1.0 10.0
W,eV

FIG. 10. Cross section for the loss of Its electron by a highly
excited hydrogen atom with 44 «n * 50 In a collision with a
proton as a function of the collision energy. ·—experiment,32

theory for η =47: resonance charge exchange: 1—Eqs. (29),
(30), 2—Eqs. (31), (32); ionlzation: 3—Born approximation,83

4—classical calculation.98

where/(xr) is a universal function for the process and

For high collision speeds, the charge exchange cross
section is inversely proportional to the collision speed.
Indeed, the probability of a transition for an arbitrary
impact parameter in this case is small and is propor-
tional to the time over which an electron can make a
transition from one core to the other, i.e., it is in-
versely proportional to the collision speed. The charge
exchange cross section computed in Refs. 126 and 127
over the range of speeds considered yields the following
universal function in Eq. (31):

,, . 0.4
/ ( * ) = — , »1. (32)

Fig. 10 shows a comparison of Eqs. (30) and (32) for
the resonant charge exchange cross section of a highly
excited atom with an experiment32 in which the cross
section for a highly excited atom to lose an electron
during a collision with an ion was measured. For low
collision speeds, this cross section coincides with the
charge exchange cross section, while for high speeds
it coincides with the cross section for ionization of the
highly excited atom.

Let us evaluate the role of the sub-barrier transitions
during resonant charge exchange between an ion and a
highly excited atom. The overall method for taking into
account sub-barrier transitions is presented in Refs.
128 and 129. Our aim is to take into account the con-
tribution of sub-barrier transitions for low collision
speeds. For this purpose, we will estimate the expo-
nential dependence for the potential describing the ex-
change interaction between the ion and the atom Δ (β),
which is determined by the function127·130 U(R)~tf{ft/r),
where φ(τ) is the wave function of the electron at a dis-
tance r from the nucleus. In correspondence with this
formula, the exponential dependence for the exchange
interaction potential has the form

Δ(Λ)~θχρ
t

[-2 (33)

Here, ζ is the coordinate along the axis joining the
nuclei, U is the potential of the interaction between the
electron and the cores, when the electron is located on
the axis, ε is the energy of the electron, and z0 is the
turning point, i.e.,

We will assume that ΔΛ = R- Ho« Λο. In this case,
we have

3ΔΛ

which gives the following exponential dependence for
the exchange interaction potential:

where A is the pre-exponential multiplier and it is as-
sumed that Rn = irlni/2. We will now compute the con-
tribution to the charge exchange cross section for low
speeds due to the sub-barrier transitions, using the
following formula for the charge exchange cross sec-
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t ion 1 2 7 :

σ

β χ = - ^ , where ·|Δ(Λ)άί|ρ = ρ, = 0.28, (35)

where p0 is the impact parameter of the collision, for
which the last relation is satisfied, and, in addition
p0 > Ro. Computing this integral, we find the relation
for p 0 :

where the parameter v0 does not depend on the collision
speed v. Solving for p0 and substituting the result into
the charge exchange cross section, we find, taking into
account the fact that p0 - Ro «fi0, that

a e x = J | L = i ^ i + Aa, where Δσ-ηΛ0(ρ,-Λ0) = *2ϊ.1η JS-. (36)

From this we obtain:

16
3π«η (37)

Here, Δσ represents that part of the charge exchange
cross section that is determined by the sub-barrier
transitions, i.e., by impact parameters ρ>Λ 0 . It is
evident that for a highly excited atom η » 1 and this part
of the cross section is relatively small, i.e., sub-bar-
rier transitions make a small contribution to the cross
section for charge exchange between a highly excited
atom and an ion.

6. IONIZATION OF A HIGHLY EXCITED ATOM AS A
RESULT OF A COLLISION WITH ATOMIC PARTICLES

The process under consideration procedes as follows:

A** + B->A* + B + e (38)

and involves the transition of an electron into the con-
tinuous spectrum. Since the electron in the atom is in
a highly excited state, the analysis of this process is
greatly simplified for the following reasons. First of
all, the size of the region in which the electron inter-
acts with the incident atomic particle is much smaller
than the size of the excited atom. Second, the motion
of the electron in the atom can be described by classi-
cal laws because the change in the energy of the elec-
tron for the transition of interest, which varies as 1/
n2 (n is the principal quantum number), greatly exceeds
the difference between the energies of neighboring
levels, which equals l/n3. Thus, the discreteness of
the energy levels of the electron is not important for
the given process.

The properties of the process noted above permit
separating the interaction of the electron with its own
core and the collision of the electron with the incident
atomic particle. These properties of the process make
it possible to describe it using the same model that we
used to study the process of electron impact ionization
of a highly excited atom. In particular, we will exa-
mine the process (38) as the result of the scattering of
a classical electron by an incident atomic particle. If
during such a collision a quantity of energy exceeding
the binding energy of the electron is transferred to the
electron, then ionization occurs.

Using the given model, we will obtain an expression

for the ionization cross section, which we will use for
analyzing particular cases. The ionization probability
under the conditions of the model equals ΛΓ< | ν - va |/ώσ>
per unit time, where Ν is the density of incident atoms,
ν is the velocity of the electron, va is the relative ve-
locity of the nuclei, da is the cross section for scat-
tering of the electron by the atom, the integral with re-
spect to da corresponds to those scattering angles for
which the energy transferred from the atom to the elec-
tron exceeds the binding energy of the electron in the
atom J, and the angular brackets denote an average
with respect to the electron velocity in the atom. Di-
viding this quantity by the flux of incident atoms Nva,
we obtain an expression for the ionization cross sec-
t i o n i3 i-m

(39)

In particular, in the limit va»2/n, this formula
yields131"134

σ, = σβ (!;„), (40)

where ae is the cross section for elastic scattering of
the electron by the atom.

Fig. 11 shows a comparison of the right and left sides
of Eq. (40).135"138 The ionization cross section of a high-
ly excited deuterium atom colliding with a nitrogen
molecule135"13e is compared with the cross section for
elastic scattering of an electron by the molecule.137'138

The collision velocity varies over a fairly large range
so that in this region the cross section for elastic scat-
tering of the electron by the molecule undergoes a
change. As can be seen from Fig. 11, in the example
being considered, not only are the absolute cross sec-
tions that make up the left and right part of Eq. (40)
nearly equal, but there is a tendency for the two cross
sections to have the same dependence on the collision
velocity.

The ionization cross section for highly excited atoms
colliding with neutral particles becomes large if there
is a resonance in the low-energy elastic scattering of
an electron by this particle. This occurs during colli-
sions of highly excited atoms with complex molecules
that contain halogens, δι this case, the rate constants
of the process are obtained from Eq. (39)132'133*135:

FIG. 11. Ionization cross section for a highly excited deute-
rium atom (35 %n * 50) colliding with a nitrogen molecule135'136

(circles) compared with the cross section for elastic scatter-
ing of an electron by a nitrogen molecule (solid line137·138).
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k, = υ,σ,»( j (41) Principle quantum number η

ΊΟ J5 30 .25

Here, the average is taken as previously with respect
to the velocities of the weakly bound electron and the
formula is valid if the cross section for scattering of
the electron by the molecule is small in comparison
with the diameter of the highly excited atom.

The process being considered here was studied ex-
perimentally in Refs. 140-142. In this work, the rate
constant was measured for ionization of the states of
xenon Xe(n/) with « = 25-41 as a result of a collision at
thermal energies with a number of complex molecules
such as SF6, CCU, CC13F, C 7 F U , CeFe, CH3I, and
CH3Br. The rate constant for the process being studied
in several cases increases with increasing principal
quantum number η (CCU, CC13F, CH3I); for the SFe

molecule, the rate constant for the process of interest
does not depend on the principal quantum number and
amounts to1 4 1 4· 10"7 cm3/s8 ); for C7F1 4, the cross sec-
tion of the process decreases with increasing principal
quantum number.

Fig. 12 shows a comparison of the ionization rate
constant for a highly excited xenon atom colliding with
a CCI4 molecule and the rate constant for dissociative
attachment of the electron by this molecule.1 4 3"1 4 5 As
can be seen, there is some correspondence between
these properties. The ionization cross section varies
with increasing principal quantum number approximate-
ly as a{~ n, which corresponds to a dependence σβ~ 1/
ν for the cross section for scattering of the electron by
the molecule as a function of the electron speed v. We
note that in the cases being examined the large magni-
tude of the ionization cross section is related to the
resonance nature of the scattering of the electron by
the molecule, which is accompanied by ionization of the
molecule. In this case, Eq. (41) usually includes the
cross section for capture of the electron by the mole-
cule regardless of the final channel for the process,
which for complex molecules usually involves dissocia-
tive attachment.

The mechanism for ionization of the highly excited
atom colliding with a neutral particle as examined above
depends on the fact that the electron acquires enough
energy from this particle to become a free electron. In
the case of a collision with a molecule, this energy can
be obtained from the internal degrees of freedom of the
molecule, such as the excitation energy of the rotational
states. Thus, the ionization cross section in the given
case, according to Eq. (39), equals1 3 1-1 3 3·1 4 6"1 5 2:

(I v —v a Ι σ Γ Ο Ι )
(42)

where a r o t is the cross section for quenching the rota-
tional excitation of the molecule by electron impact and,
in addition, we assume that the ionization potential of

8)The collision cross section equals σι = 1.3 · 10"11 cm2. This
corresponds to the condition for the applicability of the im-
pulse approximation η »ηο, where κ0 satisfies the relation
σί = (5/2)πη{ and, in this case, »0 = 16. In the case of colli-
sions with other molecules, the ionization cross section also
turns out to be of the order of 10"11 cm2.

20 40 SO 80 10'
Electron energy, MeV

ZOO

FIG. 12. Rate constant for ionization of Xe(n/) colliding with
a CC14 molecule (open circles)1 4 1 and the coefficient for dis-
sociative attachment of an electron by the CCI4 molecule (1—
Ref. 143, 2—Ref. 144, 3—Ref. 145).

the highly excited state of the atom is less than the
change in the rotational energy of the molecule.

In this case, the cross section for ionization of the
highly excited atom is determined by the nature of the
interaction between the slow electron and the molecule.
For simplicity, in what follows we will consider low
collision velocities

van < 1 (43a)

and at the same time highly excited states, for which
the characteristic change in the rotational energy ? ? ? ? ,
is large in comparison with the ionization potential of
the atom J:

A£rot> /. (43b)

Since the change in the rotational energy is &ETOt~Bj,
where Β is the rotational constant of the molecule, j is
the angular momentum, and for a gas temperature Τ
the most probable value of the angular momentum is
j ~ -4T/B (T»B), the condition (43b) assumes the form9'

/ < VBT. (44)

Taking into account the conditions (43), Eq. (42) for
the ionization cross section of a highly excited atom
colliding with the molecule has the form:

», = •£=*>. (45)

where ar o t is the cross section for electron impact
quenching of rotational excitation of the molecule.
Table IX summarizes the formulas1 3 1"1 3 3 for the ioniza-
tion cross section of a highly excited atom colliding
with a rotationally excited molecule. They are based
on the Born expression for the cross section for the
change in the rotational state of the molecule during
the collision of an electron with a dipole1 5 3·1 5 4 and a
quadrupole155 molecule, which are valid in the limit of
low electron collision velocities. These formulas cor-
respond to the conditions (43) being satisfied, and av-

9>Since the rotational constant of the molecule is of the order
of l/μ in atomic units, where μ is the mass of the nuclei, and
Τ ~ μν \, the condition (44) can be represented in atomic units
as

%>• (44a)
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FIG. 13. Ionization cross section for a highly excited atom
colliding with a dipole molecule (experiment)156 as a function
of the parameter Ω2^ίμ (Ref. 148). The straight line corres-
ponds to linear dependence of the cross section on the param-
eter indicated.

eraging with respect to the rotational states of the mole-
cule is performed assuming t h a t j » l . 1 0 >

In the case of a collision with a dipole molecule, ac-
cording to Table IX the dependence of the ionization
cross section for a highly excited atom on the charac-
teristics of the dipole molecule is expressed in terms
of the parameter Ό2μίη/Β1/2, where D is the dipole
moment of the electron, μ is the reduced mass of the
nuclei, and Β is the rotational constant of the mole-
cule.11'

In order to demonstrate this relationship, Fig. 13
shows the ionization cross sections, taken from Ref.
148, for a number of highly excited atoms colliding
with dipole molecules, as a function of the parameter
iPifil, plotted along the abscissa axis. The experi-
mental data from Ref. 156 were used. Other measure-
ments of the cross sections for the given process are
described in Refs. 157-168 and 181. Figs. 14 and 15
show the measurements of the ionization rate constants
for highly excited atoms colliding with water and am-
monium molecules, respectively, taken from Ref. 160.
These rate constants are comparable with the compu-
tational results obtained using the impulse approxima-
tion,140 as well as the asymptotic expression for the
ionization rate constant, which is, valid when condition
(43b) is satisfied and, according to the expressions in
Table IX, has the form

FIG. 14. Rate constant for ionization of a Xeinf) atom collid-
ing with a water molecule. 1—experiment,160; 2—impulse
approximation;152 solid line—asymptotic limit for η — °° ac-
cording to Eq. (46).

(46)

We note that the boundary for violation of the condition
(43b) AErot=j for rotational angular momentum of the
molecule j = JT/B corresponds to η = 32 for water
molecules and κ = 35 for ammonium molecules.

7. QUENCHING OF ATOMIC RYDBERG STATES BY
COLLISIONS WITH ATOMS AND MOLECULES

The disintegration processes for the atomic Rydberg
states being considered as a result of collisions with
atoms and molecules can be conventionally separated
into two types. The first type includes transitions to
states with different quantum numbers:

Α** (η) + Β -* A** («') + B. (4 ?)

For such collisions, the ionization potential of the
electron changes so that these reactions play a role in
processes such as stepwise ionization of atoms in high-
ly excited states by collisions with atoms and mole-
cules, as well as in three-body recombination of the
electron and a molecular ion, when the third body is
an atom or molecule.

The other type of process studied involves the change
in the orbital angular momentum of the highly excited
atoms

A·* (re, I) + Β -*- A** (re, I') + B. (48)

Processes of this type can be easily studied experi-

1 0 )In order to estimate the range of applicability of the formu-
las, let us consider the conditions for applicability to nitro-
gen molecules (5 = 2 cm"1) and Τ = 300 Κ. In this case, (43a)
has the form η « 4 · 103, while the condition (43b) with j 0

=ST7B~{J<, « 10) gives η »40.
11JThe formulas used for the cross sections for an elastic col-

lision of an electron with a molecule correspond to linear
molecules (see Table IX). Latimer's work151 presents cal-
culations of ionization cross sections of highly excited atoms
for collisions with symmetric and linear molecules NH3, H2S,
SO2, and HC1, using for the symmetric molecules the cross
sections for inelastic collisions of electrons with these mo-
lecules, which were taken from Ref. 154. We note that in the
case of linear and symmetric molecules there is no essential
difference in the cross section being considered.

FIG. 15. Rate constant for ionization of a highly excited Xe(n/)
atom colliding with an ammonia molecule. 1—experiment160;
2— different versions of the impulse approximation152; solid
line—asymptotic limit for η —• °° [Eq. (46)1.
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TABLE IX. Summary of data on the ionization cross sections for
highly excited atoms colliding with a rotationally excited linear
molecules.

Type of
molecule

Dipole

Quadrupole

Electron impact quenching of a
molecular rotational level

Selection
rule for the
rotational
transition

I-*-7 2

Cross section for the
rotational transition in
the Born approximation

4π£>! /

3B 2/ + 1

/ IB)
. I n E

15 (2) + l)(2/ —1)

Ionization cross section for a highly excited
atom satisfying conditions (43)

For a given value of the
angular momentum of
the molecule

8 n f l 2 i T

16π<?2

„ i(i~i)Y B
(2/ + D/2/-1

Average with respect
to the distribution of
molecules in rotation-
al levels and with re-
spect to translational
motion

3.22 D' μ 1 ' 2

2*1/4

D is the dipole moment of the molecule, β is the quadrupole moment of the molecule,
Ε is the energy of the incident electron,/ is the angular momentum of the molecule before
the coUision.fi is the rotational energy of the molecule, i>, is the relative velocity of the
colliding nuclei, Τ is the temperature of the gas in which the process occurs, and μ is the
reduced mass of the nuclei.

mentally using a simple technique. Highly excited
atoms in a state with particular quantum numbers are
created in the usual manner; the last step in the excita-
tion is performed with a tunable laser with the help of
which highly excited states are selectively populated.
Then, the quenching of the fluorescence arising from
the highly excited states being examined is measured
as a function of time. The quenching cross section for
the Rydberg state of interest as a result of collisions
with atoms or molecules of the buffer gas is determined
as a function of the buffer gas pressure.

Table X summarizes the results of experimental
studies of the quenching of highly excited atomic states
as a result of slow collisions. The quenching of these
states is related to transitions with a small change in
energy and as a result usually involve the process (48).
We note that since the study of the fluorescence of high-
ly excited atoms becomes greatly complicated with in-
creasing principal quantum number of the state (see
Sec. 4), the measurements cited correspond to quantum
numbers η that are not very large.

The theoretical study of the process (47) begins with
the work of Pitaevskii,183 in which the three-body re-
combination of an electron and ion involving atoms was
examined. In this process, for low electron tempera-

TABLE X. Experimental investigations of collisional quench-
ing processes for Rydberg states.

Atom (excited state)

Na (n 'D)
Na (n'S)
He (n'P)
He (B»S, n'S)
Rb (n'P)
Rb (n'S)
Rb (n'S)
Rb (B» D)
Rb (n » F)
Cs (n'S)
Cs (n'D)
Cs (n'S, n'D)
Xe (nf)

Range of values of
the principal quan-'
turn number

8—15
6 - 1 1
8—17
2—11

12—22
12—18
12-18

9—15
9—21
9—14
8—14
9—15

22—39

Collision partner

He, Ne, Ar
He, Ar, Xe
•He, 3 He

He, Ne, AT

He, Ne, Ar, Rb
Rb
He
He

He, Ar, Xe, Rb
Cs
Cs
Cs
NH,
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tures, an atom in a highly excited state is first formed,
and then, as a result of collisions with buffer gas
atoms, migration occurs along the levels of the excited
atom. In Pitaevskii's work,183 the diffusion coefficient
along excited states, which determines the recombina-
tion coefficient of the electron and ion, was determined.
In order to find this quantity, a model for transitions
between highly excited states was introduced. This
model is based on elastic scattering of the weakly bound
electron by the atom. As a result, the rate of migra-
tion along the levels is expressed in terms of the cross
section for elastic scattering of a free electron by the
atom and the density of states of the weakly bound elec-
tron.

In estimating the cross section for inelastic scat-
tering of the highly excited atom by an atom within the
framework of the model examined, we note that the
characteristic change in the energy of the electron as
a result of elastic scattering by the atom is Δ£ ~ veva,
where the electron velocity is ve ~l/«. Since this en-
ergy greatly exceeds the difference in the energies of
neighboring levels l/w3, but is less than the binding
energy of the electron in the atom l/n2, we have

We can determine the cross section for inelastic colli-
sions of atoms in the case being examined according to
Eq. (39), using in this formula the change in the elec-
tron energy corresponding to an inelastic transition.
Under the conditions (49), Eq. (39) gives

' v&n

where ae is the cross section for elastic scattering of
the electron by the atom. It is evident that the maxi-
mum cross section for an inelastic collision is of the
order of nae, i.e., it increases with increasing excita-
tion.

We note that for the transitions being examined the
Massey parameter equals

&Ea
— n. (51)

because the change in energy for an inelastic transition
is ΔΕ ~ (l/n)va, while the distance at which the param-
eters of the interacting particles change is a~n2. Ac-
cording to the theory of atomic collisions,182 the proba-
bility of a transition between two states involving a
large Massey parameter ζ » 1 is adiabatically small
("e"*). This discrepancy in the model used to describe
the collision involving a highly excited atom is elimi-
nated after taking into account the large number of
states in the system. In each collision many states
take part in the transition and the transition being
examined is a result of the totality of transitions be-
tween a large number of closely spaced levels for which
the Massey parameter is small. All these transitions
occur during a single collision.

The free- electron model introduced by Pitaevskii for
inelastic collisions between a highly excited atom and
another atom was further developed by Bates and
Khare184 for use with the same problem, three-body re-
combination of electrons and ions involving atoms. This
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work demonstrated the important role of the discrete-
ness of the excited levels of the atom, which is mani-
fested even for low numerical values of the ratio of the
difference in the energies of neighboring levels to the
characteristic change in the energy in the transitions.
Further development of the ideas formulated in these
studies led Flannery1 8 5·1 8 6 to construct a semi-classical
theory of transitions between highly excited atomic
states as a result of collisions. On the foundation of
this work, Matsuzawa187"195 formulated and developed
the impulse approximation.12'

Numerous theoretical studies of the process (48) for
a transition to a state with nearly equal energy197~204

were based on the short-range character of the inter-
action between the weakly bound electron and the inci-
dent atom. Using this work,13' let us determine the
properties of the cross section for the process (48).
The operator for the short- range interaction between
the weakly bound electron and an incident atom equals
(in atomic units)

V = 2nL6 (r — R),

where L is the scattering length for scattering of the
electron by the atom, r is the position vector of the
electron, and R is the position vector of the atomic
nucleus. According to perturbation theory, the proba-
bility of a transition between the states i and k with
nearly equal energies due to this interaction is given
by

-t-oo

ψ? (R) ψ» (R) at (52)

where R is the position vector along the trajectory of
the incident atom.

Equation (52) can be used to estimate the magnitude of the
cross section for the process (48) and its dependence
on the principal quantum number. Since the density of
the weakly bound electron in the classically accessible
region of motion is Ι ip\2~l/a3~l/n6, where a~n2 is the
size of the highly excited atom and jdt~a/va ~η2/υα,
wi^k~L2/vlns (va is the relative velocity of the nuclei).
This gives the following result for the cross section of
interest:

(53)

The condition for the applicability of this result stated
on the right is w f _ s « 1. The dependence shown in (53)
was obtained in many of the cited studies1 9 5"2 0 2 for par-
ticular transitions involving large values of n.

Let us analyze the result obtained. The quenching
cross section for the Rydberg state of interest de-
creases sharply with increasing principal quantum num-

12)In the case of ionization of a highly excited atom the impulse
and classical approximations for the electron require that
identical conditions be satisfied.196

13) Although the polarization interaction between a weakly bound
electron and an incident atom affects the magnitude of the
quenching cross section for a Rydberg state, taking into ac-
count only the short-range part of the interaction potential
elucidates the essence of the problem.

4 8 β IB 20 4 8/2 W 20 4 8 /2 16 20

FIG. 16. Quenching cross section for a highly excited Na(n2D)
atom colliding with inert gas atoms. 1—experiment169'170; 2—
theory198 for a transition to the state Na(n2.F).

ber in the region where the quenching cross section is
much less than the cross-sectional area of the atom.
For small values of the principal quantum number, for
which a condition opposite to (53) is satisfied, the quen-
ching cross section for Rydberg states increases with
increasing principal quantum number, fii this case, the
outer region of the atom provides the main contribution
to the quenching cross section and the quenching cross
section is comparable to the cross-sectional area of the
excited atom. The cross section attains a maximum for
values of the principal quantum number nma>>~(L/i;e)

1/4

and constitutes

<W~i· (54)

For thermal collision velocities, this corresponds to
nm a x~10 and σΜΧ ~1(Γ13 cm2.

Figures 16 and 17 show a comparison of theory with ex-
periment for the cross sections for quenching of
Na (n2P) states by inert gas atoms. It is evident that
the estimated order of magnitude is valid.

The analysis presented above involves transitions be-
tween states for which the orbital angular momentum
is not too low. Let us estimate the magnitude of the
Massey parameter for the transitions of interest. The
difference in energies entering into this expression for
the transition nl — nl' equals Δ£ ~ (δ, - δ,. )n~3, where δ,

FIG. 17. Quenching cross section for a highly excited Na(n2O)
atom colliding with inert gas atoms. 1—experiment169'17°;
theory: 2—Ref. 189, 3—Ref. 190; 4—Eq. (53).
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is the quantum defect (see Tables I and II). The Massey
parameter equals

• "a (55)

where the quantum defect is taken for the state with the
smallest I. For / > 1, due to the smallness of the quan-
tum defect, the Massey parameter turns out to be
small and the corresponding transitions occur freely.
A different situation arises in the case of a transition
involving highly excited states with orbital angular mo-
mentum 2=0,1. In these cases, the Massey parameter
satisfies £ £ 1 for values of η that are not too high.
Then, the transition probability during collisions is
determined by the particular form of the potential
curves of the electron energy for neighboring states
and the transitions occur near the regions where these
curves approach each other. Accordingly, the cross
section for the transition in this case is significantly
less than the cross-sectional area of the excited atom.

We note that Eq. (50), as well as Eqs. (53) and (54),
reflect two different limiting cases for quenching of the
highly excited atomic states in the case that the interac-
tion between the atom and the incident atomic particle
is of short range. Μ the former case condition (49) is
satisfied, according to which the uncertainty in energy
over the collision time ΐ / τ is much less than the transi-
tion energy Δ£. in this case, the transition itself in-
volves many transitions near the points of intersection
and of pseudointersection of the levels. In the latter
case, the transition occurs between the states of in-
terest with nearly equal energies. The relative shift in
the phases of the wave functions for these states over
the collision time is small, and this permits replacing
expressions of the form exp(t'A£f) with unity in formulas
for the probability of transitions between these states.

Especially efficient quenching of highly excited atomic
states occurs in collisions with molecules. This prob-
lem was studied theoretically193"205 as well as experi-
mentally.206 The process of interest proceeds according
to the following scheme:

A** (ni) + BC (a) -» A·· (nV) + BC (a'). (56)
Using the expressions obtained, let us determine the
cross section for the process (56) for collisions with
dipole molecules in the case of low collision speeds va

« l/n. According to Eq. (39), we have for the cross
section of the process (56):

(57)quench v

where oti is the cross section for elastic scattering of
an electron by the molecule, which we can determine
from perturbation theory207

8πΰ>

where D is the dipole moment of the molecule. Substi-
tuting this formula into Eq. (57), we obtain

"quench'-ζΓ-Γ^^Τ/= - 9 ^ - · ( '

Equation (58) is valid when condition (53a) is satisfied. The
magnitude of the cross section (58) is significantly

greater than that computed according to Eqs. (45) and
(46), where the cross section for an inelastic transi-
tion between rotational levels was used. The ratio of
these cross sections coincides with the ratio of the
left and right sides of (43a).

The quenching processes examined above for highly
excited states involve a change in the population of the
given levels. The experimental study of these pro-
cesses is based on this fact. Other reactions involving
collisions of highly excited atoms with neutral atomic
particles involve a change in the phase characteristics
of the states while their population remains constant.
The experimental study of such relaxation processes
for highly excited states is reduced to measuring the
cross section corresponding to the broadening of spec-
tral lines,208"212 as well as the cross section for de-
polarization of the state by single-photon and two-
photon transitions.213 These cross sections are much
greater than the quenching cross sections for excited
states and are determined by interference effects
during collisions. Since these processes depend on
the nature of the interference phenomena under par-
ticular conditions, rather than on the nature of the in-
teraction between the particles, these processes are
not examined here.

8. CONCLUSIONS

Highly excited atomic states are very simple quantum
systems that consist of a bound state of an electron and
an atomic core interacting according to Coulomb law.
For this reason, the theoretical study of such systems
is based on quantum mechanics, which has provided an
understanding of many of the properties of these sys-
tems as well as of the nature of the processes in which
such systems participate. The experimental techniques
developed in recent years, which permit producing and
studying highly excited atoms in selected states, has
provided new information concerning highly excited
atoms. This has not only extended the range of scien-
tific investigations, but has also opened up unexpected
applications involving highly excited atoms. Not all
such possibilities have been exploited, but there is no
doubt that future studies of highly excited atoms will
lead to the creation of fine and precise instrumentation
with fundamentally new properties.

The author is grateful to S. E. Kttpriyanov and L. P.
Presnyakov for valuable remarks.
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