Higgs particles

A. |. Valnshteln, V. |. Zakharov, and M. A. Shifman

Institute of Nuclear Physics, Siberian Branch, Academy of Sciences of the USSR, Novosibirsk
and Institute of Theoretical and Experimental Physics, Moscow
Usp. Fiz. Nauk 131, 537-575 (August 1980)

Contemporary unified gauge models of the electroweak interaction contain not only quarks, leptons, and
intermediate vector bosons, but also elementary spinless fields, whose inclusion is essential for

renormalizability of the theory—the so-called Higgs bosons. A large class of problems related to the Higgs
bosons is considered. The greatest attention is devoted to the Weinberg-Salam model, in which there is one
such boson. The characteristics of this boson are discussed in detail: the coupling constants are fixed, and
bounds on the mass are given. Theoretical estimates are given for its production cross sections, lifetime, and
relative probabilities of decays into different channels. Various generalizations of the model with a greater
number of Higgs particles are considered. A brief review is given of closely related questions: the hypothesis
of “grand unification,” classical solutions of the Polyakov-’t Hooft monopole type, and axions. A special
section is devoted to an alternative variant in which no elementary Higgs fields are introduced (the so-called

“Technicolor” scheme).
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1. INTRODUCTION

The experimental data on the weak interactions are
described by a local four-fermion interaction. How-
ever, contemporary theories' are based on the fact
that the primary interaction is of Yukawa type, and
includes new particles: intermediate vector (W*, Z°)
and scalar (H) bosons. The existence of vector bosons,
while not proved by experiment, seems very natural:
the weak interaction has a V—-A structure, and the
amplitudes of the known processes factorize. It is no
accident that the hypothesis of vector bosons was put
forward many years ago.

Unlike vector bosons, scalar (or Higgs) particles—
which constitute the subject of our review—do not
manifest themselves in any way in experiments at ac-
cessible energies. It is most probable that the inter-
action of fermions with Higgs bosons conserves parity,
strangeness, and the other additive quantum numbers.
Moreover, the coupling constants are suppressed, so
that exchanges of scalar particles are unimportant in
practice.

Therefore elementary scalar particles are at present
nothing but the result of a theoretical fantasy. Never-
theless, it is difficult to dispense with them, and the
observation of scalar bosons would confirm the theory
in its least trivial constructions.

Why do we need Higgs bosons? Roughly speaking,
for the following reasons: a)to construct renorma-
lizable models of the weak interactions, and b) to ac-
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count for the nonuniversality of the particle masses.

It turns out that a theory with a single vector boson
is not closed. In such a theory, it is easy to describe
the observable phenomena to first order in the Fermi
constant Gp, but the higher-order graphs diverge.

Moreover, the coupling constants of the vector fields
are “too” symmetric. The point is that only a theory
of gauge vector fields is renormalizable.? This means
that the coupling constants of the W* and Z° are uni-
versal, just as the electric charges are universal,

In addition, according to contemporary ideas, the
strong interactions are also mediated by gauge fields,
the gluons. The scalar particles remain as the only
source of nonuniversality. The masses of the quarks
and leptons are not universal, and it is assumed that
the scalar particles are responsible for the origin of
the masses. Mass then appears not as a result of
emission and absorption of quanta of the scalar field,
but as a result of the interaction with the classical part
of the scalar field, which extends over all space.

Scalar particles are now experiencing a rejuvenation.
Although the Weinberg—~Salam model, which intro-
duces these particles in a realistic context, was pro-
posed over 11 years ago, the decisive experiments to
test it have been performed in recent years.? Physi-
cists have now become confident that the model cor-
rectly describes the low-energy experiments (energies
at which no intermediate bosons are produced are con-
sideredtobe low). The creators of this model—S. Glas-
how, S. Weinberg, and A.Salam—have recently been
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awarded the Nobel Prize.

Of course, tremendous efforts will be expended in the
near future to detect the intermediate bosons directly.
The success of the hunt for vector bosons now seems
predetermined. Moreover, their masses can be re-
liably predicted:

mw =~ 80 GeV, mg ~ 90 GeV.

Very little can be said about the mass of the scalar
boson. If there is a single boson, then

my > 7—8 GeV.

Note the absence of an upper limit on the mass. This
theoretical uncertainty may also be covered by the
richness of the spectrum of Higgs bosons: there may
be relatively light and neutral, and also charged,
scalar particles, and they may even exist undetected
among the states that have already been observed.

For the theoretician, Higgs mesons are of special
interest because they relate to that part of the theory
which does not seem firmly established at the present
time and which may change in some way in the future,
Higgs bosons touch upon many mysteries of modern
physics,

Therefore a detailed review of Higgs bosons would
be very appropriate at the present time, Our objective
is more modest. This review includes, as it were,
two excursive routes: for those interested in the
theory, and those interested in the experimental con-
sequences. Both begin in Sec. 2, where we give an
exposition of the “standard” Weinberg-Salam model.
This section can be regarded as an extended introduc-
tion. Estimates of the production cross sections of
Higgs bosons and the probabilities of their various
decays are given later in Sec. 5 (“How to search for
Higgs bosons”), which can be read immediately after
Sec. 2. Sections 3, 6, and 7 (“Around the standard
model,” “The axion,” and “An alternative to Higgs
bosons”) are aimed at recreating at least partially
the atmosphere of tempting hypotheses, uncertainties,
and problems that surrounds the Higgs bosons. Final-
ly, in Sec. 4 we discuss the low-energy theorems,
which demonstrate that the Higgs bosons, if they are
observed, would make it possible to count the heavy
states. This section refers mainly to the theoretical
part, although it may also elucidate certain statements
pertaining to the experimental consequences.

Of course, in the majority of cases we do not claim
to give a complete exposition. A detailed discussion
of the Weinberg—Salam model would already require a
review larger in volume than the present one. The gaps
can be filled from other sources. We list some of them.

The Weinberg—-Salam model was considered in the re-
views of Vainshtein and Khriplovich, Abers and Lee,
and Bernstein.? The possibilities of a search for Higgs
bosons were first discussed in the detailed original
papers of Bogomol’nyi and of Ellis, Gaillard, and
Manopoulos.® Cosmological consequences of theories
with spontaneous symmetry breaking were discussed
in a review by Linde.® A concise and lucid exposition
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of many problems can be found in reports by Wein-
berg.? Of the more recent literature, we mention a
review by Gaillard and lectures by Ellis.® Unification
of the weak, electromagnetic, and strong interactions
was discussed in a review by Matinyan.? As to in-
dividual theoretical problems (for example, the axion),
we hope that the references to the original papers
quoted in the text may serve as a starting point for the
interested reader.

The material of the review is largely traditional.
Thus, the fundamental possibilities of a search for
Higgs bosons were already analyzed in the earliest
original papers. Here we re-examine the numbers,
There is greater scope in the choice of theoretical
problems. In particular, the low-energy theorems
were not discussed in the other reviews. The exposi-
tion of the problem of the axion is not entirely standard.
We have also included a discussion of the criterion of
“paturalness” of a given model, and we have referred
to a possible alternative to the Higgs mechanism.

2. THE WEINBERG-SALAM MODEL

It is natural to begin the systematic exposition with
the Weinberg-Salam model,! which we shall also call
the standard model, The study of this model gives a
general idea of the consequences of renormalizable
theories of the weak interactions, Moreover, the
model is in excellent agreement with experiment, and
it is necessary to understand whether the data confirm
the hypothesis of the existence of Higgs bosons and, if
so, to what extent they restrict their properties.

This section consists of three subsections. We first
give an account of the basic ideas. We then present
the complete Lagrangian of the standard model and
discuss the comparison of the model with experiment.

a) Basic ideas

1) University of the coupling constants of the
vector bosons. It is assumed that the vector bosons,
like the photon, are described by gauge fields and that
their coupling constants are universal, just as the elec-
tric charges are universal.'® For charged currents, it
was verified long ago that the coupling constants are in-
dependent of the particle species in the case of 8 de-
cays of the muon and the neutron. Nowadays, uni-
versality is also extended to the neutral currents.
Moreover, a unified theory of the weak and electro-
magnetic interactions is constructed, i.e., it is as-
sumed that the coupling constants for electromagnetic
and semiweak interactions are of the same order and
that the observed difference between the intensities of
the transitions is due solely to the mass of the W bos-
on:

Gy~ %

where Gy is the Fermi constant, Gy =10"%m;2, and
a=1/131.

However, the idea of universality cannot be developed
completely, and two independent coupling constants
are introduced: g for the triplet of vector fields, and
g’ for the singlet* (the reason for this is discussed
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somewhat later)., In the same way that the interaction
of the photon is introduced as an interaction with the
electric charge, the triplet of fields interacts with the
weak isospin T, and the singlet field interacts with
the weak hypercharge Y. If the photon is actually
included in the theoretical scheme, the electric charge
must be expressed in terms of the generators of the
group, and the formula for the charge takes the form

- T:;\,J/-Y2l, (2.1)

To find the coupling constant for the interaction of the
vector fields with a given particle, we must know to
which multiplet of the weak-isospin group this particle
belongs. The well-known distinguished role of the left-
handed’ particles in the weak interactions makes it
natural to assume that only the left-handed components
appear in the nontrivial representation of the weak-
isospin group, while the right-handed components
appear in singlets.

In more detail, one introduces the following doublets
of left-handed fields:

(e (e (e Gl Gl (s

where e, i, T are charged leptons, v, v,, v, are the
corresponding neutrinos, u,c,tare quarks with charge
2/3, and d’, s’, b’ are linear combinations of the quark
fields with charge -1/3, for example, d' =d cosf.
+ssinéc, where 6. is the Cabibbo angle.

(2.2)

We also list the singlets of right-handed leptons and
quarks:

2.3)

Using the relation (2.1), it is easy to find the values
of Y, for each of the particles. We see, incidentally,
why it is necessary to introduce two coupling constants:
the average charge of the leptons or quarks is not
equal to zero. Of course, one might think that heavier,
hitherto unobserved quarks and leptons enlarge (2.2)
to representations with average charge zero (for ex-
ample, triplets). Such models with a single coupling
constant and a triplet of vector fields have been pro-
posed,'? but the experimental observation of weak neu-
tral currents has removed them from the limelight.

er, WR, TR, UR, AR, CR; SR, R, Dm.

The expression for the Lagrangian of the interaction
with the gauge fields is, as always, obtained by re-
placing the ordinary derivative 3,3 by the covariant
derivative D y:

Db = (04— ig5bu+ 16 —a) v, (2.4)
where b, is the triplet of vector fields, a, is the sing-
let field, and 7 denotes the Pauli matrices (normalized
by the condition Tr7,;7,=25;,), which act in the weak-
isospin space, for example, 7~ transforms v, into
er, etc.

Equations (2) and (4) completely fix the form of the
interaction in terms of the fields b, and a,. However,
the physical states are those with definite mass—the

DBy the left-handed (right-handed) components of the fermion
fields, we mean ¥ p =3{1=¥)¥.
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photon A, and the Z° boson.
can be written as

Clearly, the photon field

1
4y =

= 3
T (e

(2.5)
In fact, the coupling of the field b} with Ty, is pro-
portional to g, and the coupling of a, with the hyper-
charge is proportional to —g’/2. Asa result, A,
interacts identically with T,,, and Y,/2, i.e., with the
electric charge [see (2.1)]. The overall factor is fixed
by the normalization condition.

The orthogonal combination

1

Vierte®

Zu = (A’bfn T‘.?'(’u) (2'6)

describes the Z° boson,

2) Renovmalizability. Higgs bosons. Renormaliza-
bility can be understood as the assertion that the ampli-
tudes for processes calculated in perturbation theory
do not grow too fast at high energies.'* The attempt
to satisfy this requirement leads to Higgs bosons. Let
us elucidate this by means of a simple example.

A well-known renormalizable theory is quantum
electrodynamics. Estimates of cross sections in quan-
tum electrodynamics can therefore be used to under-
stand what behavior of the cross sections is admissible.
Consider, for example, the annihilation e ‘e~ = ¥y at
high energy and large momentum transfer., From di-
mensional considerations, it is obvious that

do . al
o e > gy ~ —

(s ~1). (2.7)

The coupling constants of the vector bosons are also
dimensionless, and one might think that the same esti-
mate of the cross section applies to the production of
intermediate bosons:

ete~ — Z°Z°

(2.8)
(we recall that s>>m2).

However, there is another source of growth of the
cross sections for the production of massive particles
as a function of energy. The point is that the average
over the spins of the vector boson e, is given by the
formula

1

kllk\'
Gubv= — 7 (gu\“ _)

my

2.9)

where m; is the mass of the Z boson, and k, is its 4-
momentum [the relation (2.9) is particularly obvious in
the rest system: k,=m;,¢;e,=(1/3)5,, for

i, k=1,2,3].

The factors k,/m, explicitly contain the ratio E/m,
and they may lead to an additional growth of the cross
section and require special investigation,!* Note that
their appearance is due to the longitudinally polarized
states, i.e,, states in which the polarization and mo-
mentum three-vectors are parallel,

We denote by M, the matrix element for emission of
the Z boson, so that M e, is its production amplitude.
Then the quantity 2,M, is equal to the matrix element
of the divergence of the source of the vector bosons.
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FIG. 1. Diagrams describing the processe*e”—2Z.

If the source of the Z bosons contains an axial current,
it is not conserved:

a, (ey,ys¢) = 2imeeyse. (2.10)

As a result, the cross section corresponding to the
diagrams of Figs, 1a and 1b grows inadmissibly fast
with energy, the coefficient being proportional to the
mass of the lepton.

In somewhat more detail, the matrix element cor-
responding to the diagrams of Figs. 1a and 1b takes the
form

{axial) SYPRET]
RIS =el'e” M.,

(2.11)

1
PuVs -+ VuVs T‘_—m \M’s) €,
T 2

J[““ == EREEQ E (V\'Y5 t:;-—];:—me
where e, , and &, , are the momenta of the leptons and
the Z bosons, and we have retained only the axial
coupling of the leptons with the Z bosons.

The amplitude for production of longitudinally po-
larized bosons is (for #,,> m ;) proportional to

a2
g g

gk Mg = — B

meee,

and by squaring the matrix element we obtain for the
cross section at high energies the expression

dottB) o (grpgrne mis

dt  5iZa ST my

which is inadmissible in a renormalizable theory

[cf. (2.8)].

Thus, with no additional particles the theory is
unsatisfactory. A possible way out is to introduce
scalar particles which interact with the leptons in
proportion to their mass. If we write their interaction
Lagrangian as

(2.12)

(s ~ t > m}),

Ly = ceHee +~ c;HZ,Z

e

we must have

(2.13)

1 o
Cotz = — 5 (g°+g'H) me.

Then at high energies the diagram of Fig, 1c cancels
the growth of the cross section for production of longi-
tudinal bosons which we found above.

By considering other processes, it is possible to
reconstruct all the coupling constants of the Higgs
boson.!> We shall not dwell on this in greater detail.
What is important for us, however, is the conclusion
drawn above: the coupling constant of the Higgs boson
is proportional to the mass of the particle.

3) Spontaneous symmetry breaking. The existence
of a particle whose interaction with other particles is
proportional to their masses seems a rather exotic
hypothesis at first sight. However, there is another
method of constructing renormalizable theories, which
is more perspicuous from a physical point of view and
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which renders our conclusion more natural.

Let us try to reverse the assertion: it is not the
interaction of the Higgs boson that is proportional to
the mass, but conversely, the mass of the particles
arises only from this interaction and is proportional to
the coupling constant. The realization of this proposal
is simple. Suppose that the field H has a constant part
over all space (as we say, a vacuum expectation value
(H),). Then the interaction with the lepton

c,H;e
leads to a nonzero mass m, =c (H),.

The field H does indeed have a constant part if this
is energetically favorable. For example, the potential
energy

U (h) =const - (H2 — HY)2 (2.14)

has the consequence that H# 0 at the position of the
minimum, In fact, the example (2.14) is not simply
academic but is practically the only one if allowance
is made for the fact that a renormalizable interaction
cannot contain higher powers of the field than H4,

An even more interesting result follows from the
application of the same idea to gauge fields. In the
first place, a gauge field acquires mass. Secondly,
the appearance of mass is necessarily accompanied
by a rearrangement of the degrees of freedom. Indeed,
a massless vector field has two independent polariza-
tions, whereas a massive one has three.

Let us elucidate this for the simple example!® of a
single massless vector field interacting with a charged
scalar field ¢ (we retain the notation H for the Higgs
boson of the standard model). We begin with a system
having four degrees of freedom: two for a massless
vector field b,, and two for the charged scalar field ¢.
If (¢),#0, the system is equivalent to a single massive
vector field (three degrees of freedom) and a single
neutral scalar field (one degree of freedom),

The proof of this assertion is very simple., The

Lagrangian has the form

£ o = PP+ (0,0 —iehig”) (Oup +1ebu®) —~U (o), (2.15)
where the potential energy U(p) depends only on the
modulus of p? =¢ *¢ |see (2.14)] and ensures that
(@)o*0. Clearly, the field b, then requires mass,
Thus, in perturbation theory the propagator of the
vector particle is replaced by

8uv Suv

——'—>_q.—+ (guv—

udv \ 268 [(Phoi®
Iy —) 3

q2 q »

(2.16)

where the second term corresponds to the diagrams
of Fig. 2, The expression (2.16) can be represented
as the first term of the expansion in the mass of the
propagator

Zuv— (Guav/®)

i 4 longitudinal terms,

me = 2e2 | (ol 2.

The longitudinal terms ¢,4, are actually unimportant
because of the conservation of the current, the source
of the field b,
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FIG. 2. Diagrams describing the polarization operator of an
Abelian vector field b, (wavy line) interacting with a charged
scalar field ¢ (solid line). The lines with crosses correspond
to the vacuum expectation value (¢)g.

It is easy to rewrite the Lagrangian (2.18) in terms
of new fields and in a general form without resorting
to perturbation theory. Introducing the notation

cu=bu—:i¢9,,lncp, (2.17)
we have
£ = — 4 FudFiy+ 5+ 20024 + 0,07~ U (p), (2.18)

where the intensity F,, is expressed in terms of ¢, in
the usual way, since b, and ¢, differ by a gauge trans-
formation.

It can be seen that the Lagrangian (2.18) describes a
field ¢, with mass v2el(@),| and a scalar neutral field
p.

In the foregoing, we have summarized the papers of
Englert and Brout and of Higgs!® in 1964 (we note that
the first of these appeared one month earlier). It is
these papers that paved the way to the introduction into
the theory of weak interactions of scalar bosons
(Weinberg and Salam,! 1967), which are now known as
Higgs bosons.

The example considered above refers to an Abelian
field (“photons”). However, the calculations can be
generalized at once to the case of a non-Abelian field"’
{a triplet of vector fields of the isotopic group, etc.).
Clearly, the scalar fields must possess the appropriate
charge, for example, they must be doublets of the iso-
spin group.

It is very important that the concept of spontaneous
symmetry breaking gives a perspicuous meaning to the
assertion that theories of the Weinberg—Salam type are
renormalizable. Indeed, the behavior of the amplitudes
at high energy or at large virtuality is important for
renormalizability. Under these conditions, we can
neglect the constant part of the scalar field, and the
Feynman graphs for the massive theory actually re-
duce to Feynman graphs for a system of massless
vector fields and scalar fields. It is well known that
such a theory is renormalizable.

The conclusion common to subsections 2 and 3 is that
gauge models with spontaneous symmetry breaking are
renormalizable, These models involve not only vector
bosons, but also scalar bosons.

b) The Lagrangian of the standard model
After the preliminary discussion of the preceding

subsection, there should be no mystery about the
Lagrangian of the standard model:
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1
£ = — by = dust -+ (D9)* Dyo—U ()
+ 2\ (LaiDLy + RuiDRy) — D ko Ly Ry + Ryt Ly)
k i, k
— 2\ Bin (Lyoc B + BawaLy).
i, k
: 2.19
byv=20,b, — 0, w+glby, by, Qyy = 0,ay ~—0uay; ( )
here the first two terms describe the triplet and sing-
let of vector fields, and &,, and a,, are the corres-
ponding intensities. In addition, ¢ denotes the doublet
of scalar fields,

e=(5) wemimpr=(_70),

and L; and R; are a doublet and singlet of fermion
fields, for example,

n=(J)

The covariant derivative was already introduced ear-
lier [see (2.4)]. The constants #;, and k;, are unknown
a priori. Unlike g and g', they vary from doublet to
doublet.

o B‘EER, Lz_=(:“)Lv HZEP'R (‘#L.n:%(li‘.‘a)lﬁ).

The Lagrangian (2.19) is invariant with respect to the
group SU(2)xXU(1). This invariance ensures re-
normalizability of the model. We note that the bare
masses would break the invariance, and they are as-
sumed to be equal to zero, Masses arise as a result
of spontaneous symmetry breaking.

In particular, it is assumed that the potential energy
is
U(g) = —plop*e + 2 (0*9)

so that the solution ¢ =0 is unstable. On the contrary,
at the minimum we have

0
Proin = (_"?) » w=
V2

and the true field, which is subject to quantization, is
the deviation of ¢ from the vacuum expectation value

'

min *

The Lagrangian (2.19) can be rewritten in terms of
massive vector fields. To do this, we introduce the
notation

(2.20)

~|=

P (2) = Fma -+ —7 (F + i @) () (2.21)

and exploit gauge invariance to choose ¥(x)=0 (this
gauge is called the unitary gauge). Then
£ = — - byobuy — 5 syt [ S 1+ BB+ B (1 HE g,

+ 5+ Hyab | o QHOH — H— i e

+ fermion part. (2.22)

The Lagrangian (2.22) describes two charged vector
fields W} = (b}, ¥ib%)/V2 with mass m =g*n?/4, two
neutral vector fields A, and Z, [see (2.5) and (2.6)]
with masses

=0, mim

and a scalar field with mass m% =2u?% =212,

The Lagrangian (2.22) permits an explicit calculation
of the tree graphs, which is sufficient for our pur-
poses, The reader may acquaint himself with the quan-
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tization procedure, for example, in the review of
Abers and Lee.*

c) Comparison with experiment

In the standard model, all observable cross sections
are expressed in terms of the constant G, =g*/4vV2m%
and the so-called Weinberg angle 6.,: '

gy =L, (2.23)

All the data on the manifold neutral reactions and on
nonconservation of parity in the eN interaction (atoms
and eN scattering)® agree with the theory for

sin® 8w = 0.22 + 0.02. (2.24)

Of course, exchanges of Higgs bosons give here a
small contribution ~m?/m¥2, so that the existing agree-
ment between theory and experiment cannot serve as a
proof of their existence. However, there is one in-
direct piece of evidence for the reality of the Higgs
mechanism of mass generation. For the discussion,
it is convenient to divide all the existing tests of the
theory into two classes: tests of the universality of
the coupling constants and of the relations between the
masses.

1) Universality of the coupling constants. Uni-
versality of the charged currents was verified many
years ago. For the neutral currents, new predictions
arise. It follows from the definition of the field Z
[see (2.6)] that its source is

T3W — sin? BW-Q,

(2.25)

and this prediction is independent of the mass of the Z
boson, which in the general case would have to be re-
garded as a free parameter. We see, in particular,
that the neutral axial current is a component of an iso-
vector. The overwhelming majority of tests of the
Weinberg—Salam model reduce to a test of (2.25),

2) Relation between the masses of tile vector bosons.
In addition to universality of the coupling constants,
the model predicts a definite relation between the
masses of the Wand Z bosons:

m} cos? Ow

my
while analysis of the data leads to 0.98 £0.05.

=1, (2.26)

Of course the relation (2.26) follows directly from
the Lagrangian (2.22), However, in view of the im-
portance of the relation (2.26), we shall give an ele-
mentary explanation of why this relation occurs.

Renormalizability requires that the coupling constant
of the Higgs boson be proportional to the mass of the
particle [see (2.18)]. By choosing the constants, this
requirement can easily be fulfilled in all cases except
the gauge fields: their coupling constants are universal
and cannot be varied. Therefore the only way of sat-
isfying the requirement of universality of the coupling
constants of the vector bosons and also their pro-
portionality to the mass is to require a definite relation
between the masses. Thus we arrive at (2.26).

However, we must return once again to the state-
ment that “the coupling constants of the gauge fields
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are fixed.” They are fixed if one indicates the repre-
sentation according to which a given field transforms.
So far, we have assumed that the scalar fields belong
to a doublet. We then find the relation (2.26). If, for
example, we introduce a quartet of scalar particles,
we would find a perfectly definite but different relation
between the masses [it would differ from (2.26) by a
coefficient]. On the other hand, it is equally obvious
that nothing changes if we introduce several Higgs
doublets, since the coupling constant for the inter-
action of the gauge field with a particle depends only
on the representation to which the particle belongs.

Thus we arrive at the following important conclusion;
the Higgs particles belong to one or several doublets®’
of the group SU(2),,xU(1),,.

To conclude this entire section, it should be noted
that experiments at ultralow energies (in comparison
with the masses of the W and Z) have made it possible
to test a surprisingly large part of the theory: not only
the universality of the coupling constants, but also, in
part, the mechanism of mass generation. Of course,
it cannot be excluded that all the agreement between
theory and experiment is fortuitous, and the model will
in any case remain a hypothesis until intermediate
vector and scalar bosons are observed.

3. AROUND THE STANDARD MODEL

In this section, we discuss individual theoretical
problems: whether the Weinberg—Salam model is
unique; if not, how to choose the correct model; what
can be said about the number and masses of Higgs
bosons; whether we can recognize that there is a con-
densate of scalar fields in the vacuum—such is the list
of questions which we have chosen from among those
that inevitably occur to anyone who has “learned” the
Weinberg-Salam model. These questions have no ex-
haustive answers. Therefore our goal will be to discuss
the fundamental possibilities rather than the numbers.
As we have already mentioned in the Introduction, the
experimental consequences proper have been relegated
to Sec. 5.

a) Grand unification

The Weinberg-Salam model is by no means the only
variant of a renormalizable theory of the weak inter-
actions. Using the same basic principles, it is easy
to mass-produce new models. We can change the
initial invariance group of the Lagrangian and the
multiplets to which the fermions and scalar fields be-
long (for an attempt at classification of models, see
Ref. 18). The main selection criterion here is agree-
ment with experiment, A basic difficulty in choosing
the correct model is the fact that in theories with
spontaneous symmetry breaking a single multiplet
combines particles with completely different masses.

The possible existence of several different multiplets of
Higgs particles, so that the relation (2.26) is satisfled ap-
proximately and fortuitously, is not discussed for “esthetic”
reasons,
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Of course, the greatest interest lies in models which
attempt to solve at least some of the fundamental prob-
lems which have so far been brushed aside. In par-
ticular, we cannot fail to mention so-called “grand
unification,” which includes the strong, electromag-
netic, and weak interactions!'®'?® (see also the review
of Ref. 9).

The basic idea is that at small distances all inter-
actions are described by a single coupling constant
and that the Lagrangian possesses an invariance which
unifies all the currently known symmetries. For ex-
ample, in the “grand unification” model of Ref, 20 the
SU(5) symmetry group of the Lagrangian incorporates
both the SU(3), ., Subgroup of the strong interactions
and the SU(2),,xU(1),, group of the Weinberg—Salam
model.

To account for the experimentally observed differ-
ences between the coupling constants, we must assume
that for some scale of masses M characterizing the
masses of superheavy vector bosons there occurs a
first spontaneous symmetry breaking, so that at dis-
tances greater than 1/M we can neglect only the masses
of the gauge fields corresponding to SU(3)¢ 10 X SU(2)y
xU(1)y. Then, for » ~1/300 GeV, there occurs a
second spontaneous symmetry breaking, which is de-
scribed by the Weinberg—-Salam model,

It is easy to estimate the value of M at which splitting
of the weak and strong interactions occurs?:

s (1) _3 % (1) (3.1)
g Bl g M3y 1 2, M
2n u 3 2n M

where the left-hand side represents the strong-inter-
action coupling constant, extrapolated to small dis-
tances v ~1/M, and the right-hand side is the electro-
magnetic-interaction coupling constant a, multiplied
by 8/3, at these same distances. The factor 8/3 rep-
resents 1/sin®8,, in the SU(5) scheme at distances
r~1/M,

Thus the theory involves a new (enormous) mass
scale:

M ~ 10 GeV. (3.2)

Of course, enlargement of the group also leads to an
increase in the number of Higgs bosons. In a model
with SU(5) symmetry, the first spontaneous symmetry
breaking is associated with a 24-plet, and the second
with a 45-plet of scalar particles, Thus the number
of elementary scalar particles may be large (in some
variants, as much as 1000),

However, the new.particles are very heavy, and in
what follows we shall consider only the scale of
masses <100 GeV, where we can use the classification
according to the group SU(2)xU(1).

b) “Natural’” and ““unnatural’’ models

Of the theoretical criteria which have been proposed
for the choice of a correct theory of the weak inter~
actions, the most interesting one seems to be the re-
quirement of “naturalness.”® This means that the
fundamental experimental facts, such as conservation
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of electric charge and the absence of neutral strange-
ness-changing currents, are reproduced by the model
for an arbitrary, and not for some special, choice of
the parameters. In Ref. 22 a derivation is given of
conditions which ensure the absence of neutral currents
which change strangeness or other flavors for an
arbitrary mass matrix of the quarks.

It must be borne in mind that effective neutral cur-
rents arise not only as a result of Z-boson exchange,
but also as a result of higher orders (exchange of a
W*W~ mir) as well as exchange of Higgs bosons. Here
we shall discuss the latter mechanism, since we are
interested in restrictions on the spectrum and inter-
actions of Higgs particles.

In the standard model, the requirement that there is
no change of strangeness when a Higgs boson is ex-
changed is fulfilled in a natural way. To see this, we
return to the example discussed in subsection 2.b2—the
annihilation of fermions into two Z bosons. Specifical-
ly, we consider the transition sd ~ZZ. Strangeness
is conserved in the interaction of the Z boson deter-
mined by T,y — sin®8,, XQ:

. 15 1= ' c e 1 1~
L2027, [T (J?,y!.d[,[ s S(i'\?us‘i — sin? Oy (T dyud Ry syus) J

P 1 N . 1 = 1 -
=27, [?dm’i.de7vausL—sm—e“- (? dyud *'TSY“S)J

(d® =dcosO,+ssinBe, 0= —dsinbc+scosB).

Therefore graphs of the type shown in Figs. 1a and 1b
do not contribute to the process sd~2ZZ. Then it
follows from renormalizability that diagrams of the
type shown in Fig. 1¢ are also absent, Consequently,
there is no sdH vertex in the theory.

In other words, in the standard model diagonalization
of the mass matrix leads simultaneously to a diagonal
interaction of the Higgs bosons, This combination is
obviously due to the fact that in the standard model
there is only a single Higgs field and the fermion
masses are due to the nonzero vacuum expectation
value of this field. If we introduce a second isodoublet
of scalar fields into the theory, the diagrams of Fig. lc
are, as before, forbidden by the condition of renor-
malizability at high energies. However, the absence
of these graphs for s == now implies only a single
condition on the coupling constants of the three neutral
Higgs bosons. At finite energies, the cancellation be-
tween the contributions of different Higgs bosons is
“disturbed” and there is in general a mass difference
between the K| and K5 mesons to first order in the
Fermi constant G, which is inadmissible from a
phenomenological point of view,

Suppression of the transitions s =dH can be rendered
natural in the case of two doublets ¢, and ¢, if it is
assumed that the coupling of fermions with the scalar
fields has the form?*

< (n, T gidr+c2 (0, SYngsr e (U, d°) ggun

+(c, ;e)L ¢iea+Hoe k..., (3.3)
i.e., that the various Higgs fields give mass to the
quarks with charges 2/3 and ~1/3. Then the situation

in relation to the s and d quarks, for example, is the
same as in the case of a single doublet, and strange-
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ness is conserved in the interaction of Higgs bosons.

If the form (2.3) is not to be destroyed when allowance
is made for higher orders, there must exist a sym-
metry which maintains it. Such a symmetry is in-
variance with respect to two discrete transformations
of the form

dg — — dg,
R > — CR-

SR > —SR,
UR &> —UR,

) o= — ou

2) 92> —0u (3.4)

This discrete symmetry also imposes restrictions on
the potential of the interaction between scalar particles.
A potential which satisfies these restrictions has the
form?®

U@ ) =19t + 1oie, + A (91012 + 1 (93¢,)?
+ 23 (@l (@502) + M (019) (PEP1) + As (919.)2 + 13 (pie,)2.

(3.5)
We now give an example of a model in which sup-
pression of the transition s~ dH cannot in any way be
natural. Suppose that, in addition to the doublets of
left-handed particles (2.2), there also exist doublets
of right-handed quarks:

t c
G- (&) (G):
Such models, which restore the symmetry between the
right- and left-handed components of the spinors, were

discussed very intensively in 1975-1978 (see, for ex-
ample, Ref, 24),

(3.6)

It is easy to see that in this model the amplitude of
the process sd~ W*W~ has an unacceptable growth
with energy unless one introduces diagrams of the type
shown in Fig. 1¢, so that renormalizability requires
the coupling S(1 +¥;dH. The problems which must be
solved when conservation of strangeness is not natural
were examined in detail for this case by the present
authors in the review of Ref. 25, where it was not only
stated that the model is unnatural, but. it was also at-
tempted to ascertain whether this leads to a direct
contradiction with experiment. However, it is neces-
sary to warn the reader that the model (3.6) is now
ruled out by direct experimental data,®

We note that in general electric charge may not be
conserved in a model with two doublets. Indeed, in the
case of a single doublet, by means of a rotation in iso-
topic space the vacuum expectation value can be re-
duced to the form

@o=(3), (3.7)

where 0 is a real number, It is important that only a
single component has a vacuum expectation value. We
define electric charge so that with this choice of axes
the upper component of the doublet corresponds to a
neutral particle. Then the vacuum condensate is not
charged, and electric charge is conserved in reactions
between particles.

If there are two doublets, then in the general case only
one of them can be reduced to the form (3.7):

(Pilo= (2) y o= ('Hb‘il) N (3.8)
where o, 5, 7, and x are real numbers. If 6#0, con-
servation of electric charge is violated by exchanges
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with the vacuum and the photon is massive—the model
is unacceptable.

The matrix of vacuum expectation values is deter-
mined by the form of the Lagrangian, It is easy to see
that the potential energy depends quadratically on the
parameter 6. Therefore the solution 5 =0 is ensured
by fulfillment of a certain inequality for the original
coupling constants in the Lagrangian of the scalar fields
(3.5). It can be said that conservation of electric charge
in a model with two doublets is obtained at a much
lower price than the absence of neutral strangeness-
changing currents. The latter requires not inequali-
ties, but very specific relations between the coupling
constants for the interaction of the scalar fields with
the quarks, which can be guaranteed at the price of the
discrete symmetry (3.4).

A detailed discussion of various models from the
point of view of their naturalness (including models
with “grand unification”) is given in Ref. 26.

Conclusion: The standard model with one doublet of
scalar fields is the most natural one. In a model with
two doublets, it is necessary to assume the existence of
an additional discrete symmetry. There are, of
course, models in which the requirement of natural-
ness cannot in general be satisfied (if, for example,
doublets of right-handed fermions are introduced).

c) Conservation laws in models with spontaneous symmetry
breaking

From the material of the preceding subsection the
reader could not fail to form the impression that the
conservation laws in models with spontaneous sym-
metry breaking are rather accidental in character and
are determined by the properties of the scalar fields.

This property of the models seems fairly general,
Thus, in models with two doublets we can expect
transitions with nonconservation of the muon charge
(for example, LA —~eA’) with probability of order
10-'° of the usual weak processes.”” Violation of CP
invariance also occurs in a natural way.?®

The reasons for both features are the same. The
initial Lagrangian leads to conservation laws for such
quantities as the electric and muon charges, and so
forth. However, if these conservation laws are to
manifest themselves in the form of conserved quantum
numbers, there must be a corresponding invariance
of the vacuum condensate. Thus, in the example in-
volving electric charge in the case of one doublet con-
sidered above, the vacuum expectation value (3.7) is
invariant with respect to multiplication of the upper
component of the doublet by a phase factor; it is these
transformations that are associated with the electric
charge. An increase in the number of scalar fields
naturally reduces the symmetry of the vacuum con-
densate.

But what happens to the original conservation laws
when there is no corresponding invariance of the
vacuum condensate ? There are two variants: either
there are massless Goldstone particles and the original
symmetry manifests itself in low-energy theorems for
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the interaction amplitudes of these particles, or the
considered current is a source of a vector field. In

the second variant, instead of Goldstone modes, the
vector field acquires a longitudinally polarized state—it
becomes massive. The symmetry of the Lagrangian
manifests itself in the form of conserved quantum num-
bers at high momenta, where the masses and vacuum
expectation values of the fields can be neglected.

d) Masses of the Higgs bosons

From a practical point of view, it is important to
know how heavy the Higgs bosons are. Scalar particles
were introduced in Sec. 2 on the basis of a treatment
of the amplitudes in the infinite-energy limit s~ =,
Clearly, such a treatment does not restrict the mass
in any way and elucidates only the fundamental pos-
gibility of renormalizing the Lagrangian.

Further arguments are required to predict the mass.
There are few convincing results. In the standard
model®® we have

ma > T8 GeV, (3.9)

and models with several doublets can also contain
lighter scalar particles,

1) Lower limit on the mass. We begin with a few
words about the origin of the lower limit on the mass
of the Higgs boson, In terms of the parameters ap-
pearing in the Lagrangian, the mass is

mi = 2f*

(3.10)

[see (2.22)]. The vacuum expectation value n can be
found from the mass of the W boson: 71 ={2m,,/e)siné,,
=(GpV2)2. As to the self-interaction constant /2 of
the scalar fields, it cannot be determined directly
from experiment and one might think that by reducing
% we could arrive at an arbitrary mass my.

However, in addition to the bare term f2¢*, an ef-
fective self-interaction arises as a result of the graphs
containing virtual vector fields® (Fig. 3). Since the
coupling constant for the interaction of the scalar field
with the gauge vector field is fixed, the effective value
f2 cannot be smaller than /3, ~¢*, and this leads to the
bound (3.9).

In a model with two doublets, knowledge of the mass
m does not permit a determination of the two vacuum
expectation values (¢,) and (@,).

2) Upper limit on the mass. There is no reasonable
upper limit on the mass m . However, a condition
which is frequently cited in the literature is®

81V2 1 TeV.

3or (3.11)

mH<

The bound (3.11) arises from the requirement that

X

FIG. 3. Diagram leading to an effective self-interaction of the
scalar field (solid line) as a result of exchange of W and Z
bosons (wavy lines). The unitary gauge is used.
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the graphs of lowest order in the constant f2 do not
violate the unitarity condition. Indeed, a large
coupling constant f? corresponds to large mass [see
(3.10)), and for my ~1 TeV the interaction between
Higgs bosons becomes strong. In this case, we must
clearly sum the Feynman graphs.

It must be borne in mind, however, that there are
certainly renormalizable theories in which we cannot
confine ourselves to the first order of perturbation
theory (a good example is quantum chromodynamics).
Therefore it seems more consistent not to impose
a priori the requirement of smallness of the constant
f 2, but to consider whether we know from experimental
data that the self-interaction of the Higgs fields is
weak.

It turns out that the strong interaction in the Higgs
sector has practically no influence on the effective
fermion Lagrangian at low energies.® This is so be-
cause the contribution of high energies is suppressed
by the factor m?/m} (where m; is the fermion mass).

Roughly speaking, the expansion in the coupling con-
stant at low energies has the form

GGy Gr (GeAY) oL,
miy
where either A is of order my if my is below the uni-
tarity limit, or A ~G;'% if the mass of the Higgs boson
is very large. In either case, the higher-order cor-
rection is numerically small and cannot be used for an

upper bound on the mass of the Higgs boson.

Since the mass of the W boson exceeds the masses
of the known fermions, the intermediate vector bosons
might be the best tool for detecting the strong inter-
action in the Higgs sector. In particular, a special
investigation is required to determine whether the re-
lation between the masses m; and m,, [see (2.26))] is
preserved if there is no perturbation theory in the
Higgs sector. We refer to the opinion of Weinberg*®
that the strong self-interaction of the Higgs bosons
destroys the relation m,, =m ;cos?6,.> However, we
could not devise a proof of this assertion, Moreover,
a counterexample is mentioned briefly in Sec. 7.

3) Hierarchy of masses. New problems involving
the masses arise in models with “grand unification.”
As we have already mentioned, the idea of unification
of the weak and strong interactions presupposes the
existence of two scales of masses, which differ from
one another by many orders of magnitude:

(g1) =~ 10" {(g,). (3.12)

Even if we assume that the parameters in the La-
grangian are chosen appropriately, the radiative cor-
rections in general destroy the relation (12). A de-
tailed discussion of this problem can be found in Ref.
34,

91n a recent paper, S. Weinberg [Phys. Rev. D 19, 1277 (1979)]
abandoned his view and argued that even with a strong inter-
action in the Higgs sector the relation mg = m2 cos?4y, is not

modified.
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Conclusion: In the standard model, it is unlikely that
the Higgs boson is lighter than 7T-8 GeV. No reasonable
upper limit on the mass exists. In models with “grand
unification,” it is difficult to maintain the conjectured
hierarchy of masses.

@) Classical excitations of the vacuum condensate

We have so far discussed spontaneous symmetry
breaking only in connection with the renormalizability
of the weak interactions. Is the concept of spontaneous
symmetry breaking simply a prescription for writing
down renormalizable Lagrangians, or does it have
deeper physical content?

The problem of renormalizability is solved at the
quantum level with the treatment of loop graphs. How-
ever, the clearest manifestation of spontaneous sym-
metry breaking would be associated with classical
excitations of the vacuum: it is possible to have solu-
tions of the classical equations in which a scalar field
is different from (¢), and depends on the coordinate,
The observation of the corresponding effects would be
of tremendous interest. It is no accident that the sec-
tion on spontaneous symmetry breaking in the review
of Abers and Lee! was introduced with the following
epigraph due to Nambu: “If my view is correct, the
Universe may have a kind of domain structure, In one
part of the Universe you may have one preferred direc-
tion of the axis; in another part, the direction of the
axis may be different.”

A detailed discussion of such questions lies outside
the scope of the present review., We shall confine our-
selves to two examples of nontrivial classical solu-
tions, both of which refer to models which are simpler
than the standard one,

1) Cosmological consequences. An example of
cosmology in a theory with spontaneous (discrete)
symmetry breaking was analyzed for the first time in
Ref, 35. Suppose that there is a single scalar field ¢
described by the Lagrangian

£ (9) =5 (0,00 — P (9*— )2 (3.13)

The minimum of the energy then corresponds to either
(@) =nor{g)=-n.

We can imagine, however, that in one part of space
(@) =+n, and in another part (¢) =— 7. In particular,
the classical solution satisfying the boundary conditions
@({x)~£n for x=:= has the form

¢ () =n th [V 2 fn (x— o). (3.14)

We can say that at x =x, there is a wall, i.e., a region
of transition from (¢} =7 to {(¢) =—7. The solution (3.14)
describes a distribution of the field ¢ with energy
greater than that of the vacuum: the energy density
per unit area of the wall is 4V 27%/3.

In this sense, the production of walls is energetically
unfavorable, From the point of view of cosmological
applications, it is therefore a crucial observation that

1t is also no accident, however, that cosmology is not dis-
cussed in the text of the review.
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walls would nevertheless necessarily be produced, The
point is that in the hot-Universe model different regions
of space are not interconnected by causal signals and
the choice between the possibilities (¢) =+ 7 would be
made independently in different regions of space. One
can find the minimum density of walls per unit volume.

Since very considerable energy is accumulated in the
walls, their existence would have a radical effect on
the entire evolution of the Universe, which can be ex-
cluded by the observational data.

As to the realistic standard model, there are no
walls in this model (the change of sign in (¢) can be
eliminated by a gauge transformation and therefore
cannot lead to observable consequences). The cosmo-
logical consequences of the standard model relate pri-
marily to the following observation,®® At high tem-
perature, as at high energy or strong virtuality, the
initial symmetry of the Lagrangian is restored. Al-
lowance for this fact may alter previous ideas about
the development of the Universe at the initial moments
of time.

The interested reader should refer to the review of
Linde.®

2) Magnetic monopole of Polyakov and 't Hooft.S
The classical excitations of the Higgs field can mani-
fest themselves in the form of elementary particles
of a new type, whose stability is related to the topology
of the scalar field. The existence of such particles is
essential for models with a simple non-Abelian sym-
metry group, i.e., models with one independent coupl-
ing constant of the gauge interaction.

The simplest model of this type contains the photon
and charged vector bosons W*, i.e., it is the electro-
dynamics of the W boson, whose mass is introduced
by the Higgs procedure. The Lagrangian of the model
can be written as!?

1 e ;e 1 a 1 g i a_a
L = — 7 GGy + 5 (Dug”) Dut® + 5 120°9° — — f2 (9"¢%)2,
Gy = 0, WS — Dy Wi — ee™WEWS, (3.15)

D,¢" = 0,9° — ee®™Whe*  (a=1, 2, 3).

The vacuum state corresponds to the classical part
of a field ¢° of the form (¢, ¢°, ¢ ™), =(0, F,0); the
field W9 describes a massless photon, W is a2 mass-
ive boson, m, =eF, (¢°- F) is a Higgs boson, and
m,, =V 2fF (in the unitary gauge, where ¢*=0),

It turns out that in addition to the solution with ¢¢,,
which is independent of the coordinates, there are
other stable classical solutions. We assume that the
direction of the isovector ¢° in isotopic space depends
on the spatial coordinates in the following way:

P =0 r. (3.16)

Gauge invariance makes it possible, by a choice of the
gauge, to orient the field ¢ at any point in a given di-
rection. However, the angle of rotation must be a con-
tinuous function of the point of space. It is easy to see
that the field (3.16) cannot be “combed” in a single di-
rection over all space by means of a continuous trans-
formation. Polyakov designated such an object by the
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picturesque term “hedgehog.”

The distinction between the ordinary vacuum and the
field (3.16) is topological in character and can be re-
lated to the so-called topological charge. Clearly, the
solution with minimum energy and lowest nonzero
topological charge is stable. An example of such a so-
lution was in fact given in the preceding subsection in
the problem of a one-dimensional wall,

By examining the covariant derivative of the field ¢°
given by the expression (3.16), it can be seen that the
corresponding vector field must be sought in the form

3.17)

The expression for the energy E of the system can be
represented in the following form;

oo

L3
E_E°="tTw S dz[(u'z—i—-%,— ((0—2)2—{»%123'2
]

Wi =€eagmmmW ().

R (U —of b et (1 — 2],

(3.18)

where E, is the energy of the vacuum, and we have
made use of the following dimensionless quantities:
x=eFr,B =22/, s(x)=xp/eF? and w=-Wx?/eF?2,
The corresponding differential equations can be written
down without difficulty.

The monopole mass is a quantity of order m,/a:

Mpar=—2 ¢ (8), (3.19)

o

and the value of the coefficient £(8) was determined by
numerical calculation in Ref. 38: £(8) varies from 1
to 1,8 when 8 varies from 0 to 8=,

There are no monopoles in the Weinberg~Salam
model: the additional U(1) symmetry has the conse-
quence that any distribution can be “combed.”

However, as has been emphasized by many authors,
it is desirable to have a simple group as the initial
symmetry group. Apart from the esthetic advantage
due to the presence of a single coupling constant, this
automatically leads to quantization of electric charge,
since the charge operator is one of the generators of
the group. Thus, in the example of the SU(2) group
discugsed above, we have @ =T,, where T, is the third
component of isospin and obviously takes on only dis-
crete values, For the Weinberg—Salam SU(2)xU(1)
model, @ =T, +3Y, where the hypercharge Y is related
to the U(1) group and can be arbitrary.

In models of grand unification, the group SU(2),,
XU(1)wXSU(B),,10, is enlarged to a simple group, for
example, SU(5), so that a monopole occurs. However,
in estimating the monopole mass we must interpret
m,, as the intermediate-boson mass which arises in
the first spontaneous symmetry breaking, M,,~47g™?
%x10'® GeV. In other words, the monopole mass in such
models is enormous.

We note that heavy monopoles may appear in the early
stages of the evolution of a hot Universe. In Ref. 39
a calculation was made of the density of “relict” mono-
poles, which was found to be very large, much greater
than the existing experimental limits. It is not clear,
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however, whether such calculations can be used for the
grand-unification monopoles with mass of the order of
the Planck mass (~G ™2, where G is the gravitational
constant). Masses of order 10 TeV were discussed in
Ref. 39.

4. LOW-ENERGY THEOREMS

This short section is devoted to the low-energy
theorems. Their treatment is, as it were, the link
between the purely theoretical problems discussed in
the preceding section and the practical estimates which
constitute the subject of the next section, By low en-
ergy, we mean here the case in which the mass of the
intermediate state, for example, the W boson, is much
greater than the mass of the Higgs boson whose decay
or production is being considered.

The low-energy theorems demonstrate a unique
property of the Higgs bosons: if they can be observed
experimentally, they make it possible to examine even
smaller distances and to count the number of states
with mass exceeding the mass of the scalar boson.
This really is a unique property, since the requirement
of a certain isolation of the region of low energies from
the region of ultrahigh energies can normally be re-
garded as one of the formulations of renormalizability
(in a renormalizable theory, the cross sections do not
grow rapidly at high energy, and dispersion relations
demonstrate that the high-energy contribution is un-
important at low energies),

The breakdown of the usual ideas about the unimport-
ance of heavy states is due to the fact that the inter-
action of the Higgs bosons is itself proportional to the
mass. We shall list all the cases in which heavy inter-
mediate states are important, They amount to pro-
cesses involving two gluons or photons and an arbi-
trary number of Higgs bosons.

a) Decay of the Higgs boson into two gluons

The decay of the Higgs boson into two gluons*®'* oc-
curs in the single-loop approximation: the boson is
converted into a pair of quarks, which then annihilate
into gluons (Fig. 4).

The result for this diagram is simple and leads to the
following expression for the effective interaction of the
Higgs boson with gluons:

Zeﬂ: Z CHq —a‘—-szG;vH.

mg 12n
"'q>"'H

(4.1)

where ¢y, is the coupling constant of the Higgs boson,

m g, is the quark mass, G, is the intensity of the gluon
field, and a; is the strong-interaction coupling constant.
The relation (4.1) is valid for m >m,,,

In the standard theory, ¢yq=-VvGzV2m,, and each
heavy quark gives the same contribution, regardless

.4
7
_”__<[¢
q _—
L4

FIG. 4. Transition of the H boson into gluons via a quark loop.
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of its mass. It might appear that a logarithmic de-~
pendence on the mass nevertheless remains in the
factor a;, However, this is not so: the higher-order
corrections actually cancel this apparent dependence
[the anomalous dimensionality of a,(G, ) is zero].

For the probability of the decay H—~2g, we obtain

I )= (Sl )7, (4.2)
where n, is the number of heavy quarks. The condition
of “heaviness” of a quark is necessary for the validity
of the initial expression (4.1). If m ;< m,, there isa
form factor, which in the final analysis reduces the
contribution of the given quark. Actually, the formula
can be applied if m > 0.2my (the contribution of lighter
quarks can, of course, be taken into account explicitly).

The coupling constant for the interaction of the Higgs
boson with two gluons can be measured not only in its
decays into hadrons, but also in the process of pro-
duction of the Higgs boson in hadron-hadron collisions.

b) Coupling constant of the Higgs boson with the nucleon

As an application of the low-energy theorem of the
preceding subsection, we shall determine the coupling
constant for the interaction, of the Higgs boson with the
nucleon (at zero momentum transfer).”® The direct
coupling of the Higgs boson with the u and d quarks

—V Gr V 2 H (muu+ mydd)
gives a relatively small contribution

—(NVErV2 (maun + mdd)|Ny =~ —V Gr V2 (15MeV) myun  (4.3)

(where u, is a spinor describing the nucleon), since
the u and d quarks are light:

ma~ 4 MeV, mq =~ 7MeV. 4.4)

The heavy intermediate states turn out to be more
important. To determine their contribution, we must
calculate the matrix element

NIV 6r V2 g mGnGanI N, (4.5)

where G, is the operator of the gluon field intensity
[see (4.1)]. This problem of calculating the matrix ele-
ment, which is at first sight very complicated, can be
solved almost exactly.

The point is that the following expression can be ob-
tained for the trace of the energy—momentum tensor in
quantum chromodynamics:

e""——Q%:—waG;q-i- 2 mq'EQv (4-6)

queu, d, 8
where the first term is the so-called anomaly in the
trace of the energy~momentum tensor. This expres-
sion for 6, holds for the matrix elements between
states with small momenta even when heavy quarks
are introduced in the theory, since the latter appear
only through the loops and the corresponding contribu-
tion is proportional to 1/m ..

When the operator (4.6) is averaged with respect to
the nucleon, the quark terms can be neglected: the
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light quarks are very light. On the other hand, the
matrix element of the trace of the energy—momentum
tensor with respect to the nucleon at zero momentum
transfer is known and is simply equal to the nucleon
mass, Thus, we obtain the final result
(N|V5p7—§ a:‘ "hG:vawlN)': __szz"__,h mN_llNuN.

12

4.7)

Taking into account only the known heavy quarks ¢ and
b, this already exceeds (4.3).

We note that in the literature one quite frequently
encounters incorrect estimates of the interaction of H
particles with the ordinary hadrons, owing to neglect
of the anomaly in 6,,.

c) Decay of the Higgs boson into two photons®®- 42

Clearly, this decay is in many respects similar to the
decay H— 2g and is also sensitive to heavy intermediate
states. The difference is that, in addition to quarks,
allowance must be made for other heavy charged parti-
cles: vector bosons and leptons (charged scalar bosons
can also occur in generalizations of the standard mod-
el, but we do not consider them here).

From the computational point of view, diagrams in-
volving W bosons present the greatest difficulties. In
general, they cannot be calculated without a consistent
treatment of the quantization of the Weinberg—Salam
Lagrangian—a problem which we have avoided in the
present review. However, we can obtain an explicit
result without performing any new calculations, but
applying only the well-known results for the renorma-
lization of the charge (the Gell-Mann-Low function) in
a theory with vector bosons.

The trick reduces to the following. Since we are
considering the low-energy theorems, the Higgs field
can be regarded as an external field which is inde-
pendent of the coordinates. Then inclusion of the inter-
action with this field is equivalent to replacement of the
bare masses of the fermions and W bosons by the ef-
fective masses:

my —my (14 VGpV?H),
Mmy — My (1+VGFV_2H),

this being obvious, for example, from the form of the
Lagrangian {see Eq. (2.22) of Sec. 2}.

(4.8)

Suppose, further, that we know the amplitude M p
of some process A~ B without Higgs bosons. Then the
amplitude of the process involving the production of an
extra H boson at zero momentum of the external parti-
cles can be determined by differentiating M, 5 with
respect to the mass:

M@A->B+H)=V6V2(3 m,aL’;”+mw a—;’;) M. (4.9)
f

The validity of this assertion is immediately apparent
from (4.8).

Further, let A~ B denote the transition ¥~ ¥ or
g=—g, i.e., we are considering the polarization opera-
tor of the photon or gluon in the single-loop approxi-
mation. It is well known that the result diverges and
contains InA. It is obvious from dimensional argu-
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ments that for small photon momentum the cutoff pa-
rameter A can appear only in the form of the ratio
A/m, where m is the mass of the intermediate parti-
cles.

The result is paradoxical: we can keep track of only
the divergent part in the diagram, determine the co-
efficient of InA, apply the relation (4.9), and find the
amplitude for emission of a Higgs scalar particle at
ultralow energies!

Specifically, the effective Lagrangian of the Y=y
transition in the single-loop approximation has the
form

Ic“(\’_’\’):“‘%FquuV( 7_1“ ,,.L%‘ "4 ZQ an _j).
! (4.10)
where @; and m are the fermion charge and mass (for
the quarks, allowance must be made for the three
color varieties), and A is the cutoff parameter. Ap-
plying the relation (4.9), we obtain the effective La-

grangian for the decay H—~27:

LYMH 2 = VEVE (~T++ 3 O) FuFuv (4.11)

The quantity (-7+4,Q%/3) is the coefficient in the
Gell-Mann-Low function. The sign of the W-boson con-
tribution, which is opposite to that of the fermion con-
tribution, corresponds to asymptotic freedom of a
theory with non-Abelian gauge fields: the behavior at
ultrahigh energies can be tested in the low-energy re-
gion.

For the H— 2y decay width, we find from (4.11) that
4 1\2( @ \2 Gpmyy
£ 50 () k.

The relation (4.12) “counts” the heavy charged parti-
cles.,

L (H— 2y)= (7 — (4.12)

d) Production of several scalar particles

If the threshold for production of Higgs bosons is at-
tained, it will be possible to study the reaction

g+eg—~H+H (4-13)

or, in the more general case, the reaction gg ~nH with
several scalar particles. The initial gluons correspond
to hadrons, so that the reaction (4,13) should be under-
stood in the context of the parton model.

The amplitude for the reaction (4.13) is also deter-
mined by the heavy quarks, and each quark gives the
same contribution, regardless of its mass. An explicit
expression for the amplitude is readily obtained by
applying the operation (4.9) several times to the g~g
transition amplitude,’?

Conversely, if we increase the number of gluons or
photons and consider, for example, the decay H -~ 3g,
then the dominant contribution here comes from states
with relatively low mass.

5. HOW TO SEARCH FOR HIGGS BOSONS

In this section, we consider processes of production
and decay of Higgs bosons. Much is uncertain in the
estimates. First, practically nothing can be said about
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FIG. 5. The decay K*—7*H, The crosses indicate transitions
determined by the weak interaction (W-boson exchange).

the mass m . Secondly, the coupling constants of the H
boson also vary from model to model. In the standard
model, at any rate, the second problem does not arise,
and in most of this section we take the interaction of
Higgs bosons as it occurs in the standard model:
L= —-VC:V2H (; mqqq + ;’ mll - 2mWiWws +m3pZ2s).  (5.1)
A basic feature of this interaction is the growth of the
coupling constant with the particle mass. The general
picture for neutral Higgs particles is evidently the
same alsc in models with several doublets. A specific
feature of these models is the presence of charged

scalar particles, which are discussed in subsection
5f.

a) Higgs bosons in decays of other particles

1) The K and 1 mesons. A sufficiently light Higgs
boson might be found in the decay K" = n*H®. To deter-
mine the probability of this decay, we can, as was done
in the preceding section, apply the low-energy theorem,
which permits a determination of the interaction amp-
litude of the Higgs field for small 4-momentum. In
fact, the introduction of a coordinate-independent Higgs
field is equivalent [see (5.1)] to multiplication of all the
bare masses by the factor (1+vVG,V2H).

The process K* = 7*H is described by the diagrams
of Fig. 5, where the pole contributions occur because
of the dependence on the bare masses of the kaon and
pion propagators.

Since the squares of the masses of the Goldstone
particles, m% and m?%, are linear in the quark masses,
the HKK and H77 vertices are equal to — (G,V2 Mm%
and - (G,V2 )2m2. As to the K—7 transition, it is pro-
portional to m /m¥%. The origin of m3}? is obvious, and
the proportionality to m , follows from the vanishing at
mq=0. Infact, if we make use of partial conservation
of the axial current, the K-7 transition is related (in
the limit m, 4=0) to the K—~ 27 decay amplitude by the
equation

(T Ewl K= —if V2 (' | Zwl Ko, (5.2)

this decay being forbidden in the SU(3) limit
(my=mg=m).

As a result, the amplitude for direct H emission is
obtained from the K-# transition by multiplication by
—~VGv2. Inclusion of the pole graphs doubles the re-
sult, and by using the relation (5.2) we find that the
relative probability is

T (Kt a*H) mi{ my
o= 21 10‘1/1 0.18 1/1 0.05 %
(5.3)

Such a large value is apparently ruled out experi-
mentally, We note that the H boson with small mass
decays mainly into an e*e™ pair (or u*u- if my>2m,),
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while the decay K* = n*e*e~ has been observed at the
level of 2.6 X107,

The absence of the decay K* ~ 7*H gives a bound on
the mass of the H boson:

my > mg — my = 350 MeV. (5.4)

This bound is perhaps the only consequence of the
existing data.

An analogous treatment of the decay n = 7°H leads to
the conclusion that there is a strong suppression.’®
The n-7 transition amplitude is proportional to the
quark masses, and the pole diagrams cancel with the
nonpole diagrams.

2) Heavy quarkonium. Two heavy quarks are now
already known: the c quark (m =1.25 GeV)and the b
quark (mass 4.5 GeV). Few physicists doubt that there
must be at least one further heavy t quark, From ex-
periment, m >15 GeV.

The heavy quarks form bound states—quarkonium,
the first example of which was the J /i meson. In the
decays of quarkonium, there must be a monochromatic
photon line corresponding to the decay

(QQ)—~v +H,
provided that the decay is energetically allowed.

Quarkonium is simple for a theoretical analysis, and
the decay probability can be estimated reliably.*! Thus,
for the T meson with mass 10 GeV, we have

F(r - Hy)
T(Y — pp) 4V 2aa

(5.5)

GpM3 mi; ~

= = ( —--}-”T)zo.s;-m 2,

where we have assumed that 1 - (m%/M2)=1. We note

also that B(T—u*pn~)~1/20. In addition, we can esti-

mate the decay into a Higgs boson and hadrons:
T(r+H+X) ¢ at—9

T(Y — pip) N (%‘)Z(GFVQM;‘)zO'B'w-Z' (5.6)

It is interesting that the probabilities for production of
the H boson in conjunction with a photon and hadrons
are comparable with one another, The reason for this
lies in the phase-space suppression of the decay
T—~H+2g.

Conclusion: The search for the Higgs boson in the de-
cays of heavy quarkonium is evidently a perfectly rea-
listic experimental task.

b) Direct production of H bosons in e*e” collisions

A rather large number of estimates of the cross sec-
tion for the production of Higgs particles can be found
in the literature. They are all full of pessimism. The
phrase “elusive particle” has become established in
relation to H bosons.

Apparently, the most promising possibility is as-
sociated production of H bosons in conjunction with W
bosons, Z bosons, etc. (Provided, of course, that the
required energy is available for the production of the
W, Z, ete.).

In Refs. 5b, 43, and 44 the following reaction was
considered:
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e*e~— Z + H.
The cross section for this reaction is

o (ore- _ Ghmy 4 :
e — ZH) = i -—2—[1+(l—-4sm28v,v)3]f(s, mz),

(6.1
where
fs, my= 2/ 1 _Ematy /Sy gl
% {[1 _(M-t—smn)'] [’1 . (m_sMH), ]+12mT'} (1 _g)_z'
(5.8)
The value of the cross section is an appreciable frac-
tion of, or even greater than, the value of the “stan-

dard” electrodynamic cross section gle*e™—~ " ")
=4na?/3s. In Fig, 6 we show the ratio

a(e*e” — ZH)
g (e*e” — pu*p)

(5.9)

as a function of m; for various values of s, It can be
seen from this figure that the annihilation into ZH has
a probability of the same order of magnitude as for
annihilation into 1 *n=, this probability being prac-
tically independent of m almost up to the production
threshold.

It is probably worth noting that although the ratio
(5.9) is not small, the “standard” cross section is
itself very small in the studied energy region,

o{ete” > ptpT) = 4’;' ~ 107% cm?

for Vs ~100GeV,
so that for work at such energies accelerators with high
luminosity are required.

At the more modest energies of PEP and PETRA,
H particles might be produced in association with ¢,
b, and t quarks or 7 leptons, However, estimates show
that their yield is small here and comprises from 10~
to 10~ of the total cross section.

¢) Quark mechanism of H-boson production pp
collisions

The results of the preceding subsection can be
generalized directly to the case of the reaction*
p+p—W(@ +H+X,

which at the elementary level looks like qq ~ WH and is
therefore described by practically the same formulas
as the reaction e*e”~ ZH.

In more detail, we have for the corresponding cross

2
5l ¥t

~
Ry
'?}Iﬂ”— Ve'=t0
sy ask V=200
YL
S g2

0‘ I N N | 1) 1
10923 5 o 20309 1292 Gev
”l/

FIG. 6. Cross section for the reaction e*e-—ZH as a function
of the H-boson mass at various energies in units of the cross
gsection gle*e”—~pu*u"). For the Weinberg angle, we have taken
the value sin’d, =0.25.
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sections

o(pp—~W*(Z)+ H+X)

1

S dzFwz) (24, o) f (24225, mwzy),

T /%

where To=(m +m /s, and the functions F (4 (x,, x,)
have the form
Fw=-fu(z)d(z),
Fo=qpu(@) (@) [1+ (1 —§sin2ow)’]
+pd @)1+ (1 —fsinron)’];

here u(x) and d(x) are the distribution functions of
valence u and d quarks in the proton. The function
Jf(s, m) is defined in (5.8).

(5.10)

The cross section depends on the values of the masses
and energies, as well as on the assumptions about the
quark distribution functions. However, the uncertainty
is relatively small. According to the estimate of Ref.
44, for the H-boson mass m ~10 GeV and Vs >300
GeV the yield of Higgs particles comprises approxi-
mately 1073 of the yield of W and Z bosons:

oEp > WELHEX) (0.5—1.0)-10

o (pp - W (2)+X) (5.11)

Again, it should be added that the expected value of
the cross section for the reaction pp—~W* +X is of

order 10™* cm?.

Bremsstrahlung of the H particle in the process of
production of W or Z bosons is also convenient for in-
vestigation because detection of the W(Z) may be an
excellent trigger for the H particle, whose identifica-
tion is a complex experimental task.

We note that Eq, (10) is also appropriate for pp
collisions with the obvious replacement of F(z,, for
example, u(x ) (x,)~ u(x W (x,) +u(x, ) (x, ).

Of course, quark-antiquark collisions can lead to
annihilation into a single H boson—a process which can
take place even below the threshold for production of
the W and Z bosons, However, such a mechanism of
single production is so strongly suppressed by the
small masses of the light quarks that it does not seem
accessible to experimental observation.

Evidently, the principal mechanism of single pro-
duction of H particles in hadronic collisions will be
gluon annihilation into the H particle. We now turn to
the discussion of this mechanism.,

d) Gluon mechanism of H-boson production

The cross section in this case is determined by the
amplitude for the transition

£t gt 6.12)

The gluon mechanism is of special interest, since
the amplitude for the process (5.12) depends on the
number n, of heavy quarks (see the discussionin sub-
section 4a). On the other hand, the distribution function
D(x, Q%) of the gluons in the proton is as yet poorly
known, and this makes the estimate uncertain. It is to
be hoped that D, will be determined experimentally
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FIG. 7. Cross section for the process pp— HX, related to the
transition gg— H. It is assumed that there exist three quarks
with mass mg>0.2my.

from the production cross sections of heavy particles
(quarkonium).

For the cross section of the reaction pp—~H
+hadrons, we have®

do at  Ginf
dy 'y:o T 32n g ‘/Q

x DR (V7 mi), (5.13)
where y (the rapidity of the H particle, 7=m3/s, and
the gluon distribution function Dg(x, @2) appear for
Q=mf.

In Fig. 7 we show numerical estimates of the cross
section taken from Ref. 45, where distributions of the
following form were assumed:

8
Dg=0.5 T ¢, (n41)z7 (1 —2)", where ¢, >0.
n=4

The sum of the ¢, was normalized to 1, which corres-
ponds to half of the proton momentum going into gluons.
The uncertainty in the ¢ leads to the corridors indi-
cated in Fig, 7.

It can be seen that for mass my;=10 GeV and
Vs 2 400 GeV the production cross section may be of
order 10~ ¢m?, which is approximately two orders
of magnitude greater than the cross section for as-
sociated production of WJ or ZH in pp collisions at the
same energies. However, the gain is partially lost
because of the difficulty in identification of the H boson.
For example, the decay H—~ u*i.~, which is convenient
for observation, is very improbable if m ;>4 GeV
(see the following subsection for further details).

It seems justified to draw the following general con-
clusion: The production cross sections of Higgs parti-
cles are in general very small, and there is good rea-
son for calling them “elusive.” Associated production
of ZH pairs in e ‘e~ annihilation seems to offer the best
prospects for experimental investigation, It is worth
searching for H bosons in the decays of heavy quarkon-
ium (this is once again a privilege of the physics of
e*e” collisions). In hadronic collisions, H particles
are produced either in association with the W(Z) in qq
annihilation, or singly through the gluon mechanism.
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e) Lifetime and decay mades

Both the total lifetime and the relative decay proba-
bilities depend very strongly on the mass of the H
particle. A general rule says that the dominant decays
are thoge into particles with the maximally heavy mass
(for hadronic decays, the quark mass is important).

Thus, in the mass interval 0.5-1 GeV the dominant
decay is H~ n*u", whoge width is
Gpmum; ( _ 4m}, )3/2

4y 2n my

which corresponds to a lifetime of the order of 10'¢
sec,

PH—>prp) = (5.14)

Another appreciable mode in this mass region is the
decay into 27

I'(H— n*x-) ~

T o~ g |1 7 1% (5.15)

The form factor f(m3) can be estimated from the re-
sonance formula f=m?/{m% - m{ - im,I,), where m,
and I, are the mass and width of the resonance in the
77 channel. If I, >200 MeV, the ratio (5.15) is always
less than unity.

When m ;>1 GeV, the dominant decays are those
involving the production of particles containing strange
quarks, i.e., modes such as KK +pions, ¢ +pions, or
n +pions. The total width can be estimated as the de-
cay H~sS:

THo>ss)  3m} . m
_T—(_H——:-l*p—‘)_m_"‘.' F(H—>SS)~4O€V(-T'G%{V'), (5.16)
where the factor 3 is due to color, and for the mass of
the strange quark we have taken the value m, =150

MeV.

The next threshold correspond to the possibility of
decay into a 777~ lepton pair and into charmed parti-
cles. Formulas analogous to (5.14) and (5.16) give

T(H > v7) & 20 keV (s )
T (H — o) & 32 keV ( 7y ) -
Then we find b quarks, and so forth.

We mention also the decays into two photons and into
two gluons, which were discussed in Sec. 4:

T(H > 2y)=0.1 eV (7 —% g ) (~ar),
Mme>my

I (H— 2g) =1.6 keV ( “!(()"-'i-g"h )( TS )3

here n, is the number of quarks with mass greater
than my, and a(m,) is the strong-interaction coupling
constant (approximately 0.15 at m ;=10 GeV).

Conclusion: The total width of the Higgs boson varies
from several electron volts for my<1 GeV to several
MeV for m ;=100 GeV. The dominant decays are those
into the heaviest of the energetically accessible parti-
cles.

f) Charged scalar particles
In the standard model, there are no elementary
charged scalar bosons. Such particles occur in models
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with two or more doublets of scalar fields (see sub-
gection 3d), Their masses are not necessarily large.
A charged Higgs boson with relatively light mass (of
the order of several GeV) would be a real gift of
nature: its identification would be not at all as difficult
as that of a neutral boson,

The clearest effect would be a semiweak decay of
heavy stable particles into such a Higgs boson.® We
have in mind heavy particles containing the b quark
or, if this “sally” turns out to be unsuccessful, then
particles containing the t quark,

The point is that with the emission of a charged H
boson, unlike a neutral boson, there is a change of
strangeness, charm, beauty, etc. The corresponding
coupling constants are of order vGV2m,, so that for
the ratio of the probabilities of the decay b~ H"c and
of the ordinary decay b—cud (or b— ccs) we obtain

I'(b -~ H-=) ~ 6n?

- ~ 105,
T(®-—+cud)  Grmf

Thus, the decay into the H boson certainly dominates,
provided that it is energetically allowed. This dif-
ference between the probabilities of Higgs and ordinary
decays is due to the fact that the probability of the de-
cay b—H~c is proportional to the first power of Gg.

The fact that the decays of charmed particles are de-
scribed by the ordinary theory leads to the following
bound on the possible H* mass:

mpus > 1.5 GeV.

It will evidently become known in the near future
whether there are any anomalies in the decays of
particles containing b quarks.

As to the H* decays, the dominant ones are
H- > v, if 1.8GeV<my<<2.5GeV,
or

if mg > 2.5GeV.

H — s,

The last case is characterized by an appreciable num-
ber of strange particles in the final state.

6. THE AXION

In the Weinberg—-Salam model, there is a distinction
between the roles of the strong and weak interactions:
the weak interactions give mass to the quarks, and the
strong interactions are responsible for the production
of bound states of these quarks. The weak and strong
interactions act on different degrees of freedom of the
quarks: the weak interactions in the space of flavors
(isospin, strangeness, charm, and so forth), and the
strong interaction in color space. In our review, we
have discussed the Higgs mechanism of mass genera-
tion, and the strong interactions were mentioned only
incidentally. One might think that this is justified. In
reality, it is not: the combination of the Higgs mecha-
nism with quantum chromodynamics leads in general to
a strong violation of CP invariance. More precisely,
CP invariance is not a “natural” symmetry of the strong
interactions. To avoid this unpleasant conclusion, we
must introduce a new light pseudoscalar particle—the
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axion,*7 ¢

The axion has been intensively discussed for the past
one and a half years, To all appearances, there are no
particles with the properties predicted in the original
papers. Therefore we shall not dwell in detail on the
experimental predictions which have been made. The
purpose of the present section is to show how the idea
of introducing the new particle arises. At the same
time, we shall see that its properties are not rigidly
fixed, and the existing data therefore say nothing about
the fundamental possibility that the axion exists.

a) CP invariance of the strong interactions (naive
approach)

For several years, it has been believed®® that CP
invariance arises in a natural way in quantum chromo-
dynamics. We shall give the corresponding arguments,
which were in fact known long before the creation of
QCD.™ In the next subsection, we shall see why these
arguments do not guarantee CP conservation in quan-
tum chromodynamics.

For simplicity, we shall consider only a single mas-
sive quark Q'( =1,2, 3 is the color index). The re-
normalizable Lagrangian contains operators with di-
mension d <4, Using only relativistic invariance and
conservation of color, we can write down the most
general form of the operators with d =4 constructed
from the field Q¢ (the kinetic part of the Lagrangian):

L0 =0 (@+bvs ivu 40" ®6.1)
here a and b are arbitrary numbers. The quark—gluon
interaction is obtained uniquely—we must replace the

ordinary derivative #,Q by the covariant derivative
D,Q.

To reduce ¢ ., to standard form, we make the change
of variables @' and @' (we do not consider the de-
generate case a®=58%):

Q=0 0i=0i(a+bw). (6.2)
Then £, has the form
Z \in =_Qi'VuDuQ, (6.3)

where we have omitted the prime and matrix notation
with respect to color is understood.

Thus the kinetic part of the Lagrangian always leads
to a CP-invariant form. For what follows, it is im-
portant that the reduction of %], to standard form does
not definitively fix the choice of the variables @ and @
and, in particular, %, remains invariant with respect
to the substitution

Q' —einQ, T =i, (6.4)

The mass term, which is an operator with dimension
d =3, can be written in general form as

Lm = —b (my+imgys) Qs (6.5)

where m, , are parameters, which are real by virtue
of the Hermiticity of the Lagrangian. The term pro-
portional to m, looks like a CP-noninvariant term,
However, transforming to a new basis by means of the
substitution (6.4), it is easy to reduce .4, to the usual
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form by a choice of a:
L= -—‘}/m;’—}— mi a’o', a = arctg %-
1

The logic presented above (which can be easily genera-
lized to the case of several quarks) leads to the con-
clusion that CP invariance holds regardless of the
choice of the initial parameters.

b) Role of the regulator fields

With a more careful treatment, it turns out that the
%, invariance of the kinetic energy which we used in the
preceding subsection is a formal symmetry of the La-
grangian which cannot be maintained when we take into
account the need to eliminate the ultraviolet diver-
gences. To calculate the @-quark loops, we must
regularize the theory. It is convenient to do this by
the Pauli-Villars procedure, by introducing a field R
with mass my, which is Bose-quantized. The Lagran-
gian of the fields @ and R has the form

£%F = Qi D@ —mqQ (cos @ + iys sina) Q
+ Riy, DR —myR (cos ap -+ iys sin ap) . (6.6)

For a 7, rotation of the field &, we must rotate the
field R through the same angle if the Feynman inte-
grals are to remain the same; this is in contrast with
the discussion of the preceding subsection., If we ro-
tate @ through an angle a, the mass term of the field
@ is reduced to - m @@, and for the field R the pa-
rameter oy is replaced by ag - a (note that the value
ag =0 is usually understood in the literature).

Thus, CP noninvariance is localized in the term
—mpgsin(ag — a)Riy,R, and the question is whether any
contribution from it remains in the limit mg—=, It
turns out that this is the case. Thus, to first order in
ag— a, the triangle diagram of Fig, 8 is finite for
mg—~=, Since we are considering noninvariance under
a ¥, rotation, it is natural that this same diagram de-
termines the anomaly in the divergence of the axial
current.5?

For arbitrary az- a, the CP-noninvariant term dis-
cussed above reduces for mgz— = to the following ad-
dition to the Lagrangian:

gz a N ~a 1 a
AL =(a—ap) 555 CiaGvs  Giw = 5 EuwaGins (6.7)

where g; is the strong-interaction coupling constant,
and G, is the gluon field intensity.

It is obvious that from the outset we could add to the
Lagrangian a term of this form—the so-called 6 term:

3 ~
Lo=8-mir GonBiv- (6.8)

Since the sum of A.Z and ¥, appears, it is not the

‘%7.’4‘)<
o
FIG. 8, Triangle diagram whose contribution is finite in the

limit mp ~~«~, where mpy is the mass of the regulator field.
The dashed lines correspond to gluon loops.
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individual values of 9, a, and ay that are important,
but only the quantity

f=06+a—ag (6.9)

If there are several quarks, the corresponding a; and
ag, are added.

c) The 8 term and violation of CP invariance

The Lagrangian (6.8) is P~ and CP-odd, so that in
the general case CP invariance is not conserved. How-
ever, the 6 term has one peculiarity, which explains
why it was not discussed previously. The point is that
the addition to the Lagrangian which we have found can
be represented in the form of a total derivative (of a
gauge-noninvariant quantity):

_G:WE:\, = aII-K "y
o= 26un0 (A2 045 + 52 £ ALAAG)

Naively, one might think that a total derivative is un-
important.

However, in 1975 the discovery was made of classical
solutions to the Yang~Mills equations—instantons,*
for which the 8 term is manifestly important:

__ 32n2
instanton E: ’

(] ateti)

The general statement that total derivatives are unim-
portant breaks down because the instanton field does
not fall off sufficiently fast at infinity.

Without relying on the single-instanton approximation,
it can be seen that if § #0, then CP invariance is
actually violated in physical processes,* the charac-
teristic scale of violation being of order

8l
m

where m , is the mass of the lightest quark (~4 MeV),
and g is a characteristic mass (~200 MeV).

Thus, the nmaive arguments of subsection 6a are in-
valid, and CP invariance is not a “natural” symmetry
of the strong interactions.

d) U(1) symmetry and the axion

If there is a massless quark in the theory, there is no
CP violation from the 6 term. This can already be seen
from the fact that the angle a which appears in the ex-
pression (6.9) for § is undetermined and can always be
chosen so that § vanishes. We recall that the angle a
was introduced in (6.4) as the angle of ¥ rotation and
was fixed by the CP-invariant form of the mass term.

The introduction of the new axion field*”~*® makes it
possible to have U(1l) symmetry with respect to a 7,
rotation even for a massive quark. The effective pa-
rameter 8°f becomes dependent on the vacuum ex-
pectation value of the axion field. This vacuum ex-
pectation value is chosen by the condition of minimality
of the energy of the vacuum, which corresponds pre-
cisely to 6°7 =0, i.e., to CP conservation.

We shall analyze the introduction of the axion for the
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example of a single quark @.7°5* Suppose that the
mass of this quark arises spontaneously from the in-
teraction with a complex field ¢:

2= Qi DyQ —h (9001 + ¢*Qr04r)
+0,9* 0@ + m2q* — f2 (@) — %‘ qu:v .

Formally, this Lagrangian is invariant with respect to
U(1) transformations:

Q— ey,

@ e-Zigg,

The field ¢ has a nonzero vacuum expectation value
of the form

m

=—=c¢lib,
=53

The phase B is not determined in the classical approxi-
mation, It appears in the mass term of the quark, and
when allowance is made for quark loops, as we have
seen in the preceding subsections, it redefines the pa-
rameter §: 6°T =0 +B. The difference is that now this
is not a fixed parameter of the theory, but a field
which is chosen by the condition of minimality of the
energy of the vacuum, '

It is easy to verify that the energy of the vacuum is
quadratic in 6°" for small 8¢, In fact, the term of
first order is proportional to (0(G2%,Gj,[0), where an
average is taken over the CP-even vacuum, and re-
duces to zero. Therefore 8 is such that 6*" =6 +8=0,
and there is automatically no CP violation.

What particles does such a scheme describe? In
addition to the quark with mass mg =hg,, there isa
scalar particle corresponding to oscillations of the
modulus of ¢, with mass mV2, and a pseudoscalar
particle associated with oscillations of the phase. The
mass of this particle—the axion—arises only as a re-
sult of the loops and is proportional to a5/ (¢,).

If the parameter m tends to infinity (for fixed # and
f), the masses of the quark and scalar field also tend
to infinity. But the mass of the axion tends to zero, as
does its interaction with gluons. Thus, in this limit
the axion becomes a sterile particle and does not inter-
act with our world, There are no other experimental
predictions (apart from the existence in principle of a
practically massless particle), and everything looks
like a theoretical phantom, To some extent, such a
solution is justifiable: the whole problem of CP in-
variance arose from distances of the order of the in-
verse cutoff momentum and can be solved at the price
of introducing a very heavy quark. However, there re-
mains a feeling that the entire construction is clumsy.

In their original papers, Weinberg?*® and Wilczek*®
proposed a more optimistic model of the axion. These
authors introduced not a new quark, but only a new
scalar field which interacts with the old quarks, i.e.,
they made the Weinberg-Salam model somewhat more
complicated. This leads to definite experimental con-
sequences, which are apparently already inconsistent
with experiment. However, it is important to under-
stand that the solution of Weinberg and Wilczek is not
obligatory.
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7. ANEW STRONG INTERACTION IN THE 1 TeV
REGION OF ENERGY—AN ALTERNATIVE TO HIGGS
BOSONS

To enable the reader to judge better whether Higgs
bosons are obligatory, we shall briefly discuss a
possible variant of the theory in which there are no
elementary scalar fields. But we must make the reser-
vation that such variants are much less well developed.

The idea is to make Higgs particles composite 3?55
To do this, one introduces a new strong interaction with
properties similar to those of the ordinary interaction,
but having a characteristic scale of masses and ener-
gies of order 1 TeV instead of 1 GeV. The growth of
the weak-interaction amplitudes comes to an end at
energies of the order of a TeV, i.e., in the region
where the weak interactions have an effective coupling
constant of order unity.

a) Dynamical mass

To understand how mass can arise in a theory with-
out elementary scalar particles, we turn to an example
of low-energy pion physics, or chiral invariance.*®

If the quarks are massless, the axial current is con-
served, and this would seem to require that the nucleon
mass is also equal to zero. However, there is another
way out—the existence of a massless particle.® The
matrix elements of the axial currents then have the
form

udv
r'g

(7.1)

A7 By = (gun— =) MEP(@). 9=pa—pas

where the quantity M42 is finite and nonzero at ¢ =0,

The pole at g% =0 in the expression (7.1) is identified
with the pion, which becomes massless in the limit of
exact chiral symmetry. We shall now digress from
real symmetry breaking and regard the pion as mass-
less.

A necessary condition for such a rearrangement of
the states—the appearance of a fermion mass and the
emergence of a massless pseudoscalar particle—is the
formation of a vacuum condensate:

©1qg10) 0. (7.2)

The Goldstone (massless) particle is an excitation of
this condensate. Whether or not a condensate is formed
is a question of dynamics. For example, some ma-
terials are ferromagnetic, and domains—regions with
aligned spins—are formed in them, while others are
not. If a condensate is formed [Eq. (7.2)], the theory
involves a mass parameter and the particle masses

can be expressed in terms of it. In quantum chromo-
dynamics, it can be seen directly to some extent how
this occurs.’®

The dynamical character of the nucleon mass mani-
fests itself in the appearance of a form factor. The
scale of masses A on which the form factor varies is
determined by the distances at which the strong inter-
actions have a coupling constant of order 1: a,(A)~1.
Even if there were no means of establishing directly
that the nucleon is not point-like, it would be possible
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to infer that the 7N interaction is not fundamental on
the basis of the nonrenormalizability of the pheno-
menological chiral Lagrangian describing this inter-
action. The fact that the axial coupling constant g, of
the nucleon differs from 1 might also suggest that the
nucleon is not elementary.

At the present time, there is no evidence that history
is repeating itself in the case of the quarks and (or)
leptons. However, we cannot exclude the possibility
that such indications will appear when we go to higher
energies.,

b) A new strong interaction

It is remarkable that, even in the absence of any ex-
perimental evidence for the dynamical character of the
masses of the quarks or W bosons, we can indicate
the scale of masses on which new phenomena should
occur if the masses are dynamical.33'5%

For this purpose, we turn to the question of the mass
of the intermediate vector boson. In the standard
model, the massive vector boson arose as a result of
“unification” of the massless vector and scalar parti-
cles.

It is quite obvious that the role of the elementary
massless scalar particle can also be played by a
composite Goldstone boson.*® Indeed, suppose that
there is a massless vector boson (W) interacting with
some (hypothetical) 77 meson. We shall find the mass
operator of the vector boson.

The propagator D,,(q) of a vector particle can be
written in general form as

2 ) D).

qv 1
qﬂ
(8us2®— ug) 11 (%) = ig? | dae™ (0| T (2) /. (0) | 0).

D@ =G

Du\';“i(guv_ ( )
7.3

If there is a massless 77 meson, the function [1(¢?) has
a pole

o PR
(Y =g*—

corresponding to this pion, where FT is the corres-
ponding residue. Substituting in (7.3), we see that the
vector particle has acquired a mass

miv = gt (Fr)*
(and the Goldstone particle has become unobservable),

Subsgtituting the empirical value of the mass m,,, we
obtain

FL~ 250GeV. (7.4)

It is now completely obvious that the ordinary pion
cannot account for the mass of the W: its coupling con-
stant f, is 2000 times smaller.

Consequently, we must assume that there exists a
world of new strong interactions in which the chiral
symmetry of the Lagrangian is broken. This world
may be similar in many respects to the known strong
interactions. However, there is certainly an important
difference: the scale of masses in the new world is
approximately 1000 times greater, i.e., new phenomena
occur in the tera-electron-volt region.
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From this TeV region, at the energies available to
us only Goldstone particles appear; the remaining states
are too heavy for their excitation to be appreciable.

The first test of the proposed hypothesis for the
origin of the vector-boson masses is to examine
whether the relation between m, and m, [Eq. (2.26)
of Sec. 2] is satisfied. It turns out that it is:

mp 1OIEIaRIE g
my 11T a3y 8 costw

(7.5)

where we have made use of the ordinary isotopic rela-
tions to connect the coupling constants of the Z boson
with 72 and the W* with 7,

The correction to the relation (7.5) due to the other
states (for example, p;) is small. It can be estimated
as

Fy 7
gz[ (g3/4m) mp JT'
i.e., it is very small if the ratio of the coupling con-

stants in the new world (i.e., with the index T') is the
same as in ours.

¢) Pseudo-Goldstone mesons

Attempts at realistic constructions involve repeated
application of the trick of unification of massless vector
bosons and Goldstone particles into massive vector
particles, A discussion of these attempts would lie
beyond the scope of the present review, particularly
because they are evidently far from a definitive variant.
However, it is important to note that models with spon-
taneous symmetry breaking lead to new particles; the
so-called pseudo-Goldstone mesons with mass of the
order of the W-boson mass.%®'5®* The point is that with
spontaneous symmetry breaking of the new strong in-
teractions there are in general many massless pseudo-
scalar particles, Their fate varies. Only three of
them are not observable, owing to mixing with the W*
and Z bosons,

Some of them acquire mass when the electromagnetic
and weak interactions are taken into account, Such
particles are called pseudo-Goldstone particles: the
corresponding current is conserved only in a certain
limit, when no allowance is made for electromagnetic
interactions. Their mass would obviously be of order

m? ~ (1 TeV)? e*
and comparable with the mass m,, ;.

Finally, the most difficult problem is presented by the
massless particles associated with spontaneous break-
ing of the strict symmetry of the Lagrangian, for which
there are no corresponding vector fields,

d) The problem of massless particles

If there are no scalar fields, the well-known SU(2)
XU(1) Lagrangian is invariant with respect to rotations
of the right-handed components of the s and d quarks:

SR — Sp €080 J-drsin®, dgr— drcosO—sgsind.

In fact, both sy and dy are singlets of the group
SU(2)xU(1), and the requirement of renormalizability
prevents us from giving the s or d quark a bare mass,
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so that sg and d; are indistinguishable (in the standard
model, the s and d quarks interact differently with the
scalar particles).

If the observed difference between the masses of the
ordinary and strange particles arises as a result of
spontaneous symmetry breaking, there must be a Gold-
stone boson ¢° which is coupled to s and dg.

The vertex for the decay K* = 7" +¢° would look like
M (K* — 1°g0) = - (1490 | Spyn drdy9® | K9,

and even for F =3x10° TeV the relative probability of
this decay would be of order unity.

Thus, in a theory without Higgs bosons it is neces-
sary to introduce some new interaction which dis-
tinguishes sy and dp.

8. CONCLUSIONS

The Higgs mechanism of mass generation which is
incorporated in the Weinberg-Salam model has al-~
ready played a major part in the development of ele-
mentary-particle physics in recent years. The con-
struction of renormalizable models has stimulated
experimental investigations. The experimental con-
firmation of the predictions has in turn strengthened
the faith in Lagrangian field theory and the conviction
that renormalizable theories are really distinguished.
It may also be recalled that it is in Higgs models that
the first discoveries were made of applications of
topologically nontrivial solutions to elementary parti-
cles, which were then faken over to quantum chromo-
dynamics,

Higgs bosons have become such familiar objects that
it is difficult to imagine that there are as yet no direct
or convincing indirect experimental proofs of their ex-
istence. The search for Higgs bosons seems one of the
most deserving tasks for contemporary experimental
physics.

It is rather paradoxical, but models with Higgs bosons
are now becoming the victim of their own success, The
belief in the omnipotence of the theory is making dif-
ferent demands on the theoretical constructions which
have already been created. For example, unification
of not only the electromagnetic and weak interactions,
but also the strong interactions, seems inevitable.

When studying such questions, the theoretician cannot
help remembering that the well-known models have not
solved many fundamental problems, such as the follow-
ing:

1) the problem of zero charge when allowance is made
for the Higgs sector of the models;

2) the problem of “natural” conservation of CP parity
in strong transitions;

3) the problem of calculating the mass spectrum of
the quarks and leptons;

4) the problem of the different mass scales in the
“grand synthesis,” etc.

It is not clear at the present time whether the theory
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will be limited to the known ideas in the solution of
such problems, or whether there will arise new radical
solutions that may make also Higgs bosons unneces-
sary.

In conclusion, we would like to express gratitude to
L. B. Okun’ for helpful discussions and a kind invitation
to write the present review for Uspekhi Fizicheskikh
Nauk, and also to A. A. Ansel’m for discussions and
remarks.
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