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A review is given of theoretical concepts and experimental data concerning the spin-Peierls transition in a

one-dimensional spin system with antiferromagnetic exchange interaction (an analog of Peierls instability of a

one-dimensional metal). Analysis of experimental data confirms the existence of the spin-Peierls transition in

TTF-CuBDT, TTF-AuBDT, and ΜEM(TCNQ)2 crystals. The magnitude of the spin-phonon interaction in

crystals undergoing the spin-Peierls transition at low temperatures is discussed together with the role of

fluctuations in transitions of this type. The influence of magnetic fields on spin-Peierls transitions is examined.
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1. INTRODUCTION

Quasi-one-dimensional compounds have been at-
tracting increasing attention of both experimenters
and theoreticians. This has been largely due to the un-
usual properties of quasi-one-dimensional systems, an
example of which is the low-temperature conductivity
peak exhibited by compounds of the form TTF-TCNQ.
It may now be regarded as firmly established that, as
the temperature is reduced, many conducting quasi-one-
dimensional crystals exhibit a Peierls transition to the
dielectric state, which is accompanied by a charge-
density wave. Many low-temperature properties of
quasi-one-dimensional conductors are directly related
to the Peierls transition. The transition is accompan-
ied by static displacements of ions with wave vector Q
= 2kF, which gives rise to the splitting of the conduction
band and a reduction in the energy of electrons occupy-
ing the lower band of the one-dimensional system by the
amount Δ21η(ΐ^/Δ), where Δ is the gap in the electron
spectrum, which is proportional to the amplitude of the
wave of static displacements of the ions, and W is the
width of this conduction band; the increase in the elastic
energy due to the deformation of the lattice is propor-
tional to Δ2, which favors displacements with Q =2kF at
zero temperature. We note that the ion displacements
give rise to a redistribution of electron density along
the chain which, in turn, produces the so-called charge-
density wave (CDW). The CDW is, in fact, responsible
for many of the unusual properties of quasi-one-dimen-
sional conductors (the Peierls transition is reviewed,
for example, in Refs. 1-3).

The magnetic analog of the Peierls instability is the

so-called spin-Peierls (SP) transition of a homogeneous
antiferromagnetic chain of spins to an alternated state,
i.e., a state with twice the period. The SP transition in
a Heisenberg chain of spins with S = l/2 is a phase tran-
sition of the second kind to the singlet ground state. It
is accompanied by the appearance of a gap in the spec-
trum of triplet magnetic excitations. The concept of the
instability of a homogeneous chain of spins with S = l/2
with respect to alternation was put forward more than
fifteen years ago by McConnell et al} and was subse-
quently developed elsewhere.5"9 However, until quite
recently, there was no experimental evidence confirm-
ing the existence of the SP transition despite the large
number of known quasi-one-dimensional compounds that
could satisfactorily be described by the Heisenberg spin
chain (see the review in Ref. 10). However, the situa-
tion has changed in the last three years, following the
discovery and then intensive investigation of two quasi-
one-dimensional dielectric crystals whose properties
can be satisfactorily explained within the framework of
the theory of the SP transition.11"17 These two crystals
belong to a group of quasi-one-dimensional donor-ac-
ceptor compounds of the form TTF-MS^^CFs^, where
Μ is a metal atom. The SP transition has been found to
occur in compounds with Μ = Cu and Au at temperatures
of 12°K and 2°K, respectively, and may be regarded as
firmly established for these compounds. There is also
evidence that the SP transition occurs in certain other
compounds, namely, MEM(TCNQ)2 (Ref. 18), Li-TCNQ
(Ref. 19), and K-TCNQ (Ref. 20). However, whether or
not the phase transition in these compounds is due to
the spin subsystem must, for the present, be regarded
as an open question.
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The SP transition is a new type of magnetic transition
which, apart from being interesting in itself, may also
be useful in connection with the electron Peierls transi-
tion because it is analogous to the Peierls transition in
a half-filled conduction band. There are, at present,
no known conducting quasi-one-dimensional crystals
with a half-filled band, but in a certain sense, this par-
ticular case is a special one because of the importance
of commensurability effects that tend to suppress CDW
phase excitations. Moreover, the effect of the magnetic
field on the spin-Peierls transition corresponds to a
change in the degree of filling of the conduction band in
the Peierls system, so that the behavior of the SP sys-
tem in a magnetic field is a source of information about
the influence of commensurability effects on the Peierls
transition. Thus, the close connection between SP tran-
sition and Peierls instability means that studies of this
transition will be very important for a better under-
standing of the properties of quasi-one-dimensional
systems generally (both magnetic dielectrics and con-
ductors).

2. THEORY OF THE SPIN-PEIERLS TRANSITION

A quasi-one-dimensional antiferromagnetic compound
is commonly modeled by a set of noninteracting spin
chains with Heisenberg interaction between nearest-
neighbor spins. The Hamiltonian for this system is

?-.-??-?'. (2.1)

where S^j is the operator corresponding to the 2-th spin
in the chain η, Ν is the number of spins in the chain,
and JB(l, Z + l) is the exchange integral which is a linear
function of the displacement un(l) of the magnetic ions:

Jo. (I, I + 1) = J + tun (0 - u * ( l + 1)] ViJ (I, I + 1). ( 2 . 2 )

Substituting (2.2) in (2.1), and adding the elastic energy
associated with the displacement of the ions, ί/=Σ/,,ι>1,ι.
Κιΐ,ι·ι·)<ιΐ<Ί·ι·) a1"1 ^ e i r kinetic energy T=£Z/Bl,M(uB,)2,
we obtain the complete Hamiltonian for the system of
three-dimensional phonons, spins with one-dimensional
Heisenberg interaction, and the spin-photon interaction.
In principle, one should include the exchange and the di-
pole-dipole interaction between the spins in neighboring
chains, but this is small and will be neglected. We can
now transform in (2.1) from the spin operators S, to the
pseudofermion operators φ, with the aid of the Jordon-
Wigner transformation:

where S* =S*±*S*.2 1'2 2 When there are no phonons, the
Hamiltonian (2.1) can be written in terms of the pseudo-
fermion operators % in the momentum representation23:

(2.4)jf Σ

where B0(k) =<7(cosfe- 1) and V(q) =Jcosq. The Hamil-
tonian i?5i0 describes noninteracting fermions. It cor-
responds to the spin XY interaction JCSiSJ,! +8*5?,!),
and the XY model has an exact solution. The interaction
JS", S*M can be written in the form of the four-fermion

interaction 3ft u t after the transformation given by
(2.3).

a) Hartree-Fock approximation

Bulaevskii23 considered the four-fermion interaction
in a homogeneous magnetic chain in the Hartree-Fock
approximation. Subsequently, Pytte8 used this approxi-
mation to examine the bound spin-phonon system. In the
Hartree-Fock approximation, the Hamiltonian for the
system is

*,,,»

(2.5)

In the derivation of this expression, the displacements
un{l) of the magentic ions in (2.2) were expressed in the
usual way in terms of the phonon creation and annihila-
tion operators 6J and δ,, u>0(q) is the phonon frequency
corresponding to wave vector q = (q, q j , and q, q,. are
the components of the phonon momentum, respectively
parallel and perpendicular to the chain. Finally,

) ( 2 6 )
/2ωο(Ί)

where M is the mass of the magnetic ion or molecule.
In the Hartree-Fock approximation, the constant/) is
determined from the equation

(2.7)

which gives p = 1 + (2/ir) at low temperatures Τ « J. The
Hamiltonian (2.5) is equivalent to the Hamiltonian for a
one-dimensional electron-phonon system, whose sus-
ceptibility has a singularity at q = 2kF, which is respon-
sible for the Peierls transition. This equivalence has
led to the designation "spin-Peierls transition" in the
one-dimensional antiferromagnetic Heisenberg chain.
Since the fermion band is half-filled in the absence of
the magnetic field (the chemical potential is zero), the
system will be unstable against doubling of the period
with q = 2kF =ir, and static displacements of the ions,
^(^(- lJ 'cosiQj .nJt to, will appear below the critical
temperature Tc, where «0 is the displacement ampli-
tude. In the self-consistent field approximation, the
transition temperature is given by8

«-5JJ-. (2.8)

where N(0) is the density of states in the fermion band at
the Fermi level, λβ>ϊη is the spin-phonon interaction
constant, and wo(2feF,Q1) is the frequency of the nucleat-
ing phonons corresponding to the doubling of the period
along the chain. The magnitude of the transverse mo-
mentum Qi is determined from the condition that the
phonon frequency cuo(2feF,qi.) is a minimum as q,. is var-
ied (phonons withQ = (2feF, QJ are found to condense
during the SP transition). At the critical point Tc, the
displacement amplitude is M0 = O, whereas, below Tc,
the amplitude increases with decreasing temperature,
and the function MO(T) in the Hartree-Fock approxima-
tion is the same as the temperature dependence of the
gap in the BCS model. The increase in M0 is accompan-
ied by an increase in the gap Δ in the spectrum of trip-
let excitations. In the Hartree-Fock approximation, Δ

410 Sov. Phys. Usp. 23(7), July 1980 A. I. Buzdin am' L. N. Bulaevskii 410



=Moa>oV XAf/4N(0). Near Tc, we can write down the Lan-
dau functional for the order parameter M0 or Δ. If we
take the Landau order parameter to be <ρ = Δ, we obtain

&φ\ α = α τ , τ = -~-1, (2.9)

where a =N(0) and 6 = 0.106N(0)(feBTc)"2. Since the Har-
tree-Fock approximation corresponds to the BCS model,
the jump in the specific heat at Tc is given by the usual
formula Ac = 1.43yTc.

15 Gradient terms in the free en-
ergy !? will be given below in Sec. 6. The increase in
the gap width in the spectrum of triplet excitations be-
low Tc gives rise to a rapid reduction in paramagnetic
susceptibility with decreasing temperature.

We note that the predicted appearance of Peierls dis-
placements below the critical temperature Tc, given by
(2.8), was obtained in the self-consistent field approxi-
mation for the ion displacements, and in the Hartree-
Fock approximation for the fermions. The self-consis-
tent field approximation for the displacements does not
take fluctuations into account, i.e., it ignores the pre-
sence of phonons in the system (except for condensed
phonons with q=Q). In principle, this approximation
may turn out to be too rough for the quasi-one-dimen-
sional system. Its validity will be examined below.
Here, we merely note that the three-dimensionality of
the phonon system in real crystals is sufficient to sup-
press fluctuations everywhere with the exception of a
narrow band around Tc.

b) The Cross-Fisher approximation

The way in which the Hartree-Fock approximation for
fermions takes into account the interaction between fer-
mions is not completely correct. At the same time, the
interaction is not small for the Heisenberg spin chain
and may turn out to be even more important in the case
of a one-dimensional system of fermions. Cross and
Fisher24 have taken the analysis outside the framework
of the Hartree-Fock approximation and have replaced
the four-fermion Hamiltonian # £ t U t in (2.4) with the
Hamiltonian used in the Luttinger-Tomonaga model,
which can be solved exactly. The exact cosinusoidal
dispersion relation for pseudofermions, given in (2.4),
is replaced by a linear function with the corresponding
Fermi velocity, and the interaction V(q) is replaced
with V(0) = J for forward scattering and V(t) =-J for
backscattering. It was assumed24 that this procedure
correctly reproduced the characteristic features of the
response of the one-dimensional system of fermions
with interaction to the appearance of periodic ion dis-
placements. The reduction to a model that has an exact
solution enables us to evaluate the spin (or fermion)
polarization operator U{q, ω), which determines the
softening of the nucleating phonons due to the polariz-
ability of the spin system:

ω2 (q) = ω* (q) + g* (q) ω0 (q) Π (q, ω),

?, ω)

where 0(f) = 1 for t > 0 and 6{t) = 0 for t < 0.

(2.10)

the interaction is taken into account, the polarization
operator n(2fcF,0) diverges as j/T for T«J (and not
logarithmically, as ln(j/T), as in the case of the Har-
tree-Fock approximation). This ensures that the tran-
sition temperature is a linear function of the coupling
constant:

Tc = 0.8λ8 ι Ρ ΐ 1 (2.11)

and data on Tc and J show that Xs>sll = 0.19 in the case of
TTF-CuBDT, whereas, in the Hartree-Fock approxi-
mation, the corresponding result is \S i I l h = 0.29. At
zero temperature, the variation in the energy of the
spin system with the dimerization parameter u0 is de-
scribed by ΔΕ« - M J / ^ 1 ' which is different from the re-
sult Δ.Ε °° -u\ | lnw01, obtained in the Hartree- Fock ap-
proximation.25 The former result was obtained by Cross
and Fisher and is very similar to the exact upper limit
for the dimerization energy obtained by van der Braak
et al.,K namely, -MJ* 3 7 T . Fields et al.21 have compared
different approximations used to calculate the alternated
chain and have computed the gap in the spectrum of
magnetic excitations as well as the ground-state energy
of the alternated chain as functions of the alternation pa-
rameter M0, using the renormalization group method in
real space. This comparison has shown that the Cross-
Fisher method is better than the Hartree-Fock method
in describing the ground-state energy, but the depend-
ence of the gap on the alternation parameter is better in
the Hartree-Fock approximation.

So far, we have considered the spin-Peierls transi-
tion within the framework of the localized-spin concept.
All the conclusions are, of course, valid for quasi-one-
dimensional compounds described by the Hubbard model
with strong Coulomb repulsion U between electrons on a
single center and a half-filled band with gap W (U>> W),
since it is well known that, in this case, the ground
state and all the low-lying states of the system can be
described by the effective Hamiltonian (2.1) with J
~W2/U.

It is less obvious that systems with strong Coulomb
repulsion on a single center and a band not half-filled
can also be unstable with respect to the spin-Peierls
transition. In such systems, the strong Coulomb re-
pulsion ensures that two electrons with opposite spins
will not be found in the same center in the limit as W/U
—· 0, and their motion will be equivalent to the motion of
spinless fermion particles.28"29 The Fermi momentum
of these particles is 2vp/a = 2kF, where ν is the degree
of filling of the band, a is the lattice period, kF is the
Fermi momentum of electrons in the system for U = Q,
and the system is unstable with respect to Peierls dis-
placements with q =2X2vv/a =4feF. Klein and Zeitz30

have shown that the spin degrees of freedom of delocal-
ized particles are then described by the Heisenberg spin
Hamiltonian. The spin-Peierls instability then corre-
sponds to q = 2vp/a = 2kF, since a/v is the mean separ-

The transition temperature Tc can be determined from
the condition u>2(q)=0. Calculations show that, when

''Thls result was obtained by Cross and Fisher24 on the basis
of heuristic considerations. They have also obtained the
value of the coefficient a in (2.9) but were unable to deter-
mine the parameter b of this Landau expansion.
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ation between spins. It is not clear at present whether
the SP transition will occur in this system of "delocal-
ized spins" within the framework of the model with U
» W. However, analysis of one-dimensional systems
with interaction has shown that, under certain definite
conditions, such systems do exhibit responses that di-
verge at low temperatures for wave numbers q =2feFand
q = ikr, but, so far, this cannot be regarded as an ex-
planation of superstructures with 2fep and 4feF in TTF-
TCNQ.

3. EXPERIMENTAL DATA

The SP transition can now be regarded as firmly dem-
onstrated for the quasi-one-dimensional donor-acceptor
compunds TTF-CuS4C4(CF3)4 and TTF-AuS4C4(CF3)4,
and it may be assumed that it has also been observed in
MEM(TCNQ)2. The first two of these compounds have
now been examined in greater detail, and we shall there-
fore begin with experimental data on compounds con-
taining TTF. In crystals of these compounds, planes
containing the donor molecules (TTF) and the acceptor
molecules [MS4C4(CF3)4] are practically parallel, so that
alternating layers of donor and acceptor molecules form
a stack along the c axis.12 The unpaired spin l/2 in
these compounds occurs on the TTF*. Bray et al.n have
found that the paramagnetic susceptibility falls sharply
to practically zero in the case of TTF-CuS4C4(CF3)4

(TTF-CuBDT) and TTF-AuS4C4(CF3)4(TTF-AuBDT) mol-
ecules at T c = 12 and 2°K, respectively (Fig. 1). They
suggested that this fall was due to a phase transition of
the second kind, namely, the SP transition. Above the
transition temperature, the paramagnetic susceptibility
is excellently described by the one-dimensional antifer-
romagnetic Heisenberg chain of S = l / 2 spins. Thus, the
susceptibility is isotropic and shows a broad peak at low
temperatures.1 1'1 2 Below the critical temperature Tc,
the paramagnetic susceptibility remains isotropic and
falls sharply with decreasing temperature. The iso-
tropic behavior of susceptibility below Tc precludes the
possibility of three-dimensional antiferromagnetic or-
der in the system.The EPR linewidth is also found to
show a sharp reduction below Tc, which again points to
the appearance of a gap in the spectrum of triplet exci-
tations of the spins in the chain. Smith et al.13 have
shown that their NMR relaxation data are also in agree-

IS Τ,Κ

WO 200
Temperature H

FIG. 1. Magnetic susceptibility of TTF-CuBDT as a function
of temperature.11'12 Solid lines-calculated for antiferromag-
netic Heisenberg chain with homogeneous exchange integral
above 12 °K and with temperature-dependent alternative ex-
change below 12 °K.

S S 10 II 12 13
Temperature, deg.

1 2 3 *
Temperature, deg.

FIG. 2. a—Magnetic specific heat (cm/T) of TTF-CuBDT as
a function of temperature15 (the dot-dash curve corresponds
to the specific heat of the homogeneous chain with J= 77 °K),
b—magnetic specific heat (c m /D of TTF-AuBDT as a function
of temperature.15

merit with this assumption: as the temperature is re-
duced below Tc, the nuclear relaxation time increases
exponentially and, as was shown by Ehrenfreund and
Smith,14 the temperature dependence of the rate of re-
laxation below Tc is reasonably well described by a the-
ory involving relaxation in an alternated antiferromag-
netic chain. Wei et αϊ.15 have also carried out calori-
metric studies of the above compounds. They found a
specific heat discontinuity Ac at Tc, indicating the oc-
currence of a phase transition of the second kind (Fig.
2). Moreover, the temperature dependence of the spe-
cific heat was found to contain the linear contribution γΤ
above Tc, which is characteristic of one-dimensional
homogeneous antiferromagnets with γ = 2fe|/3J, where
the exchange integral J can be obtained independently
from susceptibility data above Tc.

Experimental data are in good agreement with the the-
oretical prediction Ac = 1.43yTc, obtained in the Har-
tree-Fock approximation.2* Thus, in the case of TTF-
CuBDT, the theoretical prediction is 1.31 j/mol.deg,
whereas the experimental result is Ac =1.41 ±0.2 j /
mol.deg.15 X-ray studies of TTF-CuBDT, performed by
Moncton et al.,3i provide direct evidence for the doubl-
ing of the unit cell below TC = 12°K, and the tempera-
ture dependence of the displacement amplitude u0 is sat-
isfactorily described by the function characteristic for
the BCS model (Fig. 3). The origin of the anisotropy in
the interaction between spins in TTF-CuBDT and the
nature of the displacement of the TTF molecules during
the SP transition will be discussed in greater detail be-
low.

Let us now consider experimental data18 on the quasi-
one-dimensional crystal MEM(TCNQ)2. In these crys-
tals, the molecules of the acceptor TCNQ and the donor
MEM form donor and acceptor stacks and the TCNQ and

As noted above, the coefficient 6 in the Landau expansion for
the Cross-Fisher approximation is unknown so that one can-
not predict the specific heat discontinuity at the transition
temperature in this approximation.
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FIG. 3. Temperature dependence of the Intensity of new Bragg
peaks appearing as a result of dimerization.31 The intensity
is proportional to the square of the amplitude of the ion dis-
placement κ § or the square of the order parameter φ1. Solid
line-square of gap as a function of temperature in the BCS
model.

MEM stacks are found to alternate in the crystal. Un-
paired electrons occur in the TCNQ stack and two mole-
cules of TCNQ correspond to one conduction electron,
which corresponds to a quarter-filled band with kT

= 7r/4e, where a is the separation between molecules in
the stack. At high temperatures, MEM(TCNQ)2 is sat-
isfactorily described by the Hubbard model with strong
Coulomb repulsion U»W. At 335°K, a phase transition
of the first kind to a strongly dimerized state, i.e., a
transition with wave vector q = ikF, is observed in MEM
(TCNQ)2. This is accompanied by a reduction in con-
ductivity by three orders of magnitude, which is clear
evidence for the appearance of a gap in the spectrum of
electron excitations. The phase transition with q =4feF

can be explained within the framework of the model with
U» W as a Peierls transition in a system of spinless
particles. Below 335°K, the paramagnetic susceptibil-
ity and the magnetic part of the specific heat of MEM
(TCNQ)2 are satisfactorily described by a model involv-
ing a one-dimensional spin chain with the Heisenberg
interaction and J = 106°K.18 A jump in specific heat oc-
curs at TC = 19°K and further reduction in temperature
produces a sharp fall in the paramagnetic susceptibil-
ity, i.e., its behavior in the case of MEM(TCNQ)2 below
Tc is similar to that shown in Fig. 1 for TTF-CuBDT.
The jump in specific heat at Tc in the case of MEM
(TCNQ)2 is 2.5 ±0.4 j/mol-deg, whereas the estimate
based on the Landau theory is 1.84 j/mol-deg. X-ray
analysis below Tc shows that additional dimerization
along the TCNQ chain occurs in this compound below
Tc, i.e., the lattice of dimers that appears after the
first transition (at 335 °K) doubles the period below Tc.

All existing experimental data on TTF-CuBDT, TTF-
AuBDT, and MEM(TCNQ)2 turn out to be satisfactorily
interpreted in terms of the SP transition.

4. THE SPIN-PHONON INTERACTION CONSTANT

At first sight, there are serious objections to the SP
transition as a way of explaining the properties of the
above crystals. The point is that, under ordinary con-
ditions, crystals with exchange interaction parameter
C/K100°K have a very small spin-phonon interaction con-
stant. Indeed, for a given rigi dity of the lattice with respect
to the Peierls displacements, the fermion-phonon interac-
tion constant λ, which determines the transition tempera-
ture, is proportional to the width of the fermion band

[see (2.6)]. For the electron-phonon Peierls transition
in compounds such as TTF-TCNQ, the electron-band
width is about eV and λ^,,,^Ο.δ.3 For one-dimensional
magnetic systems, the pseudofermion band width is 2pJ
«3J (J = 77°K in TTF-CuBDT, 68 °K in TTF-AuBDT,11

and 106 °K in MEM(TCNQ)2). Thus, for roughly equal
crystal stiffness, the constant XSiPh should be roughly
0.01-0.02 for the SP transition. This is lower by at
least an order of magnitude than the values of XStPh ob-
tained from data on Tc and J in the case of TTF-CuBDT
(0.19 according to Cross and Fisher and 0.29 according
to the Hartree-Fock approximation). When X,iPh=0.01,
the SP transition temperature should not exceed 1 °K in
the case of TTF-MBDT and 2 °K in the case of MEM
(TCNQ)2. There is now a large number of organic and
inorganic compounds whose magnetic properties can be
described within the framework of the homogeneous
spin chain model with exchange interaction J<, 100°K
and all the crystals that have been investigated (with the
exception of the three mentioned above) remain homoge-
neous down to very low temperatures.1 0 Serious doubts
have, therefore, arisen as to whether the doubling of
the period of the low-temperature phase of the above
three compounds is, in fact, due to the spin-Peierls in-
stability. In principle, the usual structural transition
with the doubling of the lattice period can occur at Tc

and the alternation of the exchange interaction in the
spin chain can be a subsidiary consequence of this tran-
sition. However, the size of the jump in the specific
heat, namely, Ac=1.43yTc, observed during the tran-
sition, corresponds to the magnetic parameters of the
crystal (y = 2fe|/3J), and this practically precludes the
interpretation of existing experimental data outside the
framework of the SP transition theory. However, once
the SP transition model is adopted, we must be able to
explain why the constant X8iPh for the above crystals is
higher by at least an order of magnitude than expected.

The unexpected data obtained from x-ray studies of
TTF-CuBDT31 provide the explanation as to why the pa-
rameter XaiPll has the anomalously high value in this
compound. At 225 °K, a transition of the first kind oc-
curs in TTF-CuBDT and gives rise to the appearance of
a one-dimensional chain of spins in the crystal. Figure
4a (solid line) shows the disposition of the magnetic
molecules of TTF in the crystal above 225 °K. The
broken line shows their disposition at temperatures be-
tween 12 and 225 °K. The transition of the first kind at

FIG. 4. a—Structural transition of the first kind in TTF-
CuBDT at 225 °K (solid lines show the position of the TTF mol-
ecules above the transition point and broken lines show their
position below this temperature31; for simplicity, the CuBDT
molecules are not shown), b—displacements of molecules in
TTF-CuBDT below the SP transition temperature (rc=12 °K).17

Arrows show the directions of displacement for the TTF+ and
CuBDT molecules (points) as the temperature is reduced below
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FIG. 5. Scattering of χ rays along Q = (2, 5, 0, L)V> in TTF-
CuBET as a function of temperature above and below the SP
transition.31

225 °K produces a reduction in the separation between
the molecules along the c P axis and an increased sep-
aration along the aP axis. The net result is that the dif-
ference aP - Cp changes from 0.3 A to 1.4 A after the
transition. The arrows in Fig. 4b indicate the motion of
the molecules below 12 ° Κ that leads to the alternation
of the chain of spins along the c P axis (the separation
between the TTF molecules along the stacks, i.e., along
the c axis, does not then change). Thus, the TTF mole-
cules lying along the c P axis (but not along the stacks)
form a one-dimensional chain of spins, and the transi-
tion at 225 °K leads to the monomerization of the inter-
action in the system of spins because, above 225 °K, the
interaction between spins along the aP and c P axes is
practically the same. A recent neutron diffraction study
of the SP transition in TTF-CuBDT, performed by Kas-
per and Moncton,38 has completely confirmed the pic-
ture of this transition deduced from data on x-ray scat-
tering, and has resulted in a direct determination of the
displacement of the TTF molecules during the SP tran-
sition. However, from our point of view, the most in-
teresting fact is that, below 225 °K, x-ray scattering by
TTF-CuBDT exhibits a strong peak near q=Q, which
corresponds precisely to phonons that have condensed
down below the SP transition temperature31 (Fig. 5).
This peak shows that the frequency of these phonons
well above T c is anomalously low. Cross and Fisher2 4

estimate that it amounts to roughly one-third of the fre-
quency of typical phonons. As T-~TC, there is an addi-
tional softening of these phonons, in this case, due to
the spin-Peierls instability, and this is clearly seen in
Fig. 5. Preliminary softening of phonons produces an
increase in the constant describing the interaction be-
tween pseudofermions from (2.5) and phonons with wave
vector q = 2kT by roughly an order of magnitude [see
Eq. (2.8)], and the value XSiPh« 0.2 becomes realistically
possible. We are thus forced to the conclusion that the
SP transition can be observed in typical quasi-one-di-
mensional compounds with exchange interaction param-
eter <ίΐ 100 °K but only in the case of preliminary strong
softening of phonons corresponding to the doubling of the
period of the chain. There is no connection between the
softening and the existence of one-dimensional magnetic
chains in TTF-CuBDT, and this presents us with a con-

siderable problem. However, there are reasons for
supposing that the softening is a relatively rare phe-
nomenon. It would appear that this is the reason why
the SP transition has not been seen in the large number
of known compounds with J i 100°K, which can be de-
scribed by the Heisenberg model with one-dimensional
antiferromagnetic interaction.10

We do not as yet know whether the corresponding soft
mode is present in TTF-AuBDT and MEM(TCNQ)2.
There is no reason to doubt that the properties of TTF-
AuBDT are similar to those of TTF-CuBDT. However,
if the transition at TC = 19°K in MEM(TCNQ)2 is inter-
preted within the framework of the SP transition model,
we are forced to the conclusion that the soft mode cor-
responding to alternation in the chain of spins should
exist in this crystal also at temperatures well above
19 °K (this mode should correspond to dimerization in
the TCNQ stacks in this crystal).

5. EFFECT OF A MAGNETIC FIELD ON THE
SPIN-PEIERLS TRANSITION

There is one further decisive possible verification of
the validity of the interpretation of experimental data in
terms of the SP transition model in the case of TTF-
CuBDT, TTF-AuBDT, and MEM(TCNQ)2. In contrast to
the usual structural transition, the SP transition is
characterized by its considerable sensitivity to a mag-
netic field.32·33 The point is that the SP transition, be-
ing a period doubling transition, is very sensitive, be-
cause of commensurability effects, to the degree of fill-
ing of the pseudofermion band (2.5), which is governed
by the magnetic field. In fact, to take the magnetic field
into account in the Hamiltonian $t t o, given by (2.4), we
must add the term μΒ#Σ/»ΨίΨ», i.e., the inclusion of the
magnetic field shifts the chemical potential of the sys-
tem and modifies the magnitude of 2kT. In the state with
twice the period, the commensurability energy of the
Peierls displacements and of the initial lattice is high,
i.e., of the order of the total energy of the Peierls dis-
placements. The shift of 2k¥ from ir, which corresponds
to twice the period, takes the system away from the
commensurate state, and the commensurability energy
falls sharply. It follows that, for small deviations of
2feF from ir (low magnetic fields H<H*), the system
prefers to remain in the state with twice the period al-
though the wave vector associated with the displace-
ments Q is then not equal to 2feF.

Thus, the imposition of a sufficiently weak magnetic
field will not change the structure of the Peierls dis-
placements at the transition point, but it will reduce Tc,
which, in the Hartree-Fock approximation, is deter-
mined from the equation

, π,0) =

or

dz shz (5.1)

where εί.= 2μΒ#(π + 2)/(ιτ + 4) in the Hartree-Fock ap-
proximation. Equation (5.1) can be rewritten in the
form
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FIG. 6. Temperature dependence of magnetizability of TTF-
CuBDT in different magnetic fields.16 Broken line shows the
method used to determine the critical temperature r c .

In- (5.2)

where φ(χ) is the diagram function. This result was ob-
tained by Leung34 for the usual Peierls transition and
was extended to the SP transition by Bray,32 and by
Khomskii et αί.33 within the framework of the Hartree-
Fock approximation and by Cross3 5 within the frame-
work of a more accurate inclusion of the fermion inter-
action (the two approaches result in qualitatively sim-
ilar conslusions). In low fields H, the theory predicts
that Tc should fall by the amount ΔΓο/Γ(. = τ;(μΒ»/Γ(.)

2

and that the magnetizability should be a highly nonlinear
function of the field. Both effects have been confirmed
experimentally16'17 in the case of TTF-CuBDT. Figure

6 shows the magnetizability as a function of temperature
in the case of TTF-CuBDT at low temperatures and in
different magnetic fields.16 For T>TC, the temperature
dependence of magnetizability is characteristic for a
homogeneous chain of spins. Below Tc, the magnetiz-
ability decreases with decreasing temperature because
of the appearance of the gap in the spectrum of magnetic
excitations. It is clear from Fig. 6 that the critical
temperature Tc decreases with increasing magnetic
field. The experimental function TC{H) is shown in Fig.

7 (points) together with the theoretical results (solid
curve) for the transition of the second kind in H<H*
= 0.72Γ,/μΒ (Hartree-Fock approximation). It is clear
from Fig. 7 that the experimentally determined coeffi-
cient η is higher than the theoretical value. The exper-
imental result η = 0.82 ±0.05 may be compared with the
Hartree-Fock approximation which yields η = 0.44 and
the Luther-Peschel model used by Cross and Fisher,
which yields η = 0.35. The origin of this discrepancy
between experimental and theoretical estimates is still
not clear. For H>H*, the model with XSiPh independent
of q predicts that the superstructure period should de-
pend on Η at the transition point Tc. However, in prac-
tise, XSpPh decreases rapidly as q departs from π in the
case of the SP transition (because of the increase ίηω0),
and a more realistic situation is that in which the super-
structure corresponds to twice the period even for Η
> Η* and the superstructure is the result of a transition
of the first kind for H>H*. The corresponding critical

(rc(H'),H"]

0 50 100 150
Magnetic field, kOe

FIG. 7. The SP transition temperature Tc as a function of the
magnetic field: open circles—experimental,18 solid curve—
theoretical results obtained in the Hartree—Fock approxima-
tion,3 2·3 3 broken curve—transition of the first kind (the precise
shape of this curve is not known).

field Hc (T =0) for the SP transition is then Το/μΒ in the
Hartree-Fock approximation (the field is determined
from the condition N(Q)^l/2 -X^H\/2, where χ0 is the
paramagnetic susceptibility of the homogeneous chain,
which is equal to 4μΒ/(π + 4) in the Hartree-Fock ap-
proximation, and Δ0 = 1.76Το). Recent experimental
data39 suggest the possibility of a noncommensurate
phase in strong magnetic fields in TTF-CuBDT.

Thus, the occurrence of the SP transition in TTF-
CuBDT and in its isostructural analog TTF-AuBDT may
be regarded as established. This follows from the to-
tality of experimental data that are excellently describ-
ed by the SP transition model and cannot be explained in
terms of alternative theories. However, the situation is
less definite in the case of MEM(TCNQ)2 and will re-
main so until experiments are performed in strong
magnetic fields, or the soft mode is verified at temper-
atures well above Γ. = 19 °K.

6. FLUCTUATION REGION AND TYPE OF SPIN-
PEIERLS TRANSITION

As already noted, the SP transition in TTF-CuBDT is
described with high precision by the self-consistent
field approximation. TTF-AuBDT exhibits some devia-
tions from the predictions of this approximation but they
are small.15 On the other hand, the interaction between
spins in the compounds under consideration can confi-
dently be regarded as one-dimensional because spins
belonging to different chains experience weak interac-
tion which is not experimentally detectable in the tem-
perature range in which we are interested. However,
the self-consistent field approximation does not, in gen-
eral, apply to a purely one-dimensional system.

Our final conclusion must therefore be that, if our
model includes spin interactions, it is only along chains
that fluctuations can be suppressed by the three-dimen-
sionality of the phonon system. Let us therefore esti-
mate the size of the fluctuation region for the SP tran-
sition. To do this, we must determine the Ginzburg-
Landau functional for the order parameter correspond-
ing to the spin-Peierls transition, and then use the
Ginzburg-Levanyuk criterion to estimate the tempera-
ture range T = (TC-T)/TC in which the fluctuations are
not small. The displacements of molecules during the
SP transition will be written in the form
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«η (Ι) = «CQ f1 ( - I)1 COS (Q l B ) φ,. „

where <p(t. is a slowly-varying function of coordinates
(ψι,% i s equal to the gap Δ in the spectrum of single-
fermion excitations in the homogeneous case). We shall
look upon it as the order parameter in the Ginzburg-
Landau functional. The coefficients α = ατ and b in front
of φ1 and φ* were given above [see Eq. (2.9)]. All that
remains is to determine the coefficients of the gradient
terms. In the Fourier expansion of the free-energy
functional, the gradient terms have the form C,,/>VI/2
and Cjj>i<p|/2 and, to determine the coefficients C,, and
Cx, we must calculate the temperature variation of the
SP transition as the wave vector q departs from the val-
ue Q = (it, QJ. Within the framework of the Ginzburg-
Landau functional, this change is Δ τ = |T(q)-T(Q|/T(Q
= -{C,J>2+C1pl)/, where p = (q -Q)/d,, and dn is the per-
iod of the spin chain above Tc.

On the other hand, in the microscopic theory, the
temperature T(q) is determined from [see (2.6) and
(2.9)]

" t — „• . s s — « 7 \ Η ( Τ \ Q ' = J l - | - P u i i * ( ύ s : = 0 ) C O S ^ ™'? · \ 6 · 1 J

whereas, in the Hartree-Fock approximation, the polar-
ization operator has the form1

tt(.T,n + pd,,,0)
WIT

(6.2)

where W = {1+ 2/ir)J.

Expanding the right-hand sides of (6.1) and (6.2) in
powers oip for W»T, we have

T

π/τ « m Γ= Π (Γ, π, 0 ) - [

=o.462.

(6.3)

where p, pLi are the components of the vector ρ along
and at right-angles to the chain.3' From (6.3), we have

(6.4)

note that the presence of only quadratic terms in (6.3) is
due to the particular feature of the SP transition, namely, the
doubling of the period. In the case of the Peierls transition,
the linear dispersion of phonons and the electron-phonon in-
teraction constant near Q0=2feF in (6.3) are responsible for
the appearance of additional terms that are proportional to
ί<ί||Π(Τ, 0,2k¥). This ensures that as the temperature is re-
duced the phonons that condense in the system are not those
with Q0=2feF but those with Qe=2feF+9e is given by the mini-
mum of the expression fi(Wi/T^(i/9)pid\+pd]ll/K. Hence, qt

~T*/W||W^.|3), which shifts the wave vector away from 2ftF.
For example, in the case of TTF-TCNQ, this shift amounts
to a few percent. As the temperature Is lowered further Qe

tends to 2feF and for Tc- Τ * Tc the structure with Q,= 2kf is
found to emerge.

The increase in free energy due to the appearance of a
fluctuation field with Fourier components <p9 below Tc is
given by

= Τ Σ (6.5)

where cpl=a/b is the equilibrium value of the order pa-
rameter. The ratio of the fluctuation increment in the
specific heat cfl to the jump in specific heat at the SP
transition point can be found with the aid of (6.5):

( j

where dL is the separation between the spin chains. The
self-consistent field approximation breaks down for τ
•£ Tc· Thus, the condition for the validity of this theory
is TC « 1 .

The quantity TG can be estimated for TTF-CuBDT.
Experimental data on the width of the scattered x-ray
peak31 can be used to show that the softening of the nu-
cleating phonons (roughly up to l/3 of the initial value)
above Tc is isotropic and occurs in a narrow region of
radius pc«0.2/d,, around Q (see Fig. 5). Hence, it fol-
lows that {wqid2<i>li/dp2)t,<j

a4pf and, using the largest
value of X,lPll, namely, λβΐϊ1ι = 0.3, we can determine the
transverse and longitudinal correlation lengths from
(6.4) and then use (6.6) to find τα . The result is that TC

does not exceed 10"4. This very small size of the criti-
cal region in the case of TTF-CuBDT explains why the
mean-field approximation is satisfactory for the SP
transition in this compound. Thus, the absence of phase
fluctuations in the order parameter and the three-di-
mensionality of the phonon system together ensure the
validity of the mean-field approximation in the descrip-
tion of the SP transition.

Let us now briefly consider the nature of the SP tran-
sition. Penson et al.36 have shown that the SP transi-
tion occurs for definite values of the parameters even
in the case of a chain of classical spins in which it can
be a transition of the first kind. An analogous conclu-
sion for the Heisenberg S = l / 2 chain was reported by
Lepin and CaiHe",37 who carried out a numerical investi-
gation of the possibility of a transition of the first kind
within the framework of the Hartree-Fock approxima-
tion. They found that the system was unstable against
the SP transition of the first kind over a broad range of
parameter values and that the temperature of this tran-
sition exceeded the temperature Tc at which the transi-
tion of the second kind occurred. If this is correct, we
must explain why it is the SP transition of the second
kind that is observed experimentally in the compounds
discussed above.

We note, in connection with the results reported by
Lepin and Caille', that the transition of the first kind to
the dimerized state at TC = 396°K was observed in the
case of K-TCNQ. Lepin et al.M have analyzed experi-
mental data for this compound and have shown that the
Hubbard model with strong Coulomb repulsion provides
a satisfactory explanation of the properties of these
crystals. Since, in this case, the system can be de-
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scribed by the effective Hamiltonian given by (2.1), the
transition in K-TCNQ at TC=396°K was interpreted
the SP transition.

20
as

7. CONCLUSIONS

We have already noted that the Spin-Peierls transition
can be observed in compounds with exchange integral J
-slOO°K, but only if the phonons that must condense
during the SP transition undergo preliminary strong
softening. This softening must be due to some other
mechanisms unrelated to the SP transition. The very
existence of the preliminary softening is a kind of "mir-
acle" but it has, in fact, been detected in TTF-CuBDT.
Moreover, it is clear from the foregoing that, if the SP
transition is observed in TTF-AuBDT and MUM(TCNQ)2,
these materials should exhibit the preliminary softening
of the "required" phonons. Experimental verification of
this conclusion would be very interesting for MEM
(TCNQ)2 because the reality of the softening process
cannot be deduced from other considerations.

In conclusion, the authors wish to express their deep
gratitude to D.I. Khomskii for numerous useful discus-
sions and valuable suggestions at the manuscript stage.
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