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A review is given of low-temperature studies of the properties of the two-dimensional electron gas in inversion
layers on high-index Si surfaces. The long crystallographic periods associated with such surfaces produce the
superlattice effect in the spectrum of the quasi-two-dimensional electron gas. The kinetic coefficients are
found to exhibit singularities when the Fermi level and minigaps cross. This was established by measuring the
static and the high-frequency conductivities, the Shubnikov-de Haas oscillations, the photoresistivity, the
emission of thermal electrons, and the cyclotron resonance in η-type inversion layers near (001) for electron
concentrations in the range 1012 — 1014 cm" ! . The minigap width varies from 1 to 20 meV, depending on the
electron concentration. The position of the minigaps in A'-space (but not their size) is in quantitative
agreement with theory.
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1. INTRODUCTION

There has recently been considerable renewed inter-
est in the studies begun more than ten years ago of the
properties of two-dimensional (2D) electron and hole
gases in the inversion layers that appear due to strong
band bending on a semiconductor surface. This in-
creased activity is evidenced by internatipnal confer-
ences held in the USA (1975)1 and in the federal Repub-
lic of Germany (1977).2 A third conference was held
in Japan in 1979.

As a rule, these studies are concerned with metal-
dielectric-semiconductor structures. The possibility
of a substantial (by two or three orders of magnitude)
change in the surface carrier concentration in the in-
version layer without a corresponding change in the
other parameters of the material offers unique pro-
spects for experimental investigation of the dependence
of the energy spectrum on phenomena such as multipar-
ticle interactions, Anderson and Wigner localization,
and so on.

A new area of study emerged in 1977, namely, the
properties of inversion layers on surfaces of silicon
with high Miller indices. Such inversion layers were
found3 to exhibit anomalies in their galvanomagnetic
properties, which were interpreted as being due to a
surface superlattice of unknown origin. Independently
and simultaneously, one of the present authors4 pre-

dicted that the long crystallographic periods on high-
index surfaces should lead to superlattice effects in the
electron spectrum of the inversion layer. First at-
tempts at a quantitative interpretation of experimental
data were undertaken in Ref. 5 and later in Refs. 6 and
7. We shall follow our previous terminology4 and will
refer to the superlattice associated with the inversion
layer on a high-index surface as the orientational
superlattice.

In contrast to the usual (artificial) superlattices that
consist of thin layers of periodically varying composi-
tion,8 in the present case, we have the possibility of
being able to control the Fermi level and the spectrum
parameters in a single specimen.

The present paper is devoted to this developing field
and is largely concerned with a review of experimental
facts and, to a lesser extent, with the state of the the-
ory, which is far from complete. Papers published up
to July 1, 1979 are covered.

2. BASIC INFORMATION ON THE TWO-
DIMENSIONAL ELECTRON GAS IN INVERSION
LAYERS ON SI (001)

Experimental studies of orientational superlattices
are usually performed on η-type inversion layers (n-IL)
on surfaces close to Si (001). Let us, therefore, begin
by considering the properties of n-IL on Si (001).
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The structure shown in Fig. la is used in the investi-
gation of such inversion layers. It consists of a metal
electrode (gate) separated by a 1000-A SiO2 layer from
massive p-type silicon. A voltage Vt is applied be-
tween the gate and the body of the semiconductor.
When the polarity of Vt is as shown in Fig. 1, and the
band bending exceeds the forbidden band gap in silicon,
a thin conducting layer (n-IL) appears on the surface of
the semiconductor (Fig. lb). The thickness of this
layer is d ~50 A and the thickness of the space-charge
layer (depletion layer) separating the IL from the rest
of the system is «*<,,„, - 1 μ. The presence of the high-
resistivity depletion layer enables us to decouple elec-
trically the surface region from the rest of the system.
The conductivity of the IL is measured with the aid of
two ohmic n* -contacts with a potential difference VD

maintained between them. The surface density of
electrons in the IL can be varied by varying Vt and is
given by

•(Vt-Vt), (D

where C i s the capacitance of the SiO2 layer, e i s the
charge of the electron, and V, i s the threshold inversion
voltage (Vt i s determined experimentally by d e t e r m i n -
ing the position of the rapid r i s e in mobility in the field
effect at 77 °K). The density n s can be varied from
10 1 0 to 101 3 cm"2 in the n-IL on the silicon surface.

Electrons in the inversion layer move in a potential
well formed by the e lectros tat ic potential due to the
space charge, on the one hand, and the potential b a r -
r i e r on the Si-SiOj boundary, on the other (Fig. l b ) .
In high-quality s t r u c t u r e s , the scatter ing of e lect rons
by the Si-SiCt, boundary i s smal l , and typical mobilities
in the n-IL on silicon lie in the range μ ~10 3 -10 4 cm 2

V"1 sec" 1 at helium t e m p e r a t u r e s .

Because of the quantization of the t r a n s v e r s e compo-
nent of the quasi-momentum, the electron spectrum of
the inversion layer consis ts in th is case of a set of 2D
subbands (called e lec t r ica l subbands) and, in the
simplest case, has the form

8,-fe,
2 [ n.

(2)

where the ζ axis lies along the normal to the inversion
layer, k,, = (kx, ft,) i s the wave vector in the plane of the
inversion layer, Et is the position of the bottom of the

/
Metal

2 3 - \> -IL'
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FIG. 1. Metal-dielectric-semiconductor structure (a) and
band bending at the surface of the semiconductor (b): If-gate
potential relative to the semiconductor, ti,-drag voltage, d-
thickness of inversion layer, <*deprthickness of depletion layer,
E^ -BK-gap width in Si.

i'-th electrical subband, ν is the number of the valley
centered on one of the points K,,= 0.85 χ2ιτ/ο (001) in
the conduction band, α = 5.43 A is the lattice constant
of Si, K§° is the component of K,, along the plane of the
inversion layer, m* is the effective mass in the plane
of the inversion layer, which depends on its orientation
[for w-IL on Si (001), we have m* = 0.19 m0, where ma

is the mass of the free electron], and Η is the Planck's
constant.

The isoenergy surface in the Si conduction band con-
sists of six ellipsoids of revolution elongated along the
cubix axes. In the effective-mass approximation, the
ground electrical subband fOv is doubly degenerate in
the valley number (v = 1,2) and consists of two ellip-
soids corresponding to the largest effective mass along
the normal to the IL. For this case, we have K^n) = 0,
and the isoenergy profiles are circles. A typical en-
ergy gap between the ground and the first excited sub-
bands amounts to a few tens of meV. It follows that
only the ground subband is populated at the helium
temperatures at which measurements are usually per-
formed. Electrons in this subband form a degenerate
2D gas (or, more precisely, quasi-2D gas).

The density of states per unit area is then indepen-
dent of energy and is given by

where g,, gv are the multiplicities of spin and valley
degeneracy, respectively. For n-IL on Si (001), we
have g, = gv = 2 and Do = 1.6 χ 10 u cm'2 · me V 1 .

The Fermi energy EF and the Fermi wave number kr

of a degenerate gas with density of states given by (3)
are related to n s as follows:

= £„£,,· •• (4)

The above description of the 2D electron gas is large-
ly in agreement with experiment

More detailed accounts of the status of theoretical
and experimental studies of inversion layers can be
found in the review paper given in Ref. 9 and in con-
ference proceedings.1·2

3. INTRODUCTION TO THE THEORY OF
ORIENTATIONAL SUPERLATTICES

There is as yet no complete theory of the electron
spectrum in inversion layers in high-index surfaces
that would be capable of explaining in a unified way all
the available experimental data. Nevertheless, some
of the basic properties of the spectrum can be deter-
mined simply from the 2D-translational symmetry of
the system.4·7·1 0 We note that there are other ap-
proaches to the solution of this problem that are based
on other assumptions.5·6 They will be discussed later.

The wave function of an electron in an inversion layer
covers a large number of atomic layers (d»a; see last
Section). Electron-microscopy has shown11 that, for
Si-SiO2 (119), the crystal lattice in the region of the in-
version layer is the same as in bulk if we ignore one
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or two possibly damaged atomic layers near the Si-
SiO2 boundary. We therefore assume4 that the tran-
slational symmetry of the electron system is deter-
mined by the 2D symmetry of one of the atomic planes
of an infinite crystal that are parallel to the surface.

It is clear from Fig. 2 that a long crystallographic
period A (superperiod) appears in the inversion layer
on the surface of a crystal with high Miller indices.
The period A is determined by the particular orienta-
tion of the surface and the type of the crystal lattice,
and is responsible for the appearance of the superlat-
tice potential. The relative influence of this orienta-
tional superlattice on the electron spectrum of the in-
version layer will increase as the thickness of the in-
version layer is reduced (smaller a/a), i.e., as Vt and
ns increase. It is clear that this influence can be neg-
lected in the "bulk* limit (d/a — «).

Let us now determine the symmetry of one of the
atomic planes Si(Zww), where I, m, and η are integers.
Its inclination fo the Si (001) plane is defined by the
polar angle θ = arc cos (n/Vm2 + n2 + l2) and the azimuthal
angle φ - arccos(Z/V m2 + lz). We shall suppose that the
x,y,z axes lie along [ln,mn, -I2 -m2], [-m,l,0],
[l,m,n], respectively. As an example, consider the
orientation of Si(llw). The silicon lattice consists of
two face-centered cubic sublattices shifted relative to
each other by a quarter of the space diagonal of the
cube. The 2D Bravais lattice is then a simple rec-
tangular lattice for even η and a centered rectangular
lattice for odd n. Let us construct the 2D Brillouin
band for these two cases. Its dimension along the kx

axis is given by Qmin(even) = (2jr/a) sinfl; Qmin (odd)
= (47i/a)sin Θ, respectively, which is much greater than
the usual dimension of the 3D Brillouin band for w» 1
(θ« 1). In coordinate space, we can introduce the
superperiod Atrm = 27r/Qmlll(even) = a /sin θ for even η
and ΑαΛΛ = 27r/QlnilI(odd) = a/2 sine for odd n, where the
χ axis serves as the axis of the two-dimensional orien-
tational superlattice. When η changes by unity, this
produces a considerable change in the superperiod.
This is illustrated in Fig. 2 (cases 1 and 2) by a simple
example.

Similarly, we can show that Qmin= 2v/A = (π/α)
xsinfl (0 = 10°, (/? = 90°) for Si(0,3,17). These expres-
sions for Qmln are useful for comparing with experi-
mental data.

Let us now consider the properties of the electron
spectrum in the presence of orientational superlattices.

FIG. 2. Section through the crystal lattice by a plane parallel
to the inversion layer in the case of a centered square lattice
and two different orientations of the surface. A is the long
crystallographic period along the inversion layer.

It is well known that even a small superlattice poten-
tial produces a radical change in the electron spec-
trum: it mixes states with wave vectors k differing by
one reciprocal lattice vector, i.e., in this case, by a
multiple of Qmn. For an electron in the inversion lay-
er with an unperturbed 2D dispersion relation of the
form given by (2) (in general, m* in (2) depends on θ
and φ but, for θ« 1, we may suppose that m* *0.19»%),
the weak potential of the one-dimensional orientational
superlattice leads to the appearance of minigaps whose
position in k,, -space can be determined from

i* (*„ ft») <= & v (5)

Following the generally accepted terminology,8 we shall
refer to resolved 2D bands as minibands. The type of
minigap is determined by the indices in (5). So far,
the only experimentally confirmed minigaps were those
produced by the hybridization of states from the ground
electrical subband (i = i'=0). We shall confine our at-
tention to these minigaps and will omit subband indices
i,i'. The general case is considered in Ref. 10.

The hybridization of states in a given valley (v = v')
leads to the emergence of "intravalley" minigaps which
can appear both in single-valley and many-valley semi-
conductors.

A particular feature of many-valley semiconductors
is the possibility of "intervalley" minigaps (in addition
to intravalley minigaps). These are due to the mixing
of states from different valleys {νΦν').

Simultaneous solution of (5) and (2) yields the position
of intravalley minigaps in k,(-space:

Jim

~A~
= ± 1, ±2,

and the position of intervalley minigaps:

Jim
~A~'

ro = 0, ± 1 , . . .

(6)

(7)

where kx is defined in the expanded-band scheme.

We note that one of the intervalley minigaps is due to
Q = 0 [ w = 0in(7)].

The unperturbed spectrum is doubly degenerate at
each point defined by (6) and (7). The superlattice po-
tential removes this degeneracy and leads to the ap-
pearance of the miniband spectrum. The minigap
\j(Q) can be calculated by first determining the form
of the effective superlattice potential (see last Section).

The dispersion relation for an electron near a mini-
gap can be found by assuming that it is small and in
first-order degenerate perturbation theory given by

J
, (Q) I2

(8)
It follows from (8) and (2) that the effective mass at

the bottom of the second miniband [positive sign in (8)]
is proportional to the size of the first minigap and is
much smaller than the effective mass at the bottom of
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the first miniband, which is equal to m*.

The above dispersion relation is illustrated in Fig.
3a (in the single-valley case) and in Fig. 4a [two-valley
case involvingn-IL on Si(lln), where η is odd]. The
corresponding isoenergy profiles are shown in Figs. 3b
and 4b. We note that Ref. 6 (from which Fig. 4a is
taken) makes use of the approach5·6 in which Q,,!,,^ (4ττ/
α)sind. In the present context, this is valid for Si(lln),
where η is odd.

In the single-valley case and small n s , so that the
first miniband (ΕΡ = Ε!) begins to fill, the Fermi « sur-
face" is close to a circle (broken curve in Fig. 3b).
When EF lies inside the minigap, the closed Fermi
"surface· becomes an open surface. As ns increases
still further, EF enters the second miniband (£,=£,)
and this leads to the appearance of new «lens* -type
voids on the Fermi " surface".

The many-valley case, and it is this that is seen in
experiment, differs from the preceding case by the
fact that, as Ep enters the second miniband (above gap
1 but below gap 2 in Fig. 4a), instead of the open Fermi
surface, we have a closed surface resembling the shape
of a "dog's bone" (Fig. 4b). In this case, the open sur-
face appears when the Fermi level reaches the next
minigap.

Each minigap leads to the appearance of a logarith-
mic divergence in the density of states D(E) at energies
close to the lower edge of the minigap (Fig. 5). This
result can be obtained from the formula

(9)

where S{E) is the area bounded by g>(k)l) = £, where
mJJE)= (1 /2ir)8S/8JS is the quasiclassical cyclotron
mass. [When the isoenergy surface is not simply con-
nected, a summation must be performed in (9) over all
the profiles &fell) = E . It must be remembered that
me(E) diverges logarithmically as we approach the
lower edge of the minigap, whose energy is the saddle
point of the dispersion relation (8)." The density D(E)
differs from zero within the interior of the minigap be-

\

FTG. 3. Dispersion relation (a) and isoenergy profiles (b) for
&=Ei (broken line) and %=E2 (solid line) in the case of 2D
electrons in the presence of ID superlattice. A is the super-
lattice period in the single-valley case.

FIG. 4. Dispersion relation (a) and isoenergy profiles (b) in
the expanded band scheme in the case of n-IL on Si(lln): η —
odd number, Qmin = (4π/α) sine is the reciprocal vector of the
superlattice, the valleys are centered on the points kx =
±Κη&Ίηθ; l i 2, 4 are intervalley gaps, and 3 is an intra-
valley gap.

cause the superlattice is one-dimensional. The dis-
continuity in D(E) at the upper edge of the minigap is
connected with the appearance of the contribution due to
the second 2D miniband.

In a real system, the singularities in D(E) are
smeared out by scattering. Nevertheless, when the
size of this effect is less than Δ, the transport coef-
ficients are expected to exhibit singularities as Er

passes through the minigap. The relationships given
by (4), which are approximately valid in our case if
&/EF0« 1, can be used to establish the connection be-
tween the critical Fermi energy EF0, the density wJ0,
and the Fermi wave number kF0.

To facilitate comparison with experiment, it is con-
venient to introduce the "pseudoperiod" of the superlat-
tice as follows:

(10)

Each minigap has its own pseudoperiod L for given
A. We emphasize that L is equal to the true period A
only for the lower intravalley minigap. For interval-
ley minigaps, we have L*A since kF0 in (10) differs
from the valley center compare this with (7), where
kx is measured from the center of the 2D Brillouin
zone].

The most complete experimental data are available
for the lowest minigap. For n-IL on Si(lln, the prop-
erties of the conduction band of silicon [| K,, | = 0.85(2ττ/

FIG. 5. Density of states in the 2D electron gas in the pTes-
ence of a ID superlattice: Do

 i s the unperturbed density of
states and Δ is the bottom minigap width.
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pirn

a)] ensure that this is an intervalley minigap lying at ?,/ΰ~'η-1

kx=±(2ir/a), which corresponds to kFO = 0.15(2π/α)βίηθ.
The table lists theoretical7 and experimental values of
L for a number of orientations of the inversion layer.

We emphasize that all the indices of the surface in
whose vicinity the inversion layer is produced must be
known before Qmin and hence LtheaT can be calculated.
Table I therefore lists only those data for which the
Miller indices are known. Thus, for example, the data
reported in Ref. 6 are not reproduced because it quotes
only the values of θ for the surfaces under investigation.

A different approach to the determination of the posi-
tion of the minigap in k,, -space is developed in Refs. 5
and 6. It is assumed that the reciprocal-lattice sur-
face vector (reciprocal vector of the superlattice in our
terminology) can be obtained by projecting the bulk
vector (4π/β) [001] onto the plane of the inversion lay-
er. This means that Qmln = (4π/α sin0 does not depend
on the complete set of indices of the surface. This σ(η,) — τ(ΕΓ) •
procedure gives the correct position of many minigaps

2 5 4 n,,/0"m-i

FIG. 6. Conductivity of n-IL on Si (118): Γ = 1.7°K (Ref. 3).
1—Conductivity in the [882] direction (superlattice axis), 2-
conductivity along the [110] direction.

the lowest minigap by EF. This structure is largely
determined by the nonmonotonic form of D(EF) (see
Fig. 5), which gives rise to singularities in electron
scattering:

' D(Er)'

in k,, -space and, in particular, the values of 2,thMr cal- where T(EF) is the momentum relaxation time. It fol-

culated in this way for the lowest minigap on Si(115),
Si(118), and Si(119) [but not Si(2,2,23)] agree with those
listed in Table I. A critical examination of this ap-
proach is given in Sec. 5.

4. EXPERIMENTAL DATA FOR INVERSION
LAYERS ON HIGH-INDEX SILICON SURFACES

So far, minigaps have been found in n-IL on surfaces
close to Si(001) for θ between 1 and 16° and <p = 45°, 90°.

Measurements have been carried out on the low-tem-
perature behavior of the static conductivity,3·6 the
Shubnikov-de Haas oscillations,3·13·14·17 infrared ab-
sorption,5· l s<1 7 photoconductivity,16 emission of hot elec-
trons,18 and the behavior of cyclotron resonance15 as ns

was varied.

The minigap found in the first experimental paper3

turned out to be of the intervalley type.5 Intravalley
minigaps were examined in Ref. 6.

a) Static electrical conductivity

Figure 6 shows typical results obtained for the con-
ductivities respectively parallel and perpendicular to
the superlattice (q, and σχ) as functions of the electron
density in the inversion layer in the case of Si (118)
(0 = 10°, (p = 45°). As can be seen, the monotonic
growth of a(ns) has a superimposed structure in the
region of 3 χ 1012 cm"2, which is due to the crossing of

TABLE I. A—crystallographic period, L—pseudoperiod for
the bottom minigap,

Surface of

(115)
(118)
(119)

(2,2,23)

= y — , £t heor = m a l | 2π/(ρ-2K 0 sin θ ) | - " .

,ι, A

10
31
18
89

ij exp ' -̂

~ 70 i»
101—107 3

110—120 b

- 2 0 0 »«

L theor Λ

66
104
116
223

lows that a{ns) exhibits minima at the edges of the
minigap, where D (E) is a maximum. The differences
between the structures of afl(ns) and aL(ns) and between
their absolute values is connected with the fact that
Bragg reflections reduce the velocity of electrons
along the super-lattice as compared with the velocity
in the perpendicular direction.

The structure of a(ns) vanishes at T= 77 °K. This is
due to the thermal smearing out of the Fermi level be-
cause the mean free path (-1500 A) is a slowly-varying
function of temperature T.

The position of the structure in σ(η$) can be used to
determine the pseudoperiod Z,eip from (10) (see Table
I). The only minigap found for Si (118) (see Fig. 6)
is the lowest intervalley minigap. Higher gaps have
not been found for Si (118) because the values of ns that
are necessary for the Fermi level to reach such gaps
are too high (^ 1.6 χ 1013 cm"2, according to estimates
in Ref. 7).

Some of these gaps have been found6 in specimens
with lower θ (θ = 8.9°; 5.6°; 2.9°; 1.9°; 1.1°). The
orientation of the surfaces was determined by x-ray
methods to within less than 0.2°. For such low values
of Θ, the singularities of a(ns) are very weak, so that

S' 9· 12' 15° β

0,1 HZ
sin 3

FIG. 7. Angular dependence of the Fermi wave number for
which Er reaches the two minigaps found in Ref. 6. Solid
lines—theoretical .5
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measurements were made of do{ns)/dns and d2a(ns)/
dn\. Apart from the lowest intervalley minigap (gap 1
in Fig. 4a), two further intervalley minigaps were de-
tected as ns was increased [^α=0.85(2ir/a)sin θ and
kF0= 1.15(2 π/α) sin θ]. They correspond to gaps 2 and 4
in Fig. 4a. The lowest intervalley minigap [kpo= (2ττ/
α) sine, gap 3 in Fig. 4a] was also detected.

Figure 7 shows data on the position of two minigaps.
According to the approach adopted in Refs. 5 and 6,
these are the two lowest intervalley minigaps. On the
whole, the theory8·6 is in reasonable agreement with
experiment.

The minigap width was determined from the width of
the structure in a(ns). For example, for Si(118), the
lowest intervalley minigap was Δ = 4 ± 1 meV for ns

»3x 1012 cm"2, whereas, for Si (115), the result for
n s s 7 . 5 x l 0 1 2 cm"2 was Δ = 18 meV.

FIG. 8. Shubnikov oscillations in conductivity in the case of
n-ILon Si (118): T=1.5°K; 1—# = 0; 2—« = 0.3 T; 3—
fl = 0.8 Τ (Ref. 3).

b) Phenomena in strong magnetic fields

The Shubnikov-de Haas effect is an important source
of information on the electron spectrum of the inver-
sion layer. A particular feature of the inversion layer
is that the Shubnikov oscillations in conductivity can be
observed not only by varying the magnetic field Η (ns

= const), as in the 3D case, but also by varying ws (H
= const). In the latter case, EF crosses the Landau
levels and this leads to conductivity oscillations with
the period given by

where Η, is the component of Η perpendicular to the
surface. The fact that Δη 8 is independent of the effec-
tive mass is a characteristic property of the 2D sys-
tem. 9

Figure 8 shows the function d<j(ns)/dns for Η perpen-
dicular to the surface in the case of Si (118). In non-
quantizing fields, 0 <Η < 0.3 Τ (weT < 1, ωβ= |e \H/mec,
where o)e is the cyclotron frequency), there are no os-
cillations. In moderate fields, 0.3 Ί<Η <0.7 Τ, os-
cillations are observed due to electrons in the second
miniband (ns > 3 xlO12 cm"2), whereas there are no such
oscillations in the first miniband (for which coeT <1).

When Η 2 0.7 Τ, there are oscillations due to elec-
trons in the first miniband (ws < 3 Χ 1012 cm"2). Further
increase in Η extends these oscillations to higher val-
ues of ws and, when # > 0 . 9 T, ttiey are superimposed
on oscillations due to electrons in the second miniband.
This has been interpreted as magnetic breakdown.

The increase in the period of oscillations due to elec-
trons in the second miniband (see Fig. 8) is connected
simply with the fact that the total electron density n s ,
which is plotted along the abscissa axis, is distributed
between the two minibands as the second miniband be-
comes filled.

If we know the period (11) and the number of oscilla-
tions, we can determine the electron density in each
miniband. Figure 9, which is taken from Ref. 13,
shows the electron density n s 2 in the second miniband
as a function of the total density n s for a number of

orientations. We note that the values of n S 2 in this
figure are too high by a factor of two. In fact, for the
intervalley minigap, the multiplicity of the valley de-
generacy of the second miniband is 1 and not 2, as was
assumed in Refs. 3 and 13 which were based on the
single-valley model.

The effective mass at the Fermi level can be obtained
from the temperature attenuation of the oscillations
(Fig. 10): in the first miniband, m* = 0.2m0 as for
Si (001), but, in the second miniband, the mass is
much higher and highly nonparabolic. Simple compari-
son of Figs. 5 and 10 [in the light of (9)] will already
show that experiment is in qualitative agreement with
theory. Quantitative agreement requires the assump-
tion that Δ in (8) increases substantially with increasing
n s and Θ. Thus, for Si (118), the increase in ns from
3 xlO12 to 6x 1012 cm"2 is accompanied by an increase in
Δ from 4 ± 1 to 8 ±3 meV (Ref. 3).

For Si(2,2,23), the gap Δ cannot be determined
since neither the structure of a[ns) nor oscillations due
to electrons lying near the bottom of the second mini-
band are detectable. This is probably connected with
a smearing out process associated with scattering at
low values of ws. Nevertheless, oscillations appear
for larger values of ns and extrapolation of the cor-
responding curve in Fig. 9 to low values of ns can be
used to obtain the pseudoperiod (see Table I).

Additional information about Δ can be obtained from

(118)110')

0 2 4 6 δ 10 12
nStl0

a cm*

FIG. 9. Population of the second miniband »S 2 as a function of
the total concentration of electrons in n-IL on Si for several
orientations.13 Values of θ are shown in parentheses.

380 Sov. Phys. Usp. 23(7), July 1980 Volkovef a/. 380



mc,W-'m0

2

V* t

FIG. 10. Shubnikov effective mass in n-IL on Si (118) (Ref. 3).

magnetic breakdown. For values of ns for which the
second miniband begins to fill, and when Η is not too
high, one can see the Shubnikov-de Haas effect due to
electrons in the second miniband with a long period in
terms of the reciprocal magnetic field (Fig. 11). In
strong fields, i.e., for H>H0 [Ho~ 1.2 Τ for Si (118),
Ho~ 8 Τ for Si (115)], magnetic breakdown restores
those orbits that were available to the electron in the
absence of the minigap (Fig. 11). The condition for
magnetic breakdown (#0~Δ2) yields Δ(115)/Δ(118)β2.5,
whereas the ratio determined from the period of the
Shubnikov oscillations, Ans, is equal to 5. One of the
reasons for this discrepancy is discussed in the next
chapter. In the case of Si(2,2,23), the breakdown can
be seen for all ns and Η for which the Shubnikov-de Haas
effect was observed, which is an indication that Δ is
small. For the second minigap (gap 2 in Fig. 4a), very
approximate estimates based on magnetic-breakdown
data yield6 Δ-10 meV (ws «8 χ 1012 cm"2, 6 = 2.90°) and
Δ-3 meV ( n s = 1 . 7 x l 0 1 2 c m - 2 , 6=1.1°).

In very strong fields (up to 20 T, parallel to the in-
version layer, Landau quantization does not occur, and
the minibands are subject to spin splitting. This is in-
dicated by the splitting of peaks on the da(ns )/dns

curve.1 4 Hence, one can show that, for EF lying within
the minigap, Δ(115)/Δ(118)«2.5, which is in agree-
ment with the magnetic breakdown result.

There are brief reports on measurements performed
on cyclotron resonance in an inversion layer on Si (118)
(Ref. 13). When EF lies below the minigap, cyclotron
resonance due to electrons in the first minigap (me

sO.2mo) could be observed. As ns was increased,
cyclotron absorption was found to include the contribu-
tion due to electrons in the second miniband with lower
cyclotron mass. The necessary condition for the ob-
servation of cyclotron resonance due to both types of
orbit ("lens" and "dog's bone" in Fig. 4b) is thatff
must not be too weak, so that ωτ > 1 can be satisfied,
and not too strong, so that there is no magnetic break-
down. These conditions do not appear to have been
satisfied in published work.1 3·5

An anomalous dependence of the amplitude and period
of Shubnikov oscillations on uniaxial compression S in
the case of Si(l, 1,10) was recently discovered17 (Fig.
12). As S increases, the oscillation amplitude initially
increases but then falls, whereas, for Si(001), the am-
plitude monotonically decreases with increasing S. The
effect was absent in the case of tension. It is con-
cluded17 that this anomaly is connected with the depen-
dence of the structure of the miniband spectrum on the
magnitude and sign of deformation.

c) Optical properties in the infrared

Infrared absorption data5·1 5 · 1 7 · 1 9 provide us with a
direct confirmation of the existence of minigaps. The
high-frequency conductivity σ(ω) deduced from these
data is shown in Fig. 13 for a given value of n s . When
the electric field Εω in the incident wave is perpendicu-
lar to the superlattice axis, the experimental curve is
not very different from the usual Drude law (the oscil-
lations are then due to interference effects). However,
when the radiation is polarized parallel to the superlat-
tice axis, the σ,,(ω) curve shows an absorption peak
which has been interpreted in terms of crossing of the
bottom intervalley minigap. The position and height of
this peak depend on ns.

The pseudoperiod of the superlattice was determined
from the position of the structure of the static conduc-

S-207HI**?

FIG. 11. Effect of magnetic breakdown on the Shubnikov-de
Haas effect.14

FIG. 12. Shubnikov oscillations in the conductivity of n-IL on
Si(l,l,10) underpressures (compression): Η =3 Τ, Τ = 1.2°Κ,
current flows along the superlattice axis, S is at 45° to the
current in the (1,1,10) plane.17
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FIG. 13. High-frequency conductivity of n-IL on Si (119)
(Ref. 5): Τ = 1.2 °K, (a) Εω perpendicular to superlattice axis,
(b) Εω parallel to superlattice axis. Solid line—theoretical5

( B S = 2 . 7 9 X 1 0 1 2 cm"2; A = 3.4meV; τ = 0.83χ 10"12sec).

tivity curve a(ns), and the relaxation time τ was found
from the absolute value of a(ns). Thus, by adjusting Δ
until the theoretical and experimental graphs of σ,,(ω)
agree, one can determine the function A(ns) (Fig. 14).
The minigap width obtained in this way is an almost
linear function of « s .

Another approach is to investigate Infrared absorption
in the inversion layer as a function of ns for ω= const
(Fig. 15). The peak on curve 1 (for the inversion layer
with θ «10° and <p = 45°) was absent when the radiation
was polarized at right-angles to this superlattice axis,
and shifted toward larger ns as ω was increased. The
minigap width determined from these measurements
for Si (118) is in agreement with the static conductivity
data.

For Si(0,3,17) (θ«10° and <p = 90°), there is no peak
on curve 2 for either polarization of Εω despite the fact

FIG. 15. Relative change in infrered absorption for radiation
polarized along the superlattice axis as a function of »s for
two orientations of the inversion layer: 1—fl« 10°, φ =45°;
2—θ κ 10°, <p=90\ T = 1.5°K, «ω = 3.68 meV (Ref. 17).

that the inversion layers for which curves 1 and 2 were
obtained had the same mobility and the same value of
Θ. Nevertheless, the small anisotropy in the deriva-
tive of absorption for parallel and perpendicular polar-
izations relative to this superlattice axis indicates that
a small minigap, not exceeding 1 meV, was probably
present. Hence, it may be concluded that Δ depends
both on θ and on φ.

In addition to the peak on the σ(ω) curve, which is
due to the crossing of the minigap, an additional broad
peak was observed19 at high frequencies (-120 cm"1). It
was absent when the incident radiation was polarized at
right-angles to the superlattice axis, its amplitude in-
creased linearly with ns, and its position was indepen-
dent of ns. The authors of Ref. 19 point out that the
frequency range corresponding to this peak also con-
tains the maximum of the density of states for TA
phonons. It is suggested that, owing to the properties
of the electron-phonon interaction in the superlattice,
the Τ A phonons may become optically active.

The existence of the minigap is reflected even more
clearly in photoresponse6·16 than in static conductivity
or absorption. The graph of photoresistance against
« s (Fig. 16) shows a peak (the fourth peak in Fig. 16b)
when EF reaches the bottom minigap. Its position is
independent oi Κω. The other peaks are the same for
both Si (119) and Si (001). The first peak in Fig. 16b
is due to heating effects and the second, third, and
fifth correspond to transitions between the ground and
the three excited electrical subbands.

4 , MeV

FIG. 14. Width of bottom intervalley minigap as a function of
»s (or tJ.V) as reported in Ref. 5: 1—infrared absorption for
Si (119), 2—Shubnikov-de Haas effect data for Si (118).

FIG. 16. Photoresponse of n-IL on Si (119) as a function of
ns: n s=1.49xl0"dJ-Vi)cm- 3; Vt=0.3V; 0 — 1; 0 — 2;
0 —• 3—contribution of intersubband transitions; broken line
identifies the peak connected with the crossing of the minigap.
(a)Kco = 33.06meV; (b) Κω =33.06 meV, FD =300mV-cm'1;
(c) Κ(μ> = 2.50 meV, FD = 350 mV · cm'1 (Ref. 16).
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Radiative recombination of hot electrons accompany-
ing the crossing of the bottom minigap has been re-
corded for the structure consisting of a metal (Ti), a
14-A layer of SiO2 and Si (119).18 The electrons were
heated by electric field pulses FD applied along the in-
version layer, and emitted radiation with energies Ηω
»Δ. The power radiated for Ηω = 4.4 meV (the detec-
tor was tuned to this frequency) and FD = 12 V/cm was
10"9Woveranareaof2.5x2.5mm(linewidth~lmeV).
Estimates show that, by increasing FD (this is done by
increasing the thickness of the SiO2 film, which deter-
mines the maximum value of FD) and by increasing the
area of the structure, the radiated power can be in-
creased to 10'6 W. The quantum energy can be varied
between 1 and 20 meV. The results of this particular
research are of considerable practical interest.

5. SIZE OF MINIGAPS. DISCUSSION OF RESULTS

The position of the minigap in k,,-space is, on the
whole, satisfactorily described by existing theories
(see Table I and Fig. 7). However, the same can not
be said of results concerning the minigap width.

Different workers have established the phenomeno-
logical dependence of the bottom minigap width on ns

and Θ:

Φΐ + ft·),

A = (B + C sin2 Θ) ns, (12)

where, according to Ref. 18, B = 1.1 χ 10"12 meV· cm"2,
C= 17 χ 10"12 meV cm2 (infrared emission by hot elec-
trons corresponding to 6 = 6°, 9°; ^ = 45°) and, accord-
ing to the data reported in Refs. 15 and 17, B = (1.1
±0.1) xlO"12 meV-cm"2and CslOxlO" 1 2 meV· cm2

(infrared absorption for 6 = 6°, 8°, 10°; φ = 45°).

These data do not indicate a strong dependence of Δ
on the azimuthal angle17: when <p = 90° and Θ— 10°, it is
found that Δ&1 meV for realistic values of ns. More -
over, the width Δ depends on the type of experiment
from which it was deduced. Thus, results obtained
from magnetic-breakdown data are very «different from
those obtained from static conductivity or infrared
absorption (see Sec. 4).

Several attempts to calculate the minigap width have
been reported.

The theory of intervalley splitting due to scattering
by the surface was developed in Ref. 20 for Si (001) and
was then generalized5 for calculations of the bottom
intervalley minigap. This minigap is always formed5

at the point \kx\ = (2 π/α) sin θ. The result is given by
(12), but the theoretical constants Β and C are very
much smaller than the experimental values.

Several of the lower minigaps were calculated in
Ref. 21 for n-IL on Si surfaces of arbitrary orienta-
tion, using the following Hamiltonian of the effective
mass method in the expanded band scheme (atomic
units):

hl2 = -i Er exp - x 3

(14)

where V(z) is the self-consistent IL potential defined
in Ref. 9, the (χχ,χ2,κ) and the (klf k2,k3) axes lie along
the cubic directions [100], [010], and [001 ], respec-
tively, the principal axes of the IL (x,y,z) are defined
in Sec. 3, the constants Ka,M,ET,N are the parame-
ters of bulk silicon, Σ is the deformational potential,
and e12 is the possible deformation in the (xux2) plane.

The kp matrix in (13) describes the dispersion rela-
tion for the conduction band of silicon in a direction
close to [001] and, in particular, the two valleys with
centers at k3 = iK0, k1 = k2 = 0. The inversion-layer
valleys interact in an electric field because of tunneling
in k-space. This mechanism of intervalley interaction
is referred to as "electrical breakdown" (by analogy
with magnetic breakdown). It sets in when the interval-
ley matrix element of the operator h12 is different from
zero, with the first term in h12 ensuring "breakdown"
through the point Γ in the 3D Brillouin zone of silicon,
and the second term ensuring breakdown through the
point X. Let us now transform in (13) and (14) to the
coordinates x, y, ζ attached to the inversion layer. It
is clear that Η is invariant under translation in k,,-
space by multiples of (4ττ/α) sine along the ks axis. The
is equivalent to the existence of a one-dimensional su-
perlattice with period A = a/2 sine. The position of the
minigap in k,,-space as determined in Ref. 21 agrees
with the results reported in Refs. 5 and 6.

If we regard n12 as a perturbation, we can obtain
expressions for the minigap width Δ. It has been
shown21'22 that Δ depends on θ, φ , ns and on k, and the
pressure. For the two bottom minigaps which are of
the intervalley type (1 and 2 in Fig. 4a) and are due to
"breakdown" through X and Γ, we have in first order
inι hl2 (in units of 10'12 meV· cm'2; ky = exy = i

Δ.γ (ft,, = 0) = | 17.9a sin 2?:-sin9tge | re?,

ΔΓ (*„ = 0) = 0,367a (1 + 4.46 sin* θ)*| cos θ Γ»;ιί,

(15)

(16)

H =
^ h*2 hS2'

+ V(z), (13)

where wj is close to ns under the experimental condi-
tions21 and α κ θ . 4 . Higher-lying minigaps, both inter-
valley and intravalley, are due to interference between
the X-breakdown and Γ-breakdown. They appear when
higher orders of perturbation theory in h12 are em-
ployed.

Theory21 predicts strong azimuthal dependence of all
the minigaps except for the second (ΔΓ) because of the
presence of the factor sin2<p in (15). All the minigaps
(apart from ΔΓ) are also found to depend on the size
and sign of the deformation. Moreover, since Δ de-
pends on ky, the values of Δ deduced from magnetic-
breakdown data should be appreciably different from
those deduced from optical absorption. The above con-
clusions, given in Ref. 21, are in qualitative agree-
ment with experimental data. 3 · 1 7

However, the numerical values of the minigap widths
are, as a rule, much lower than the experimental val-
ues.
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In our view, the inconsistency of the approaches de-
veloped in Ref. 5 (see also Refs. 6 and 21) is that they
do not reflect the actual 2D symmetry of the system. It
was, in fact, postulated that the minimum surface vec-
tor of the reciprocal lattice was always equal to (4π/
α) sine, whereas, as was shown in Sec. 3, this is valid
only for Si(llw) with η odd. In general, the vector
(4π/α) sin© is one of the vectors of the reciprocal lat-
tice but not necessarily the smallest. If we follow the
above papers, we cannot, therefore, deduce, for ex-
ample, the position of all the minigaps for arbitrary
orientation of the inversion layer. This is so, in par-
ticular, for the bottom minigap for Si(2,2,23) (if we
follow Ref. 5, we obtain L t t M r = 149 A, which is in
worse agreement with experiment than the value re-
ported in Ref. 7, namely L t t M r = 223 A).

6. CONCLUSIONS

The existence of minigaps in the case of n-lL on high-
index Si planes can thus be regarded as firmly estab-
lished. The position of the minigaps in k,,-space is
qualitatively described by existing theories. On the
other hand, calculated values of the minigap width turn
out to be too low. It follows that the derivation of a
consistent theory of the orientational superlattice still
remains a pressing problem.

The final elucidation of the nature of the effective po-
tential of this type of superlattice will have to await
more extensive experimental studies (using other orien-
tations and materials, including single-valley semi-
conductors).

One hopes that such effects will be observed also in
other systems, for example, in the 2D electron gas on
the cleavage plane of germanium bicrystals.'"

The ability to control the parameters of the superlat-
tice is important from the applied point of view. In
this connection, we note the paper by Tsui and Gornik18

(see the section on "Experimental Data").

In conclusion, we should like to thank A. A. Sukhanov
and E. V. Chenskii, and also B. M. Vul and E. P.
Zavaritskaya for useful discussions.

7. ADDENDUM

We shall now summarize the new results published
since this review was written. They were reported at
the Fourteenth International Conference on the Physics
of Semiconductors (England, 1978) and the Third Inter-
national Conference on the Electronic Properties of
2D Systems (Japan, 1979).

Careful measurements of infrared absorption in n-IL
on Si(lln) and Si(Olw) at several fixed frequencies24

have shown that the measured bottom minigap width
\n(ns) is a nonlinear function of n s . This can be ex-
plained by assuming that the true minigap width [ see
Eq. (8)] is linear in ns but depends on ky in an essential
manner. Therefore, instead of (12), the following em-
pirical formula for the bottom minigap has been pro-
posed

Δ(θ, φ, η,, (17)

w h e r e A ^ 0 . 3 x HT^meV· cm2; J31=45xl0"1 2meV· cm2;
Cx = (0.09/ir) χ 1024 meV. cm4; /(θ, φ) * sin2e for θ s8°;

/(θ, φ) ~sin2(p. It is important to note the qualitatively
new behavior of Δ(θ) for large Θ: when θ>8°, the func-
tion /(Θ) reaches a plateau, which is theoretically unex-
pected. The function A(ky, Θ) differs from the predic-
tions in Refs. 21 and 22. Moreover, when 0 = 0, fey

= 0, the value given by (17), in contrast to that given by
(12), is in good agreement with experimental data on
intervalley splitting in n-IL on Si (001).

The first quantitative determinations of high-lying
minigap widths based on infrared absorption25 and in-
frared emission by hot electrons26 have shown that the
spectrum emitted as a result of radiative recombination
of hot electrons contains peaks (up to four peaks for
specimens with θ~ 1°) due to the crossing of the mini-
gaps Δ, (the subscripts i= 1,2,3,4 label the minigaps
in order of increasing energy; see Fig. 4). It has been
shown"8 that Δ2(«5) changes from 3.0 to 4.7 meV as ns

increases from 2.5 xlO12 cm"2 to 6.9 χ 1012 cm"2; Δ3 in-
creases from 2.3 to 3.2 meV as ns increases from 3.9
xlO1 2 to 6.9xlO 1 2 cm"2; and Δ4~2.3 meV when n s =6.9
χ 1012 cm"2. These values are higher than the theoret-
ical predictions21 by nearly an order of magnitude.

The intrasubband infrared photoconductivity of n-IL
on Si (118) has been measured27 in quantizing magnetic
fields. Shubnikov-type oscillations with clear manifes-
tations of magnetic breakdown through the bottom mini-
gap have been found. Experiments on cyclotron reso-
nance in Si (119) have revealed27 certain features such
as the shift, broadening, and complication of line
shapes with increasing ns, for which no interpretation
is as yet available.

Some authors2 8·2 9 have noted the dependence of indi-
vidual results on technological conditions under which
the specimens were produced. This refers, above all,
to the function \{φ) for fixed Θ. Thus, for 6= 10°, it
is found that Δ1(φ = 0ο)« Δ1(<ρ = 45°), according to Refs.
17 and 24; according to Ref. 28, Δ1(</? = 0°) « Δ1((ρ = 45°);
according to Ref. 29, Δ,(<ρ = 0°) = 0. 5Δι((ρ = 45°). Sev-
eral (although not all) specimens with 6-1° exhibit a
new gap28 when the Shubnikov-de Haas effect is exa-
mined, the position of which in k,,-space is not de-
scribed by the theory.5·6 · 2 1

All authors emphasize the considerable discrepancy
between theory and experiment insofar as the gap width
is concerned. It is thought that this may be due to de-
formations at the Si-SiQj boundary, the magnitude of
which may depend on fabrication technology.29 Inclu-
sion of the exchange-correlation interaction may also
increase the predicted values of Δ.

Kaplan30 has contributed an interesting paper in which
slow electron diffraction by atomically pure Si sur-
faces cut at small angles to Si (001) has revealed the
presence of ordered steps which do not disappear even
when specimens are heated up to 1100°C or when ad-
sorption of hydrogen or oxygen is investigated. The
geometric size of these steps is in agreement with
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predictions for the perfect high-index surface. This
periodic topology may be one of the reasons for the ap-
pearance of the superlattices4'13 provided it does not
disappear during the preparation of the metal-dielec-
tric-semiconductor structure.
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