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The contemporary state of neutron diffraction of magnetic structures is analyzed from the standpoint of the
theory of symmetry of crystals. It is shown that the varied and numerous structures determined in neutron-
diffraction studies can be classified and described by the theory of representations of space groups of crystals.
This approach is based on expanding the spin density of the crystal in terms of basis functions of the
irreducible representations of its space group. Thus the magnetic structure can be specified by the mixing
coefficients of the basis functions. Analysis of a large number of different kinds of magnetic structures shows
that they arise in the overwhelming majority of cases, in accord with Landau's hypothesis, from a phase
transition that follows a single irreducible representation. This means that the number of parameters that fully
fix the magnetic structure of an arbitrarily complex crystal is small and equal to the dimensionality of the
responsible irreducible representation. This offers great advantages in employing the symmetry approach in
deciphering neutron-diffraction patterns of a crystal under study. This is because it reduces the problem of
determining a large number of magnetic-moment vectors of the crystal to finding a small number of mixing
coefficients. This review presents the fundamentals of such a symmetry analysis of magnetic structures and
methods of determining them from neutron-diffraction data. The described method, which is closely allied to
Landau's general theory of phase transitions, is illustrated by the most recent neutron-diffraction studies of
magnetic structures. They included the so-called multi-k-structures, which are characterized simultaneously
by several wave vectors, and structures described simultaneously by several irreducible representations of the
space group of the crystal. The article gives a physical explanation of the existence of such structures. The
experimental studies of crystal-lattice distortions accompanying the onset of magnetic ordering are reviewed.
It is shown how symmetry arguments allow one to determine these distortions as well as the unknown
magnetic structure. This review presents in condensed but accessible form the symmetry approach to
describing the magnetic structures of crystals and analyzes on this basis the feasibility and degree of reliability
of deciphering them by employing the scattering of unpolarized and polarized neutrons.
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1. INTRODUCTION book, which consists of more than 700 pages of text,

Thus far the magnetic structures of more than a thou- ^eS^e *f*™™ ^«na t ion on the magnetic
sand magnetic materials have been studied by neutron ^ ^ 2 5 ZlT " d l f f r a c t l O n in

diffraction. The results of these studies have been pre-
sented most fully in a handbook on magnetic structures1 We can trace in the bibliography given in this hand-
published in Poland in 1976 in the English language. The book how neutron-diffraction studies have developed
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FIG. 1. Yearly numbers of neutron-diffraction studies of mag-
netic structures in the 25 years of studies using reactors.

during this time (Fig. 1). Their peak lies in the period
from 1960 to 1970 (the golden decade of magnetic neu-
tron diffraction). This is explained by the establishment
of a large number of neutron-diffraction laboratories
throughout the world and by the interest aroused by the
discovery at the beginning of this period of helicoidal
and other exotic magnetic structures. In recent years
the flood of neutron-diffraction studies has ebbed, but
is still very high.

Two problems arise in studying and correlating the
material given in the handbook1: first, one can syste-
matize in some way this "zoo" of magnetic structures;
second, how reliably have the magnetic structures
themselves been determined? The latter question is
especially topical since, as we know, usually a small
number of magnetic reflections (Bragg peaks) are well
marked on a neutron-diffraction pattern, and the mag-
netic structure cannot always be deciphered unambigu-
ously from them. This uncertainty in the interpretation
of the magnetic neutron-scattering pattern becomes
greater with increase in complexity of the crystal and
in the number of magnetic atoms per unit cell.

This article aims to show how a systematic account
taken of the symmetry of the crystal helps to solve both
these problems. Here a method proves fruitful that
rests not on the symmetry of the magnetically ordered
structure, but on the symmetry of the initial paramag-
netic phase of the crystal, which is described by its
space group G. This is based on the fact that the mag-
netic structure usually arises from the paramagnetic
phase of the crystal, and as a rule, the distortions of
the crystal structure itself in this phase transition are
negligibly small, and the problem reduces solely to the
orientation of the atomic magnetic moments.

In practive the problems of classifying magnetic
structures and of devising effective methods of deciph-
ering them from experimental neutron-diffraction data
can be solved by using the ideas of Landau's2 symmetry
theory of phase transitions. Here the density of aparam-
eter that characterizes the low-temperature phase (in
this case the spin density of the magnetically ordered
crystal) is expanded in terms of basis functions of the
irreducible representations of the symmetry group of
the initial phase. Dzyaloshinskif3·4 first successfully
employed this approach for describing magnetic struc-
tures of crystals; a systematic method that constitutes

the working apparatus for applying symmetry in neu-
tron-diffraction studies of magnetic structures has been
recently developed in a series of studies by Izyumov,
Nalsh, Petrov, and Syromyatnikov.5"10

An analysis of the results of neutron-diffraction stud=
ies of crystals performed in recent years in the high- -
flux reactors at Brookhaven, Oak Ridge, Grenoble, and
in other laboratories of the world shows that the study
of magnetic structures has progressed to a qualitatively
new level. Here the aim is not the standard (crude) de-
termination of the magnetic structure of a crystal, but
the discovery of its subtle characteristics or concomit-
ant phenomena, e.g., adjustment of the crystal struc-
ture accompanying magnetic ordering. In this situation
it is important to be guided in an experimental study by
theoretical ideas that are often based on symmetry theo-
ry or on the general concepts of the theory of phase
transitions.

This review will present the major results of neutron-
diffraction studies of magnetic structures based on the
above-cited ideas of symmetry theory and concepts of
phase transitions. Examples will be given of recent
"subtle" neutron-diffraction studies performed with ac-
count taken of these ideas. Apparently the latter define
the level of character of the neutron-diffraction studies
of the coming decade.

2. METHODS OF DESCRIBING MAGNETIC
STRUCTURES OF CRYSTALS

a) Magnetic symmetry

The first fruitful attempts to systematize the magnetic
structures of crystals have involved studying their in-
trinsic symmetry as systems of spatially ordered axial
vectors (atomic magnetic moments). This approach
constitutes a natural development of the theory of sym-
metry of crystal structures as spatially ordered sys-
tems of points (atoms). As we know, the entire variety
of crystal structures can be described by the 230 Fedor-
ov (space) groups. To describe fully any crystal struc-
ture means to specify its space group and the positions
of the multiple points occupied by atoms in it, i.e., in
essence, the positions of the atoms in the unit cell.

The space group G of a crystal is the group of sym-
metry operations, consisting of translations, rotations,
inversions, etc., that leave this crystal invariant. In
order to describe magnetic structures, it has been pro-
posed to add one additional operation R of spin inver-
sion, i.e., change of the direction of a spin to the op-
posite, to the listed, purely crystallographic symmetry
elements. The groups constructed by using the elements
of the space groups and the operation R are called the
Shubnikov groups. There are 1651 Shubnikov groups in
total that are called on to describe the symmetry of
magnetically ordered crystals (including also the 230
Fedorov groups, which describe the symmetry of para-
magnetic crystals).11 To state the magnetic structure of
a crystal means to specify its Shubnikov group and the
positions of the multiple points in it, i.e., in essence,
to specify the orientations of the atomic spins in the unit
cell.
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FIG. 2. Magnetic lattices arising from the simple tetragonal

Up to a certain time, this approach described all the
known magnetic structures and seemed quite satisfact-
ory. Before the discovery of helicoidal and other so-
called incommensurable magnetic structures, all mag-
netic structures could be characterized by a magnetic
unit cell. The neutron-diffraction studies of the first
decade (the fifties) led to the discovery of a multitude of
magnetic structures having a magnetic cell enlarged by
a factor of two, four, or eight over the chemical cell of
the crystal. This type of magnetic structures is ex-
cellently described by the apparatus of Shubnikov sym-
metry. An important point here proves to be the concept
of the magnetic lattice.

As is well known, crystal structures are character-
ized by Bravais lattices constructed from the fundamen-
tal translation vectors tx, tj, and t,. Each of the 230
Fedorov groups is described by one of the 14 Bravais
lattices. A magnetic lattice constructed from the fun-
damental translation vectors tj1, tjj1, and tj1 of the mag-
netically ordered crystal belongs to one of the 36 mag-
netic (black-white) Bravais lattices. The concept of a
magnetic lattice incorporates the concept of antitrans-
lation, i.e., the operation \R, which consists of an or-
dinary translation and a spin inversion. Figure 2 shows
as an example some magnetic lattices that can arise
from the simple tetragonal crystal lattice Γβ. The
translations of the original lattice joining modes of dif-
ferent color in the magnetic lattice correspond to anti-
translations. The cases a) and b) correspond to doubl-
ing of the magnetic cell in one direction, case c) in two
directions, and d) corresponds to a twofold increase in
the volume of the magnetic cell. If we ascribe a differ-
ent orientation of atomic spins to the black and white
dots, the stated lattices describe col linear magnetic
structures. In cases a) - c), these are antiferromagnet-
ic, and ferromagnetic1' in d).

Any Shubnikov symmetry lattice describes a collinear
magnetic structure. Yet we should not suppose that the
Shubnikov groups cannot describe noncoilinear magnetic

FIG. 3. One of the proposed magnetic structures in UOj. The
black dots indicate the uranium atoms, which lie on the body
diagonals of the cube. Oxygen occupies positions at the ver-
tices and center of the cube, at the center of each face, and
at the midpoint of each edge. The oxygen atoms are drawn in
full only in a single octant of the unit cell.

structures. Just as any arbitrarily complex crystal
structure can be treated as a set of a certain number of
identical Bravais lattices interpenetrating one another,
many noncoilinear magnetic structures can be treated
as interpenetrating magnetic Bravais lattices. Each of
these lattices is formed of collinear spins. However,
the relative orientation of the spins belonging to the dif-
ferent lattices can be arbitrary and can lead to a non-
coilinear antiferromagnetic structure. An example can
be the antiferromagnetic structure of UO2 (Fig. 3),
which consists of four collinear ferromagnetic Bravais
lattices.12

Shubnikov symmetry does not suffice for describing
magnetic structures for which a magnetic cell does not
exist. Examples of these are the structures: simple
spiral (SS) and longitudinal spin wave (LSW) (Fig. 4).
The first of these contains ferromagnetic layers in
which the orientation of the spins varies by a certain
angle in going from one layer to another along the di-
rection of the hexagonal axis. This type of structures,
which have been called spiral, helicoidal, or screw
structures, has been found in many tens of different
crystals. The second structure in Fig. 4 is an example
of the magnetic structures of the spin-wave type, which
are also often encountered. This structure is collinear,
but the projections of the atomic spin vary by a harmon-
ic law along a certain direction. If the conserved pro-
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^Transl. ed. note: The Russian original does read "ferromag-

netic," but the translator correctly queried the appropriate-
ness of this term applied to Fig. 2d.

FIG. 4. Incommensurable magnetic structures observed in the
rare-earth metals: (a) simple spiral (Dy, Tb, Ho); (b) longi-
tudinal spin wave (Er, Tm).
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jection of the spin is oriented along the direction of
modulation (as in Fig. 4b), the structure is called a lon-
gitudinal spin wave (LSW), while if it is perpendicular
to this direction, it is a transverse spin wave (TSW).

Magnetic structures of this type (they are often called
modulated) are not rare cases, but are observed in dif-
ferent variations in a multitude of crystals of different
types (see, e.g., the handbook of Ref. 1). Since the
phase change between two adjacent spins can be arbi-
trary, one speaks of the incommensurability of the per-
iod of this structure with respect to the crystal period.
Hence they cannot be characterized by a finite magnetic
unit cell. In order to describe their symmetry, as well
as that of a number of other structures not describable
by the apparatus of Shubnikov groups, various general-
izations of these groups have been developed that have
generally been termed color symmetry.13"15 However,
from the physical standpoint this method of describing
magnetic structures is not very constructive. Success
in describing the most general type of magnetic struc-
tures involves the use of the theory of representations
of the space groups of crystals. Before we proceed to
present the fundamental ideas of this method, let us
study the problem of the wave vectors of a magnetic
structure.

b) Wave vectors of a structure

The information of the translational properties of the
magnetic structure of a crystal can be conveniently ex-
pressed by using the concept of the wave vector. By
definition, the wave vector k of a magnetic structure
relates the spin Sn{ of the ith atom in the nth primitive
cell*2 of the crystal of the spin S^ of the ith atom in the
zero cell by the relationship

S,,( = e"'»S0i. (2.1)

Here tB is the translation vector from the zero cell to
the wth cell. The wave vector of the structure is always
one of the wave vectors of the first Brillouin zone, and
can be represented in the form

lb3. (2.2)

Here b 1 ( b2, and b3 are the basic vectors of the recipro-
cal lattice of the crystal, while h, k, and I are certain
numbers chosen so that the vector of (2.2) always lies in
the first zone.

We can easily verify that the magnetic lattices shown
in Fig. 2 have the following wave vectors:

a) k -Tg-b.,, b) k = — b , ,

d) k J-b, + 4-b2- (2.3)

Lattice c) cannot be derived by using a single wave vec-

2)Henceforth we shall be referring to the primitive cell of the
crystal, since the concept of the unit cell is not identical to
that of the primitive cell for all centered lattices. The con-
cept of the unit cell, which is convenient and generally ac-
cepted in problems of diffraction and structural analysis,
gives way to the concept of the primitive cell in group-theo-
retical analysis. The identification of these two different
concepts can be the source of serious errors.

jb,

FIG. 5. Two wave-vector stars {f bj} and {ybj,-fb2} of a sim-
ple tetragonal lattice.

tor, but is described by the wave-vector star {k} ·

We recall that a wave-vector star is the term applied
to the set of nonequivalent arms obtained from a given
wave vector (the arm kx) by the action of all the sym-
metry elements h of the point group of the crystal. If
we denote the elements that generate the nonequivalent
arms \tL as hL , then the entire star can be derived by
using the relationship

ki = hjs.,. (2.4)

Here L = 1, 2 . . . , Z4 is the number of arms of the star.

Figure 5 shows two stars for the Γ, lattice. One of
them is single-armed with k = $>3, and the other is two-
armed with

, = 4-l>i and k2 = -i- (2.5)

Evidently, many-armed stars arise whenever the wave
vector lies in a direction for which crystallographically
equivalent directions exist. If the wave vector belongs
to a many-armed star, then a superposition of the
states described by single arms is possible. Thus, in
the case of the star of (2.5), a magnetic lattice can oc-
cur having the following relationship between Sni and
So i:

«.«^'^'^^^'''Χ. (2.6)

Here Sj,( and S%( are certain vectors that are specified
in the zero cell of the crystal. Upon testing all the
translation vectors t,, of the original lattice, we see that
certain of them are translations, and certain are anti-
translations of the magnetic lattice. Thus one derives
lattice c) of Fig. 2. The nodes of the original lattice
marked by crosses in the diagram correspond neither
to translations nor antitranslations. The spins of the
atoms corresponding to them are not collinear with the
spins of the magnetic lattice marked with black and
white dots, and must form per se the same type of lat-
tice.

We see from the discussed example that the magnetic
structure in the case of a many-armed star must be
characterized by all the arms of this star. Instead of
(2.1), we must have the following relationship7:

S.i-S '̂-So1,. (2.7)
L

We shall call the vectors SQJ, which can be complex, the
arm contributions to the magnetic structure.

The fundamental relationship (2.7) defines the trans-
lational properties of an arbitrary magnetic structure
when the wave-vector star is defined. However, these
properties depend not only on the star, but also on the
set of arm contributions {sj}, that differ from zero.
Let us call the set of arms of the star for which the arm
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contributions differ from zero the transition channel?'™
We can easily see that the transition channel fixes un-
ambiguously the translational properties of the magnetic
structure. Thus the following theoretical problem a-
rises: to indicate all the magnetic lattices that can be
derived from a given crystal lattice by magnetic order-
ing.

To solve it, we should take the wave-vector stars
differing in symmetry for each of the 14 Bravais lat-
tices (the list of all such stars is finite and is contained
in handbooks, e.g., in Kovalev'sbook17). For all chan-
nels of each star (by combining its arms in different
ways), we should find the lattices corresponding to them
by Eq. (2.7). For all the Lifshits stars18 (whose wave
vectors end at symmetry points of the Brillouin zone),
this task has been accomplished in Refs. 5 and 7. The
results are reduced to a table which can be used to
specify the magnetic lattice for a given transition chan-
nel in the original lattice. It has turned out that one of
the 36 magnetic Shubnikov symmetry lattices arises in
all the channels of the Lifshits stars. Thus the specifi-
cation of the magnetic lattice and the concept of the
magnetic unit cell prove unnecessary if one specifies
the wave vectors of the magnetic structure, or more
exactly, the transition channel.

In the case of non-Lifshits stars, the relationship
(2.7) gives rise to modulated magnetic structures. Ac-
tually, in crystals having an inversion center, any non-
Lifshits star contains also the arm -k as well as the
arm k, so mat a two-arm channel always exists in which
Eq. (2.7) acquires the form:

nt — e -iklnSk (2.8)

This relationship describes a structure of the spin-wave
type (LSW or TSW) if the arm contribution S% is real,
and some spiral structure if Sjt is complex. In partic-
ular, if S*i = S(ralt + im^), where mtj and m2i are two
orthogonal vectors perpendicular to the wave vector k,
the magnetic structure corresponding to (2.8) amounts
to a simple spiral (SS).

Thus we conclude that a full specification of any mag-
netic structure of a crystal does not require specifying
individually the spin vector at each magnetic atom of the
crystal. To do this, it suffices to fix the transition
channel (i.e., the participating arms of the star) and the
set of arm contributions—the vectors S^ to be fixed in
the zero primitive cell of the crystal. If the channel and
the arm contributions are known, Eq. (2.7) enables us to
find the spin vectors of the atoms in any cell of the
crystal. The maximum number of vector parameters
s£ is lka, where σ is the number of magnetic atoms in
the primitive cell of the crystal.

The fundamental relationship (2.7) is based on the hy-
pothesis that the magnetic structure is described by a
single wave-vector star. This statement is a general-
ization of an enormous amount of experimental material
on magnetic structures. It also has a theoretical justi-
fication within the framework of the Landau theory of
phase transitions2 (see below). There are several ex-
ceptions in which the structure is characterized at the
same time by two stars. Each of them usually charac-

terizes the ordering of mutually orthogonal projections
of the atomic magnetic moment. An example might be
the ferromagnetic spiral (FS) found in Ho and Er. In
this case the helicoidal ordering of the spin projections
on the basis plane is characterized by a non-Lifshits
star, while the ferromagnetic component of the spins on
the hexagonal axis is characterized by the star k= 0.

c) Expansion in basis functions

We can attain a deeper description of a magnetic
structure by expanding the arm contributions in terms
of the basis functions of the irreducible representations
of the group of the wave vector k .̂ We can write this
expansion in the form9

Here S(J"|i) is the atomic component of the basis function
of the i>th irreducible representation of the group G* (we
shall denote the irreducible representations of the group
Gk by d**, while the index λ enumerates the basis func-
tions of this representation). The basis function itself
amounts to a multidimensional column consisting of all
the atomic components S(x"ii) of the crystal. However,
owing to the relationship6

it is fully fixed by the atomic components S(f|Oi) of the
zero primitive cell, which we shall denote by S(̂ "if ).

If we denote the multicomponent column of the atomic
spin vectors SnJ by S u l , then, owing to Eqs. (2.7), (2.9),
and (2.10), we obtain the following representation of the
magnetic structure S u l in terms of the basis functions
ΨΪ" of the wave-vector group:

sw _ y ν ci-VLV. (2 11)

The set of basis functions for all the arms of the star
realizes an irreducible representation of the space
group G of the crystal. Thus the relationship (2.11) ex-
presses an expansion of the magnetic structure in terms
of the basis functions of an irreducible representation of
the space group. The Landau theory of phase transitions
is based on this type of relationships. The relationship
(2.9) and the equivalent (2.11) are exact. If we employ
the constructive idea of Landau that a phase transition
(in this case from a paramagnetic to a magnetically
ordered phase) follows a single irreducible representa-
tion (say, d*"), then we can omit the summation over ν
in Eqs. (2.11) and (2.9). Then (2.9) is written in the
form

(2.12)

The hypothesis of a single irreducible representation
finds a microscopical substantiation in structural trans-
itions of the distortion type that occur via the mechan-
ism of a soft mode. As applied to magnetic phase trans-
itions, its validity is not so evident, since the paramag-
netic phase of the crystal possesses no soft magnetic
modes that might "freeze in" in the crystal below the
magnetic transition temperature 7\ to form a magnetic
structure. However, magnetic order fluctuations arise
in the system near Tk that can be classified in terms of
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the irreducible representations of the space group of the
crystal. Those whose characteristic energy vanishes
first (at higher temperature) freeze in in the crystal, as
it were, thus giving rise to the magnetic structure. Let
us call the corresponding irreducible representation the
responsible or relevant one.

These arguments offer certain grounds for expecting
that a magnetic phase transition will follow a single ir-
reducible representation of the group G. Consequently
the magnetic structure should be described by a single
irreducible representation. In Sec. 5 we shall analyze
the manner in which this hypothesis is fulfilled, while
for the present, anticipating later discussion, we merely
note that it is fulfilled satisfactorily. What we have said
makes it understandable why the magnetic structure is
described by a single wave-vector star: the irreducible
representation of the space group is specified primarily
by the wave-vector star (and in addition by the index v).

We now summarize. The magnetic structure can be
described by two relationships—(2.7) and (2.12). The
former defines the translational properties and reduces
the magnetic structure of the entire crystal to the mag-
netic structure of its primitive cell. The latter rela-
tionship expresses the magnetic structure of the primi-
tive cell in terms of the mixing coefficient of the basis
functions of the responsible representation.

Further, let us discuss the following problems: 1)
how does one determine from neutron-diffraction data
the required characteristics of the magnetic structure;
2) to what extent are the employed assumptions about
the magnetic structure fulfilled, in particular, the hy-
pothesis of a single irreducible representation; 3) how
does one calculate the basis vectors S(J"|i) in terms of
which the unknown magnetic structure is expanded.

3. DECIPHERMENT OF THE MAGNETIC
STRUCTURE FROM EXPERIMENTAL NEUTRON-
DIFFRACTION DATA

a) Diffraction of neutrons by a magnetically ordered
crystal

Diffraction is governed by the well-known expression
for the elastic magnetic scattering cross-section19

)2 | F (x) p. (3.1)

Here ro= e*/mc2 is the electromagnetic radius of an el-
ectron, γ = - 1.99 is the magnetic moment of the neutron
in nuclear magnetons, and we have

F (κ) = I (TixV, (κ) (S,- (eS,) e). (3.2)
ί

Here S, and Ft (K) are the spin and the magnetic form
factor of the Zth atom situated at the lattice node R,, and
e = K/K is the unit scattering vector.

Whenever the crystal has a magnetic structure charac-
terized by the wave-vector star {kj}, the spin of the at-
om I (R, = t B + Xf) of an arbitrary cell of the crystal is
expressed in terms of the arm contributions S^ by Eq.
(2.7). Upon substituting it into (3.2) and summing over
all the translations t B , we represent the cross-section

in the following form:

2 2
L

)N Σ δ «-

Here we have

IS ^ ( K ) So1,.

(3.3)

(3.4)

(3.5)

The summation over b is performed over the recipro-
cal-lattice vectors of the original crystal.

In deriving Eq. (3.3), we have employed the known
identity

^ - 2 .-*'» 28,.» (3.6)

(N is the number of cells in the crystal, and 6q_b is the
Kronecker delta symbol). We have also used the fact
that two arms kL and kL, of the star cannot differ by an
integral reciprocal-lattice vector. Owing to the latter
situation, the scattering by the magnetic structure is
additive with respect to the arm contributions and is
grouped into Bragg peaks whose angular arrangement
is defined by the conditions

κ = b + kL. (3.7)

The nuclear scattering cross-section is described by
the expression19

i d C C ' , . . . . \i ft

2i °*·
(3.8)

This implies the appearance of a nuclear peak under the
condition

κ = b,

i.e., at every reciprocal-lattice node of the crystal.
The quantity/"u c l is called the nuclear-scattering struc-
ture amplitude, while the quantity f« in (3.5) should be
called the magnetic-scattering structure amplitude.

Thus, in the general case the magnetic-scattering
peaks do not coincide with the nuclear-scattering peaks.
Only when the magnetic structure is characterized by
the wave vector k = 0 (as happens in a ferromagnetic
structure or antiferromagnetic structure if the magnet-
ic and crystal cells coincide) are they superimposed on
one another. Observation of a system of magnetic re-
flections allows one to determine from (3.7) the wave
vectors of the magnetic structure. This constitutes the
first stage in the neutron-diffraction study of the mag-
netic structure. In virtue of the relationships (3.3)-
(3.5), measurement of the intensities of the peaks en-
ables one to determine the atomic spin vectors S^.
This constitutes the second, final stage in the neutron-
diffraction study. Now let us examine both these stages
in greater detail.

b) Determination of the wave vectors

The relationship (3.7) implies that each arm of the
star gives rise to a system of magnetic reflection re-
plicated from a given one by all the translations of the
reciprocal lattice of the original crystal. Each magnet-
ic reflection, which is characterized by the scattering
vector κ (x = hhx + kb2 + Ibj, can be symbolized by a
triplet of numbers (hkl) called the Miller indices. If we
subtract the indices of the nuclear reflections from the
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FIG. 6. Magnetic lattices derivable according to three dif-
ferent channels of the star {k10} of a fee crystal, and the cor-
responding pattern of magnetic and nuclear reflections. In the
right-hand side of the diagram, the open circles denote the
nuclear reflections lying at the reciprocal-lattice nodes, and
the black dots denote the magnetic reflections.

Miller indices of the magnetic reflections, we get the
Miller indices (hLkLlL) of the arm kt of the magnetic
structure under study. This is how one must determine
the wave vectors of the magnetic structure that consti-
tute the transition channel.

As an example, let us examine the magnetic struc-
tures that arise in the fee lattice from a magnetic trans-
ition following the three-arm star having the arms

(b + b) k ^ i f b + b;,), k^-^-^^b,,) (3.9)

(the star {k10} in the nomenclature of Ref. 17). The fun-
damental reciprocal-lattice vectors of

^ = -^-(111), b, = — (111), b3 = — (111). (3.10)

Here a is the length of the edge of the cubic unit cell of

the crystal, which is characterized by the shortest

translations:

I, = (3.11)

We can easily verify by Eq. (2.7) that we obtain the mag-
netic lattices shown in Fig. 6 in the three channels:
one-arm (with the wave vector kt), two-arm (kj and kg),
and three-arm (klf kj, and kj). Magnetic reflections
distinguish each of these lattices: (001) for the one-arm
channel; (010) and (100) for the two-arm channel; and
(001), (010), and (100) for the three-arm channel. The
Miller indices of these reflections coincide with the no-
tation of the a r m s in (3.9) with use of the expressions
(3.10):

k, = -^(001), k2 = -^-(010), k3=~(t00). (3.12)

We see clearly from this example how the transition

channel must be determined from the system of magnet-
ic reflections. A table is given in Refs. 5 and 7 from
which one can determine the transition channel and the
magnetic lattice (its unit cell and Shubnikov-group sym-
bol) from the observed system of magnetic reflections
for all the Lifshits stars of all 14 original Bravais lat-
tices. By using this table, an experimenter can trans-
late the information on the translational properties of
magnetic structures from diffraction language into
group-theoretical language, i.e., determine the wave-
vector star and the transition channel.

Evidently, in principle one can determine the transi-
tion channel from the system of magnetic reflections
(i.e., without treating the intensities) only by neutron
diffraction using single crystals. In neutron diffraction
using powders, one must bear in mind, e.g., that the
reflections (100), (010), and (001) are indistinguishable
for a cubic crystal. Then to establish the transition
channel, i.e., the magnetic lattice, we must compare
the intensities of the magnetic reflections. Thus the
study of powders enables one to establish from the sys-
tem of magnetic reflections only the wave-vector star,
so that the magnetic structure must be represented in
the form of the superposition of (2.7) of spin functions
of individual arms. The inter-arm mixing coefficients
(or the arm contributions Sj) are chosen by best agree-
ment with experiment.

However, the described situation pertains only to the
case in which no domain (antiferromagnetic) structure
exists in the studied single crystal. The existence of
domains substantially complicates the possibility of de-
termining the transition channel from the system of
magnetic reflections. One domain differs from another
(when they differ arbitrarily in volume and shape) only
in the overall orientation of the magnetic structure. The
orientations of the atomic spins in two domains are re-
lated by the rotational transformation ha, which does not
depend on the number I of the atom. That is, we have

Sf = fens/. (3.13)

Here S\ is the spin of the Zth atom in the first domain,
and SJ is the spin of the same atom when it belongs to
the domain a.

Now let us study the neutron-diffraction pattern in a
multidomain specimen. To do this, let us write the
structural magnetic amplitude F(k) by subdividing the
summation in (3.2) over all the atoms of the single crys-
tal into a summation over the domains and a summation
within an individual domain. Since the domains are of
macroscopic dimensions, coherent scattering ar ises in
each of them. Then in calculating the amplitudes in (3.2)
we can take the limit as the number of cells Na per in-
dividual domain approaches infinity. The coherent na-
ture of the scattering allows us to transform to the av-
eraged magnetic amplitude (F(H)) :

(F(x)) = -i- y, e"ix(1"+x')/'i(x) V. paha\Slni — (eSii)e]. (3.14)
ni η

Here pa is the relative fraction of domains of type a.

The calculation of Eq. (3.14) depends on the type of
domains. Let us assume that a magnetic structure is
realized in an individual domain that has a single wave
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vector (a one-arm channel). In this case domains hav-
ing crystallographically equivalent directions of the
wave vector must exist. All such wave vectors a r e
a r m s of the s tar and can be derived from the first a r m
by Eq. (2.4). Upon comparing this relationship with
(3.13), we see that the rotation operation ha that super-
poses the magnetic s t ructures in the two domains is the
operation hL.

In the single-arm channel, Eq. (2.7) reduces to the
following relationship: S^ = « '^ ' ' "S^. Upon operating on
it on the left and on the right by the operation hL, we
get

AaSii = e"ii-'"A1.S0,. (3.15)

Upon substituting this relationship into (3.14) and sum-
ming over the integral translations by using (3.6), we
can represent the magnetic amplitude for a multidomain
specimen in the following form:

(3.16)<F (κ)> = V pL £ F, (x) «-""<
L i

Thus, a calculation of the cross-sect ion in (3.1) by u s -
ing this amplitude gives r i se to the same s tructure a s
in (3.3), namely: magnetic-scattering peaks a r i s e at
the scattering vectors k = kL+ b that a r e the same a s in
scattering by a magnetic s t ructure characterized by a l l
the a r m s of the star (al l-arm channel). Hence the sys-
tems of magnetic reflections for a one-arm structure in
a multidomain specimen and for an a l l - a r m structure in
a one-domain specimen a r e indistinguishable. This in-
troduces difficulties in establishing the transition chan-
nel in neutron diffraction by a single crystal . We have
treated the simplest case of a domain magnetic s t ruc-
ture . In the general case the diffraction pattern be-
comes more complicated. In some cases one can dis-
tinguish the effects of the domain structure in decipher-
ing neutron-diffraction patterns from differences in the
intensities of the Bragg peaks in the case of one-domain
and multidomain s t ructures . 2 0 The problem of how ex-
per imenters establish the transition channel will be dis-
cussed in greater detail in Sec. 5.

c) Determination of the atomic spin vectors

After the wave-vector star and the transition channel
have been revealed, one must determine the atomic spin
vectors in the primitive cell. To do this, one should
employ the expression for the intensity of the magnetic
reflections:

TL /\tL\JIL\ i*i 1 r7\
1 yt ~ (ΜχΜχ)· \0 . 1 if

Each reflection among the entire series of magnetic re-
flections generated by a single arm kj, contains σ com-
plex vectors S j , which can be found by a variational
procedure by best fit with the measured intensities. An
analogous procedure for the series of reflections cor-
responding to another arm enables one to find the vec-
tors of the corresponding arm contribution, etc. Each
time one varies σ complex vectors when studying a sin-
gle crystal (one-domain), and ίΛσ vectors when studying
a powder neutron-diffraction pattern.

This corresponds to the traditional way of deciphering
a magnetic structure, in which one seeks directly the
atomic spin vectors (or the arm contributions in the

case of a many-arm magnetic structure). By employing
the theory of representations of the space groups, one
can sharply reduce the number of parameters to be var-
ied. Actually, let us substitute the expression (2.12) for
the arm contribution in terms of the basis functions of
some irreducible representation of the wave-Vector
group Gk into the formula (3.5) for the magnetic struc-
ture amplitude. We see that it decomposes into the sum
of the normal amplitudes/!?*:

λ i λ

The normal amplitudes can be calculated in advance and
hence are considered to be known. Thus, in employing
the expression (3.18) in the formula (3.17) for the in-
tensity of the Bragg peak, it is not the a unknown com-
plex vectors S^ that are to be varied, but the lv mixing
coefficients Cf. Here lv is the dimensionality of the
responsible irreducible representation. For the space
groups, the /„ are small numbers (1, 2, 3, and rarely 6).
Reduction of the variables to be varied in the adjustment
procedure is especially effective when there is a large
number σ of magnetic atoms in the primitive cell of the
crystal.

In the magnetic structure under study, the responsible
irreducible representation is not known in advance.
Hence one should run one by one through all the irredu-
cible representations of the space group having the giv-
en star (the number of them is small, and the irreduc-
ible representations themselves are taken from the
handbooks). Each time here one must deal with a small
number of parameters to be varied, or mixing coeffi-
cients. The representation that yields the best fit of the
calculated and observed intensities determines the re-
sponsible representation. If it turns out that none of the
irreducible representations gives a satisfactory fit, one
must combine them, assuming that the magnetic struc-
ture is described by a reducible representation of the
space group (see Sec. 5).

d) Potentialities of using polarized neutrons

We have been treating the decipherment of magnetic
structures employing unpolarized neutrons. Evidently,
part of the information on the magnetic structure that
is contained in the scattered beam is lost here in aver-
aging over the spin of the neutrons. Use of polarized
neutrons allows one in principle to obtain more reliable
information on the magnetic structure with a substan-
tially smaller number of measured magnetic reflections.
Here one can treat two types of effects: the relationship
of the scattering cross-section in the Bragg peaks to the
polarization vector of the incident neutron beam and the
change in the polarization vector of the beam upon scat-
tering.

The intensity /£ of the Bragg peak n = b + kL of the po-
larized beam having the polarization vector p0 is deter-
mined by the relationship10·21

/ί ~ {(ΜίΜί) + i [MjMi] Po}. (3.19)

(This expression holds only when k£ *0, since the mag-
netic and nuclear scattering are superimposed in the
case of magnetic scattering with kL = 0, and the formula
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for the intensity is altered.) The polarization vector ρ
of the beam scattered into this Bragg peak is given by
the expression10"21

As we see from Eqs. (3.17), (3.19), and (3.20), all the
effects of Bragg scattering on the magnetic structure
are governed by the same axial vector Μχ, which de-
pends on the arm-contribution vectors S j .

If one measures the intensity of the Bragg peak for
three mutually perpendicular positions of the initial po-
larization vector p0, then, owing to the second term in
(3.19), we get three equations for determining Mi. If
one derives the magnetic structure from a representa-
tion of dimensionality no higher than three (higher di-
mensionalities are seldom encountered), these equa-
tions prove sufficient to determine the mixing coeffi-
cients C£" of one arm contribution. Then, for a com-
plete determination of the magnetic structure, it suf-
fices to study one reflection each among the system of
reflections produced by an individual arm. Analogously
we can determine the arm contribution to the magnetic
structure by measuring the polarization vector of the
scattered beam of polarized neutrons or the spontan-
eous-polarization vector that arises in scattering of an
unpolarized beam. Thus, if the magnetic structure is
characterized by a single-arm star or a single-arm
channel of some star, often it would suffice to have only
one magnetic reflection to determine it completely, if
we measure the polarization effects and use symmetry
analysis. The maximum number of necessary reflec-
tions for an arbitrary magnetic structure is evidently no
greater than the number of arms of the star.

Of course, these unique potentialities of polarized
neutrons work only in the case of a single-domain spec-
imen. In the presence of magnetic domains with an
equally probable orientation distribution, the stated ef-
fects disappear owing to averaging over these orienta-
tions.

4. CALCULATION OF THE BASIS FUNCTIONS

a) Irreducible representations of the space groups

The preceding sections have shown that the problem of
describing and deciphering the magnetic structure of a
crystal reduces to calculating the basis functions of the
irreducible representations of its space group, i.e., the
vector quantities S(x"li). Now we shall show how they
should be calculated. First we shall provide the neces-
sary information from the theory of irreducible repre-
sentations of the space groups.

A representation of the space group Dlt)v is construct-
ed from the representations d*" of the wave-vector group
Gt. The wave-vector group is a subgroup of the space
group G consisting of the elements g that leave the wave
vector k invariant. That is, the element g is contained
in G k if

gk = k + b. (4.1)

Here b is an arbitrary reciprocal-lattice vector.

A representation of the group G k is a set of matrices
dj£ correlated with each elementg^Gx that satisfies the
same multiplication rules as do the elements of the
group themselves. The matrices of the irreducible rep-
resentations are tabulated for the elements g = {h\r^ of
the so-called zero block of the group Gk, i.e., for the
set of elements that do not contain integral translations
t(rh is some fractional part of the translation accomp-
anying the rotation Λ).17 Arbitrary elements of the group
Gk satisfy the relationship

+ t}) = * | τ,,}). (4.2)

that reduces all elements to elements of the zero block.
The matrix df^g) is defined on some basis of functions
Ψ5" that are transformed in terms of one another by the
action of an element gEGt by the relationship22

(4.3)

If an element g of the space group G that doesn't be-
long to Gk acts on the function $f, linear combinations
will arise that are composed of functions iffy" that be-
long to other arms of the star {k}. Thus the set of func-
tions φΙι" having the indices L = 1, 2 Ζ*; λ = 1, 2 , . . . ,
lv is transformed in terms of one another to create an
irreducible representation of the group G having the
same index ν as the irreducible representation of the
group Gf Evidently the dimensionality of the represen-
tation is Zk x /„. Henceforth all the final formulas will
contain only the matrices of the irreducible representa-
tions of the group G k. Therefore we shall not explain
the structure of the matrices of the representations of
the large group G.

b) Reducible representations of the space groups

In calculating the basis functions of the irreducible
representations of the groups G and Gk in which one can
expand the spin density of the crystal in the form of
(2.9) or (2.11) (as well as other quantities, e.g., the
charge density, the dipole-moment density, etc.) it is
useful to employ reducible representations of these
groups constructed of localized atomic functions, thus
including information on the properties of the crystal of
interest to us. The idea of constructing these repre-
sentations consists of the following.

Let the state of each atom be characterized by some
atomic function localized near its equilibrium position
in the crystal. The state of the crystal as a whole is
characterized by the set of these functions defined for
the individual atoms and forming some multidimensional
vector in atomic-function space. When acted on by the
elements of the space group, this set will be transformed
into another set of atomic functions from the same
space. Thus it realizes some representation of this
group, which in the general case should be reducible.
The properties of this representation depend not only on
the structure of the crystal, i.e., on the arrangement of
the atoms in space, but also on the physical content of
the chosen atomic functions.

An atomic function may describe no specific charac-
teristic of an atom other than its definite number in the
crystal. Thus, when the elements of the space group
act on this type of state vector of the crystal, everything
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is reduced to a permutation of the numbers of the atoms.
In another case, a characteristic can be associated with
each atom that is described by a polar vector (e.g., its
displacement from its equilibrium position) or an axial
vector (pseudovector), which might be the magnetic mo-
ment of the atom. When acted on by the elements of the
group G, along with the change in the number of the
atom, the vector ascribed to it will be transformed. The
representations of the space group that are generated on
the basis of scalar, vector, and pseudovector atomic
functions are respectively called ρermutational, mech-
anical, and magnetic. A mechanical representation is
employed to describe phonons in a crystal and atomic
displacements in structural phase transitions,22 and a
magnetic representation is used to describe the magnet-
ic structures of crystals.6·23·24 The permutational rep-
resentation is auxiliary in nature, and we shall use it
to analyze the exchange Hamiltonian in the crystal.9

We shall present the final form of the matrices of
these three representations, whose derivation in such a
convenient form was given in Refs. 5 and 6. The per-
mutational, mechanical, and magnetic representations
of the wave-vector group Gt for a given crystal will be
denoted respectively as dp, d*, and a\. Their matrices
have the following form:

{<#(*)>!/ ='-""i ·" ·•%.„„ (4.4)

{^(«««...-«•"''•'•''«..X, (4.5)

{A (*)}i«. a = '-tu>* %.,A*?- (4-6)

Here i and j are the numbers of the atoms in the primi-
tive cell of the crystal, and or and /3are the vector in-
dices of x, y, z. Thus the matrices of a permutational
representation have the dimensionality σ χ σ, while those
of vector representations have 3σχ3σ. β" β is the rota-
tion matrix of the position vector under the action of the
rotational component η of the element g = {h |TJ·, while
we have δΛ = ± 1, depending on whether the element h is
an element of the first type (ordinary rotations) or of
the second type (inversion, reflection). The vector
&p(g,j), which is called the returning translation, indi-
cates the cell into which the atom of number j is trans-
ferred from the zero cell by the action of the element
g (it has the number i in the new cell). This vector is
defined by the relationship

tational representation; and we have

+ τ,, = χ, + ap {g, j). (4.7)

Thus we can easily calculate the matrices of all three
representations by compiling a table of the permutations
of the atoms of the primitive cell under the action of the
elements of the group Gk.

The representations that have been introduced can be
decomposed into irreducible representations of the
group Gt. For example, for a permutational represen-
tation this decomposition has the form

4 = S'^ t v - (4.8)

Here we have

(4.9)

Further x^ig) is the character of the irreducible rep-
resentation d*", while χ£ is the character of the permu-

i. el- (4.10)

The summation in (4.9) is performed over the elements
of the zero block of the group Gk, and w(Gj) is the num-
ber of these elements (which coincides with the number
of elements of the point group Cl corresponding to the
group Gk). For the mechanical and magnetic represen-
tations one can derive formulas analogous to (4.8) and
(4.9), while their characters are given by the formulas

(4.11)

(4.12)

We can treat Sp Rh as being the character of the repre-
sentation V that a vector follows while being transformed
by the action of the rotational component of an element
of the space group. Then δΑ SpRh is the character of the
representation V that a pseudovector follows while be-
ing transformed. Therefore the relationships (4.11) and
(4.12) imply that the vector representations d\ and dj
are the direct products of the permutational represen-
tation dp by the representations V or V. That is, we
have

(4.13)

c) Formulas for the basis functions

In order to construct the basis functions tpj? of the ir-
reducible representations of the group Gk, we can em-
ploy the general formula for the projection operator
(see, e.g., Ref. 22):

ψχν = -γ- 2 ^'μ (?) 7" (#) ψ. (4.14)

Here d£ is the matrix of the chosen representation, and
ψ is some starting function. If we fix the index μ, Eq.
(4.14) determines the 4, basis functions of the irreduci-
ble representation d*". Upon choosing as the starting
function the state vector in the space of localized atom-
ic functions, we obtain one of the three types of basis
functions, scalar, vector, or pseudovector.

Let us give the final formulas for the atomic compon-
ents of the functions of the scalar, vector, and pseudo-
vector bases, which are respectively6:

= Σ <?&

to)

(4.15)

(4.17),

The vectors S(i"|i) are precisely the quantities that fig-
ured in the expansions of the spin density of the crystal
of (2.9) and (2.12). The indices μ, j, and β enclosed in
square brackets must be fixed in the calculations. A
shift to another set of indices implies a change of start-
ing function in Eq. (4.14), and it can lead either to an
identical zero or yield a new set of functions that trans-
form according to the given representation, provided
that it enters more than once into the makeup of the cor-
responding reducible representation dp, d*, or d^.

One can obtain the basis functions for another arm kL
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of the wave-vector star by the action of the correspond-
ing element gL = {hL\rh£ on the basis function of the first
arm k. For a pseudovector basis, for example, the cor-
responding formula has the form6

s a i£ l V | i ' ) = i-itt»pwL-i>ohi2flhes| l(Jv ')· (4.18)
ι»

The change of the numbers i and V of the atoms follows
the rule

TABLE I. Permutations of atoms for the group D%,.

(gL, i). (4.19)

It suffices to employ Eqs. (4.17) and (4.18) for actual
calculation of the pseudovector basis functions. We note
that one must calculate the basis functions of only those
irreducible representations that enter into the makeup
of the magnetic representation d\ (for the other irredu-
cible representations, Eqs. (4.17) and (4.18) should
identically give zero).

d) An example

Let us describe the magnetic structures of the heavy
rare-earth elements shown in Fig. 4 in terms of basis
functions of the irreducible representations. Their
crystal structure is characterized by the space group
D\h, with atoms occupying the position 2 (c) with the
following coordinates (in the hexagonal system) (Fig. 7):

2(444) (4.20)

The group D^ contains 24 symmetry elements in the
zero block. In agreement with the handbook,17 we shall
denote their rotational components h. as hx,k2, ,h2i.
Here /it is the unit element, h2 - he are the C" rotations
about the hexagonal axis, h7 — hl2 are the C2 rotations
about the twofold axes perpendicular to the major axis,
hl3 is an inversion, and all the rest are products of the
stated rotations by the inversion, so that hl2tf = hfhl3. In
the group D£,, the rotational elements with even indices
contain the accompanying translation τ = {θθ^ of a half-
period along the hexagonal axis.1 7 The atoms 1 and 2
are permuted by the action of the stated elements of the
group. Their permutations are calculated by Eq. (4.7)
are shown in Table I along with the returning transla-
tions a.p.

We see directly from Fig. 4 that the wave vectors of
the SS and LSW structures lie along the hexagonal axis.
Therefore in both cases we have k = μ\>3, where μ is a
numerical factor that defines the phase change of the
magnetic structure in going from one crystal plane to
another. According to the handbook,17 this wave vector
belongs to a two-arm star whose second arm is kj = - kt

FIG. 7. Crystal structure of the heavy rare-earth metals.
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5*
i;

Position 2 (c)

'•aP

1

I " " ! 1 t
2. - t , - t ,
1. - t 22

2 . - , ,

2 . . p

2
l . t 3

2. - t
1, —t
2. —t
1. —t
1. —t
2, - 1

i'. - 1

f f

x-t3

elements

\

l',

Position 2 (c)

'• ai>

2. _ « , , _ , ,

2. _ t 3

2 - ' <
1
2. - t ,
1. -t,-ta

2. -t,-ta

2 - a P

1. - t t — t j — 1 3

2. _ t l - t s - t 3

1. -t2-t,
2, -t,

i" =''"ts

1. t,
2. - t ,

ι. -ι,-ι,-ι-1,
2. - t , - t 21. - t . + ta

= Λ13^. Consequently the wave-vector group G t contains
12 elements in the zero block and has six irreducible
representations1 7: rlt ..., τ4 are one-dimensional, and
τ 5 and τ6 are two-dimensional. One can find their ma-
trices in the handbook.17 Here it is obvious that they
must contain the parameter e'lkl'7= β" ' ϊ μ , so that the
basis functions calculated by Eqs. (4.17) and (4.18) will
also contain phase factors of this type (Table II). The
basis functions are written out in Table Π of those ir-
reducible representations of the group G* that enter in-
to the magnetic representation d\. According to Eqs.
(4.8)-(4.12), we have

4, = τ2 + τ4 + Τ5 + τβ. (4.21)

Here we have indicated the atomic components of the ba-
sis functions only for the atoms of the primitive cell of
the crystal. They can be expressed in terms of these
for an arbitrary atom by using Eq. (2.10). Each triplet
of numbers indicated in Table II gives the three com-
ponents of the vector S(x"|i) written in the Cartesian sys-
tem of coordinates.

Now let us examine the structure of the LSW shown in
Fig. 4b. It can be written analytically as follows:

S,,, = Sol cos (2πμη3), S0 2 = So l cos πμ, S 0 l = (0011). (4.22)

Here Β.φ is fixed by the manner of writing the arbitrary
translation %, = « ^ + n2t; + Kj^. We can easily verify by
using Table II and Eqs. (2.10) that this structure cor-
responds to a two-arm superposition of the basis func-

TABLE II. Basic functions of the irreducible representations

having k=μb3 for the group Dy,.

Representa-
tion

Arms

k,

k,

k,

k2

k,

ki

Atoms

1

(001)

(001)

(001) e-1*»

(1 —i0)

(1-iO)

(1-iO)

(Ί-ίθ)

(liO) «Τ1*"

2

(001) ein»

(001) e - i 2 n "

(001)£'πμ

(001) e-i2n»

(1(0) e*™"
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tions of the one-dimensional representation τ 2 :

LSW: ψ*Λ + «<«μψΜ.. (4.23)

Evidently the s t ructure of the SS shown in Fig. 4a i s

given by the analytic relationships:

S 0 2 = S 0 1 -=(UVO). (4.24)

Here Κφ is a rotation through the angle φ about the prin-
cipal axis of the crystal. This structure corresponds to
the following superposition of the basis functions of the
two-dimensional representation τ5:

SS: ^Λ_ίίκμψ£.η. (4.25)

Here we have φ = ιτμ.

Thus the incommensurable magnetic structures of the
rare-earth metals are described by a superposition of
the basis functions for the two arms k and - k of the
wave-vector star, which can always yield a real com-
bination. Analogously we can show that the other mag-
netic structures observed in the heavy rare-earth met-
als: ferromagnetic helix, complex helix, can be des-
cribed by the basis functions of the irreducible repre-
sentations of the space group D*,,. In the cascades of
magnetic phase transitions observed in a number of
rare-earth elements as the temperature is varied, each
magnetic phase is described by basis functions of the
irreducible representations of the same original phase:
the paramagnetic phase characterized by the symmetry
group D*h.

5. ANALYSIS OF MAGNETIC STRUCTURES BASED
ON THE THEORY OF PHASE TRANSITIONS

a) The concept of a single irreducible representation

The fundamental relationships (2.7) and (2.12) on which
the symmetry analysis of magnetic structures is based
are a consequence of Landau's hypothesis that a phase
transition follows a single irreducible representation of
the original phase. One can verify the fulfillment of this
hypothesis by trying to represent a known magnetic
structure with a given wave vector as a superposition of
the basis functions of some irreducible representation of
the wave-vector group.

Such an analysis of numerous magnetic structures, as
performed in Refs. 5-9, 1, and also in Refs. 50-52,
shows that in the overwhelming majority of cases the
magnetic structures are described by the basis functions
of a single irreducible representation. At the same
time, a certain number of exceptions exists.

For example, among the 40 rare-earth orthoferrites
described in the handbook of Ref. 1 several (LuCrO3,
NdMnO3, ErFeO3, and TmCrO3) are simultaneously des-
cribed by two irreducible representations (ail irreduci-
ble representations of their space group Pntna for k = 0
are one-dimensional). The magnetic structures of the
antiferromagnetics DySb and HoSb, which are charac-
terized by the wave vector k = (£?s), are described by a
combination of one- and two-dimensional irreducible
representations of the wave-vector group (the space
group Fm3m).

The umbrella-shaped structures of the garnets

ReFe5Ol 2 (Re = Dy, Ho, Er, Tb, Yb) are described by a
combination of three- and one-dimensional irreducible
representations of the space group laid, etc. However,
these exceptions are relatively rare.

b) Exchange multiplets

One of the reasons why magnetic structures can arise
simultaneously according to several irreducible repre-
sentations of the group G is degeneracy of the exchange
energy. As we know, the symmetry of the exchange
Hamiltonian is higher than the symmetry of the crystal
as described by its space group G, owing to the invari-
ance of rotation of all the spins by an arbitrary angle.
We can see this directly by writing the exchange Hamil-
tonian:

The symmetry group of the Hamiltonian of (5.1) (the ex-
change group) Gexca.n be written in the form G«= Ga

XGS, where Ga is the space group (acting only on the
atoms of the crystal), and G s is the rotation group in
spin space.26

This implies that its irreducible representations are
d*"xV, where V is the representation in accordance
with which a pseudovector transforms. One can write
down in these same terms the magnetic representation
d\ (see the second relationship in (4.13) as the direct
product of the permutational representation d\ by the
representation V. If we substitute into (4.13) the ex-
pansion (4.8) for d\ in terms of irreducible representa-
tions of the group Gt, then we in fact obtain an expan-
sion of the magnetic representation of the group G in
terms of the irreducible representations of the exchange
group:

ik VI V /jkv T7/< /e r\\

V

The representation d^xV is irreducible for the ex-
change group, although its restriction to the space group
G is reducible; the reduction is performed by using the
obvious relationships:

(5.3)

(5.4)

Here <Ph is the rotation angle corresponding to the ele-
ment g = {h\r^ (the factor (1+ 2cos<p») is the character
of the representation V). A rigorous derivation of
these formulas has been given in Refs. 5 and 9.

The physical meaning of Eq. (5.3) is clarified if we
recall Wigner's theorem on the relation of the energy
terms to the irreducible representations of the sym-
metry group of the Hamiltonian. The right-hand side of
Eq. (5.3) defines the set of states of the magnetically
ordered crystal having the same exchange energy. Let
us call this set the exchange multiplet. The exchange
multiplet is generated by the irreducible representation
of the group Gk that enters into the permutational rep-
resentation. Thus, Eq. (5.2) gives an expansion of the
magnetic representation into exchange multiplets, while
(4.3) determines the composition of these exchange mul-
tiplets.
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The dimensionality of the representation d*" x 7 ' that
corresponds to an individual multiplet is Zlv, and de-
termines the multiplicity of degeneracy of the states of
the crystal having the corresponding exchange energy.
When a crystal characterized by the space group Gk has
an anisotropic interaction, this level can split in agree-
ment with the right-hand side of Eq. (5.3). If the aniso-
tropic interactions are small in comparison with the
exchange energy, these splittings are also small, and
the magnetic structure can be characterized toy a set of
irreducible representations of the space group that form
an exchange multiplet.

The situation that arises here is fully analogous to that
which occurs in the theory of strong interactions. The
strong interaction between hadrons is invariant with re -
spect to rotation in isotopic-spin space, and is charac-
terized by the group SU{2). The charge multiplets cor-
responding to the irreducible representations of this
group are partially split under the influence of the elec-
tromagnetic interaction, which has a lower symmetry.
Thus, from the standpoint of the ideology of phase trans-
itions, the magnetic structure arises also in this case
from a single irreducible representation, but a repre-
sentation of the symmetry group of the Hamiltonian ra-
ther than of the symmetry group of the system.

We have seen that one can actually get a classification
of the energy levels of the exchange Hamiltonian by list-
ing the irreducible representations of the space group
Gk that enter into the permutational representation. Let
us examine now what information on the magnetic struc-
ture can be given by the basis functions of the permuta-
tional representation of the group G*. As early as 1961,
Bertaut29 proposed a method of studying a magnetic
structure in which it is treated as being an eigenfunction
of the exchange Hamiltonian. From this standpoint, to
find the possible magnetic structures in a given crystal
(if the exchange interactions in it are dominant) means
to solve the problem of diagonalizing the exchange Ham-
iltonian. Then each eigenfunction corresponds to a pos-
sible magnetic structure.29'30

On the other hand, the eigenvectors of the exchange
matrix have a direct relationship to the basis functions
of the permutational representation. If some irreduci-
ble representation d*1 of the group Gk enters once into
d\, then the basis function (4.15) of this representation
is an eigenfunction of the exchange matrix.9 If d*" en-
ters several times into d\, the eigenfunction of the ex-
change matrix is a superposition of the corresponding
sets of basis functions of the permutational represen-

i /

f i

*
' c

5 4

>

i \
FIG. 8. Type III ordering in a fee lattice.
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tation.9 The basis functions <p(?\i) of the permutational
representation are scalar (rather than vector) functions
and cannot in the literal sense define a magnetic struc-
ture. The atomic component of some function <p(5"|t)
determines only the cosine of the angle between the spin
vector at a given atom and some other vector. Hence ' '
they define only the relative orientation of the spin vec-
tors of the individual atoms. This is a direct conse-
quence of the above-cited invariance of the exchange
Hamiitonian with respect to rotation of all the spins.

c) Multi-k-structures

Analysis of the magnetic structures determined by
neutron diffraction that are described in the hand-
books1·25 shows that they are practically all character-
ized by only one wave vector. At the same time, often
the stated wave vector belongs to a many-arm star.
Thus the question arises: has one assumed a single-
arm channel from the outset in deciphering neutron-
diffraction patterns, or has one sorted out all the pos-
sibilities of many-arm channels, and obtained best
agreement of the calculated with the observed intensi-
ties precisely for a single-arm channel? It is very dif-
ficult to gain a definite answer from reading the original
literature, since usually the articles do not discuss this
question.

Most of the neutron-diffraction studies have been per-
formed on powders, in which the reflections arising
from the individual arms of the wave-vector star are
superimposed on one another and hence are not at all
distinguishable. As we have seen, the determination of
the transition channel when one is studying single crys-
tals is complicated by the domain structure. If one finds
magnetic reflections in different directions in the re-
ciprocal lattice, then one cannot infer from their pres-
ence that the magnetic structure arises in an all-arm
channel, since the same effect arises from scattering
by differently oriented domains. These arguments lead
to the conclusion that one must review the results of de-
ciphering magnetic structures having a wave vector that
belongs to a many-arm star.

As an example of magnetic structures characterized
simultaneously by several wave vectors belonging to a
single star (we shall call them multi-k-structures), we
can cite the so-called Type III ordering a a fee crystal32

(Fig. 8). This magnetic lattice is defined by the two
arms:

k, = I (b, + b2) + 1 (b, + b3), k2 - -k, (5.5)

of the six-arm Lifshits star {kj,33 as can be verified by
using the fundamental relationship (2.7). Upon substitut-
ing into (5.5) the expression (3.10) for the fundamental
reciprocal-lattice vectors, we find that they correspond
to the magnetic reflections (10|) and (T0^) (and others
differing by any reciprocal-lattice vector). In a neu-
tron-diffraction study of a single crystal of KjIrCle
[space group Ojj, with the magnetic Ir atoms occupying
the positions 4(a)], the authors of Ref. 34 observed the
magnetic reflections (1^0), (lfO), (lfO), (3^0), and
(3f0). In this system, two progenitors (l§0) and (If 0)
are singled out, which are not reducible to one another,
and which indicate the star {kj. They correspond to the
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rays k4 and kj (with k4 = - kg), which lead directly to the

lattice depicted in Fig. 8.

Another example of a multi-k-structure, which now
corresponds to a non-Lifshits star, is the recently
studied magnetic structure of CeALj. The study of this
structure is highly instructive, so that we shall describe
it in some detail. This substance belongs to the Laves
phases and has the space group Ojj (fee lattice). The
first neutron-diffraction studies on powders35 showed
the existence of a satellite having k= (2n/a) (£ + μ, 5-μ,
I), with μ = 0.112. This wave vector can be represented
as a slight deviation by 6k from the L if shits point k0:

£ | | 4 ^ (5.6)

Initially35 the magnetic structure was interpreted as a
sinusoidal modulation in the direction [lTO] perpendicu-
lar to the (lTO) plane. This plane contains the spins of
the two Ce atoms belonging to the primitive cell that
have the coordinates 1 (000), 2 ({{{) [positions 8(a)].
They are oriented in antiparallel fashion along the di-
rection of the body diagonal of the cube, i.e., So l~[lll],
S,̂  ~ |111]. Thus an antiferromagnetic ordering of the
spins exists that is characterized by the wave vector k0

and an additional modulation described by the vector 5k.

Such a structure can be described by basis functions
of irreducible representations of the group Gk. The star
of the vector k is 24-armed. Its three arms:

ed combinations of the arm-contribution vectors Ŝ ,

serve as the magnetic-order parameters. In our dis-

cussion, the vector indices of the order parameter are

inessential. Therefore we shall employ an abbreviated

notation and have indicated only the arm indices.

From the standpoint of translational symmetry, such
a term in the energy is allowed because the following
coupling exists between the wave vectors: kt + It, + 1̂
= k0, while the sum of all the wave vectors in the quat-
ernary term under discussion is 2k0, which is equal to
a reciprocal-lattice vector. Minimization of the energy
with account taken of the quadratic term leads to the
following coupling between the order parameters: Sk°
-S^^-iTn-Tf*, if S k i ~ ( r N - T ) e . This explains
the observed difference in the temperature-dependence
of the main and extra satellites. Since a quaternary
term of this type can exist only for a structure charac-
terized simultaneously by three wave vectors (a 3k-
structure), the observation of the extra peak can be
viewed as a well grounded argument in favor of a multi-
k-structure in CeAl2.

Another substance in which a multi-k-structure pos-
sibly exists is neodymium. A neutron-diffraction study37

has been made of single crystal of Nd, and the magnetic
structure was determined in two magnetically ordered
phases having TMl = 19K and ΓΝ2 = 7.5Κ. For Τ<ΤΚι six
magnetic satellites were observed corresponding to the
six-arm wave vector star {kj· (the space group of Nd is

which are grouped around_the vector (§H) a r e replicat-

ed around the directions (kki), (Mi), etc.

After Ref. 35 had appeared, the problem of the mag-
netic structure of CeAl2 could have been considered to
be settled if the neutron-diffraction studies performed
later on a single crystal36 had not shown a more complex
diffraction pattern. They found that there is not one sat-
ellite around k0 but three, having the wave vectors ku

It,, and k, of (5.7). If the specimen is a single domain,
the extra satellites can indicate a 3k-structure (a six-
arm channel, since whenever the ordering* follows a
non-Lif shits star, the arm - k must always exist as well
as the arm k in order to ensure that the structure is
real). Otherwise they can result from scattering by a
Ik-structure divided into domains.

Since it is hard to choose between these two possibil-
ities, various details in the diffraction pattern have been
studied. Thus it has been found that a weak satellite
with the wave vector ko= (2ι:/α)(£Η), accompanies the
three satellites corresponding to the wave vectors kt,
fcj, and kg. Here the temperature-dependence of its in-
tensity differs from that of the rest of the satellites.
While the intensity of the main satellites varies near
2"N = 3.85K as (Τκ - Γ)2β, the intensity of the extra sat-
ellite varies as (ΓΝ - Γ)ββ. One can explain the appear-
ance of this satellite and its special temperature-de-
pendence by assuming that the free energy of the mag-
netically ordered CeAl2 crystal contains a quaternary
term of the following form: S^S^S^S*0, composed of
the magnetic order parameters Sk. Certain symmetriz-

kj = μ ^ , k2 = μ ^ , k3 = μ (b, — bj), .,. g .

k = — μ ^ , k5 = — μ ^ , ke = —μ (b2 — b,).

It was assumed that these satellites arise from three
types of magnetic domains. Each of these possesses a
magnetic structure characterized by a pair of conjugate
wave vectors k and - k. Since the satellites have the
same intensity, it was assumed that orientation of the
domains in the three possible directions is equally prob-
able. Each domain possesses an LSW structure with its
wave vector along b u b2, or b2 - b ^ 3 7

As the authors of Ref. 37 themselves noted, the pro-
posed model does not agree with all the details of the
neutron-diffraction patterns. Therefore, recently new
neutron-diffraction studies have been carried out on a
single crystal38 that have confirmed the neutron-diffrac-
tion patterns first observed in Ref. 37. As a supple-
ment, careful measurements were made of the weak
satellites that were not taken into account in the des-
cribed model of the magnetic structure.37 The intensity
of one of them proved to have a different temperature-
dependence than the intensity of the "main" satellites,
which was proportional to ~ (ΓΝι - Τ)2β. (The tempera-
ture-dependence of the latter indicates a continuous
variation of the order parameters near ΤΝχ, i.e., a sec-
ond-order phase transition.) The intensity of the weak
satellite varies according to a law close to (THl — T)4*.

These two new established facts-the second-order
phase transition and the special temperature-depend-
ence of the weak satellite - were utilized by the authors
of Ref. 38 as a confirmation of the hypothesis of a multi-
k-structure in Nd corresponding to a transition by a
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six-arm channel of the star (5.8).

The essential arguments here proved to be those based
on the Landau phenomenological theory of second-order
phase transitions. Analysis of the expansion of the free
energy in powers of the order parameter for the Nd
crystal showed that a magnetic second-order phase
transition is possible. Its occurrence depends on the
relationship between the parameters in the quaternary
terms in the expansion of the energy, both in the Ik-
structure and in the 3k-structure, where all the com-
ponents of the order parameter S*i, S*2, and S*s simul-
taneously differ from zero. An analysis of the phase
transition taking account of the interaction of the fluc-
tuations in the critical region has been based on the re-
normalization-group method.39 However, it showed that
only one stable fixed point exists that corresponds to a
region of values of the parameters in the energy in
which a 3k-structure must be realized. Since it was es-
tablished experimentally that the transition to a mag-
netically ordered state in Nd is a second-order transi-
tion, this structure is unavoidably a 3k-structure.
These arguments are an example of how one can gain
information on the possible magnetic state of a crystal
by adducing the ideas of the modern theory of second-
order phase transitions.

However, how can one discriminate between the lk-
and 3k-structures? The special temperature-depend-
ence of the weak satellite was taken into account to solve
this problem. The authors of Ref. 38 proposed that this
satellite is of nuclear, rather than magnetic origin, and
that it arises from the adjustment of the crystal struc-
ture to the magnetic order characterized by the wave
vectors of (5.8). The interaction of the magnetic order
parameters Sk and the structural order parameters U*
is described by terms of the type S^S'^U*3, which differ
from zero only in a multi-k-structure. This leads to a
certain coupling between them: i/^-S^S""2, which gives
rise to the special temperature-dependence of the struc-
tural satellite ~ |t/k | 2~ (T S l - T)4* that is observed exper-
imentally.

Thus the establishment of the nuclear nature of the
weak satellite should have been a confirmation of the
hypothesis of a multi-k-structure in Nd. However, a
polarization analysis of this peak specially performed at
Oak Ridge showed that it is purely magnetic in nature.
Thus no experimental confirmation exists at present of
the hypothesis of a 3k-structure in Nd. It is clear only
that it is more complicated than the model proposed37 in
1964.

6. MAGNETIC DIFFRACTION OF NEUTRONS BY
STRUCTURALLY DISTORTED CRYSTALS

a) Adjustment of the crystal structure to the magnetic
structure

Thus far we have assumed that the onset of magnetic
ordering does not distort the original crystal. Now we
shall discuss the problem of how one must take into ac-
count possible distortions of the crystal structure in de-
ciphering the magnetic structure and how one deter-
mines them simultaneously with the unknown magnetic
structure from neutron-diffraction data. This problem

is best discussed using the concrete example of the neu-
tron-diffraction study of the antiferromagnetic UO2.

The UO2 crystal has a fee lattice with space group O\,
while the uranium and oxygen atoms occupy the posi-
tions: U-4(a), O—8(c) (see Fig. 3). Thus the primU^e.;
cell contains one U atom and two Ο atoms with the co-
ordinates:

U: 1(000), 0:l(i-44), 2{\\\).

Neutron-diffraction studies of UO2 have been carried
out at various times,4 0 ' 4 2 and each experiment has re-
vealed a system of magnetic reflections having progen-
itors of the (100) type. According to Fig. 6, this indi-
cates the wave-vector star {k1(}. The arms of this
three-arm star are given by the expressions (3.9).
Though there are no contradictions between Refs. 40-42
with respect to determing the wave-vector star, yet
each of them proposes a different magnetic structure.
The first study40 proposed a collinear magnetic struc-
ture corresponding to Type I ordering in the fee lattice32

with an orientation of the magnetic moment along the
body diagonal of the cube. Reference 41 proposed a
model that also corresponds to Type I, but with an or-
ientation of the spins along the edge of the cube. One
can easily show that Type I ordering in a fee crystal
described by doubling of the magnetic cell along one of
the edges of the cube corresponds to a single-arm chan-
nel of the star {kloj·. The recent neutron-diffraction
study,42 which was carried out using a single crystal,
detected all three types of magnetic reflections having
the progenitors (100), (010), and (001). This indicates
a three-arm channel of the star {k10K provided that it
does not result from a domain structure. However, as
we shall see below, this study revealed additional de-
tails in the diffraction pattern that allowed the authors
to state that UO2 can possess a noncollinear three-arm
magnetic structure with an orientation of the magnetic
moments at the uranium atoms along the body diagonals
of the cube.

These additional details involve the discovery of a dis-
placement of the oxygen atoms with the onset of magnet-
ic ordering. Here the interpretation of the neutron-dif-
fraction patterns requires one simultaneously to hypo-
thesize a magnetic structure and a structural distortion.
The hypothesis that atomic displacements arise in UO2

stemmed from the lack of agreement of the angular de-
pendence of the intensities of the magnetic reflections
as calculated from the magnetic form factor of uranium
(calculated with high enough accuracy) with the observed
values in the high-angle region. This discrepancy was
attributed to the proposed distortion of the oxygen lat-
tice, which is described by the same wave-vector star
as the magnetic structure. In this case, nuclear super-
structure peaks with an intensity proportional to the
square of the displacements of the oxygen atoms from
the sites occupied in the paramagnetic phase should be
superimposed on the magnetic peaks. This hypothesis
is favored by the fact that the difference between the ob-
served intensity of the superstructure peak and that cal-
culated under the assumption that this peak is purely
magnetic in origin increases with increasing scattering
angle. This cannot be explained as purely magnetic
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large-angle scattering by the magnetic form factor.

As a result of the stated approach to the interpreta-
tion of the neutron-diffraction patterns, a four-sublat-
tice model of a noncollinear magnetic structure with or-
ientation of the magnetic moments of the uranium atoms
along the body diagonals of the cube was proposed.42 A
certain model of collinear displacements of the oxygen
atoms along one of the edges of the cube was proposed
for the structural distortions of the oxygen sublattice.
However, the proposed pattern of the oxygen displace-
ments does not agree with the cubic symmetry of the
UO2 crystal below the magnetic-ordering temperature,
which was established with a high degree of accuracy in
the x-ray structural study.43

This situation calls for an additional neutron-diffrac-
tion study of the UO2 crystal, which should be guided by
the results of the symmetry analysis presented below.

The star {k10j- has three arms, for each of which one
should calculate the basis functions of the magnetic (d*)

TABLE IV. Allowable magnetic structures and structural dis-
tortions of the oxygen sublattice in UOj that have cubic sym-
metry.

and mechanical (dj,) representat ions. F i r s t we find by
Eqs. (4.8)-(4.12) the composition of these representa-
tions for the wave-vector group G*. This group has 10
irreducible r e p r e s e n t a t i o n s 1 7 : 8 one-dimensional
( T 1 ( . . . , τ8) and 2 two-dimensional (τ9 and τ 1 0 ) . The
magnetic representation a t the U atoms and the mechan-
ical representation at the Ο atoms have the following
expansions:

<?Λ/ = τ.ι + τ.,. dv

m = τ, + τ4 -f τ9 + τ10. (6.1)

(We do not need the mechanical representation for the U
atoms, since the neutron-diffraction study4 2 did not de-
tect a shift of these a toms upon magnetic ordering.)

For the representat ions that entered into (5.1), let us
calculate by Eqs. (4.16)—(4.18) the bas i s functions
S&L"\i) and U(£il#|») for the U and Ο atoms, respectively,
contained in the primitive cell of the crystal . Table III
shows the resu l t s of the calculations for a l l three a r m s
of the s tar . For the U and Ο atoms lying outside the
boundaries of the chosen primitive cell, the components
of the bas i s functions a r e found by using the relation-
ships (2.10).

We see from Table III that the collinear magnetic
structure proposed in Ref. 41 corresponds to a single-
a r m channel of the star, and is described by the bas i s

TABLE III. Basis functions of the magnetic and mechanical
representations for the star {k10} of the UO2 crystal.

Arms

Representation

a

1
τ

τ.

Representation

|

Ϊ

t ,

τ.

t i c

001

Γιο
no

001
001

no
no
no

no

οοΐ
001

ϊΐο
no
no
Ϊ10

010

«01
101

010
010

101

101
101

101

Uranium

Oxygen

010
010

101

101
101

101

100

on
on

100
100

011

o
o

on

Ϊ00
100

on
on
on
oil

Magnetic structures

Repre-
senta-
tions

t j

U atoms

1

in
in
in

2

ιϊί
ni
ni

3

ίΰ
ni
1ΪΪ

4

ΪΪ1

1ΪΪ

i l l

Atomic displacements

Repre-
senta-
tions

*i. t 4

0 atoms

1

ni
111

111

3

1ΪΪ
hi
Til

*

111
ΪΪ1
1ΪΪ

7

in
in
Ϊ1Ϊ

functions of the two-dimensional representation T9.

Now let us examine the three-arm channel. This im-
plies that the magnetic structure must be described by
a superposition of the basis functions for all three arms
of the star. Let us construct a superposition having
equal inter-arm mixing coefficients. Thus we can easi-
ly obtain several magnetic structures, which we can
write out by fixing the spins of the four uranium atoms
(Table IV). The atomic displacements of the oxygen
sublattice for atoms 1, 3, 5, and 7 are also indicated in
this table. The displacements u of the atoms 2, 4, 6,
and 8 are determined by the relationships:

±u,, = ±u,, u, = ±u5, us = ±u7. (6.2)

Here the upper sign is taken in the case of the represen-
tations τ4 and τ1 0, and the lower sign for xt and τ9.

The possible types of magnetic ordering and concomit-
ant displacement of the oxygen atoms in UO2 have been
studied theoretically44 on the basis of minimizing the
Landau free energy. They proved to be precisely the
magnetic structures and displacements recorded in the
individual rows of Table IV. In particular, the magnet-
ic structure corresponding to the one-dimensional ir-
reducible representation τ3 (see Fig. 3) should be ac-
companied by structural distortions described by the
representation τ4 (TJ must be rejected, since it does not
possess symmetry with respect to inversion) (Fig. 9).
Thus, one of the noncollinear magnetic structures of
cubic symmetry (with orientation of the spins of the ur-
anium atoms along the body diagonals of the cube) should
be realized in UO2.

The models of the magnetic structure that were pro-
posed in Ref. 42, and which satisfy the diffraction pat-
tern obtained, are described by one of the two rows in
Table IV that correspond to the two-dimensional rep-
resentation τ9. Apparently one can choose between them

FIG. 9. Displacements of the oxygen atoms in UO2 according
to the predictions based on the thermodynamic theory of
Landau.44 a) For the representation τ4; b, c) for the repre-
sentation r10. Open circles: oxygen; black dots: uranium.
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after recalculating the intensities with account taken of
the adjustment of the oxygen sublattice that accompanies
the magnetic structure. As we see from Table IV, this
adjustment must also correspond to a three-arm chan-
nel, and it agrees with the cubic symmetry of the mag-
netically ordered UO2 crystal. However, in Ref. 42 the
adjustment was described by a single-arm channel.
Thus, for a final solution of the problem of the magnetic
structure of UO2, one should compare the calculated in-
tensities for the two variants of magnetic structures
corresponding to representation τ 9 and the rigidly coup-
led to them adjustments of the crystal lattice. Full
grounds exist for expecting a confirmation of the con-
clusion that a three-arm magnetic structure is realized
in UO2.

Just as in the cases described above (CeAL^Nd), in
which the existence of multi-k-structures was also pro-
posed, in UO2 this conclusion has been drawn on the
basis of the discovery of an additional property of the
crystal, in this case the structural distortion accomp-
anying the magnetic ordering. Every time, symmetry
analysis has provided substantial arguments in favor of
multi-k-structures.

b) Magnetic-structure satellites

Another aspect of neutron diffraction in structurally
distorted crystals involves the study of magnetic order-
ing in a crystal that has previously (in the temperature
sense) undergone some structural phase transition of
distortional type. Evidently, both these transitions,
structural and magnetic, can be described in terms of
the same initial phase. The neutron-diffraction pattern
in the magnetically ordered phase is complicated by
certain interference phenomena that arise from forma-
tion of superstructures in the crystal, and it requires
special study.

First we shall examine pure nuclear neutron scatter-
ing in a crystal in which a structural modulation has
arisen that is described by the wave-vector star {q},
whose arms will be denoted as qj, (M= 1,2..., Ze). Nu-
merous examples of such structural transitions dis-
covered in recent years are given in the review of Ref.
45. Most often the wave vectors of the superstructure
are non-Lifshits in type. This means that a certain
modulation arises in the positions of a fraction of the
atoms of the original crystal, whereas another fraction
of the atoms does not change in position. The new
structure that arises after such a phase transition can
be treated a s a superstructure in the major phase. The
superstructure gives rise to satellites in the diffraction
pattern, whose regularities we shall now describe.

The displacement unj of atom number i in the nth cell
associated with the spontaneous modulation is generally
a superposition of the arm types u* as given in the zero
cell:

ι
V M. i^M1» (6 3)

[cf. Eq. (2.7)]. In the case of crystals having a center of
inversion (and we shall restrict the treatment to these),
the non-Lifshits star contains the arm - q as well as the

arm q. Hence we can rewrite Eq. (6.3) in the form

Uni cos (qMtn) ~ ̂ sin ( < ! ? ' ' · ) 1 · (6.4)

We have resolved the arm contribution into real and im-
aginary parts:

u" = -i(vf+iwf). (6.5)

We shall employ this expression for calculating the
nuclear-scattering structure factor of the modulated
lattice:

ίηικΙ(κ)«.Σ6ι«""'('"+χ'+°"ί) · (6.6)

(Here b{ is the nuclear scattering amplitude of atoms of
type i). The known expansion in Bessel functions is:

i>. (6.7)

This enables us to transform the structure amplitude
into the form

6. ..!>„. ·

Π ( ( - ')'MJ
1

P l r (xwf (ρ.,, + sM) qM

(6.8)
In deriving this expression, we have summed over the
integral translations by using Eq. (3.6). We see that the
lattice modulation is manifested in the appearance of a
system of satellites separated from the fundamental
reciprocal-lattice nodes of the original crystal by vec-
tors that are multiples of q*. The set of integers
\PM,SM\ defines the satellite characterized by the scat-
tering vector

(6.9)κ = b + Σ (/>.« + «if) <?.?/·
Μ

First let us examine the case in which the modulation
of the structure amounts to a simpLe wave described by
a single term in (6.4), e.g., having Vj"= 0. Then (6.8)
gives rise to satellites having

i»--u-r _i emu·

They have the intensity

/ i \ ~ I V h p~ixi

(6.10)

(6.11)

As we know, for small arguments, the Bessel functions
have the expansions

/.(s) = l — f + . . . , /,W = -2J£r+.... (6-12)

These expressions enable us to estimate the intensities
of the satellites. If all the pu = 0, we get the fundamen-
tal reflection χ =b. However, its intensity will be
smaller than in the original unmodulated crystal, owing
to the first of the relationships (6.12). If one of the
numbers pM equals unity, while the rest are zero, a
first-order satellite arises with χ =b +qM. It has an
intensity proportional to (x-wf)2. The number of such
satellites equals the number of arms in the channel.
That is, it is determined by the number of nonzero val-
ues of the amplitudes wf. In the case of a single-arm
channel (more exactly, a channel having q and - q), a
pair of conjugate satellites exists with x=b+q(/> =±1).
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They have the same intensity, owing to the property of
the Besse l functions: J.p(z) = (- lfjp{z).

If any pM = 2, while the remaining pa = 0, a second-
order satellite a r i s e s with x = b + 2qAf. It has a weaker
intensity ~ (>fwj,)4, etc. The case i s of especial inter-
est in which the modulation is characterized by a many-
a r m channel. This includes, for example, the a r m s qx

and q2 of a single s tar . In this case one should observe
special second-order satel l i tes having v. =b± q x ± q2. An
observation of these is important in principle, since it
a ids in establishing the transition channel.

We have discussed the simple-wave type of modula-
tion. If a helicoidal modulation exists for which both
vectors vf and wf differ from zero, then according to
(6.8), the f i r s t-order satellite having χ = b + q i s deter-
mined by the relationship

/ (x) ~ Ι Σ e-""< [/, (xwf) - i/, (xv?1)))1. (6.13)

Owing to the fact that the intensities of the first-order
satellite with vf = 0 and with vf *0 differ, the possibil-
ity exists of distinguishing the helicoidal and simple-
wave types of modulation.

Now let us assume that a magnetic structure has a-
risen in the modulated crystal that is characterized by
the wave-vector star {kj-, with L = 1, 2,..., lk . If spec-
ifically the magnetic atoms have suffered a spontaneous
modulation of their positions with the wave-vector star
{q}, a phase modulation arises in the expression (3.2)
for the magnetic scattering amplitude. Let us substi-
tute Eq. (2.7) into (3.2) and take account of the fact that
R, = i,, + Xj + uni in the modulated crystal. Then we ob-
tain by the above-described method the following ex-
pression for the magnetic scattering amplitude46:

Σ

Here we have

lq/2

e] J ^ {(- i)*·

V,pw+.u,,w· (6.14)
Μ ' ' '

,, (xv?() J,,M (xw?1)}.

(6.15)

The formulas that we have derived show that satellites
of different orders exist in the distorted lattice along
with the magnetic Bragg peak n = b + kL. The satellites
have

x = b + kL + Σ (i>.w + *M) q.vt· (6.16)

The zero-order magnetic reflection (pM - 0, sM = 0)
proves to be weakened in proportion to the small devia-
tion of the function J0(z) from 1. The intensities of its
satellites are determined by the corresponding powers
of the parameters >t"vf and K*wf. These satellites
stem from interference: they are caused by magnetic
scattering, but they exist only in a structurally distort-
ed crystal owing to the modulation of the phase in the
magnetic scattering amplitude.

A correct interpretation of the magnetic-structure
satellites is necessary in deciphering the magnetic
structure of the crystal. Detecting them would also in-

dicate that the magnetic atoms of the crystal participate
in the spontaneous modulation of the crystal structure.

We also note a possible case in which the magnetic
structure corresponds to some Lifshits star, e.g., hav-
ing the wave vector k = |b, where b is one of the funda-
mental reciprocal-lattice vectors. If an adjustment of
the crystal lattice exists that has the same wave vector
q = k, then the satellites of the first magnetic reflection
with x = k ± q are superimposed on the nuclear reflec-
tions. Thus a magnetic (more exactly, magnetic-struc-
tural) component can arise at the nuclear-scattering
peaks and can be falsely interpreted as a sign of a mag-
netic structure described by the vector k = 0 as well as
the fundamental wave vector k = %o.

Apparently the described magnetic-structure satell-
ites have been observed in BaMnF4.

47 This compound
shows two phase transitions: a structural transition
(at Tm = 247 K) and a magnetic transition (at TN = 26 K).
Satellites were found below Tm in a study of a single
crystal that indicated the onset of some incommensur-
able superstructure having the wave vectors q, 2q, and
3q, where q= (μ,± | , ± | ) . Below TN they found magnet-
ic Bragg peaks corresponding to the wave vector k0

= (0»* 1»* έ) and a number of others whose positions
were determined by the wave vectors ko+ q, which in-
dicates their magnetical-structure nature.

7. CONCLUSION

Now we shall return to discussing the two questions
posed in the Introduction this review: how can one
classify all the varied magnetic structures of crystals,
and how reliably are they deciphered in neutron-diffrac-
tion studies?

The presented material, as well as the symmetry an-
alysis of the numerous examples of magnetic structures
performed in Refs. 1, 5-10, leads to the conclusion that
they can be classified in terms of the irreducible repre-
sentations of the space groups. The magnetic structure
will be fully described if one specifies: its wave vec-
tors belonging to a single star {k}, the number ν of the
irreducible representation, and the mixing coefficients
{cf1} of the basis functions. Then it can be fully recon-
structed by Eqs. (2.7) and (2.12) if one calculates the
atomic components S(iL"|i) of the basis functions of this
representation.

This sort of information on the magnetic structure
(specification of the irreducible representation) is phys-
ically much fuller of content than, for example, a spec-
ification of the magnetic symmetry group (Shubnikov or
color group) and of the positions of the magnetic mo-
ments occupied by the magnetic atoms in this group. A
knowledge of the irreducible representation for a mag-
netic structure can be employed to study a magnetic
phase transition in the crystal, since it enables one to
find by known methods the invariant expansions of the
free energy in powers of the order parameters. The
success of this approach has been recently demonstrat-
ed in Refs. 48-52 in a study of magnetic phase transi-
tions employing the methods of renormalization groups
and ε-expansion.
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As a rule (but not always!), magnetic structures are
actually described by a single irreducible representation
of the space group of the crystal. (The reasons for the
appearance of structures that simultaneously follow sev-
eral irreducible representations have been discussed in
Sec. 5). This situation offers an effective method of ap-
plying symmetry analysis in deciphering neutron-dif-
fraction patterns; it has been rather fully described in
Sec. 3. The reliability of this method enables one to
extract more subtle information on the magnetic struc-
ture from the data of a neutron-diffraction experiment.
At the same time, on the basis of the approach present-
ed in this review, one can critically evaluate the degree
of uniqueness of the decipherment of concrete structures
from neutron-diffraction patterns. We should point out
one general conclusion from this evaluation: it is not
impossible that some experimenters have overlooked
multi-k-structures in deciphering magnetic structures
having wave vectors belonging to many-arm stars by
assuming a priori that the magnetic structure under
study is characterized by only one wave vector.
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