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The principal mechanisms of classical diffusion (due to binary collisions) of a partially-ionized plasma in a

homogeneous magnetic field are examined. As a result of anisotropy of the transport coefficients of charged

particles the problem proves to be far more complicated than the well-known problem of ambipolar diffusion

in the absence of a magnetic field. The evolution of diffusion in this case is determined primarily by eddy

currents flowing in the plasma. The circuit for these currents can be completed both through the background

plasma giving rise to depletion regions, and by the conducting walls of the container of the plasma (the short-

circuit effect). Ambipolar diffusion which occurs when the electron and ion fluxes are equal at every point can

be realized only in exceptional cases. Experiments are described in which the short-circuit effect and

ambipolar diffusion were observed. Using different boundary conditions it was possible to vary the diffusion

rate of the plasma by two or three orders of magnitude, and this presents the possibility of controlling the

local parameters of the plasma. This review has taken into account references up to July, 1979.
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1. INTRODUCTION

Diffusion of charged particles in a quasistationary
magnetic field constitutes one of the principal problems
of contemporary plasma physics. In this review, we
shall confine our analysis to diffusion of a weakly-
ionized plasma in which the charged particle pressure
is considerably lower than the neutral gas pressure and
the magnetic pressure Η2/8π. Moreover, we shall con-
sider the magnetic field and the neutral gas density to
be uniform and stationary. The range of practical
problems which are associated with the diffusion ef-
fects under consideration is very wide. Within this
range we should include a number of problems of
gaseous1"6 and semiconductor7"' electronics, MHD
energy conversion,3'10 ionospheric physics,11"13 etc.
Similar processes take place in the near-wall regions
of hot-plasma devices for controlled thermonuclear
fusion.

In recent years, significant advances have been made
in constructing a general model of evolution of a non-

uniform weakly-ionized plasma in a magnetic field.
Progress in this area is connected primarily with being
able to separate, in a number of experiments, effects
associated with plasma turbulence from phenomena to
which boundaries and collisional transport in the vol-
ume give rise. On the other hand, the simplest prob-
lems were subjected to systematic theoretical analysis.
Thus, an unambiguous comparison of the collisional
(classical) and turbulent diffusion theory with experi-
ment was made possible.

In this review, the simplest examples are used to
analyze the basic mechanisms which determine the
evolution of plasma inhomogeneities in a magnetic field
and the diffusion of a confined plasma to the walls. It
turns out that the diffusion processes in a magnetic field
are determined primarily by the flow of eddy currents
which are produced by a self-consistent electric field.
Thus, for example, ambipolar diffusion, characterized
by equal electron and ion currents at each point and by
the absence of eddy currents, may take place only in
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relatively rare cases.

The fundamental physical concepts described below
are based only on the difference between and the anisot-
ropy of the diffusion coefficients and the mobilities of
electrons and ions. Thus, similar effects should occur
in a turbulent plasma (at least as long as the particle
motion is confined to small random wandering) and in
those semiconductors in which the transport coeffi-
cients may exhibit anisotropy, even in the absence of
a magnetic field. However, we shall practically dis-
regard problems associated with a quantiative analysis
of charged particle diffusion under these conditions.
We shall merely note that in the case of a turbulent
plasma the values of the anomalous transport coeffi-
cients are determined by turbulence characteristics
(see, e.g., Refs. 14-18), while the nature of instability
and of the turbulence, which instability produces as it
develops, depends to a large degree on the properties
of the equilibrium state. Thus, analysis of the latter
constitutes, in fact, the first step toward a solution of
the anomalous transport problem under real conditions.

2. INITIAL EQUATIONS. UNIPOLAR DIFFUSION

We shall state the diffusion equations for the simplest
case of a weakly-ionized plasma with singly-charged
ions of one kind [we shall call this three-component
plasma, consisting of electrons (e), ions (i) and atoms
(a), "simple"]. Κ collisions between the charged par-
ticles are unimportant (a weakly-ionized plasma), the
following equations describe diffusion in a system of
coordinates associated with the neutral gas:

' . , (1)

,±ΜΛ (2)
He); (3)

where the index a corresponds to ions (i) or electrons
(e), Γ β are particle fluxes and /„ are terms describing
the production and recombination of charged particles,
which are neglected in all cases under consideration in
this review. The motion of the neutral gas may be con-
sidered as given. Questions associated with the inverse
effect of plasma motion on the neutral gas are con-
sidered, for example, in Refs. 11, 19 and 20. Ε the
particle energy distribution is Maxwellian, the unipolar
mobility and diffusion tensors Sa and t>9, respectively,
are related by the Einstein relations

fi.-^a-. (4)

For the sake of simplicity, we shall limit further con-
siderations to this case. The values of transport co-
efficients, which are determined by binary particle
collisions, are conventionally referred to as classical.
Their form is simplest in the case where the transport
collision frequencies of the charged and neutral par-
ticles va are independent of speeds. Moreover, in a
constant magnetic field along the 2- axis we have

= n.u» = —

where Sl, = efl/cme is the cyclotron frequency. In the
general case, expressions for the components of the £>a

tensors include terms va(v), which are in various ways
averaged with respect to the particle distribution. The
values of Da and 6 e for different particle interaction
modes, ionization degrees and magnetic field intensi-
ties are given in a large number of review articles and
monographs (see, for example, Refs. 5, 20, 21). In the
case of rough calculations, so-called elementary theo-
ry2 2'2 3 is frequently used, whereby the va(v) averaged
over the Maxwellian distribution are used in Eq. (5);
the error introduced by this procedure is, as a rule,
small,22 Below, we shall also utilize the elementary
theory.

The terms Dat describe a diamagnetic current which
is independent of the translation of the guiding centers
of the Larmor orbits. Thus, the divergence of the
corresponding currents is identically equal to zero.
The nondiagonal mobility terms bat define the Hall cur-
rents which may lead to spatial redistribution of par-
ticles.

Β the particle concentration is sufficiently small,
such that the Debye radii (rD = JTa/4Tmae*) are much
larger than the dimensions of the system, the self-
consistent electric field is, according to the Poisson
equation [Eq. (3)], unimportant. In this case, in the
absence of an external electric field a unipolar (free)
diffusion of charged particles takes place and can be
described as follows:

~2- = V φα,νη*). (6)

In other words, diffusion of particles simply occurs in
an anisotropic medium. The unipolar electron and ion
diffusion in the magnetic field was studied experimen-
tally in a number of articles.24"27 These articles con-
vincingly show that the process is fully determined by
the binary collisions and is well described by Eqs. (5)
and (6). Figure 1 shows a summary of the experimen-
tal data for the case of unipolar diffusion of electrons
and ions in helium.

The classical diffusion of charged particles in a mag-
netic field is, therefore, strongly anisotropic. The
reason for this is that the values of the longitudinal and
transverse components of Da are determined by the
step of the random walks. The step along the magnetic
field equals the mean free path of the particles λβ;
consequently, Dan~*?ava and D^»Dm. in the case of a
strong transverse magnetic field Η where the Larmor
radius pa is smaller than λα, the step is p o . In view of
this, the transverse coefficients sharply decrease with
the field growth (~ H~2) and when

CO

(5)

the transverse diffusion of electrons becomes smaller
than that of the ions. Throughout our analysis below,
we shall consider the magnetic field to be sufficiently
strong to satisfy the inequality in Eq. (7).

In the case of infinite problems, it is convenient to
introduce characteristic unipolar scales for the
spreading of a disturbance along and across the mag-
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FIG. 1. Effect of magnetic field on the transverse diffusion of
charged particles. 1—electrons,5·24·25 2—ions,26·27 l i n e s -
theoretical calculations, circles—experiment.

netic field for particles of a given kind:

and for a plasma of finite dimensions (Λ,,,Λχ), it is con-
venient to introduce the characteristic lifetimes (dif-
fusion to the walls):

In the case where the condition (7) holds we have

7>,v, 7>,e
Pf

Γ,,»ιν,

κ

(9)

(10)

and, correspondingly

Ten < τ,,,, f u < T e l . (11)

As the degree of ionization increases, the transport
coefficients begin to experience the effect of charged
particle collisions. If the particle energy is s 10 eV,
the Coulomb cross sections normally exceed the gas-
kinetic cross sections severalfold, and these proces-
ses must already be taken into account at comparatively
low degrees of plasma ionization. In the case vei

« (Wj/wijt/,, the ion coefficients are determined, as
before, by Eqs. (4) and (5), while for the electrons
when Ω £ » vt + vci, ne=nit we have, for example,

(12)

(13)

The values of the partial temperatures Te and T,
should be determined, in principle, self-consistently
through the corresponding energy balance equations. In
this case, the thermal diffusion and conduction may be
substantial and on a par with the field and diffusion cur-

rents. The flow of diffusion currents may itself lead
to the occurrence of inhomogeneous partial tempera-
ture due to the diffusion thermoeffect and diffusion
cooling.28"30 The resultant complex and diverse ef-
fects have been inadequately studied. We shall not be
concerned with these problems and we shall assume
that the particle temperatures are independent of the
coordinates and time.

3. EVOLUTION OF CONCEPTS CONCERNING THE
EFFECT OF A SELF-CONSISTENT ELECTRIC
FIELD ON DIFFUSION

When the Debye radii become smaller than the dimen-
sions of an inhomogeneity (apparatus), the nature of
charged particle motion is essentially altered. This is
due to the occurrence in a plasma of a self-consistent
field which exhibits strong and, frequently, determining
effect on the particle mobility. Actually, as the re-
sult of differences in the diffusion and drift rates, the
electron and ion components of an inhomogeneity al-
ways tend to separate. However, even small decom-
pensation of charges leads to the formation of an elec-
tric field which tends further to inhibit the separation
of components. As a result of this, an inhomogeneity
continues to move and spreads in such a manner that
its electron and ion densities are almost identical and a
quasineutrality is achieved.

The evolution of an arbitrary initial distribution with
«e*«j occurs, in this case, in two stages. At first, a
quasineutral state is rapidly established. If the col-
lisions occur sufficiently frequently so that the Max-
wellian times rM(k) = [4Jra(k)]"1 [a(k) is the plasma con-
ductivity in the appropriate direction] are greater than
the intervals between collisions, this occurs during a
time ~ T M . 2 D Conversely, the establishment of quasi-
neutrality may be accompanied by oscillations. The
quasineutral density profile, formed in some arbitrary
way, constitutes the initial condition for a slower diffu-
sion stage of the evolution. During the latter stage
substantial disturbances of quasineutrality may take
place only near the plasma confining surfaces. Since
we are interested in the diffusion processes, we may
assume ne = nt for the plasma volume and neglect the
Poisson equation. The electric field is defined by the
quasineutrality condition

Τ(Γ.-Γ,) = (14)

In other words, the electric field is adjusted so as to
avoid substantial separation of charges.

Normally, the diffusion processes proceed relatively
slowly and the field nearly always may be considered as
potential. The solution of the problem concerning diffu-
sion of a simple weakly-ionized plasma in the absence
of a magnetic field was obtained by Schottky as early as
1924.31 Moreover, it became apparent that the quasi-
neutrality condition leads to the diffusion being ambi-
polar, i.e., the electric field may be eliminated from
the system [Eqs. (1) and (2)], having reduced the latter
to the following equation:

-fr = °a.An, (15a)
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where

( 1 5 b )

is the coefficient of ambipolar diffusion. Moreover, the

density profile is independent of the current which flows

through the plasma, and Eqs. (15a) and (15b) may be

obtained simply by equating r e = IV The ambipolar

diffusion is determined by the slowest particles (ions)

so that

T a l « T l | 1 ( l + | i p . (15c)

The electric field effect is confined to the coefficient

1 + (Te/Ti) in Eqs. (15b) and (15c). We should point out

a certain discrepancy in the terminology. Several au-

thors interpret ambipolar diffusion as a process which

satisfies the quasineutrality condition [Eq. (14)]. We

shall refer to diffusion being ambipolar only in the case

where the currents satisfy the conditions ΓΗ 1- Γ, „=./„/

e = const and r u - Tti=iJe~const (j is the density of

the through current; at j-0, r e l l i l = T ^ J .

In a magnetic field, the simplest one-dimensional

problems are also reduced to the ambipolar diffusion

equation.32"34 Thus, in the case of diffusion along H,

formulas in Eq. (15) are applicable and, in the case of

transverse diffusion we have
a i a > l +77/ e l ' ^a±«iTei^l+-jr-) , (16)

since the less mobile particles in this case are elec-

trons. The results obtained in this manner have been

used as a basis for many attempts (see, e.g., Refs.

35-38) to reduce multidimensional problems to the

linear equation of ambipolar diffusion in an anisotropic

medium. Moreover, the ambipolar condition ren,i

= Γί,,,ι satisfies the quasineutrality condition [Eq. (14)]

and permits the elimination of the electric field from

the initial system of equations. However, it can be

easily verified5 that, in the general case, a potential

electric field which satisfies this condition cannot be

set up. In other words, the electric field which re-

tards the more mobile particles in all directions (elec-

trons along Η and ions across) and equalizes currents

at each point, cannot be achieved in the general case.

Moreover, eddy currents present in the plasma de-

cisively affect the evolution of the plasma density pro-

file. The equations which describe diffusion spreading

of an inhomogeneity turn out to be nonlinear and can

not be reduced to the normal equation for diffusion in

an anisotropic medium; the process is considerably

more complex. The flow of the total current through

an inhomogeneity under these conditions leads to a

number of new phenomena—the density perturbation

may travel and become deformed breaking up into sepa-

rate plasma bunches; smoothing of the concentration is

much faster in this case than without the current.20

The eddy currents may flow both entirely in the plas-
ma2 0·3 9 and partially along the conducting surfaces
which confine the plasma and serve to complete the cir-
cuit.40 The mechanism of the nonambipolar diffusion-
constrained by the eddy currents—was studied for the
first time by Simon40 using plasma diffusion in a con-
ducting chamber as example. Ε the chamber length
(along H) is not too large, electrons should quickly

drift toward its ends. The plasma will become posi-

tively charged with respect to the walls and the electric

field shall leave ions drifting across-Η unimpeded.

This, therefore, gives rise to an eddy current which is

carried along Η by electrons and across by ions, and

the circuit which is completed by the chamber walls.

This phenomenon was called the "short circuiting ef-

fect." The plasma lifetime (TSC), moreover, sharply

decreases compared to the ambipolar lifetime, and is

of the order of the greater of the "fast" times TeH, T U .

The difference between Ta and TSC, as can be seen from

Eqs. (10) and (11), may exceed three orders of mag-

nitude.

However, attempts to obtain an unambiguous proof

of existence of the effect have been heretofore unsuc-

cessful. More or less strict analytical41·42 or numeri-

cal43 solutions of the Simon problem have encountered

serious mathematical difficulties. These were as-

sociated first with the formulation of the boundary con-

ditions, since the plasma equations are inapplicable

near the walls—where boundary conditions are imposed

on the potential—and, second, with the nonlinearity of

the system of equations [Eqs. (1) and (2)]. However,

the experimental results were ambiguous and even con-

tradictory. The simplest experiments to interpret were

those conducted for an infinite plasma. But, as far as

we know, such studies were never conducted under

laboratory conditions. Nevertheless, in the experi-

ments conducted in the ionosphere (for example, in

bariated clouds), the behavior of "tagged" ions was

normally recorded rather than the total plasma density.

Difficulties presented by laboratory experiments with a

confined plasma were associated above all with the nu-

merous instabilities acting on the gas-discharge plas-

ma in the magnetic field. The resultant turbulent state

is characterized by plasma lifetimes which are much

shorter than "classical" (those due to the binary colli-

sions). In an unstable plasma it is difficult to dis-

tinguish unambiguously a rise in diffusion (in compari-

son with ambipolar diffusion) due to turbulence from a

similar rise resulting from eddy currents. Based on

certain experiments, the foregoing has led to an ex-

pression of doubt concerning the feasibility of realizing

the short-circuiting effect.44 On the other hand, Geis-

sler had proposed that the anisotropic nononedimen-

sional diffusion of plasma even in a dielectric container

is not, in general, ambipolar.45 Lastly, it was as-

serted in Refs. 41, 46 that in a late stage of evolution

the transport mechanism in a volume is fully deter-

mined by boundary conditions so that the diffusion is

necessarily ambipolar in a dielectric chamber with

walls parallel to Η (see Section 6), and in a metallic

chamber the short-circuiting effect should take place

(and was observed in Ref. 41).41l4e

Thus, it was urgently necessary to provide a direct
experimental proof of the effect of eddy currents on
diffusion. To distinguish this effect it was necessary to
obtain a quiescent plasma. It seems that the latter was
produced in a strong magnetic field for the first time
in Q-machines.47"49 However, because of the struc-
tural features, heretofore only the one-dimensional
diffusion across Η has been investigated in Q machines.
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The problem of separating the eddy current and turbu-
lence effects on the diffusion was solved by Zhilinskii
and Kiiteev,50 who obtained a quiescent decaying plasma
in a metallic container for a broad range of conditions.
They showed that the application of a difference of po-
tential between the end and side conducting walls may
be used to vary the lifetime of a quiescent plasma by
almost three orders of magnitude, in agreement with
theoretical ideas, from a value corresponding to short-
circuiting to a value which exceeds the ambipolar life-
time. The lifetime of an unstable plasma, in which
the transverse diffusion was due to a turbulence, was
also strongly affected by varying the boundary condi-
tions. Zhilinskii and other coworkers have studied the
effect of instability on the diffusion, have established
the conditions under which ambipolar diffusion takes
place in a dielectric chamber and have investigated the
effects of more complex boundary conditions.51"53 An
unambiguous experimental discrimination of the basic
transport mechanisms provides a solid basis for de-
veloping the theoretical concepts of plasma diffusion
in the most diverse systems.

A systematic theoretical approach to the problems of
multidimensional diffusion in a magnetic field and an
analysis of the eddy current effects were attempted for
the first time in Refs. 20, 54, 55. The spreading of a
small point inhomogeneity against the background of an
infinite plasma was investigated. It was shown that the
problem in principle does not reduce to the ambipolar
case. In particular, the shape of the constant density
surfaces, even in the absence of an external current,
has nothing in common with the ellipsoids which charac-
terize diffusion in an anisotropic medium. Numerical
calculations showed that the size of a perturbed region
is determined, more likely, by the highest diffusion
coefficients than by the lowest coefficients in the cor-
responding directions, as in the case of the ambipolar
mechanism. The presence of an external current
radically changes the entire picture of the evolution and
leads to the separation of an initial perturbation into
several bunches which travel and spread according to
a fairly complex law. The behavior of the perturbation
is not Gaussian, as one would naturally expect for the
diffusion problem, but follows a power law (~ f/r5 In the
absence and ~ f/r4 in the presence of a current).

The mechanism underlying the effect of eddy cur-
rents on the diffusion spreading of an inhomogeneity in
an infinite plasma was shown to be essentially similar
to the Simon effect.56 The "probing" electrons and ions
injected into an infinite plasma (in the absence of an ex-
ternal current) diffuse mainly along and across the
magnetic field, respectively. Quasineutrality is pre-
served by the motion of the background plasma. The
latter, because of its high conductivity, acts in a cer-
tain sense not unlike conducting walls. The background
plasma electrons and ions also move mainly along and
across the magnetic field, respectively, resulting in
the formation of a depletion region at certain points.
The eddy current causes migration of the plasma par-
ticles from this region. This phenomenon may be
called the "short circuiting effect" in the background
plasma. As the density of the latter decreases, its

conductivity also decreases and, eventually, the short
circuiting mechanism becomes ineffective. Therefore,
as generally formulated, the problem is essentially
nonlinear. An analysis of the simplest nonlinear prob-
lems of diffusion in an infinite plasma is presented in
Refs. 57, 58. The foregoing effects are selectively dis-
regarded in Refs. 11, 59-68 which analyze the evolution
of the plasma perturbations. The applicability of the
results of these articles is clearly limited.

The diffusion of a confined plasma was theoretically
studied in many articles.41"43·69"74. In the case of an ap-
proximate solution of the problem of a plasma decay in
a metallic chamber41'42 and also in the case of a nu-
merical solution,43 the potential profile was essentially
postulated. This did not permit finding the correct po-
tential profile in the plasma, and the boundary condi-
tions were satisfied at four points only. In Ref. 74,
which analyzes the stationary problem, the density
profile was postulated and unrealistic boundary condi-
tions were used. It was proposed to formally reduce
the initial system of equations for the density and po-
tential to a system of current equations.71"73 However,
this failed to lead to essentially new results. The ef-
fect of eddy currents on the evolution of the density pro-
file in a dielectric apparatus was shown in terms of the
relaxation of small deviations from the basic diffusion
mode.75 In the first (rapid) phase, eddy currents lead
to a density redistribution in a plasma, resulting in
ambipolar diffusion. The relaxation of eddy currents
in a dielectric chamber with times substantially small-
er than ambipolar was also uncovered through numeri-
cal calculations.69

The solution of some of the simplest diffusion prob-
lems for a finite plasma is given in Ref. 76, where the
boundary conditions, formulated in a companion work77

for a plasma in a magnetic field, are used. Evidently,
not only the nature of the bounding surface (metal or
dielectric), but also the type of the boundary layer (dif-
fusion or collisionless) exhibit considerable effect on
the electric field in the plasma and on the nature of
evolution of the plasma profile and lifetime.

A number of diffusion problems is encountered in the
analysis of charged particle flows toward a solid placed
in a plasma. The problem of a diffusion probe in a
magnetic field is particularly interesting. In the one-
dimensional case, the effect of the magnetic field is
unimportant and the plasma density profile is defined
by the ambipolar diffusion equation. A problem of this
type was considered for a cylindrical probe placed along
the magnetic field.78 In the case of a probe of finite di-
mensions, Bohm had obtained expressions for the
saturation currents.78 A detailed theoretical study was
made of the saturation current regime to a probe in the
shape of an ellipsoid of revolution which was directed
along the magnetic field.80'81 An experimental study of
saturation currents in a finite-size probe and verifica-
tion of Bohm's theory were carried out.82 The experi-
mental results are in good agreement with theory.
Values of the electron saturation current which substan-
tially exceed theoretical ones were obtained.83 The
authors consider this divergence to be possibly the re-
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suit of complex experimental geometry or charged par-
ticle production in a region near the probe. The analy-
sis of an intermediate portion of the current-voltage
characteristic, for which several authors have at-
tempted to derive formulas,8 1·8 5 is more complex. Nu-
merical calculations show that for large values of probe
potential, the potential profile in a plasma exhibits a
quadrupole nature which corresponds to the short cir-
cuiting mode.86 However, very small values of the
magnetic field intensity, used in the calculations, have
not provided the authors with an opportunity to study
qualitatively any new features of the current-voltage
characteristic which are dependent on the magnetic
field. The solution of this problem is presented in Ref.
87.

4. DIFFUSION IN THE ABSENCE OF A MAGNETIC
FIELD

In the absence of a magnetic field, the coefficients ba

and Da are scalars.1 ' Having eliminated the electric
field from Eqs. (1) and (2), we obtain the ambipolar dif-
fusion equation [Eq. (15a)]:

But the electric field E = - V<p is determined from Eq.
(14).

_(Ρ) ι „(') _(P)lie + H e = « i - (18)

= (Dt - (17)

Several remarkable properties of Eqs. (15) and (17)
should be noted. First of all, the equations for the den-
sity η and potential φ have been separated so that the
density profile may be determined independently of the
potential profile, i.e., n(r, t) is independent of currents
passing through the plasma. Second, Eq. (15) for n(r, t)
may be obtained by simply equating 1% and Γ j so that
if, for example, the components of r e and r t which are
normal to the boundary are equal at the dielectric
boundaries, Γ<.= Γ, holds over the entire volume.
Third, the equations for ambipolar diffusion [Eq. (15a)]
and field [Eq. (17)] are linear [for a given profile
n(r,t)].

However, it is evident that the nature of these proper-
ties is very special. We shall examine the simplest
example in which No "tagged" particles are injected into
a small region of a homogeneous plasma of length 20 and
density n0 in the absence of a magnetic field. Let, for
the sake of simplicity, their mobility be equal to the
mobility of the background particles, T,, = Ti, and the
case be one-dimensional. The equations for the tagged
«*> and background nj," particles coincide with Eqs.
(1) and (2) and the quasineutrality condition is reduced
to

1 'if the plasma electrons are heated by the passage of an ap-
plied current, 6 and Da are tensors, even in the absence of
a magnetic field, and phenomena, similar to those de-
scribed below, are also possible in this case. However, the
difference between the longitudinal and transverse (with re-
spect to current) tensor components is normally small (of
the order of unity) and they will be neglected here. In semi-
conductors, the tensor nature of ba and Da may be a function
of crystal anisotropy.

The evolution of the total plasma density profile n(x, f)
is expressed, as before, by Eq. (15a), and reduces to
diffusion with the coefficient D. = 2A. The solution of
Eq. (15a) after a time interval t»l\/Da is

(19)

(20)
However, the total ambipolar diffusion profile with an
effective width ~Ain is formed, in a complex way, as a
result of the diffusion and field currents of the tagged
and background particles. The linearity of Eq. (14) for
the total density results from the precise compensation
of nonlinear effects. Η njf*« n0, the perturbed electric
field is small and its inverse effect on the motion of the
probing particles may be neglected; these particles drift
in the unperturbed electric field and undergo diffusion
with unipolar diffusion coefficients

-exp L wj— J· (21)

We shall first consider the case without an external
current. The electric field and ion density are per-
turbed in a region of width ~Ail,. The profile nf '(*, t)
is defined by Eq. (21) and n| f > =nmh + n0 - «?> according
to Eqs. (19) and (21). Moreover, the background ion
density at χ = 0 ia smaller than n0, since these ions are
pulled out from there by the electric field and, there-
fore, form a depletion region as well as an ion per-
turbation component at the wings of the total profile
(Fig. 2). If n̂ > £«o> t h e problem becomes nonlinear for
the probing particles. Since the total number of back-
ground ions in the perturbed region may not exceed
~n0V4Dai, the profile [Eq. (19)] consists mainly of
tagged ions; the effect of the electric field associated
with the latter is characterized by a vT-fold broadening
of the Gaussian profile [Eq. (20)]. As long as AT0« n,,Ae,
Eq. (21) holds also for the tagged electrons. Moreover,
Af0 injected electrons are distributed over a large area
~Ae and their contribution to the total profile [Eq. (19)]
is insignificant. The profile almost entirely consists
of the background electrons restrained by the electric
field and collected as the result of unipolar diffusion
from the depletion regions with an equivalent width
~Ae. The maximum number of background electrons
which may collect as a result of diffusion to form a
perturbation is ~n0Ae. If N0>n0Ae, the case for the
probing electrons becomes strongly nonlinear, m es-

nhi)

Ζ s

FIG. 2. Distribution of the probing (1) and background (2) ions
and the total plasma density (3—ambipolar profile) for a point
instantaneous source. Coordinate *=V4Dtf·, small perturbation.
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sence, the tagged particles undergo ambipolar diffu-
sion. However, when

η0Λ, < No < ra0Ae, (22)

nonlinearity of the probing electrons is intermediate.
The electric field within the bounds of the ambipolar
profile is, according to Eq. (20), large. Diffusion of
the background and probing electrons proceeds at a rate
essentially slower than the unipolar diffusion and the
particles follow the Boltzmann distribution. Although
the potential drop in this region is large and the inverse
effect of the field on the motion of the probing electrons
is considerable, the portion of the latter is the ambi-
polar profile associated with the intermediate non-
linearity is small (Fig. 3). The bulk of the probing
electrons is confined to a region with the unipolar di-
mension ~At from which the electric field is absent.

The situation changes substantially in the presence of
an external current. Figure 4 shows the behavior of the
total density profile for the plasma (upper part) and for
the tagged injected ions, whose mobility is equal to that
of the background particles, in a plasma with a current.
The magnitude of parameter A characterizes the non-
linearity of the initial profile. At small values of A,
Eq. (19) holds and the plasma density is perturbed
strictly by the background particles, —the probing elec-
trons and ions are carried away in different directions
by the current according to Eq. (21); moreover, the
perturbation of their density is exactly compensated by
the background plasma. Ε nmb(0, t) £« 0 , perturbation
of the electric field is considerable. When

nobeEot > 2,V0 > no6,£V (23)
the plasma density perturbation consists of the tagged
ions and background electrons (intermediate non-
linearity). This situation is shown in Fig. 4 (lower
part). Moreover, only a small fraction of the tagged
ions is removed by the current; if, however, 2N0

> ntbtE^t, ambipolar diffusion of the tagged particles
takes place (strong nonlinearity). If the mobility of the
particles injected into a plasma with a current is dif-
ferent from the mobility of the background particles,
in the case of a small signal two plasma perturbations
occur: a stationary ambipolar bunch and a signal which
travels with the drift velocity of the probing ions. The
generation of the latter is attributed to the inability of
the background plasma to screen out fully the perturba-
tion of the probing ions as a result of different mobili-
ties of the background and probing particles. If the

t-o

o.a

TO T5 20 25 x/L

FIG. 4. Evolution of tagged ion profile in the presence of
current.89 Initial profile—Gaussian η|ρ)=Λ«0βχρ[-Λτ/£,)2].
Numbers by the curves—time in units of i}/'D^; eEQ = 10AT/L.
Time, from which the tagged ions begin to be substantially
carried away by the current is, according to Eq. (23), icr~5A.
Upper family of curves—total ambipolar profile.

background plasma consists of many components, the
number of signals increases and, in the general case,
there are (K- 2) signals (K is the number of plasma
components). The propagation of the signal at K=3 is
frequently encountered in semiconductor physics (elec-
trons, holes and stationary charged centers); it is
called ambipolar mobility.90'91 Diffusion and recombi-
nation lead to attenuation of the perturbation.

5. SPREADING OF A DENSITY PERTURBATION IN
AN INFINITE PLASMA IN A MAGNETIC FIELD

In a magnetic field, even in the case of a simple plas-
ma with one kind of ions, the perturbations of the
probing and background particle densities are not com-
pensated. As a result of this, the total plasma density
and potential are perturbed over a large volume, which
corresponds to the propagation of the most mobile par-
ticles in a given direction. Moreover, the background
particle drift is also uncompensated and the total plas-
ma density decreases in certain regions. The separa-
tion of nonlinearity into strong and intermediate [Eqs.
(22) and (23)] components which are associated with the
strong or weak depletion of the background plasma, is
also preserved in a magnetic field.

We shall first examine the evolution of a density per-
turbation against the background of an infinite homo-
geneous plasma.

a. Small perturbations without an external current

The simplest case is when the initial profile follows
the sine curve with the wave vector k.20 Moreover,
from Eqs. (1), (2) and (14), we obtain

δη (r, t) ~ exp [ikr - D (μ 2 )«], (24)

where μ is the cosine of the angle between k and H, and

FIG. 3. Distribution of the probing (1) and background (2)
electrons in a strongly nonlinear regime for a point instan-
taneous source. De = 25D1, n^iO, 0) = lln0; 3—plasma density
(ambipolar profile). Coordinate x=/4Daf. (25)
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In the magnetic field which satisfies Eq. CO we have

f -γ-) [β,,μΖ+Ο,.,. (Ι — μ2)] for μ>μ<»
Ο(μ2) =

for μ < μ0,
(26)

where μο = V6tl/6en « 1, i.e., #(μ2) is identical with
the smallest of the unipolar coefficients in the direc-
tion μ. At μ > μ0, for example, diffusion is deter-
mined by the ions which flow at an angle γ with respect
to Η given by tani>= WlL/Dtll tan(k,H). The electron
diffusion flux along the magnetic field considerably ex-
ceeds Γ,, so that regions with maximum plasma den-
sity are positively charged and the resultant electric
field preserves quasineutrality; current flows in the
plasma along constant density surfaces (perpendicular
to the vector k). At μ = μ0, the electric field is en-
tirely absent. Thus, in this simplest problem, plasma
diffusion is essentially nonambipolar. By equating the
fluxes r , , l t l = Ti№ti, instead of Eqo (26) we obtain

ϊ)(μ^)«(ΐ+^-)β1|ΐμ2-1-(ΐ4-^)θι.1(1-μ2). (27)

This coefficient is considerably smaller than Eq. (26)
and the difference is particularly significant at μ ~ μ0.
We should also note that in order to derive the ambi-
polar expression [Eq. (27)], a nonpotential electric
field is needed. In other words, even if the plasma
density depends on a single coordinate, the problem is
not one-dimensional, i.e., particles fail to flow along k
and eddy currents are generated.

In the case of an arbitrarily small perturbation,
Fourier expansion is applicable and the result formally
comprises a superposition of expressions in Eq. (24).
However, this gives rise to a qualitatively new effect
which is associated with the multidimensionality of the
problem. We shall examine the new effect in terms of
the diffusion of a small point perturbation of density
6n(r, t) (this corresponds to the Green's function for a
diffusion problem).20 The boundary and initial condi-
tions are
δη (oo, t) = η (oo, i) — n 0 = 0, φ (oo, i) = 0, δη (r, 0) = JV06 (r).

(28)
The probing electrons injected into the plasma tend to

occupy an ellipsoid with the semiaxes ~ Λβι, and Aei; the
semiaxes of the ion ellipsoid are Λ,,, and Λ,1( respec-
tively. The resultant electric field near the origin of
coordinates retards the most mobile particles in the
corresponding direction: electrons along Η and ions
across H, i.e., at r = 0, the potential has a saddle point.
At r— «, the potential perturbation should be zero.
Therefore, two symmetrical potential minima should be
seen when ζ = τ«0, and at ρ=ρϋ <ρ is a coordinate trans-
verse to H) an annular maximum should occur in the
plane 2 = 0, i.e., the field should be characterized by
a quadrupole (Fig. 5). At ζ > ζα, the background elec-
trons along Η under the effect of the electric field
should be channeled in the same direction as the dif-
fused probing particles; at p>p0, the electric field
similarly enhances the diffusion flow of ions, the most
mobile particles across H. Thus, in contrast to the
case of diffusion in an isotropic plasma (Section 4),
where the field and diffusion currents of the most
mobile particles (electrons) outside the ambipolar re-

FIG. 5. Potential profile Φ = e</>no/TN0G(0,i) In the case of
spreading of a point instantaneous perturbation in an isother-
mal plasma. Coordinate—in units of -/SD^t, Ωβ"β= 30, Ω ^
= 0.3, ο = angle between r and H.

gion were fully compensated, in a magnetic field such
compensation is impossible. The perturbed plasma oc-
cupies, roughly, a region which resembles two ellip-
soids whose characteristic dimensions Aall i i are defined
by the unipolar coefficients of diffusion of electrons and
ions (Fig. 6). In other words, a diffusion signal is
propagated in almost the same manner as if the condi-
tion of quasineutrality did not exist at all. The electric
field in a region which lies outside the "electron" and
"ion" ellipsoids, causes the background particles to
counterflow. The ions flow across H, into the electron
ellipsoid and the background electrons, along Η into the
ion ellipsoid (Fig. 7). Quasineutrality is preserved by
the flow of an eddy current in the background plasma.
The potential perturbation vanishes at an angle ~ μ0 with
respect to H; the background particles drift away from
here under the effect of the electric field and a deple-
tion region is generated. The number of particles with-
drawn from the depletion region is of the order of the
total number of particles injected into the plasma. Nu-
merical calculations confirm this inventory.54·56

The effective volume occupied by a perturbation in the
absence of a magnetic field was of the order of Vmh

~{D,,,i[l + re/Ti]}3 / 2. However, in a magnetic field, the
electron and ion ellipsoid volumes are ν,-Λ,,,Λ^

FIG. 6. Profile of density perturbation due to a point instan-
taneous source [Green's function G(r, f)], relative to a value of
perturbation at the origin of coordinates. Notation same as in
Fig. 5; depletion region is cross hatched.
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FIG. 7. Field and diffusion particle flows near the depletion
region (see Fig. 6). Dashed arrows on the right-hand side
indicate field flows, solid—diffusion flows, DaVn; total flows
are shown on the left-hand side.

/ χ ^ ]

(r e /r , ) ] 3 / 2 . The ratio
and K,~At,,A?1~.D}/lDI1[l

^ ~ ( t ) " U P - ^ - (29)

characterizes the change in the effective volume filled
by the plasma perturbation when a magnetic field is ap-
plied. Regardless of the reduction in the transport co-
efficients which follows, the volume occupied by a per-
turbation may substantially increase. The density at the
origin of coordinates varies in accordance with the law54

«0 «0 \ Tt I i. • \ V| / V Ve / \ VI / J

( 3 0 )
The above ratio is of the order of (V71 + V'^Njn^, i.e.,
the density in the region where the ellipsoids overlap
is determined by the volume of the smallest ellipsoid.
Figure 8 shows the density profiles along rays ema-
nating from the origin of coordinates. A relatively steep
(with a scale length ~Λβ1) plasma density gradient and
an electric field which retards the more mobile par-
ticles (ions) occur at the boundary of the overlap region
and the large (in this case, ion) ellipsoid. In other
words, the density profile in the overlap region is ambi-
polar, i.e., it follows the Gaussian distribution with the

FIG. 8. Density profiles along straight lines inclined at an
angle α to the magnetic field with T,= 7\. 1—cost* = 0, 2—
cosa = 0.9. Solid curves—approximate solution,56 symbols—
numerical calculations,54 dashed lines—ambipolar Gaussian
profile. Distance in units of V"8Z),,,i, n1/c1 = l, Ω,/ΐ'β=103/3,
Ve/Vl «0.11. Boundary of the overlap region and ion (large)
ellipsoid corresponds to 0 < cosa < 1 — D,l/2Dl „ « 0.999.

diffusion coefficient Dei[l + (TjTt)]. The plasma den-
sity and potential, in a region corresponding to the
electron and ion ellipsoids, are

fin (r, t) χ n<«> + B">, (31)

where
ΛΌοχρ{-17

««)==-
Novxpi 4 0 ,

^ (33)

mi Ί/"^ΪΓ

We shall assume Tt = T, and Dei « DiL. The asymp-
totic behavior of the density perturbation in this case is
given, according to Ref. 56, by

6', (r, t) =

l Z ) l i . («sin' α -(36 sin' ιχ/μ{)-i- 12
(34)

G2(r,i) =

and the asymptotic behavior of the potential φ = (71/
β)ΛΓ0(Φ1+Φ2)

Λ (sin'g/Mg)-2
(35)

is characteristically quadrupole. A depletion region
exists in the interval 8ΐηα~μ0 (see Figs. 6 and 7), with
the relative depth h being of the order of the ratio of
the number of the probing and background particles in
the depletion region (its volume, however, is of the
order of Λ^,/Λ^, i.e., it considerably exceeds the el-
lipsoid volume):

These expressions hold outside the electron and ion el-
lipsoids. Since the potential is proportional to r"s, the
field currents obey r f ~r~4. The density perturbation
to which the latter give rise in accordance with dn/
3i~vrf, is proportional to t/r>, i.e., it corresponds to
Eq. (34). The diffusion currents ~r~6 are small com-
pared to the field currents. Consequently, the density
perturbation far from a source is caused by a redis-
tribution of background particles, which is associated
with the flow of an eddy conduction current.

The coefficient D(k), determined from Eq. (25), is a
function of μ =cos(k,H) only, i.e., at k = 0, it is un-
defined and contains a singularity.20 The presence of
the latter is what leads to a nonGaussian asymptotic be-
havior with the depletion regions determined by Eqs.
(34) and (35). Since the Fourier component of the per-
turbation with k = 0 corresponds to a change in the total
number of plasma particles. These effects are absent

2'The formulas for G2 and Φ2 are exhibited above only for
sina >μ0 since outside this region both C2 and Φ2 are small
in comparison with G\ and Φ,.
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if the density perturbation is not accompanied by a
change in the number of particles. Thus, for example,
if the initial perturbation of the density is in the form
of a Gaussian wave packet exp[ik<,r- (Vk,r)2]; Hk «fe0,
i.e., the perturbation of the total number of particles
is small, ~exp[- (feo/Afe)2], then both the depth of the
depletion regions and the asymptotic behavior given by
Eqs. (34) and (35) are proportional to this small multi-
plier.56 The wave packet itself attenuates as

If the perturbation is finite, a one-dimensional ambi-
polar mechanism may be important in certain regions.
Thus, for example, if the initial perturbation extends
along the magnetic field, the eddy current in the back-
ground plasma causes a rapid unipolar spreading of the
tails of the perturbation. The middle portion, however,
undergoes an ambipolar spreading, i.e., its width in-
creases as -JDeLt, The perturbation takes on the bell
shape, and if we have

< 3 7 )

then the diffusion unipolar signals from the end regions
fail to merge before the one-dimensional ambipolar dif-
fusion becomes significant (Fig. 9).

b. Evolution of a nonlinear perturbation

In the linear case, the density perturbation within the
electron and ion ellipsoids considerably (Dlx/D^- and
VDei/Uiu-fold, respectively) exceeds the maximum
value of the perturbation in other regions, so that the
nonlinear effects should occur, first of all, in the el-
lipsoids. In this region the solution is5 7

δη = η — n 0 = n<«> + n ( l ) + ft/iamb, (38)

where n( e ) and n ( l ) are expressed by Eq. (33) and

(39)

*«*( :

is the ambipolar solution.

The density perturbation outside the ellipsoids is
small, yielding a linear solution. The area in which
Eq. (38) is applicable is strictly limited by the condi-

tionft«l. Thus, it correctly describes not only small
(δη <<w0) perturbations but also comparatively large
plasma inhomogeneities, where the density inside the
ellipsoids exceeds n0 many times, i.e., an intermediate
nonlinearity regime. In the ellispoid overlap region an
ambipolar peak occurs with η ~n^h2(Z)u/DtL) VDel, /.£>,„,
which contains a small fraction (of the order of h) of
the total number of injected particles. Diffusion inside
this peak is determined by the ambipolar mechanism,
so that the electron and ion currents are identical
everywhere. Outside the peak, expressions for the
currents in the electron and ion ellipsoids and, conse-
quently, the density profile [Eq. (38)] are the same as
in the linear case. Thus, as long as the relative depth
of the depletion regions remains small, the short-
circuiting mechanism for currents in the background
plasma remains in effect. It provides a possibility for
the injected particles to spread with unipolar velocity
due to arrival of electrons and ions from the depletion
regions. When the background plasma is considerably
depleted (strong nonlinearity, h>l), the nature of the
solution undergoes a substantial change. Moreover,
the number of particles in the central peak approaches
the total number of particles injected into the plasma,
and the density is expressed by Eq. (39), i.e., a per-
turbation basically evolves in an ambipolar manner.
Only a small portion of particles spreads into the elec-
tron and ion ellipsoids due to the short-circuiting
mechanism. The density in the ellipsoids may be esti-
mated knowing the characteristic dimensions of the
region from which the lacking particles come to pre-
serve quasineutrality. Background plasma ions can
enter the electron ellipsoid coming across the magnetic
field from distances of the order of Au, so-that*he
number of ions assembled in the electron ellipsoid
volume is ~rt0AellAu, a n d t h e plasma density in it is

(40)

FIG. 9. Spreading of a linear plasma perturbation, highly
stretched along the magnetic field (Ln/LL »/D,n/Dti). Initial
perturbation is shown cross hatched. (t <<2<i3.

The plasma density in the ion ellipsoid is similarly
estimated by

" T . (41)

The background ions accumulated in the electron el-
lipsoid are held in it by a strong transverse electric
field which falls off with the decrement Λβ1,. This leads
to a strong depletion of the background plasma near the
ellipsoid, and the transverse diffusion broadens the size
of the depletion region to Λ,,,. The motion of the back-
ground electrons proceeds similarly. The spreading of
nonlinear perturbations of finite dimensions was studied
numerically by Voskoboinikov and coworkers.58

The asymptotic behavior 6n~i/rs and cp~r~3 applies

outside the ellipsoids. Moreover, at h> 1 the density

perturbation at the edge of this region should be of the

order of n0, so that the asymptotic behavior is

Γ,ί) j ,

where 6n l u is the corresponding expression in the
linear case.

In the case of a perturbation of an arbitrary shape
which considerably exceeds n0, the effect of the back-
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ground plasma is insignificant. However, the short-
circuiting mechanism may be effective inside the plas-
ma bunch. It should lead rather quickly to the estab-
lishment of the profile n1(^)n2(p) which constitutes the
initial condition for the ambipolar diffusion (in similari-
ty with the profile evolution in a dielectric container,
see below).

Above, we have examined a positive perturbation of
the plasma density. However, in the case of negative
perturbations of small size, the short-circuiting mecha-
nism is always effective since l j

points

μί,= 1 and μί, = ·

A number of nonlinear effects may be associated with
the dependence of £>, and Se on the plasma density due
to electron-ion collisions [Eqs. (12) and (13)]; however,
we shall not consider these in this review.

c. Allowance for an external current

Let the spatially-homogeneous current density j far
the field E, such that j = (6, +6))n0E] be prescribed at
infinity. The flow of an external current in a magnetic
field (as also the presence of ions of various kinds;
Section 4) results in a small perturbation with the wave
vector k in an isothermal plasma propagating with the
phase velocity

Ι"ι||'ί—"ιχ"-μ'"'^ (io\

The above quantity is called ambipolar drift velocity20'54

(see also Refs. 11, 92). The wave packet propagates
accordingly with the group velocity

ok
(43)

and it spreads as a result of diffusion with the coeffi-
cient ·Ο(μ2). The phase and group velocities (as well as
D) depend on M = cos(k, H) only, so that at k = 0 both are
indefinite. Therefore the Fourier component of per-
turbation corresponding to k = 0 (i.e., perturbation of
the total number of plasma particles), behaves en-
tirely differently. Similarly, as in the absence of a
current, particle injection results in the flow of eddy
currents in the plasma and in the formation of depletion
regions, although the processes evolve in a more com-
plex manner in this case.2 0 ' 5 6 In the initial stages of
evolution the perturbation is determined by diffusion,
so that the situation is identical with the one described
above. However, at later stages the dispersion mecha-
nism for the spreading of an inhomogeneity becomes
important the phase velocity [Eq. (42)] being a function
of the wave vector k.20 This leads to two effects: the
disintegration of the perturbation into several bunches
and an increased rate of their spreading compared to
the diffusion rate. The maximum perturbation occurs
along the extremal curve20 3 ) which is expressed by the
following equation:

r = V(nJ,)i, (44)

where μ.η takes on all values between zero and unity.
There are three plasma bunches in the vicinity of the

3'in the absence of electron-ion collisions, within an accuracy
up to the small terms, Dtl/DiL, Din/D,n: this curve is a
straight line.

(45)

(Fig. 10, bunches A,Β, C). The amount of excess plas-
ma in each bunch is of the order of the total number of
particles injected into the plasma. In the case of the
first bunch, the component velocities along the mag-
netic field and in the direction [Ε, Η] coincide (with an
accuracy up to small terms) with the electron speed
and, therefore, it may be conventionally called an
electron bunch. The velocity of the second bunch
across Η approaches the ion speed, so that it may be
called an ion bunch. We should note, however, that
neither the velocity nor the dimensions of the bunches
coincide with the velocities and dimensions of the
probing particle clusters. The position of the third
bunch corresponds to the point of contact between the
group velocity surface r=Vt r(/i2)i and the extremum
line. The perturbation along the latter between the
first and third bunches is positive, and between the
second and third, negative (see Fig. 10). If Ε| | Η or
Ε1H, bunch A merges with bunch Β or C. The process
of "disintegration" of the diffusion profile into tra-
veling plasma bunches was studied numerically in both
cases (E|| Η and EiH). 2 0 · 5 6

The potential perturbation is dipole in nature v>~r~2,
so that the asymptotic behavior of the density perturba-
tion, proportional to t/r* depends on the redistribution
of background particles under the action of the per-
turbed electric field.

K, for example, the mobilities of the injected and
background ions are different, as is the case in the
ionospheric bariated clouds, the counterflow of back-
ground ions fails to compensate fully the density per-
turbation in the region into which the probing tagged
particles flow. Under these circumstances, we have
one more plasma density extremum.56

An increase in δη/η^ leads to a number of nonlinear
effects. The simplest is a solution of the plane prob-
lem, where the perturbation is a function of a single
coordinate ξ. Moreover, regardless of the magnitude
of the perturbation, the density equation is linear

i< < 4 6 >
where μ is the cosine of the angle between Η and ξ, Vt

FIG. 10. Schematic model of spreading of a small point per-
turbation of plasma density with an external current near the
extremum curve. Β—electron cluster, C—ion cluster,
2-axis—along the magnetic field (cluster motion in the direc-
tion [£, H) not shown).
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is the projection of Eq. (42) onto ξ and 1>(μ2) is defined
by Eq. (25).

In the case of a nonlinear perturbation of finite size
the situation is considerably different, depending on how
effective is the mechanism for the short circuiting of
flows in the background plasma. If the initial size of
the perturbation is small, the only significant param-
eter is the relative depth of the depletion regions

h ~ {De, (E, + £A)».0U t Ai (E» + fij.) + (Dei - Ad) Ex) i3}'1—.

(47)
At h < 1 , the density profile is the same as in the linear
case, although the perturbed density may appreciably
exceed n^. And the perturbation of the potential near
the maxima A, B and C is

W

(48)

where rt corresponds to the coordinates of the maxi-
ma of [Eq. (45)]. Moreover, the field current expres-
sions coincide with the results of the linear theory:

m =«V<p. There is no ambipolar peak.

5, however, h> 1, currents in the background plas-
ma are insignificant and ambipolar diffusion is basical-
ly responsible for spreading; the background plasma
density is insufficient to produce short circuiting and
the injected particles occupy an ellipsoid with the semi-
axes AiH and Ael near the origin of coordinate, i.e., the
external field is practically totally screened by the
plasma. But, a small fraction of particles (of the
order of ft"1) injected into the plasma may, as before,
move unipolarly to form the "sleeves" OA, OB and AC.

d. Spreading of a plasma pinch

In the case of a small density perturbation the solu-
tion is a two-dimensional analog of the point source
problem which was considered above. The density .
perturbation (in the plane xOz', perpendicular to the
pinch) is considerable in the region formed by the
superposition of two ellipses, the electron ellipse with
the semiaxes Aei and Â ,, and the ion ellipse, with the
semiaxes A u and Ai u. Equation (8) is used to deter-
mine Λα, with the following substitution for £>„„

D a = Α» ι sin2 Φ + Daj. cos2 ft, (49)

where θ is the angle between the pinch axis and the
magnetic field. The asymptotic behavior of the per-
turbation and the location of the depletion regions may
be obtained from Eq. (34).M Figure 11 schematically
shows the geometry of a pinch. Β the angle of dipθ is
small ( < μ ο = ^DlL/Dm), then Ael <Λ\,,, the depletion
regions vanish and the diffusion becomes ambipolar (in
both linear and nonlinear cases). The dimensions of the
perturbed region are, furthermore, sharply reduced (to
Aeu, A e l ) .

In the case of a strong density perturbation, the Hall
currents which occur during diffusion may become sub-
stantial in the electric field and be of the order of the
nonlinear effects examined above. Since these cur-
rents in a strong magnetic field are ~ H~% (and the dif-
fusion coefficient across the magnetic field is ~i/~2),
an opinion was expressed that they can greatly ac-

FIG. 11. Spreading of a plasma pinch for θ >min(Vii0, Vj/ftj).
Small arrows indicate electron flows along Η which short cir-
cuit the Hall current; right-hand side (b) shows the ambipolar
ellipse; s, q—positive space charge, />, r—negative space
charge.

celerate transport across H.70 However, the effect is
actually considerably more complex. At θ > min[t>(/
Clit /βΐ], the Hall currents are "short circuited" by the
by the electron and ion currents along and across H,
respectively, and the situation, as before, is similar
to the case of a point perturbation. At h = No /
(βτίη,νχ). JD (| ) <1 (Na is the number of injected par-
ticles per unit length of the plasma pinch), the short-
circuiting mechanism is in effect, and at h»l, ambi-
polar diffusion takes place. Actually, the constant den-
sity and potential surfaces in the electron and ion el-
lipses coincide, so that the Hall currents fail to cause
changes in the plasma density. Outside the ellipses,
however, the density and potential are only slightly
perturbed. Therefore, the Hall currents may have an
appreciable effect only in a region where the ellipses
overlap, i.e., in the ambipolar ellipse. Β these cur-
rents were not taken into account, the plasma woBld be
polarized as a quadrupole (abed in Fig. l ib). The maxi-
mum divergence of the Hall current in this field (thin
lines in Fig. lib) occurs in the directions which form
an angle δ ο = jDei/uin with the z'-axis (the angle be-
tween the currents and constant density lines is almost
90° in this case) and i s ~beL(Sli,/vc)n(O)(p®)/(ACiAul). The
resultant polarization (Pqrs) leads to the flow of elec-
trons and ions along and across H, respectively. The
divergence of the electron flow, determined by the po-
tential δφ with this polarity, is ~bclln6<pd2/A\u. There-
fore, at θ > -J~m, Ώ{ <fj, a small perturbation δφ
~<ρ(0)μ0/θ2 is sufficient to compensate the divergence
of the electron Hall current. The ion Hall current is
similarly short circuited across Η at Ω( > ν,.

The nature of evolution of a nonlinear perturbation
should be substantially changed by the drift in the
crossed fields only at angles μ0 <θ O 0 = min[f i/ni,
>/μ̂  ]. The ongoing processes resemble the widely
known phenomenon of the reestablishment of conduc-
tion across the magnetic field, under the conditions
where the Hall current is forbidden. The polarization
(pqrs, see Fig. lib) cannot now be "shorted" along H,
and new Hall currents appear in this field. Their di-
vergence (on the scale of the ambipolar ellipse)
~e6(p!»ed/(TAe±Aill) (at ? ? < ? ? ) is small compared to
divre l l , but exceeds div Γ u . Therefore, the electric
field across Η should change sign and the transverse
dimension of a strong perturbation increases from Ael
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to Λι,,. The potential profile, moreover, should corre-
spond in the first approximation to the Boltzmann elec-
tron distribution, such that the Hall currents pass along
the constant density surface. And the small "bending"
of the polarization (pqrs) is determined by the condition
requiring that the electron Hall current be equal to r u -
6<p~(T/e)Diu/Dtd. At fij> Vi, the ion Hall current is
somewhat smaller (by an amount of the order of ~v\/
Ω2) than the electron Hall current. Therefore, the dif-
fusion flow of ions across Η has to compensate this
small difference only. The transverse scale in this
case also equals AiM.

A numerical calculation of the spreading of a plasma
pinch of finite initial dimensions and oblique to Η was
carried out for a broad range of angles θ,9 2 At the on-
set, the maximum density was three times greater than
the background density, which corresponds to inter-
mediate nonlinearity. The potential formed a quadru-
pole; at large θ, its extrema were located practically on
the χ and z' axes and the density profile was symmetri-
cal with respect to χ and z\ This confirms the minor
role of the Hall currents. However, a considerable
"bending" of the density and potential profiles was ob-
served at small θ (Fig. 12).

Since the Hall current effect may be important in the
regions where the perturbed density considerably ex-
ceeds background, profile "bending" in the peripheral
regions was small. The value of μ0 was nearly 1° and

0 ~7°. The rate of decrease of density along the axis
increased sharply when changed from 0 to 1°. The
rise is slowed down when l°<a <5°. And changing
from 5° to 90; had practically no effect on the rate of
decrease of density. This is in agreement with the
model presented above.

e. Experiments in the ionospheric plasma

The substance in which the effects described above
play a major role is the ionospheric plasma. Actually,
in the geomagnetic field pe <\, starting at altitudes
s80 km, and p,.pi<Xc\i above ~95 km; the effect of
collisions between charged particles on the diffusion
is insignificant up to ~300 km. Precisely in this region,
intensive studies of meteor tracks, bariated clouds,

\u(t.i(i.s(u

_ **C—~^T —·
ι' ass Ϊ

•^-ZMs

evolution of the natural plasma inhomogeneities, rocket
and satellite tracks, etc., are continuing. In a large
number of cases the effect of the background plasma in-
homogeneity and of boundaries is not very significant.
Unfortunately, information concerning the plasma per-
turbations caused by these effects is very incomplete.
In particular, studies of the bariated clouds normally
focus on the behavior of the "tagged" barium ions only,
whereas it follows from the foregoing that the nature of
the background plasma perturbation is more complex
and involves a much larger volume. The concurrent
studies of the evolution of "tagged" ions and of the back-
ground plasma may, in principle, yield considerably
greater information concerning the condition of the iono-
sphere. An indirect confirmation of the above model of
the short circuiting of eddy currents in the background
plasma may be perceived from a number of experi-
mental facts. Thus, for example, Fig. 13 shows the
time dependence of the total number of barium ions de-
termined photometrically from the cloud image.94 The
sharp falling off, recorded at t0 ~ 400 sec, may be in-
terpreted as follows. The concentration of Ba* ions at
the initial stage of spreading exceeds the background
20-fold, which corresponds to intermediate nonlinearity.
The ions were magnetized and, in the initial stages,
one-dimensional ambipolar diffusion of the Ba* ions
along Η had taken place. However, the transverse mo-
tion of the Ba* ions could be associated only with the ex-
ternal electric field Ε in a system of coordinates which
travels with the neutral gas. Since the electron and ion
mobilities are different, charge separation occurs. The
injected cloud of dense plasma can move in the direct-
ion [EH] only if the background ion flow can compensate
this difference. Such motion, accompanied by a large
increase in the cloud volume and a decrease in the Ba*
ion concentration due to the dispersion mechanism of
spreading,20 become possible only if the displacement of
the background ions along Ej. is comparable to the initial
transverse dimensions. Assuming EL ~ 2mV/m and /„
~1 km, we obtain tt = I-/biLEL-400 s. At t>tt, the
original cloud having the shape of an ambipolar ellip-
soid at first, acquires a "tongue" which stretches in
the direction [EH], whose dimensions rapidly grow with
time.9 5

In the course of experiments96 carried out with large
barium charges (> 1.8 kg), the nature of evolution was
highly dependent on the number of Ba* ions (Fig. 14).
The initial amount of barium ions in three clouds was
estimated at (0.7-2) χ 1Ο23 (a 30-100-fold higher con-
centration than the background). These clouds moved

FIG. 12. Numerical calculation of spreading of a plasma
pinch inclined at the angle θ = l°50' to H. Parameters cor-
respond to ionosphere at an altitude of 102 km. Initial pro-
file—Gaussian: 6n<X,0) = 2n-expl-0.6(x?+y2)/R2]. Coordi-
nates in units of R, t=R2/2Dln. Upper half—density profile
δη/η0; lower half—potential profile in units of T/lOe.

fsec

FIG. 13. Variation with time of the total number of the Ba*
ions in a cloud.
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FIG. 14. Trajectory of neutral (circles) and ionized (crosses)
barium clouds from data of Ref. 96.

practically together with the neutral clouds. The speed
differential was not more than 10% and was smallest
for the largest cloud (2). The latter moved together
with a neutral cloud during the entire period of ob-
servation (~16 min). Two smaller clouds (1 and 3) were
under observation for a shorter period (5-12 min).
Toward the end of the observation period, the path of
one of the clouds sharply deviated from the path of a
neutral cloud. The fourth cloud contained roughly (0.4-
1.2) χ 1022 ions, which corresponded to an initial con-
centration at the center of (2-6) x 10e cm"3 and exceeded
only slightly the background concentration at these alti-
tudes. Its speed at the onset had nothing in common
with the speed of the neutral cloud. These facts are in
qualitative agreement with the model presented above.
The sharp changes in the direction of propagation of the
ion clouds (including reverse propagation), observed in
Refs. 97 and 98, are possibly also associated with the
phenomena discussed above, and are dependent on the
fact that a high-density cloud, moving with the wind at
first, begins to move in the direction [E,H] when the
short circuiting mechanism is "switched on."

6. DIFFUSION OF PLASMA IN A FINITE VOLUME

a. Effective boundary conditions

An analysis of diffusion of a finite plasma requires
that boundary conditions be defined for the density and
the potential. If the thickness of the space charge
layer, in which quasineutrality is violated, is small
compared to the plasma dimensions, it is feasible to
consider a solution in it as an effective boundary condi-
tion for the plasma quasineutral equations. The geom-
etry of the boundary region may be considered plane
and the number of particles in it small, so that the par-
ticle accumulation and ionization in that region are in-
significant. Then the electron and ion currents, which
flow in the region and are normal to the boundary, are
preserved. Having expressed the currents in terms of
the potential drop in this region, relations may be ob-
tained which couple the particle current values (i.e.,
the potential and density derivatives normal to the
boundary) to the values of potential and density at a
certain boundary which is located sufficiently close to
the plasma boundary. Let, for example, the boundary
surface absorb all the incident particles, emission be
nonexistent and the boundary potential with respect to
the plasma be negative. If the layer thickness is less
than Xe (a collisionless layer), then in the case of Max-
wellian distribution the electron current onto a bounda-
ry perpendicular to Η is

where Vt= V8TeAme and w(A) and <ρ(Δ) are the values of
the density and the potential at any point ζ = Δ in the
boundary region where the geometry may be considered
one-dimensional. The density profile near the boundary
is linear and, if the coordinate of the conventional
boundary surface is chosen to be Δ » \e, \ i t the density
at the layer boundary may be taken as zero,100 and Eq.
(2) yields

^ ^ * A. (51)

-y η (Δ) v
e
 exp ( — (50)

The layer structure and the solution in the intermediate
region were the subject of detailed discussions.101·102

The conditions of Eqs. (50) and (51) couple the values of
the functions η and φ and their normal derivatives r e n

and Γ,,, at the plasma surface located at a distance Δ
from the boundary, i.e., they represent two mixed
nonlinear boundary conditions for a quasineutral sys-
tem of equations. In a magnetic field the length of time
an electron spends in orbits, from which removal to a
wall parallel to Η is possible, is short, i.e. of the order
of flc, and the orbits are filled as the result of relative-
ly rare collisions.103 The orbits are, therefore, prac-
tically vacant fto within (Ue/ve)~l] and the electron cur-
rent to the wall corresponds to the number of collisions
which transfer the electrons from filled orbits to vacant
ones. Consequently, ve in Eq. (50) must be replaced by
peve, where pe = ̂ j2eK<p^/fne is the Larmor radius of an
electron with energy e&<pw, ν is a properly averaged
electron collision frequency,77'104 and Δφν is the poten-
tial drop in the space charge layer.

rei=-j-ii(a)peveexp y γ—j. (50a)

Η the layer thickness exceeds λβ (or p j , the diffusion
equations are applicable also inside the layer, and ne

= Μ[ = 0 at the boundary. A numerical eolation of this
problem was presented by Su105 and Cohen,106 and simple
analytical expressions, for the case where the drop in
the layer substantially exceeds Te and 7Ί, were ob-
tained by Rozhanskii.77 The phenomena associated with
the dependence of ion mobility on electron field intensity
and non- Maxwellian electron distribution function in a
boundary region were discussed in detail else-
where.1 0 1'1 0 2

b. Diffusion in a dielectric apparatus

Our discussion of diffusion mechanisms shall be
limited to the simplest problem concerning decay of a
plasma inhomogeneous in two dimensions in a cylin-
drical vessel with walls parallel to the magnetic field.
The Hall currents in this case flow along the constant
density surface and have no effect on the diffusion. A
case in which the inequalities TCU « Tei and Τϋ,» τ ί χ are
satisfied for the fast and slow time scales of Eqs. (9)
and (11), is particularly interesting. In the opposite
case, ambipolar diffusion simply takes place since the
short-circuiting processes, which correspond to the
greatest of the fast times Tel, and T U , do not have time
to occur during the time of ambipolar diffusion (the
least of the slow times). We shall assume that the
characteristic dimensions of the initial perturbation
M<i(r,z) are of the order of the apparatus dimensions
(spreading of small-scale perturbations occurs in the
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same manner as in an infinite plasma). We shall show
that the evolution of any initial profile occurs in two
stages. At first, rapid density redistribution occurs
during a time of the order of the fastest time. Subse-
quently, the second (ambipolar) stage begins for which
the electron and ion currents are equal throughout the
plasma volume.

The analysis is simple for the limiting cases where
either rell « τίχ (short apparatus) or τ,,,,» T U (long ap-
paratus). The electric field in a short apparatus cor-
responds to a Boltzmann distribution of electrons along
H:

φ (r, ϊ, i) = — |ln w (r, z, t) + ψ (r, <)]. (52)

If we neglect the longitudinal ion diffusion and integrate
the equation for the ions along the length of the appara-
tus, we obtain

where Nx{r, t) is the number of plasma particles in a
cylindrical layer of unit cross section, which is parallel
to Η and abuts against the ends of the apparatus. The
boundary condition requires that the normal components
of the fluxes to the wall be equal, i.e., r e 7 = r i n .
Therefore, particle removal is determined by the slow
times and, in the fast stage, we may assume dNt/dt = 0
and ?\,??, = 0.

It follows from Eq. (53) that

(54)

and the plasma density equation for the fast stage be-
comes

The steady-state solution of the above is
η (r, z, t) = A\ (r, 0) N2 (z, 0), e<p (r, z, t) = Te In JV2 (z, 0)

— Γ, l n J M r , 0); (56)

where N2(z, t) is the number of particles in a layer per-
pendicular to Η and bounded by the side walls. This
solution is asymptotically dependent on the density pro-
file at the end of the fast stage as a result of the short
circuiting of eddy currents in the plasma. The charac-
teristic time of this stage is ~ T U . Figure 15 shows a
simple example of the fast stage. The rapid relaxation
of a small deviation from the ambipolar profile [Eq.

FIG. 15. Eddy currents during the rapid diffusion stage.
Initial profile corresponds to the ambipolar profile nix, z, 0)
=Nl(x)N2(z) with condensations (cross hatched) and rarefac-
tions (dots) of the plasma superposed on it.

FIG. 16. Schematic diagram of experiments on plasma diffu-
sion.50 A, B, C—metallic cylinders. Thin lines—magnetic
lines of force. Electrode A in apparatuses of Fig. 16 b and e
is movable. Cylinder A could be replaced by a plane end
electrode.

(56)] was considered in Ref. 53. Having determined the
profile of Eq. (56), we can eliminate the potential from
the initial system and obtain the usual equation of an-
isotropic diffusion with ambipolar coefficients along and
across the magnetic field:

:)^r£· (57)

It describes the evolution of the plasma profile with
slow times. For the fundamental diffusion mode, for
example, we have

Λ ι, =
' 2.405 '

(58)

(59)

In the case of a long (τε,,» τα) apparatus the rapid
diffusion stage, which leads to the ambipolar profile
[Eq. (56)], occurs during a time ~ Te,,.

The long-standing efforts to determine experimentally
the ambipolar diffusion regime have been encumbered
by the fact that at pep{ <\λ{, where the magnetic field
begins to have a substantial effect on the transverse
ambipolar diffusion, plasma in dielectric apparatures
becomes unstable. The plasma lifetime in this case is
considerably shorter than the classical value of Eq.
(59). An unambiguous proof of achievement of the clas-
sical ambipolar diffusion regime was obtained experi-
mentally in a decaying plasma.50 Both quiescent and
turbulent isothermal plasmas were obtained in ap-
paratuses with conducting lateral walls (Fig. 16).4)

Both states were characterized by a definite margin of
stability. The plasma could be transfered from one
state into another at any given time by means of a con-

4)The majority of experiments described below were carried
out in a decaying plasma and, therefore, all experimental
curves correspond to Γβ=Γ1 = 300 Κ.
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FIG. 17. Drop in plasma density along the axis of the appara-
tus for disconnected end and side electrodes. Arrows indicate
transitions to a turbulent state when a pulsed voltage is ap-
plied to the probe.

trolled external effect. The transition from a quiescent
state into a turbulent one is indicated by arrows in Fig.
17. In the first regime, the lifetime was determined by
the classical transport coefficients. Figure 18 shows
Dal calculated from measured lifetimes, according to
the equation Dal = Λ2 (τ"1 - Α,,,/ΛΪ); the longitudinal co-
efficient of ambipolar diffusion is assumed to be classi-
cal. Good agreement between calculations and experi-
ment is evident. The presence of conducting walls (the
end wall in the different variants of the experiment was
both conducting and dielectric)50 should lead to a change
in the electric field in the plasma compared to Eq. (56)
(see below in subsection c). Thus, for example, at rell

> Tjj. and in the case of a mean free path lateral layer,
there should be no longitudinal electric field for the
fundamental diffusion mode [Eq. (58)]. Therefore, the
multiplier 1 + (Τε/Τ() should be omitted from the second
term in Eq. (59). The corresponding corrections to Eq.
(59) under the experimental conditions of Ref. 50 do not
exceed a factor of 2. Since the real plasma density pro-
file could differ slightly from Eq. (58), allowance for
these corrections would, evidently, exceed accuracy.

In recent years, a number of articles appeared (see,
for example, Refs. 107-112), in which theoretical in-
vestigations were made of the anomalous diffusion re-
sulting from random electric fields of large-scale
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FIG. 18. Dependence of transverse ambipolar diffusion coef-
ficient in a helium plasma on the magnetic field. Dashed line
corresponds to classical theory. R = 2 cm, L= 75 - 80 cm.
Pressure (Torr) = 5xlO-2(l), 9χ10*2(2), 0.3 (3) and 0.16 (4);
5—data of Ref. 70. Sharp increase at H>HV is due to occur-
rence of an instability.

thermodynamic equilibrium fluctuations (convection
cells). It was asserted in these papers that at u>pe % ty,
the basic contribution to particle transport should de-
rive from this mechanism. The experimental data111·112

were in qualitative agreement with such a model. The
foregoing experiments50 were carried out over a broad
range of densities up to w~107 cm"3, at which value the
ratio a>Pe/iiesl0~2 and the effect of equilibrium fluctua-
tions, in accordance with Refs. 107-110 should be ap-
preciable. However, noticeable deviations from the
classical transport coefficients were not observed in a
quiescent plasma. This agrees with the most consistent
calculations,113"115 which show that thermal fluctuations
should lead to only comparatively small corrections to
the classical values.

As the plasma in a metallic chamber became unstable,
there was an increase in the transverse diffusion of the
plasma, which was practically identical to the case of a
dielectric apparatus. The major cause of instability
under the experimental conditions was violation of
quasineutrality in the small-scale drift-type oscilla-
tions.51'116 Therefore, in a plasma of sufficiently high
density for which the Debye radius is small, oscilla-
tions occurred only near the wall and the transverse
diffusion in practically the entire apparatus was near-
classical. At a low density, however, transverse diffu-
sion increased considerably. Figures 19 and 20 show
the experimental results. Clearly, calculated values of
the coefficient of ambipolar diffusion across Η at high
density were close to experimental ones. The result
was practically independent of the tube radius and of the
kind and pressure of gas since the diffusion was basical-
ly determined by the electron-ion collisions. As the
density decreased, the unstable plasma layer at the wall
expanded and, eventually, filled the entire volume of the
apparatus. The coefficient of transverse diffusion cal-
culated from the lifetime was, moreover, approaching
the value of Bohm's diffusion coefficient (Di ~DB=cT/

7 9
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FIG. 19. a. Dependence of ( Dai> on the plasma density
averaged over the cross section: 1, 2—data of Ref. 41, 3, 4,
5—data of Refs. 118,119, Η (kOe) = 0. 5 (1,3), 1.0 (2,4), 3.0
(5). b. Dependence of transverse ambipolar diffusion coeffi-
cient (averaged over the cross section; diffusion is due to
electron-ion collisions) on the magnetic field.50·117'118 (1—
He, <n) = 3 x l O u - 3 x 1012 cm-', Λ = 4 cm; 2—He, <n)=2xlO10

- ΙΟ11 cm-3, R = 0.8 cm; 3—He, (n)= 3 χ 10 u - 3 χ 1012 cm"3,
fi = 0.5 cm; 4—He, <n>=3xl011 - 3 x l 0 1 2 cm-3, fi = 0.25cm;
5—Ar, (n)=2xlO1 0-101 1 cm-3, Λ = 0.8 cm; straight line cor-
responds to the classical values of Bajl; (n>—density averaged
over the cross section).
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FIG. 20. Dependence of <Dai> on <«> in a dielectric appara-
tus.4 1 ' 4 6 R-2 cm, £=80 cm, /> = 3 x l 0 ' 2 Torr, gas—He.
Curve 1—H-l kOe, 2—H=2 kOe. Dashed lines—classical
diffusion coefficient; dash-dot lines—Bohm's diffusion coeffi-
cient.

Diffusion along the magnetic field was close to classi-
cal under all conditions. Figure 21 shows the values of
the longitudinal diffusion coefficient which were deter-
mined from the measured values of the diffusion plasma
lifetime in apparatus of variable length:

Λ,, (τ-'(Α ) - τ - ' (Λ, -* oo)J. (60)

The effect of electric field distortion, due to the con-
ducting walls, as compared to the ambipolar case, could
be substantial only at Ten ~ T U ; however, even in this
case, the correction to Eq. (60) did not exceed a factor
of 2 under the experimental conditions.

If the side walls of a chamber are inclined to the mag-
netic field at an angle a, according to Eqs. (25) and (46)
diffusion even in a one-dimensional apparatus with di-
electric walls is not ambipolar and occurs much faster.
A qualitative picture of the flow of the electron and ion
currents in this case is shown in Fig, 22a. Clearly,
ren,i * Γί,,,ί holds at not a single point in the apparatus
and wall neutrality is achieved by the arrival of elec-
trons and ions from different regions of the plasma.
This effect was discovered and explained by Ganichev48

and Zhilinskii.52 The decay constant for a one-dimen-
sional profile «=n 0 cos(|/A{)e~'/ T according to Eq.
(46) is

fl = — r̂-, (ol;

The experimental results are in satisfactory agree-
ment with theory (see Fig. 22b). The diffusion picture
in an apparatus of limited length was more complex.52

In particular, the plasma lifetimes at different seg-
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FIG. 21. Coefficient of longitudinal ambipolar diffusion in
helium.4 1·4 6·5 0 1—Λ = 0.8 cm, /> = 8xl0*2 Torr, H=l kOe;
3—fi = 0.8 cm, /> = 5xlO"2 Torr, # = 2 . 4 kOe; 4—Λ = 0.5 cm,
p = 0.1 Torr, H=2 kOe; 5—Λ = 0.5 cm, /> = 0.1 Torr, H=4 kOe.
Dashed line—classical value Din = 2Dlt).
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FIG. 22. a. Particle flows during diffusion in a dielectric
apparatus with the axis inclined to the magnetic field, b. Ef-
fect of dielectric tube misalignment on the plasma lifetime.52

Experiments in He in a tube of length £=90 cm and radius
R = 0. 8 cm, Η = 1 kOe, p- 0.1 Torr. Angle between the tube
axis and magnetic field a=Ax/L (1,2—tube misalignment
in two mutually perpendicular directions). Solid line—calcu-
lations by Eq. (61) for an infinitely long apparatus. A{ as-
sumed to be Λ/2.4.

ments of the length of the apparatus should be unequal.
During a later stage, the decay should be again slowed
down, a fact which was observed experimentally.

c. Diffusion in an apparatus with conducting walls

In this case, the short- circuiting effect takes place
(Section 3). In a short (rcll« T U ) apparatus a rapid re-
moval of electrons along Η to the ends charges the
walls negatively. If the space charge layer, adjacent to
the end wall, is collisionless, the potential at a point
in the plasma with respect to the end is according to
Eq. (50)

(62)

where Vl«(r,t) is the electron current density at an end.
The potential over almost the entire volume of the ap-
paratus (except for small regions adjacent to the side
wall) is determined by Eq. (62), and we also have

(63)

Therefore,

and the density equation is

The above equation has a particular solution

(65)

which corresponds to decay with a short- circuiting time
of TSC » r i x (« Ten in a long apparatus). The potential drop
between a point in the plasma and the end electrode is
determined by the motion of electrons along H, i.e. by
the ratio of the rate of removal to an end BN^r, t)/dt
to the density at a given point n(r,z, t) according to Eq.
(63). For the profile in Eq. (65) the dependence of these
values on r is the same for all values, so that the poten-
tial in the plasma is independent of r and there is no
transverse (with respect to the magnetic field) electric
field. In the case of a diffusion end layer the presence
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of a transverse field results in the value of decay time
being equal to Tu[l + (Te/ΖΤ,)]'1. In all cases the po-
tential in the plasma volume is "bound" to the end elec-
trode and the transverse electric field is determined by
the rate of removal of electrons along H. The situation
changes only at distances of the order of Ant»e/fte from
the side wall where the electron motion may no longer
be considered as one-dimensional.76 In a long apparatus
(Ten» T U ), the electric field along Η is determined by a
layer adjacent to the side wall. The qualitative con-
siderations of Refs. 5, 41 yield a value of the decay time
in a short apparatus equal to T U [1 + (Te/Tj)]"1; the dif-
ference is especially significant in a nonisothermal
plasma at T e » Tx.

The nature of diffusion, determined by Eq. (64),
strongly depends on the shape of the density profile. If
in a short apparatus against the background of a profile
with characteristic scales determined by the apparatus
dimensions A,, and Λχ, there exist small-scale perturba-
tions A,, and Λχ (with the corresponding times τ^, and
Ta±)> the effect of boundaries on the relaxation of har-
monics with fu < Tel, is insignificant; they, generally
speaking, spread in the same manner as in an infinite
plasma. The evolution of inhomogeneities with T U > Tel|

leads (as also in a dielectric apparatus) to establish-
ment of a profile of the form iVt(r)i/2(z) during a time
~ T U . Subsequently, regardless of the fact that the den-
sity profile remains broken up on a scale Λχ, diffusion
is determined by the size of the apparatus and proceeds
with a large characteristic time T U > T U . 7 6 The reason
for this is that, with an accuracy of up to the slow trans-
verse electron diffusion, iVt(r, t) = tfn(r,z,t)dz can only
decrease as a result of removal of electrons twoard the
ends. And in the case of a profile of the form NfflNfe),
the densities in two adjacent columns, which are paral-
lel to Η and separated by Ax, would tend to become the
same during a time ~ fu only if the density in one of the
columns is increasing.

Experiments on the diffusion of a quasistationary plas-
ma in closed metallic apparatuses were the subject of
several articles.79'121"125 Moreover, a hot plasma pinch
existed only at the central part of the chamber, while
the remaining volume was filled with plasma as a result
of diffusion from the near-axial regions. The electron
temperature was much lower at the periphery than at the
center. The main electron flow to the metallic wall had
to proceed along Η from the near-axial region and to
produce a large negative potential drop between the
chamber and the plasma, which almost entirely locks
the electrons in at the periphery. The spatial density
distribution in this case must be determined by ion dif-
fusion. These considerations (by 2iarinov) were con-
firmed experimentally.122·123 Thus, possibility of non-
ambipolar diffusion of electrons and ions in a magnetic
field was shown in this work for the first time. How-
ever, it only indirectly testifies concerning the possi-
bility of short circuiting the entire plasma volume. An
attempt was made to discover this effect in a quasista-
tionary system with the plasma uniformly filling the en-
tire chamber cross section.126 The results were essen-
tially unsuccessful. The reason for this can apparently
be attributed to the incorrect method used for mea-
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FIG. 23. Decay of helium plasma in a metallic chamber.128

Λ = 2 cm, /> = 0.1 Torr, H-2 kOe. End electrode simulated
by a cylinder in a weak field. Arrow indicates instant when
the end and side electrodes are connected.

suring the diffusion coefficient.

Decaying plasma was the object of investigation in the
second group of papers.41'44"46·™'127 Direct measure-
ments were used for the first time to show the effect of
short circuiting on the lifetime of the entire plasma as
a whole.41 However, the experimentally observed diffu-
sion rate was considerably lower than predicted by the
theory. In a number of subsequent papers contradictory
data were obtained. Acceleration of diffusion decay in a
metallic chamber was noted by Geissler.45'70 The short-
circuiting effect was not recorded at all in Ref. 44.

A detailed experimental investigation of the short-
circuiting effect was carried out successfully only after
the stabilizing effect of the side walls on the instability
of the decaying plasma was discovered,50 and the limits
of the range of parameters for which the plasma re-
mains quiescent were established. In these experiments
the conducting cylindrical side surface was adjusted
along the magnetic field and the end electrodes consisted
of flat plates which were perpendicular or inclined to
H, or were simulated by cylinder segments, coaxial
with the side cylinder, and situated in the region of
magnetic field (see Fig. 16). Both end electrodes (or
one of them) could be connected electrically to the side
cylinder at any instant during decay. Before the con-
nection was made ambipolar decay described above was
achieved and, subsequently, the short-circuiting re-
gime. The nature of decay in both regimes was close to
exponential (Fig. 23); however, the diffusion rate sharp-
ly increased (the lifetime decreased by more than two

ΙΟ1 2 Ί Β 10' l Ιι 6 ΙΟ*
№,Oe

FIG. 24. Time of diffusion decay of a plasma in the case of
short circuiting.129 Helium, Λ = 1.9 cm, £ = 65 cm, p = 0.\
Torr. Solid curve—ij-J, dashed curve—r~j. Symbols: 1—3—
one-sided short circuiting, 1—with plane end, 2—with cylin-
drical end in a weak field region, 3—with cylindrical end and
compensation; 4—two-sided short circuiting with plane and
cylindrical ends and compensation.
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orders). Figure 24 shows the observed values of the
plasma lifetime. In the case of short- circuiting on two
sides under the experimental conditions we have TeM

> T U for the fundamental diffusion mode and, therefore,
the lifetime should be close to TU. (curve in Fig. 24).
For a magnetic field Η <1.5 kOe and one-sided short-
circuiting we have Tell » (2L/n)2/Dell > T U . Consequently,
in this case the lifetime in weak fields should be * Teli

and as the field intensifies, it approaches T U . Both the
nature of dependence on the magnetic field and the life-
time values agree with calculations; discrepancies are
apparently due to the density profile differing from
fundamental diffusion mode [Eq. (58)]. It is also pos-
sible that the potential applied in making a correction
between the end and side electrodes in order to compen-
sate an unknown contact potential difference, did alter
somewhat the electric field in the plasma.

Since, in the case of short-circuiting, electrons es-
cape mainly toward the end electrode and ions toward
the side electrode, recording the current which flows
between the two electrodes provides a mean for mea-
suring the diffusion rate and plasma density. A com-
parison of data obtained by means of this method with
the results of UHF resonator measurements is shown in
Fig. 25.

d. Diffusion in the case of more complex boundary
conditions

We shall consider several simple examples. If the
potential difference between the end and side elec-
trodes 4>w in the aforementioned system (see Fig. 16 b
and c) is changed, plasma decay in a short apparatus
(Te,i>> T U ) is described, as before, by Eqs. (63) and
(64). The potential drop between the central plasma
region and the wall in the case of short circuiting with
the profile [Eq. (65)] and a collisionless layer is, ac-
cording to Eq. (63)

2 $ / ( : ) d z _

e(p(») = - r , l n " ~r,,ln-^-g-. (66)

The electric field (orthogonal to the magnetic field) is
absent from the main portion of the plasma volume and
the potential drop [Eq. (66)] is confined to a thin layer
of thickness of the order of 6 = i r e l / r e l l at the side
wall, in which transverse electron motion is substan-

ίΓ3 (/?)

ι . ι .,1

tial. If a potential Φν, which is negative with respect
to the end, is applied to the side wall the situation
hardly changes, the potential, as before, is "bound" to
the end by Eq. (66) and an additional drop of the poten-
tial Φ ν will be confined to a layer of thickness ~δ at the
side wall. For positive values of Φ,,~ Φ ^ = T e /
eln(Tisvc/L), the potential difference between the center
and side wall becomes trivial. A further growth of Φν

leads to a blocking of the transverse motion of ions and
an electric field which is transverse to Η is generated.
According to subsection a, the transverse flow of ions
will be considerably weaker than the diffusion flow if
the potential drop in the plasma across Η is έ Φ ^
= (Ti/e)ln[R/min(pi,\i)], i.e., when

Φ»>Φί= (Φί,ι + Φ 2̂)· (67)

Starting from these values the diffusion decay time
will increase with increasing Φ,,. Under these condi-
tions (as also in a dielectric apparatus) a fast diffusion
stage can be identified, which is not accompanied by
particle escape to the walls and, as a result of eddy
currents passing through the plasma, leads to estab-
lishment of the profile of Eq. (65). In order to evaluate
the characteristic time for a slow stage τ, we shall as-
sume that the electric field in this case blocks the mo-
tion of ions across Η and of electrons along H. The
rate of electron escape to the end electrode is propor-
tional to τϊ1 exp[- <2(Φν1- Φ^)/Γ;] and of ion escape to
the side wall is proportional to r"'exp[- ^ ( Φ ^ - Φ^)/
Tj], where Φ,, is the potential drop between the plas-
ma center and the end, and Φ ^ , between the side wall
and the center. Since these rates should be equal and
*w = *wi + *w2> the plasma lifetime is

(68)

Λ, W 3 (sc)

FIG. 25. Particle density obtained by the resonator method-
nCR) and by the short circuiting method—n(SC), in a helium
plasma in a tube withfl = l cm, ρ = 0.1 Torr.1 3 0 Η (kOe)—
0.2 (1), 0.45 (2), 1.0 (3) and 1.8 (4).

At times exceeding τ, the plasma decays exponentially
~exp(- t/r). According to Eq. (63), the radial electric
field should be nonexistent at this stage. Since the mo-
tion of ions across Η is also blocked (occurring during
T < < Tu)» Εe = 0 in the main plasma volume for the same
reason. The evolution, therefore, is determined solely
by the diffusion currents, and r e l , « Χ̂ ,,η,,/Λ,, and Γίχ

«DiLn0/Ai, i.e., the density in the main plasma volume
is almost constant; small additions, dependent on the
coordinates, preserve the passage of re M and Γ α flows.
The exponential growth of τ(Φκ) in the "negative end"
regime continues until τ becomes equal to TJH. At that
instant the slow process-longitudinal ion diffusion, not
taken into account in derivation of Eq. (68)-begins to
operate and the plasma motion along Η becomes ambi-
polar.

In a long apparatus (τε,,» τ α ) , the potential is "bound"
to the side wall, so that at Φ ν < Φ ° the longitudinal
electric field is nonexistent. By changing Φ ν , the dif-
fusion lifetime may be increased to τβί.

Figure 26 shows a comparison of the experimental
values of τ(Φν) with theoretical ones.76 Curves 2 and 3
were calculated using Eq. (68), and for curve 1, a simi-
lar formula for a long apparatus was used. Since the
contact potential difference was unknown, one experi-
mental point was made to fall on the calculated curve.
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FIG. 26. Dependence of diffusion lifetime τ(φ,) on Φ,.76 Ex-
periment: helium In a tube with R = 1.9 cm, L= 75 cm; 1—.
Jf=0.5 kOe, /> = 0.05 Torr; 2—H = 2 kOe, p = 0.05 Torr; 3—
ff=2 kOe, /> = 0.08 Torr.

Differences occurring at large τ were the result of in-
stabilities observed in this regime; differences at small
τ were associated, possibly, with the fact that the den-
sity profile differed from the fundamental diffusion mode
mode.

After the diffusion along Η becomes ambipolar, the
electron flow toward an end can not diminish further
with increasing Φν. The continuing growth of Φν leads
only to an exponential decrease of r u . The diffusion
across the magnetic field at Tiu - Tei may be even much
slower than ambipolar. Figure 27 shows an example of
such a slow plasma decay.

The use of various boundary conditions opens ways
for controlling the local values of the plasma lifetime
and density. Thus, for example, if only a portion of the
side surface of a tube is conducting, short circuiting it
by an end leads to a rapid escape of the plasma from
only this portion of the volume. Figure 28 shows the
time-dependent density of a decaying plasma inside a
small conducting cylinder of length LB when the latter
is short circuited by an end electrode (see Fig, 16d).
In the fast stage we have τ« riX (long apparatus); a slow
decrease in the density in the final stage corresponds
to ambipolar diffusion along Η from the main plasma
into the volume of the cylinder LB.

Since under the gas-discharge conditions the plasma

FIG. 27. Decay time in the negative end regime in He.T5

R = l.9 cm, i,= 70 cm, p-0.12 Torr. 1—ends under a float-
ing potential (ambipolar regime); 2—negative ends (Φ, = 2.5 V).
Calculated curves: 3—τ»1· 4—τ^χ, 5—τ;1,.

η η η № rs ιι u
t, its

FIG. 28. Plasma decay in a small cylinder in He. Λ = 1 cm,
L=80 cm, 7-5 = 5 cm, £ = 0.1 Torr, ff=1.8 kOe; 1—without
short circuiting; 2—Φ» = 0; 3 and 4—Φβ=-15 V. Arrows indi-
cate the instant of short circuiting.

density is self- consistently coupled to the electric field
and the electron temperature, the use of the short-
circuiting effect provides an opportunity to control the
local plasma parameters (see, for example, Ref. 132).

The presence of emitting electrodes should lead to a
large number of interesting phenomena. We shall con-
sider, for example, diffusion in a short apparatus with
a dielectric side wall and a thermal emitter as an end
electrode.

Since an effective emitter can generate practically
any electron flow along H, a region of width of the
order of 6 = LDei/Den adjoining the side wall may func-
tion as a conducting boundary. The electron flow in
that region is directed basically across the magnetic
field and the transverse diffusion is almost ambipolar.
However, in the main volume of the plasma r%R- δ
the short-circuiting effect is achieved, ions escape
across Η and electrons escape onto the emitter (Fig.
29a). The density drop between the central plasma and
the boundary of the ambipolar diffusion region may be
estimated as follows. The transverse ion and electron
flows are r u ~ («, - nJD^/R and r e i ~ η^,,^/δ, re-
spectively. Β we equate the two, we obtain

(69)

Mxed diffusion of this type was actually observed ex-
perimentally under the conditions where a certain
voltage φ was applied between the end electrodes.5' It
is evident from Fig. 29b that the diffusion rate in a di-
electric apparatus with an emitting electrode may be
close to values corresponding to short circuiting.

φ
< D — |

I/T, f1

SSSwiiWNiWSiSSf^f

R I· f i s t s
J-,,Α

b)

FIG. 29. Diffusion in the presence of an emitting electrode.53

a. Diagram of eddy current flow in the plasma, b. Plasma
decay time In a short apparatus as a function of the emitter
heating current; p= 0.1 Torr, H = 0.6cm, Z, = 30cm, # = 2.5
kOe, tp = 10 V. Dashed line—decay constant for the short cir-
cuiting regime (Tec=(R/2.4)2/2X>li). Gas—helium.
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e. Diffusion probe in a magnetic field

In the problems considered above, bounding surfaces
enclosed the plasma on the outside. The opposite situa-
tion is frequently encountered, when a solid is placed
in the plasma. As an example of this, we shall discuss
the problem of an electrostatic diffusion probe in a
weakly-ionized, quiescent plasma without an external
current. The most widespread are cylindrical probes
oriented along the magnetic field (a—radius, 26—length).
We shall consider only those aspects which bear di-
rectly on the problem of plasma diffusion. The diffu-
sion motion of particles exerts a considerable influence
on the voltage-current characteristic of a probe, if the
layer thickness (rs) or radius a is greater than the mean
mean free path of the random migration of the par-
ticles. Therefore, in a magnetic field such effects are
most significant for electrons. For the sake of simpli-
city, we shall assume rs«a and, instead of a cylindri-
cal probe, we shall consider an ellipsoid of revolution
with semiaxes a and b.

U a large positive potential is applied to a probe,
electron saturation current will flow to it. The electric
field in the plasma retards the ion motion, e<p
= - Tjlniw/w,)). The density profile n'e )(r) and the probe
current are determined by the anisotropic diffusion
equation

<)'»<••' ;--. η (70)

with zero boundary condition at the probe surface,
η (<*>) = ι . IX

«Q«,>6ve, (71)

the value of the electron saturation current (Bohm's
current is8 0 · 8 1

clg V
(72)

(ng is the density of the unperturbed plasma) and is
practically independent of &„ The plasma density is
perturbed in the volume of the electron ellipsoid with
semiaxes ~a and αίϊ^/u,., which considerably exceeds
the probe volume.

Experimental verification of Eq. (72) was undertaken
in Refs. 82, 83, 133. The observed dependence of the
electron saturation current on Η was close to theoreti-
cal.8 3 ' 1 3 3 Quantitative agreement with Eq. (72) was ob-
tained.82 The thin foil probe had the shape of a square
of side 2a' = 0.3 mm, and was placed perpendicular to
the magnetic field. The density of the decaying iso-
thermal plasma was measured independently by means
of an UHF resonator method and the short circuiting
method (see above). In calculations, α = 2α'/νΓ5Γ was
used. Figures 30 and 31 show that for a broad range of
plasma densities and magnetic fields the experimental
and theoretical values of the electron saturation current
in various gases in apparatuses with dielectric and con-
ducting walls agree fairly well. The dependence of the
probe current on time, upon changing from electron
to ion saturation current is also well described by the
diffusion theory.134

tt should be especially noted that the probe current

to' 2 4 s sm* 2 4 e
H,Oe

FIG. 30. Dependence of electron saturation current on the
magnetic field at n=8xl0 1 8 cm'3. Lower curve—calculated
by Eq. (72) with the classical values of Dti, upper curve—
with anomalous values determined from the plasma lifetime
in the apparatus. Symbols 1-4—experiments in Ar in an ap-
paratus with dielectric walls, Λ = 1.2 cm, £=80 cm, ρ (Torr)
= 0.02(1), 0.06(2), 0.1 (3) and 0.4 (4); 5—He, R = 1.2 cm,
£ = 35 cm, p=0.3 Torr; 6 and 7—He, apparatus with conducting
walls, Λ = 2 cm, £=75 cm, 6—p = 0.1 Torr, 7—/> = 0.16 Torr.

in the experiments was determined by the classical
transport coefficients both in the stable and turbulent
plasmas in which the transverse diffusion time, on the
scale of the entire apparatus, decreased in comparison
with the classical value by more than an order of mag-
nitude (see curves 1 and 2 in Fig. 30). On the other
hand, values of the electron saturation current sub-
stantially exceeding that of Bohm, were observed in a
number of studies carried out in a gas-discharge plas-
ma with T e » Ti.n>S3>m This is possibly due to the
plasma generation in the near-probe region (see also
Ref_ 136).

We shall now calculate the dependence of the electron
and ion currents Je and Jv on the probe potential <pp.
In particular, we shall determine to which point on the
volt-ampere characteristic does the space potential <ps

correspond. We shall assume the space charge layer to
be collisionless and the motion of both electrons and
ions to the probe to be governed by diffusion (other
cases are considered in Ref. 87). The ion saturation
current when γ = b V1 + (ίϊ? / v\) /a > 1, for example,
is8 0 · 8 1

№' tff° XI" t№" W"
" .cm" 3

FIG. 31. Dependence of electron saturation current to a probe
on the plasma density in Ar. Dielectric apparatus, R = 1.2 cm,
£ = 80 cm, H= 2.4 kOe. Solid line—calculated by Eq. (72) with
the classical values of Dn'p (Torr) = 0.01 (1), 0.06 (2), 0.1
(3) and 0.4 (4).
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(73)

In this situation, the field in the plasma retards the
electrons: βφ= TeIn(w/«o). The corresponding density
profile nU) is determined by an equation similar to Eq.
C70). The plasma is perturbed in an ellipsoid of semi-
axes b and b VI +(β\/ν%). We shall turn our attention
to the following circumstance, common to a majority
of problems which we have considered. At large values
of <pp, electrons and ions flow onto the probe, which
satisfies the condition in Eq. 071), from various re-
gions of space (Fig. 32). This property should be pre-
served also at intermediate values of <pp. We shall con-
sider, for example, particle motion in the electron el-
lipsoid. In the absence of an electric field, practically
all the electrons present in this ellipsoid, in the case
of diffusion motion, will arrive on the absorbing sur-
face of the probe. The motion of ions across Η occurs
much faster and long H, much slower than that of the
electrons. Therefore, in the case of diffusion, ions
from this ellipsoid can not reach the probe. An elec-
tric field will not change the situation, since the field
Et may not exceed (Te/e)in/dz (otherwise a heavy flow
of electrons from the probe would ensue). Thus, if the
electron current to the probe is large (comprises a
significant fraction of Bohm's current), it should be
collected from the electron ellipsoid. But the potential
profile in the latter should correspond to the Boltzmann
ion distribution. The density in this region is de-
scribed, as before, by the anisotropic diffusion equa-
tion. The solution of the latter is

n(r) = no[i—-^-(1-nW)]. (74a)

However, in the ion ellipsoid the opposite situation oc-
curs. The Boltzmann distribution is realized for elec-
trons and

(74b)

Thus, in the case of a concurrent flow of ion and elec-
tron currents to the probe, the field is characterized
by a quadrupole and the current is short circuited in the
plasma. The profile of Eq. (74) may be violated only in

Z,H ,

FIG. 32. a. Electron (1) and ion (2) ellipsoids in the case of
particle motion by diffusion and α/1 + (ίίξ/υξ) <b <aQt/vt (the
probe is cross hatched); b. Potential profile along the 2-axis
for •/,< J»B > (point Λ corresponds to the boundary of the region
where the electron and ion ellipsoids overlap).

FIG. 33. Schematic view of the current-voltage characteristic
of a diffusion probe for J , e > ~ J j ( B ) . Potentials % *τιάφι corre-
spond to the blocking of electron (ion) current; both are deter-
mined according to Eqs. (75) and (76), respectively, by the
condition ΊΛιί(%-φβ,ι)=«j£°' / e ·

a small region near the probe (where the ellipsoids
overlap), where the electrons and ions may escape onto
the probe along and across H, respectively. According
to Eq. (74a), the plasma density n{A) at the electron el-
lipsoid boundary in the overlap region is [1 - (Je /
J[B))]i%. Since the condition wjw=O must be satisfied
on the probe surface, the drop in density in the over-
lap region is relatively large and the electric field
should retard the electrons. The electron flow in it is
preserved and they move in one dimension along H.
The potential profile in the case of motion along the z-
axis toward the probe is shown schematically in Fig.
32b.5 The potential drop in the electron ellipsoid is
- (Ti/e)ln[l- (JJJ[B))] and in the overlap region [ac-
cording to Eq. (50)], it is (Te/e)ln(4rv/n(A)Pe]. Thus,
the electron branch of the characteristic is described
by the following expression:

<pji = - — — 1" ( l | r ^ — — In Ιποί,,α2!;,. (J.T1 — ̂ i B ) " ' ) ] . ( 7 5 )
e \ j\a) I e

e

The value of probe potential <pe, at which Je constitutes
a significant fraction (1/e) of the saturation current, is
(at T, £ Te) negative and of large absolute value; if <pP

> (pc, the electron current is close to Bohm's. The ion
branch of the characteristic may be obtained similarly
to Eq. C75). For example, at Ωi> vuαΩ,Ω, <bv\, using
Eq. (50a) we obtain

^-r^^-ikW-r^ (JT (76)

in order to block the ion current, a considerable posi-
tive potential φ, (at Te~ Tt) must be applied to the
probe. Equations (75) and (76) describe the total volt-
age- current characteristic. Its shape is quite complex,
as is evident from the plot in Fig. 33. The distinguish-
ing feature of this characteristic is the presence of a
plateau-essentially both saturation currents flow onto
the probe over a certain range of values of φ?. The
width of the plateau for the above case is

φ, — φ β :=.· -i- In 22en 0 ql>p 1 v 1

HB)
, (

+
0-64

The most distinct plateau should be seen at J<

e

B>~</(

i

fl).
Such a curve contains much useful information con-
cerning the plasma parameters and provides a means
to determine these by a variety of independent meth-

5 Ά similar nonmonotonic potential profile was obtained by
Sanmartin for the case of a probe in a fully-ionized plasma.135
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ods.8 7 The existing experimental data which confirm
the above considerations are discussed in Refs. 137 and
138. We shall simply note that the well-defined
plateaux, as far as we know, have not been observed
experimentally. The reason for this is apparently that
under the experimental conditions the width of the
plateaux, as estimates show, is comparatively small,
and J < B ) » J ' B ) .

We have assumed above that the partial temperatures
were unperturbed by the probe current takeoff. Mean-
while, energy transfer between electrons and the heavy
plasma component is difficult. Therefore, electron
current takeoff may be accompanied by a considerable
distortion of the electron distribution function in the
near-probe region. The conditions under which these
effects must be taken into account are considered in
other articles.1 0 4 · 1 3 7
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