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Physical models of the theory of infrared radiation transfer in molecular gases are reviewed and their

usefulness in the solution of particular problems is demonstrated. Theoretical predictions are compared with

experimental data. Particular attention is devoted to analytic methods capable of providing (1) clear

descriptions of the physics of the phenomenon, (2) a better understanding of the dependence of the final result

on the parameters of the problem, and (3) a reasonably reliable final result that is valid over a broad range of

variation of the parameters of the gaseous medium. The radiation transfer process is examined both for

equilibrium and nonequilibrium gaseous media. The final section deals with the analysis of certain processes

occurring in the Earth's atmosphere.
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1. INTRODUCTION

The particular feature of infrared radiation transfer
in a molecular gas is that it involves the participation
of a large number of vibration-rotation states of the
molecule. The absorption and emission spectrum con-
sists of a set of individual lines corresponding to par-
ticular vibration-rotation transitions. Moreover, the
mutual disposition and the intensities of the individual
lines are related to the structure of the gas molecules.
These lines are broadened and suffer partial overlap in
the case of a gas. The nature of this broadening and the
degree of overlap of individual lines depend on the
physical conditions obtaining in the gas, but mainly on
its composition, density, and temperature. This is why
the absorption coefficient of a molecular gas is usually
a highly oscillating function of the wavelength of the in-
frared radiation, and this, in fact, determines the na-
ture of the radiation transfer process in such media.

The problem of radiative heat transfer in a molecular
gas arises in connection with attempts to determine the
optimum operation of high-temperature equipment and
in the study of processes occurring in the Earth's at-
mosphere and in the atmospheres of other planets.
Traditional approaches to this question have evolved in
a number of different directions. One of them relies on
modern computer technology and very complete data on
the absorption spectra of the molecules forming the gas.

For example, modern programs developed for the
emission spectrum of carbon dioxide contain data on the
position and intensity of thousands of lines associated
with particular vibration-rotation transitions. This ap-
proach yields the most accurate results in simple phys-
ical situations, and the precision is determined by the
precision with which the parameters introduced into the
program are known.

For all their advantages, however, computerized
methods cannot be used to elucidate the dependence of
the results on the leading parameters of the problem or
to estimate the precision of these results. Moreover,
the results obtained in this way are relatively expen-
sive, and the time required to obtain them is quite long.
The other traditional method, namely, the semiempiri-
cal approach, is free from these disadvantages. It is
based on simple models of absorption bands of molecu-
lar components, which include basic data on the distri-
bution, intensity, and shape of individual lines, and re-
lies on experimental data. In the final analysis, the
semiempirical method provides us with simple working
formulas capable of describing the transfer of infrared
radiation in a certain (relatively narrow) range of pa-
rameter values, so that the final results can be obtained
rapidly and reliably. This approach has deservedly be-
come very popular in the solution of radiation transfer
problems for the real atmosphere,1'4 when the atmos-
pheric parameter values lie in a narrow range and ex-
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perimental data are available.

Models of molecular bands on which the semiempiri-
cal method is based originate in the work of Elsasser
and Goody, who were concerned with regular and ran-
dom models. The application of analytic methods to
these models, in turn, leads to rapid solutions of par-
ticular problems in the theory of infrared radiation
transfer in molecular gases. However, the precision
of analytic methods is lower than that of the semiem-
pirical approach within the range of applicability of the
latter. It is also lower than the precision of the numer-
ical calculations if the physical parameters fed into the
computer are known with sufficient precision. How-
ever, analytic methods result in a better understanding
of the dependence of the final result on the parameters
of the problem and provide a clear physical description
as well as a relatively reliable result over a broad
range of parameter values of the gaseous medium. This
is particularly important in connection with the emer-
gence of an increasing number of problems in which the
range of variation of the physical parameters of the
medium is quite large. Examples of this include the
evolution of planetary atmospheres in the past, the de-
termination of their composition in the near future, and
the question of the effects of appreciable changes in the
amount of different molecular components of the Earth's
atmosphere on its heat balance and on global climate.
In addition, there are the problems of infrared radia-
tion transfer under completely new physical conditions.
For example, in connection with the study of the upper
atmospheres of planets, there is considerable interest
in the transfer of infrared radiation in a molecular gas
in the absence of local thermodynamic equilibrium.

The aim of this review is to survey modern analytic
methods for the investigation of radiative transfer in
molecular gases. These methods are based on asymp-
totic techniques which, in turn, rely on the fact that the
number of lines in the absorption and emission spectra
of the molecules is large, and on certain other relation-
ships that lead to the emergence of a small parameter
in the theory.

2. CHARACTERISTICS OF RADIATION TRANSFER
IN A GASEOUS MEDIUM
A. Basic parameters of the radiation transfer process in
a gas

We must first introduce the various quantities that
determine the radiation transfer process in a gaseous
medium.1"11 We shall begin by assuming that the propa-
gation of radiation has no effect on the density of ex-
cited and unexcited particles. This occurs, in particu-
lar, when the rate of radiative decay of excited parti-
cles is much smaller than the rate of quenching of ex-
citation by collisions (a more precise definition of this
will be given below). We shall use the following term-
inology. The energy carried by radiation of frequency
ω in a given direction per unit area per unit time will
be called the spectral power flux density. The same
quantity averaged over all directions of propagation will
be referred to simply as the spectral power density.
If a given layer of gas transmits radiation with spec-

tral power flux density Ιω, the equation satisfied by la

in the interior of the gas layer is

*./„. (2.Dd/m

ix

where ku is the absorption coefficient of the gas at fre-
quency u), and χ is the distance measured in the direc-
tion of propagation. If χ = 0 and χ = L characterize the
boundaries of the gas layer, the spectral power flux
density leaving the layer is given by

'»(0) «P ( - (2.2)

The quantity
L

is called the optical thickness of the layer and is an im-
portant parameter governing the transmission of ra-
diation by the layer. When u(u>)»1, the mean free path
of a photon of a given frequency is small in comparison
with the linear dimensions of the layer. The opposite
relationship obtains when w(w)«1.

The absorption function is a useful quantity and is
defined as follows. The absorption function for a fre-
quency interval Δ ω is given by

. 1 f ι , . . . . . . / η ο\

Δω

and is the average probability that the gas layer will
absorb radiation of any frequency within the range Δω.

We must now determine the resultant spectral power
flux density leaving a plane layer of gas at constant
temperature, whose parameters are functions of only
one variable, x, measured at right-angles to its bound-
ary. The equation for the spectral power flux density
propagating at an angle θ to the layer boundary, which
is usually referred to as the transfer equation, is

The solution of this equation, subject to the boundary
condition Ιω(θ,0) = 0 is

Since the resultant power flux density is perpendicular
to the layer boundary, we can substitute cos0= l/t and
find that its spectral density is

J*(L)= | /»(θ, L)cosbi<ns§=*2ea f Γ 3 [1 — oxp ( — u(o))i)]dt.

(2.5)

If the optical thickness κ(ω) is large, then, under the
conditions of thermodynamic equilibrum, JU(L) = eu and
is equal to the spectral density near a perfect black
body of given temperature. Hence, we have

where Τ is equal to the temperature of the gas.

In the case of a molecular gas, the set of vibration-
rotation transitions between two vibrational states will
be referred to as a vibrational transition, and the cor-
responding set of spectral lines will be referred to as
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the molecular band corresponding to the given vibra-

tional transition. Usually, the band of frequencies

within which the molecular gas radiates and absorbs

appreciably though the particular vibrational transi-

tion is small in comparison with the frequency u>0 at the

center of the band. Moreover, at temperatures greater

than, or of the order of, room temperature, the width

of this region is much less than T/K. It is convenient

to introduce the function

W(t)= J [l-6xp(— (2.7)

which, for t= 1, is called the equivalent width of the
molecular band. The total power flux density is then
given by

(2.8)

where eo=euo. The power flux density emitted by the
gas at angle θ to its boundary can also be expressed in
terms of the equivalent width of the band:

/(θ)=.2ί. (T)W(-^-). (2.9)

The equivalent width of a molecular band is the effec-
tive width of the range of frequencies in which the gas
radiates as a perfect black body. It is readily seen that
it is directly related to the absorption function defined
by (2.3). If the intensity of the spectral lines is a rela-
tively slow function of frequency, then

W — ω 0 ) , (2.10)

where W= W(l) and the absorption function A is defined
on a frequency interval containing a large number of
lines with very similar intensities. It is clear from
(2.8) and (2.9) that the distribution of the integrated pa-
rameters of molecular radiation can be readily deter-
mined if we know the equivalent width of a molecular
band. When we examine the various methods of the the-
ory of infrared radiation transfer, we shall therefore
frequently reduce the final result to the evaluation of
the equivalent width of the band, which directly deter-
mines the power flux density from a plane layer of gas,
emitted at right-angles to its surface. This enables us,
on the one hand, to avoid excessive mathematical man-
ipulation and, on the other hand, to devote more atten-
tion to the dependence of the integrated parameters of
molecular radiation on the intensity, shape, and rela-
tive disposition of the individual spectral lines. If the
gas layer is temperature-inhomogeneous, and if it de-
parts from thermodynamic equilibrium in its distribu-
tion over the vibrational states of the molecules, both
the integrated parameters of the molecular radiation
and the equivalent width of the band are determined by
the temperature distribution within the gas and the
rates of collisional and radiative quenching of the vi-
brational excitation of the molecules. These two cases
will be examined in detail in Sec. 4.

B. Structure of vibration-rotation spectra of molecules

The integrated parameters of infrared radiation prop-
agating in a gas are largely determined by the struc-

ture of the vibration-rotation spectrum of the gas mol-

ecules. In the case of thermodynamic equilibrium, the

structure of the spectrum, i.e., the relative disposition

of the lines and the distribution of line intensities over

the spectrum, are determined by the symmetry of the

radiating molecules. We begin by considering the

structure of an individual vibration-rotation band, i.e.

a band corresponding to transitions between two vibra-

tional states (Fig. 1).

The rotational level energy of a linear molecule is
determined by a single quantum number, namely, the
angular momentum j, and is given by

E, = Bj (/ + 1), (2.11)

where B = H*/2I is the rotational constant of the mole-
cule and / is its moment of inertia. In the dipole ap-
proximation, radiative transitions are allowed between
states whose angular momenta differ by not more than
unity.12"14 Hence, we find that the rotation-vibration
transition frequencies, i.e., the frequencies corre-
sponding to the centers of the spectral lines, are given
by

2Bj
/•' = / — 1 , P-branch,

/' = /, Q-branch,

R-branch;

(2.12)

where j, j' are the angular momentum quantum numbers
of the molecule in its lower and upper states, respec-
tively, and Κω0 is the energy of the vibrational transi-
tion. Lines in the Ρ and R branches are equidistant and
separated by 2B/K. The line intensity falls slowly with
distance from the band center. The dependence of in-
tensity on the rotational quantum number, i.e., on the
frequency of the emitted radiation, is determined by
the Boltzmann distribution over the vibrational states:

FIG. 1. Absorption coeffecient as a function of frequency in
the case of molecular vibration-rotation spectra: a;—frequen-
cy ι * ω —g a s absorption coefficient, a) Spectrum of linear
molecules in the absence of intensity alternation, (b) Spectrum
of linear molecules in the presence of intensity alternation.
(c) Spectrum of molecules of a spherical top type (R branch).
(d) Spectrum of molecules of an asymmetric top type, (e)
Elsasser regular model, (f) Goody random model.
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-»-(2, +l)exp[_ (2.13)

where Τ is the temperature. It is assumed that Β « Τ.

The equidistant distribution of lines in the spectra of
linear molecules is violated by the dependence of the
rotational constant on the vibrational quantum number.
The rotational constant, in fact, decreases with in-
creasing energy of vibrational excitation of the mole-
cule.12 This ensures that the line separation in the Ρ
branch increases, whereas that in the R branch de-
creases, by the amount LBj/K with increasing distance
from the band center (&B is the difference between the
rotational constants in the lower and upper vibrational
states, respectively). Thus, the separation between
the center of a given line in the Q branch and the band
center increases with increasing j in accordance with
the quadratic law u>0 - wu= {&B/K)j{j + 1). The ratio of
the characteristic separation between neighboring Q-
branch lines to their width is determined by
(A£/y)V T/B, where γ is the width of a spectral line.
The value of the difference ΔΒ between rotational con-
stants is smaller by two or three orders than the rota-
tional constant Β itself. When the gas density exceeds
about 1018cm"3, it is found that (ΔΒ/γ)/Ψ7Β«1, and
the Q-branch lines merge together.

It is important to note that the Q-branch appears as a
result of vibrational transitions only when the compo-
nent of the electron angular momentum along the axis
of the molecule or the vibrational angular momentum is
nonzero in the initial or final states. Unless this is so,
the symmetry of the rotational wave functions of the two
states participating in the transition is the same, the
associated dipole moment is zero, and there is no Q-
branch. The other interesting feature of the vibration-
rotation spectra of molecules is the alternation of in-
tensity.12"14 This phenomenon occurs in molecules in-
corporating nuclei of the same isotope. The rotational
levels of the molecules then have a definite symmetry
with respect to the interchange of such nuclei, and their
population is determined by the total nuclear spin. The
formula given by (2.13) is then modified by the inclusion
of the statistical weights of rotational levels, which
represent the influence of nuclear spin. Since radiative
transitions between molecular states with different
symmetry with respect to the interchange of nuclei are
forbidden, the intensities of neighboring spectral lines
corresponding to transitions between symmetric and
antisymmetric states are then appreciably different.
The ratio of their intensities is (i + l)/i when the nu-
clear spin t is an integer, and i/(i +1) when it is a half-
integer. This effect ensures that molecules containing
identical nuclei with zero spin have some of the rota-
tional states "removed." For example, in the case of
the CO2 molecule, only rotational states with even j are
populated in the ground vibrational state, whereas only
rotational levels with odd j are populated in the case of
excitation of an antisymmetric vibration. This ensures
that the intensities of neighboring lines in the vibra-
tion-rotation spectrum of CO2 are practically the same,
and the separation between the lines is iB/H.

The rotational levels of a molecule in the form of a

spherical top are, just as for a linear molecule, char-
acterized by the rotational angular momentum j , and
the energies are again given by (2.11). The vibration-
rotation spectra of such molecules have, therefore,
equidistant lines with line separation 2B/K. The degree
of degeneracy of the rotational levels is g(2j+l)2,
where g is a factor representing the influence of nu-
clear spin. For small values of j , this factor depends
on ;'. When Β « Τ, the distribution of the molecules
over the rotational levels ( j » l ) in the case of spheri-
cal top molecules is

i . (2.14)

Moreover, Lf(j)dj= 1 and, since Β «Τ, the maximum
of the distribution function corresponds to angular mo-
menta j - V T / B » 1.

Since both the linear and the spherical-top molecules
have relatively simple spectra that are easily inter-
preted, we shall use these spectra to demonstrate the
scope of the theory of radiation transfer. The spectra
of molecules in the form of symmetric and asymmetric
tops are more complicated.12 However, the basic pa-
rameters of the spectra can even then be estimated.
Thus, suppose that the characteristic value of the ro-
tational constants of such molecules is ~B. In the case
of the asymmetric top, there are three nondegenerate
rotational degrees of freedom. The number of strong
spectral lines corresponding to each of them is ~V T/B,
more or less as in the case of linear and spherical top
molecules. The total number of strong lines in the
spectrum is, therefore, ~(T/B)3/2, and the average
separation between neighboring lines is ~B2/RT. Simi-
larly, one can readily show that, in the case of the
symmetric top, the number of strong lines is ~T/B and
the average separation between them is ~(Β/Π)(Β/Τ)1/2.

C. Intensity and shape of spectral lines due to vibration-
rotation transitions in molecules

The quantitative characteristics of radiation transfer
in gases are largely determined by the intensities and
shapes of spectral lines. In this section, we shall
briefly summarize our information on the intensities
and shapes of lines associated with vibration-rotation
transitions in molecules. The absorption coefficient of
a molecular gas due to radiative transitions between
rotational sublevels of two vibrational states of a mole-
cule is given by

ω;, (2.15)

where i,f represent the upper and lower vibrational
states involved in the transition and Kulf is the transi-
tion energy. The function α ( ω 4 / - ω) characterizes the
frequency distribution of photons emitted as a result of
the transition, i.e., α ( ω { / - ω)άω is the probability that
the frequency of the emitted photon lies in the range be-
tween ω and ω+rfw. This function is normalized so that

(ω4 / - ω)άω= 1. The intensity of the spectral line

emitted as a result of the transition is given by
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where NitNf are the concentrations of molecules in the
upper and lower vibration-rotation states, gitgf are the
statistical weights of these levels, and i/rif is the
probability of spontaneous emission due to the i—f
transition per unit time. The radiative lifetime of the
excited molecule with respect to the particular vibra-

tional transition is τ= (Σ/ — ] and is a slowly varying

function of its rotational state.

The lifetime τ is very sensitive to the electron den-
sity distribution in the molecule which, as a rule, is
not known with the required precision. It must there-
fore be determined experimentally. Table I summar-
izes some experimental data on the lifetimes of certain
vibrationally excited molecules. More complete data
can be found in Refs. 15 and 16.

Without going into the selection rules for vibration-
rotation transitions in molecules, which are described
in some detail in Refs. 12 and 15, we shall concentrate
our attention on the shape of spectral lines due to vi-
bration-rotation transitions. The line broadening as a
function of gas pressure is known to be determined by
the Doppler, collisional, or quasistatic mechan-
isms.16"20

Doppler broadening is connected with the random mo-
tion of radiating particles, and occurs at sufficiently
low pressures. The corresponding frequency distribu-
tion is

r-~MW
α(ω-ωο) = —

Me' (ω—ω J ; (2.17)

where ω0 is the frequency corresponding to the line
center, Μ is the particle mass, and Τ is the gas tem-
perature. The characteristic Doppler linewidth is
~u)0(v)/c, where (v) is the average thermal velocity of
the particles. At higher pressures, broadening is de-

TABLE I. Radiative lifetime of vibrationally excited
molecules.*'

Molecule

CO
HC1
H F
OH
NO
CO,

CS2

HCN

H 2 O

H 2 S

N 2 O

NO,
0 ,
S O j

1

Vibrational
ί transition

1—0
1—0
1—0

ι 1—0
1—0

00°l—00°0
Olio—00»0
00»l—02«0
00°l—10°0

3{Σ*)

2(IIU)
3(E)

2(At)

1(A1)
2(AI)

3(E)
2(A)
2(A,)

3(Bi)
l(Ai)
2(A,)

Energy of
vibrational
transition

2143.1
2886
3962
3584.6
1904
2349

667.4
1064
961

1532.5

396.8
712

3312
1595
3756
2614.6
1182.7
1299.8
596.4

2276.5
1621
1042
1361.8
1151.4
517.7

Radiative
lifetime
for given
transition,
sec

0.031
0.092
0.0091
0.062
0.081
0.0023
0.66
2
1.2
00062

20
0.67
0.014
0.064
0.015

10
12.5
0.080
6.6
0.0048
0.0067
0.125
0.024
0.29
1.1

Molecule

N H ,

NH,

C 2 H 2

CClj

CC1,F

CH,

CH,C1

CF2C12

SF,

Vibrational

4(E)

2(Aj)

4(E)

2(Ai)

3(Σ+)

5(Hu)
3(FS)

1(AD
4(E)
3(F,)

4(E)

5(E)

«(Β,')
8(B2)
3(F1U)
2(F,U)

Energy of
vibrationai
transition

3443.6
3449.6
3337.2
3336.2
1626.1
1621.4
968.3
932.5

3287

722.1
795
310

1085
846

3018.9
1305.9
3041.8
2966.2
1454.6
1095
1152

915
932
613

Radiative

lifetime
for given
transition
sec

0.5

0.15

0.23

0.060

0.011
0.19
0.09

1500
0.061
0.072
0.032
0.42
0.18
0.045
0.59
0.036
0.05
0.039
0.026
1

termined by the collisional mechanism, i.e., it is pro-
duced by collisions between radiating and surrounding
particles, which result in a change in the phase of the
radiated electromagnetic waves. In this case,

1 (2.18)α (ω — ωο) =2? (ω — ω 0 — Δ ) 2 + ( γ / 2 ) !

*>If the lower level corresponds to the ground state, then
column 2 indicates the number of the vibration in the upper
state and its symmetry.

where Δ is the line shift, γ = Ν(σν) is the collisional
width, Ν is the density of the perturbing particles, σ is
the total collision cross section of the particles, and ν
is the relative collision velocity. The angle brackets
represent averaging over particle velocities. The total
scattering cross section σ corresponds to a potential
equal to the difference between two interaction poten-
tials. The first of them corresponds to the interaction
between the perturbing particle and the radiating parti-
cle in the upper state involved in the transition, and
the second corresponds to its interaction with the ra-
diating particle in its lower state. We shall not repro-
duce the complete expression for the line shift because
the magnitude of this shift is much smaller than the
linewidth and has practically no effect on radiation
transfer characteristics. Collisional broadening ex-
ceeds Doppler broadening when the gas density satis-
fies the condition

">"*'•?$· (2·1 9>

We must now determine the limiting gas density for
which most of the line profile is described by collision-
al broadening theory. The dominant contribution to
broadening is due to collisions with impact parameter
~/σ. Collisional theory is valid for most of the line if
the characteristic time 1/y corresponding to a frequen-
cy shift of the order of the linewidth is much greater
than the duration of such collisions. Hence, we find
that collisional broadening theory is valid for

Λτ < Λ τ 2 = _*_. (2.20)

The quasistatic (statistical) broadening theory is valid
when the reverse inequality is satisfied. This theory is
based on the assumption that the radiating particle is
located in an external quasistatic field due to fixed sur-
rounding particles. This field produces a shift of the
energy states of the radiating particle. It is clear that
the assumptions underlying the quasistatic approxima-
tion are opposite to those upon which collisional broad-
ening theory is founded.

Spectral line wings are described by the quasistatic
theory even when most of the line is governed by the
collisional mechanism. It is readily shown that the col-
lisional theory of broadening is valid only for frequency
shifts less than (υ)/·/σ. For lines corresponding to vi-
bration-rotation transitions in molecules, this quantity
is of the order of 1-10 cm"1.

Table II summarizes the orders of magnitude of the
densities NltN2, given by (2.19) and (2.20) in the case
of vibration-rotation transitions in carbon dioxide in a
nitrogen atmosphere. The formula also gives the val-
ues of N3, for which the collisional linewidth is equal to
the separation between neighboring lines, and the ab-
sorption coefficient becomes a smooth function of fre-
quency.
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TABLE II. Collisions! broadening of lines due to vibration-
rotation transitions in COj.*>

ωο. cm"1

667.4
961

1063.8
2349.2

Vibiational transition

ii
ll

Wj, cm"3

10"
10"

2-10"
4-10"

Wi, cm" 3

2 10*»
10»

2 10»·
210»

N,, cm"3

3 -10»
2 10»
3-10»
310*>

*>ωο is the frequency of the vtbrattonal transition, t.e., the
frequency corresponding to the center of the band. The gas
temperature is assumed to be 300 °K.

It is clear from Table Π that the collisional theory of
broadening is valid over a broad range of gas densities,
much greater than the corresponding range for the
atomic resonance lines. This is characteristic for
most vibration-rotation transitions of molecules. Gas
densities of the order of 10" -1020 cm"3 are realized,
on the one hand, in planetary atmospheres and, on the
other, in many laboratory experiments. This has stim-
ulated the development of experimental studies of col-
lisional line profiles in the infrared molecular spec-
trum. The most important experimental procedures
rely on measurements of integrated absorption in a
particular spectral line, and on direct measurements
of the line profile at high pressures, or with the aid of
laser beams. Table ΠΙ lists collisional linewidths for
vibration-rotation transitions in a number of molecules
with linear or spherical structure.21'34 Most of these
are of the same order of magnitude, so that reliable
estimates can be performed even where direct mea-
surements are not available.

3. MODELS OF MOLECULAR BANDS

To analyze the properties of infrared radiation trans-
fer that are connected with the rapidly oscillating
structure of the absorption coefficient of a molecular
gas, we must have an analytic representation of the ab-
sorption coefficient in a certain frequency band. This
can be based on band models that lead to analytic ex-
pressions for the absorption coefficient as a function
of frequency. Two models of bands are used in prac-
tise. The first, the regular or Elsasser model, as-

TABLE III. Collisional half-width of spectral lines correspon-
ding to vibration-rotation transitions in a number of molecules
at room temperature and atmospheric pressure {j~10—20 ').

Emitting
molecule

CO

CO,

Energy of
vibiational
transitions,
cm"1

2143.1

667.4
961

1064

Perturb-
ing par-
ticle

He
Ne
At
ΚΓ
Xe

N*
CO
CO,
N 2

He

CO,
N,
CO,

Half-width
γ/2, cm"1

0.05
0.04
0.04
0.04
0.04
0.07
0.05
0.05
0.05
0.08
0.07
0.08
0.12
0.07
0.10

Emitting
molecule

N , 0

HC1

HF

CH,

Energy of
vibratJonal
transitions,
cm-'

2223

2886

3962

3018.9

Perturb-
ing par-
ticle

N,
N,0
Ar
Xe
Ar
Kr
Xe
He
H,
N,
0,
CH,

Half-width
γ/2,αη-ι

0.08
0.10
0.03
0.04
0.02
0.04
0.06
0.05
0.07
0.05
0.04
0.07

sumes that neighboring spectral lines have constant
separation and equal intensity. In the other model,
which is referred to as the random or Goody model, it
is assumed that the separation between neighboring
lines varies in a random fashion and is governed by a
statistical law. It is further assumed that the line-in-
tensity distribution follows some particular law.

The regular and random models correspond to the
two limiting cases of molecular spectrum. Thus, in
the first case, the disposition of the lines and their in-
tensity distribution follows some order whereas, in the
second case, there is no order. These two band models
will be taken as a basis for our study of infrared radia-
tion transfer in molecular media.

A. Regular model

The regular model was first put forward by Elsasser
in 1938,35 and is often referred to in the literature as
the Elsasser model. It is clear from Fig. 1 that this
model works best for the vibration-rotation spectra of
linear molecules. In its simplest form, it assumes
that the spectral lines have identical intensities and
shapes. The absorption coefficient of the gas is then
given by

k «=5 Υ a(<s> +nd) (3 1)
η

where S is the line intensity, d is the frequency differ-
ence between neighboring lines, ω0 is the frequency at
the band center, and η is the line number. This formu-
la shows that the absorption coefficient is a periodic
function of frequency and that the period is d. If the
width of an individual spectral line is large in compari-
son with line separation, the absorption coefficient in-
volves contributions of many lines and the summation
sign in (3.1) can be replaced by integration. Since
/ α(ω)άω= 1, we have

The regular model is particularly convenient in the
case of the Lorentz line shape of an individual line. In
this case, the sum in (3.1) can be evaluated on the basis
of the Mittag-Leffler theorem.36 This results in an
analytic expression for the absorption coefficient at a
given frequency:

Ι (ω—G>O—n<

S ah (nyld)
(3.2)

*) These figures are averages over the rational states in the
indicated range. The data are accurate to within ~ 20%.

According to this formula, the absorption coefficient
has an oscillatory structure. The maxima lie at the
centers of the corresponding spectral lines, and the
minima lie half-way between neighboring maxima. The
ratio of maximum to minimum values of the absorption
coefficient is

ch(ny/<l)+l _ h 2 jny_

This ratio is large when the width of the individual
spectral lines is small, i.e., γ «d, and its value
then is (2d/wy)\

The regular model is capable of describing the real
situation as well.37 Suppose we have a gas consisting of
linear or spherically symmetric molecules, and that the
spectral line band corresponding to a particular vibra-
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tional transition does not overlap other bands. The ab-
sorption spectrum of the gas then consists of equidis-
tant lines (Fig. 1) and, if the intensities of lines deter-
mining the absorption coefficients at a given frequency
in (3.1) are not too different, the radiation transfer
process in a layer of the gas is satisfactorily described
by the regular model.

Henceforth, our description of the regular model will
be concentrated on the Lorentz profile since this case
is the most important in practice. For the Lorentz line
shape, the regular model is valid if

d In S (ω)
-max(γ, (3.3)

We shall now demonstrate the possibility of using the
regular model to determine the characteristics of in-
frared radiation transfer in an isothermal planar gas
layer consisting of linear molecules. The optical thick-
ness of the gas layer, which can subsequently be used
to determine all the characteristics of infrared radia-
tion transfer, is then given in accordance with (3.2) by:

u (ω) = j ι (a) L sh (πγ/d)
ch (ny/d) — cos [2π (ω — ωο)/<ί1

(3.4)

where L is the linear dimension of the layer (we as-
sume, for simplicity, that the density of the molecules
does not depend on position). It is clear that the optical
thickness is an oscillating function of frequency and has
two envelopes, u^^oo) and ualn(w), which pass through
the maxima and minima of this function:

«mai («) = ι -53- , «mm (ω) = (3.5)

These envelopes are the characteristics that can be
used as a basis for describing the transfer of infrared
radiation in the gas layer. Let ω ι ω χ be the frequency at
which δ(ω) has a maximum. The parameters enabling
us to subdivide the overall transfer process into indi-
vidual limiting cases are then the quantities «„,!„(<">„„„)
and u^v^J). The characteristic values of the densi-
ties Nt and Ns, for which Mmla(wmai)= 1 and «mai(wmilI)= 1
in the P- and iJ-branches of CO2 and CH4 molecules in
the Earth's atmosphere are listed in Table IV.

When Mm a x(wm a i)«1, the gas layer is optically trans-
parent at all frequencies. This case is relatively sim-
ple because «(<*>) «1 in all the formulas, and all the
problems can readily be solved in this case. The equa-
tion given by (2.7) yields for the equivalent width of the
molecular band

= S0L, (3.6)

where So is the integrated intensity of the molecular
band, which is equal to the sum of all the spectral-line
intensities. This expression retains its form for mole-
cules of any structure if the optical thickness of the

TABLE IV. Characteristic values of the densities of molecular
components corresponding to different limiting cases of
radiation transfer in the Earth's atmosphere.

Vibrational transition

cm"3

cm"3

1

CO, . ,

.5 10"
4-101»

co2ωο>= 2349.

10"
2.5-10

!cm"'

10

CH,
ωο— 1305.9cm"1

61O's

1.5-10"

CHi
ω ο = 3089 cm'i

3-101»
7 10'»

layer of gas is much less than unity at the centers of
the strongest lines.

We shall now concentrate our attention on the oppo-
site limiting case «„,„(«„,„)»!, for which all photons
are absorbed in the gas layer in a certain frequency
band. We then consider the situation where the width
of individual spectral lines is much less than the sep-
aration between neighboring lines (y <<d), and the op-
tical thickness of the layer is a rapidly oscillating func-
tion of frequency. This is the most interesting case.1'
The range of parameter values that we are considering
can be divided into two parts, depending on the magni-
tude of umlji.<j)ma) «1, strong absorption occurs only
near the maxima of individual lines, for which the op-
tical thickness of the layer is found from (3.2) to be

( 3 " 7 )

where ωπ is the frequency corresponding to the center
of the w-th line. Hence, using (2.3), we find that the
absorption function for the given frequency interval is

(ω) = -2- max (ω) = 2 ] / (3.8)

This formula can be simply derived. Photons are ab-
sorbed in a narrow frequency interval in which u(w)
s 1. The width of this interval in the neighborhood of
the absorption line maximum is given by (2.4) and is
Aa>~yVKmai(ci>). Since the separation between neighbor-
ing lines is equal to d, the absorption function for a
photon, i.e., the probability that it will fall into the fre-
quency interval Δω, is of the order of A~^<^/d~(y/
d)^Mmai(w)> which confirms (3.8).

To find the equivalent width of bands in this limiting
case, we must combine the widths of the individual ab-
sorption intervals near each maximum. The result is

W= (ω) d<0.

The quantity Δ ωπ is the equivalent width of an individual
line. It is readily seen that, in this case, and if
Mmln(wmai) « 1 , the difference Δωπ is much less than d.
More rigorous calculations show that the band width W
in the case of linear and spherically symmetric mole-
cules is given by

hW η -1/" / »

2ΫΒΤ
(3.9)

This formula is valid also for the equivalent band width
W averaged over all the angles of escape of photons
from the gas layer, and thus determining the resultant
power flux density of the radiation from it. The values
of the coefficient C are listed in Table V. It is clear
that the equivalent band width depends on the param-
eters of the problem, as indicated by the above esti-
mate. We note that the equivalent width W of the emis-
sion band is greater than the equivalent width W of the
absorption band because the absorption process which
we are considering corresponds to the propagation of
photons at right-angles to the gas layer, whereas the

"We shall confine our attention to the Ρ and R branches be-
cause, as was shown in Ref. 38, the Q branch affects the
equivalent width of the band only when « ^ ( ω ^ ) S 1.
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TABLE V. Values of
the coefficient C in
(3.9).

Cw

CW

Lineu
molecules

3.55

4.73

Spherically
symmetric
molecules

3.72

4.96

radiation is in fact emitted at different angles, so that
the effective thickness of the layer is greater.

The above case, corresponding to « ^ ( w ^ ) « 1 , is
known as the isolated-line model because, in this case,
absorption and emission by the gas layer are concen-
trated in individual nonoverlapping frequency intervals
near the centers of the corresponding spectral lines.
The isolated-line model can also be used for arbitrary
molecules if the equivalent linewidth is much less than
the mean separation between lines. The equivalent
band width is then given by

W-ΣΔω,,. (3.10)
η

In the case of collisional and Doppler broadening, the
equivalent width is given by5

collision broadening,

ι Doppler broadening;
(3-11)

where γΒ is the Doppler linewidth and unma »1 is the
optical thickness of the gas layer at the line center.

We now return to linear molecules and analyze the
other limiting case, i.e., «m l n(wm i l x)»l. Here, the ab-
sorption function is given by

Α (ω) = u m a l (ω) > 1, (3.12)

where erf(#)2=(2/V?) jTV* dt. As can be seen, for
frequencies for which «mU(ω) >^I7The absorption func-
tion is equal to unity. For frequencies for which MmiB(w)
« 1 , «„„(<«») » 1 , the absorption function is given by
(3.8) and is determined by absorption near the center of
the corresponding transition.

The equivalent band width can be estimated in this
case as before, i.e., by adding the width of individual
intervals for which M(CU)S 1. The equivalent band width
then consists of a segment for which MmU(w);s 1, and in-
dividual frequency intervals in the neighborhood of the
corresponding transitions for which umin(u)«1, wmiX(<i>)
» 1 . Analysis shows that, when Mmtll(

w

max)>>l> the main
contribution to the equivalent band width is provided by
the first region. The latter is thus the width of the
interval whose limits can be found from

"ηααίωίπι) ~Ί· (3.13)

A simple result is obtained when the line intensity is a
rapidly varying function of frequency near the edges of
the absorption region, i.e.,

(3.147

We can then use the asymptotic expression for umla(u>)
which gives the following result for the limiting fre-
quency in the band:

i 0 . 1 4 . w h e r e W =

Similarly,

W~= 2 w t a , where u m t a (ω^,)=Q.O85.

om- (3.15)

(3.16)

We note that, in the case of emission and absorption by
linear molecules, the rotational levels of which are
populated in accordance with the Boltzmann distribu-
tion, the condition given by (3.14) assumes the form

(3.17)

so that the limit of the emission and absorption band is
determined by the tail of the distribution of the mole-
cules over the rotational states. When Β « Τ, the con-
dition given by (3.17) is also valid for spherical top
molecules. In this case, the equivalent bandwidth is
also given by (3.15) and (3.16).

Figure 2 shows a comparison between theory and ex-
periment3 9·4 0 for the equivalent width of the fundamental
vibration-rotation band of CO at T= 300°K [in these ex-
periments, UmJiVnv) >:> 1» s 0 that w depends only on
"mu^max^· T h e maximum discrepancy between experi-
ment and calculations is about 10% and can be ascribed
to both experimental uncertainties and theoretical er-
rors connected, above all, with the uncertainty in the
collisional linewidth γ. In this particular calculation,
γ was assumed to be the same for all the lines, and
equal to 0.16 cm"1 at atmospheric pressure. In point of
fact, it is a function of j and varies between 0.20 and
0.10 cm"1. This restricts the precision of the calcula-
tions to 5-10%. When the dependence of the rotational
constant on the vibrational state is taken into account,
the uncertainty becomes smaller still.

B. Random model

The other popular model of a band of spectral lines is
the random or statistical model, put forward by
Goody.41 It is based on the assumption that the lines
are distributed randomly in a certain frequency inter-
val. Physically, this model is suitable for describing
molecular spectra with complex irregular structure,
for example, the spectra of molecules in the form of an

(cm-1

250

200

ISO
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so

ζ

ο -3
• l-*s y

yy

ο
Κ

10'70'·

FIG. 2. Equivalent width of the fundamental vibration-rotation
band of CO at Τ = 300 °K in a nitrogen atmosphere: No—density
of CO molecules, Ν—density of nitrogen molecules, L—path
traversed by radiation. 1—regular model, 2—random model,
3—calculations by Edwards and Maynard,55 4—experimental
data,40 5—experiment.39
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asymmetric top. Moreover, the random model pro-
vides a basis for approximate (but relatively accurate)
calculations of the characteristics of molecular radia-
tion in certain other cases, for example, in the case of
overlap of several regular bands.

We shall consider two approaches to the random mod-

el. The first, developed by Goody himself,3·41 con-

sists of the following. Let us suppose that the position

of an individual line in a given frequency band is inde-

pendent of the position of the other lines, and that the

shapes and widths of all the lines are the same. If

there are η lines within the frequency band Δω, the ab-

sorption function is given by
Λω

J do,, . . . ' aSt

Am

do),
0

2 2 (3.18)

where α(ω() is the line shape and P(St) is the function
describing the line intensity distribution, i.e.,
P(Si)dSi is the probability that the intensity of the i-th
line will lie between S, and Si + dSi. It is also as-
sumed that the center of the first line lies in the inter-
val between ωί and u>l + do}l, whereas the center of the
second line lies in the interval between ω2 and ω2 + άω2,
and so on, for the η lines. Since JoHS^dS^l, and the
η integrals in the numerator of (3.18) are all equal, we
may transform (3.18), so that it reads

(3.19)

Since the width of the frequency interval that we are

considering is much greater than the linewidth, we can

change the order of integration in (3.19) and, if we pass

to the limit as n - 0 0 , we obtain

±- [ P(S)W(S)dS], (3.20)

where W(S)= / £ [1 - exp(-Sa(<f)Z,)]rf(u> - ω0) is the
equivalent linewidth, u>0 is the frequency corresponding
to the center of the line, and d is the average separa-
tion between the lines. For a band consisting of lines
of equal intensity and having the Lorentz shape, the ab-
sorption function corresponding to uBai= 2SLhy » 1 ,
i.e., large optical thickness of the layer at the line cen-
ters, is equal to

A = l-exP(-2\/"^). (3.21)

If, in addition, umln={ny/2d)2umax«l, we have A
= 2Vwmln/7r, which is exactly the same as the result pre-
dicted by the regular Elsasser model (3.8), obtained
under similar assumptions. This agreement was to be
expected because, when «„,„» l,Mmln « 1 , absorption in
the band consists of absorption in the individual non-
overlapping lines. The result is, therefore, indepen-
dent of the model used. The parameter «mln which, in
the regular model, is the optical thickness of the gas
layer at the minima of fca>, has a different interpreta-
tion here, namely, it is the average effective optical

thickness of the layer in the intervals between spectral

lines.

The advantage of the random model is that is can be

used to express the integrated characteristics of mo-

lecular radiation in the band in terms of the equivalent

width of an individual spectral line. The random model

is, therefore, convenient in studying the transport of

radiation in molecular bands with non-Lorentzian pro-

files, and when several molecular bands superimpose

so that other methods are very laborious.

We shall use a different approach to this range of

problems and, in particular, to the random model.

First, we must translate the entire problem to a dif-

ferent language by introducing the distribution function

/(«) for the optical thickness of the gas layer under in-

vestigation.42'45 The quantity f(u)du is the probability

that the optical thickness of the layer lies between u and

u+ du.

To demonstrate the possibilities of this method, we

begin by returning to the previously considered case of

the regular model and the Lorentz line profile. The

optical thickness of the layer as a function of frequency

will be taken in the form
ch (πγ/rf) — 1

We then have

0 < ω — ω0 — nd<-5-.

We have used the fact that the probability of randomly
falling into a particular frequency interval is propor-
tional to the size of this interval. The last two expres-
sions can be used to find the formula for / r a £ in this
case:43

"roln"mai

("max — « ) ( " — "mln)
(3.22)

where «mlll« u « «„,„. For all other values of u, we have

«.(«) = 0.

This approach will not, of course, yield anything at
all when the regular model is valid and the problem can
be solved exactly. However, it is convenient for ob-
taining approximate results when the distribution of
the line centers and the alternation of their intensity
are both relatively complicated. Within the framework
of the random model, the distribution function fT!ad(u)
can be found44·45 with the aid of the method developed in
the quasistatic theory of brodening of spectral lines.46

The expression for/rand(w) is derived in the Appendix.
Here, we reproduce the final results for a set of lines
of equal intensity and the same shape, which we shall
use below:

f^i(y) = ~ j exp{-i<ii—i- j [l-exp(iiS£a(cu))]d(co-a>,,)}df.

(3.23)

The absorption function for a molecular band is then
given by

A =.- j [1 - cxp (-u)/rand(u) du. (3.24)
0

Integrating with respect to u in (3.24) and expressing
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the integral with respect to ί in terms of the residue at
t=i, we obtain the formula given by (3.21). The two ap-
proaches to the random model are thus seen to yield the
same result. This was to be expected because both ap-
proaches rely on the same physical assumptions.

The parameter ranges defined by unax= 2SL/wy» 1,
y«d are the most interesting for a molecular gas.
Here, the function «min/(w, Mmtn) depends on the single
parameter u/umln. When w m U « l , absorption is largely
confined to the frequency interval in which the optical
thickness is much greater than um l n. In this interval,
the distribution function is the same for both models
and is given by

/(») =
ul/2
"min (3.25)

For other values of the parameters, we have fItni(u)

</rJ«)·
Comparison of the absorption functions corresponding

to the regular and random models (Fig. 3)5 shows that
the two are not very different. For unax»1 and yld« 1,
this comparison is particularly useful because the ab-
sorption functions depend on the single parameter um l n.
When M m l n « l and « m U » l , we have Ar.g=Ar a i l d, whereas
ΑηΛΛ is somewhat smaller than Ar e g for intermediate
values of «Βΐ1. The maximum difference occurs for
Mmta= 1.27, for which ATtg= 0.9 and ATma= 0.72. The fact
that the absorption function in the regular model is
greater than the absorption function in the random mod-
el can be readily explained as follows. When the dis-
tribution of spectral lines within a band is random,
there is a definite probability that the separation be-
tween neighboring lines in some particular interval of
frequency will be greater than the average separation
between them throughout the frequency interval under
consideration. At the same time, the separation be-
tween neighboring lines will be smaller in some other
interval. Thus, when umln is of the order of unity
throughout the bands, the absorption function in the
first of these intervals will be much smaller, whereas,
in the second interval, it will be much greater as com-
pared with the situation where the separation between
the lines in each of these intervals is equal to the av-
erage separation for the entire band. This ensures that
the absorption function obtained for the random distri-
bution of lines in the band is somewhat lower than the
absorption function for an ordered distribution of lines.

The fact that the results obtained for the regular and
random models are not very different indicates that the

latter model can be used even for investigating radia-
tion transfer processes in molecular bands with regu-
lar structure. Thus, for example, in the case of linear
molecules, it may be considered that the lines are dis-
tributed randomly in a frequency interval containing a
large number of lines of roughly the same intensity.
On the other hand, the line intensity is then a slowly
varying function of frequency, in accordance with (3.3).

In our view, the random model is convenient in con-
nection with various problems in the theory of infrared
radiation transfer, e.g., in the case of molecular bands
with non-Lorentz line profiles and when several regular
bands overlap. This enables us, at the cost of some
loss of accuracy, to solve relatively laborious prob-
lems by using analytic methods and simple computation
techniques, which is particularly convenient when a
semiquantitative answer to a particular question is re-
quired. Above, we estimated the error associated with
using the random model to determine the absorption
function. It did not exceed 20%. The same conclusion
follows from comparison of the equivalent width of an
individual vibration-rotation band calculated on the ba-
sis of the random and regular models when the condi-
tions for the validity of the latter are satisfied (Fig.
4).4 4 ' 4 5 Since the regular and random models reflect the
two limiting cases, namely, order and disorder in the
spectrum of molecules, respectively, the discrepancy
between these two models should be greater than the
discrepancy between either of them and the observed
result. This means that the error incurred through the
systematic use of the random model in the solution of
real problems should not exceed 20%. We note that the
accuracy of the parameters characterizing the width
and shape of spectral lines, which are used in these
calculations, may well be of the same order. As an ex-
ample, Fig. 2 shows the results obtained with the ran-
dom model for the equivalent width of the ground-state
vibration-rotation band of the CO molecule. As can be
seen, these data are close to the results obtained with
the regular model and to the experimental data.

We shall use the random model to determine the equiv-
equivalent width of a set of intersecting vibration-ro-
tation bands of linear molecules, consisting of lines
with Lorentz profiles. As before, we shall assume that
the lines are distributed randomly in a sufficiently nar-
row frequency interval within each band, and that the
average separation between lines is greater than their
width, whilst the optical thickness of the gas layer at
the line centers is large.4 4·4 5 Within the framework of
the random model, the equivalent width of a set of such
bands can be determined in the same way as for an in-
dividual band. In fact, using Eq. (4) of the Appendix for
the function /r a n d(«), and assuming that the line intensity
distribution is

"mm

FIG. 3. Dependence of the absorption function in the case of
the regular and random models on the parameter «min for
different values of the ratio y/d.

where Sk and dk are the line intensity and average line
separation in the fe-th band, respectively, we find from
(3.24) that the absorption function is
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FIG. 4. Equivalent width of an individual vibration-rotation band due to linear molecules: 1—regular model, 2—random model.
W— equivalent width of band (Fig. a), W—equivalent width of band averaged over the angle of emission of photons from the gas
layer (Fig. b).

where «„ m l n is the parameter «mln corresponding to the frequency band in whichZ/V«ft m U (^) » 0.39.
fe-th band. All the expressions resulting from the ran-
dom model for the average spectral characteristics of
an individual band are thus seen to retain their form
under the substitution

Κ"ΐ>ιιη(ω)->- Σ Vukmn(u,).
h

If the maximum value of the parameter «mln for each
band is much less than unity, the required equivalent
width is equal to the sum of widths of all the bands,
each of which is given by (3.9). Conversely, if there
are frequencies for which wmlB(a>)»1, we can use the
asymptotic expression to obtain the result. The equiv-
alent width IF of a band is then equal to the width of the
frequency interval in which

Σ V»»m,n ((0)3*0.50. (3.26)

Similar results are obtained for the width W of an
emission band except that, in the latter case, the nu-
merical coefficient on the right-hand side of (3.26) is
equal to 0.39.

We note that, when the power flux is calculated in
the case where there are several overlapping bands,
the concept of the equivalent band width W may lose its
practical significance. We have introduced it to define
the radiant flux emitted by a gas layer, assuming that
the width of the band is small in comparison with the
transition frequency and the ratio T/K. This may not be
so when several bands are found to overlap. The resul-
tant power flux of infrared radiation emitted by a gas
layer is then given by

/=j<Vla>; (3.27)

where eu is, as before, the spectral powerflux density
emitted by the surface of a perfect black body with given
temperature, and the integral is evaluated over the

ISO
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FIG. 5. Equivalent width of the 15-μ absorption band of CO2 at
Τ = 300 °K in a nitrogen atmosphere. JV0 and Ν are the densities
of CO2 and N2 molecules, L is the path length traversed by the
radiation, χ—experimental data.4'

Figure 5 shows the experimental data47 and the results
obtained from the random model for the equivalent
width of the 15-μ band of the CO2 molecule at T= 300 °K.
Bands associated with the eight vibrational transitions
667.4, 618, 721, 741.7, 587.3, 791.5, 667.7, and 647
cm*1 were taken into account in the calculations. The
spontaneous emission times for these transitions were
taken from Ref. 48.

The desire to achieve maximum agreement between
the regular and random models, on the one hand, and
experimental data, on the other, and to use these mod-
els for practical calculations, has led to a large num-
ber of published modifications of both models. Many of
these modifications (see, for example, Refs. 49-51)
form the basis for semiempirical methods. They are
described in some detail in monographs and reviews
(see, for example, Refs. 3 and 10), and will not be con-
sidered here. We merely note that the above method of
determining the equivalent width of bands is, in princi-
ple, similar to the method described in Refs. 52-55.
The latter is based on the assumption that the lines are
distributed randomly in a sufficiently narrow frequency
interval, and that their intensity distribution is expo-
nential. The absorption function found in this way is
then integrated with respect to frequency, using the
true or empirical values of umlj.(^) and Mmal(w). Al-
though the Edwards -Maynard method does not reflect
the actual situation in the spectra of linear molecules,
it does lead to results that are in fairly good agree-
ment with experiment (Fig. 2). Its main disadvantage
is that, when one deals with relatively complicated sit-
uations (for example, in the case of several overlapping
bands), it involves a number of empirical parameters
that can be obtained only by comparing calculations with
experiment.

4. MODELS OF BANDS IN INFRARED RADIATION
TRANSFER

In practice, one is frequently concerned with a tem-
perature-inhomogeneous molecular gas, or a molecu-
lar gas in which there is no thermodynamic equilibrium
with respect to the vibrational degrees of freedom. The
physical picture of this process is then, of course,
much more complicated, and the regular and random
models of line bands become even more valuable as
ways of analyzing this picture. If the problem involves
small characteristic parameters, these methods often

189 Sov. Phys. Usp. 23(3), March 1980 B. M. Smirnov and G. V. Shlyapnikov 189



yield a reliable quantitative result in analytic or semi-
analytic form. For example, the relative variation in
temperature of the gas layer, or the ratio of the rates
of quenching of vibrational and rotational excitation of
molecules, can serve as parameters of this kind.

Temperature inhomogeneity or the absence of local
thermodynamic equilibrium is characteristic for the
Earth's atmosphere and other planetary atmospheres.
We shall therefore conclude this review by analyzing
some of the problems in the physics of the atmosphere.
This will demonstrate the possibilities of analytic
methods using band models for the solution of particu-
lar problems.

A. Radiation emitted by a temperature-inhomogeneous
molecular gas

We shall now consider the radiation emitted by a
plane layer of gas which is in thermodynamic equilibri-
um. We shall assume that its parameters depend only
on the coordinates measured at right-angles to the sur-
face. We shall also suppose that the temperature is
given as a function of this coordinate and is independent
of time. The characteristic variation of temperature
within the layer will be taken to be much smaller than
the temperature itself. If absorption by the gas is due
to vibration-rotation transitions from the ground vi-
brational state of the molecules, the temperature in-
homogeneity within the gas layer has practically no ef-
fect on the equivalent width W of the band responsible
for the absorption of external radiation. Temperature
changes then lead only to small changes in the optical
thickness of the gas layer. On the other hand, the de-
pendence of the equivalent width of the band on the opti-
cal thickness is a relatively smooth function. If a large
number of vibration-rotation states of the molecules
participate in the radiation transfer process, the ab-
sorption coefficient of the gas has an appreciable depen-
dence on the coordinate. The effect of temperature in-
homogeneity in the gas on the equivalent width of the
band can then be very considerable.

A number of approximate methods for the determina-
tion of absorption by an inhomogeneous gas medium is
discussed in the literature.3·9·1 0 One of the most suc-
cessful methods is the Curtis-Godson approximation,56

which describes an inhomogeneous optical path with the
aid of two parameters, namely, the average pressure
and the average number of absorbing molecules. This
means that absorption in an individual line in an in-
homogeneous medium is replaced by absorption in a
homogeneous medium. The average width and intensity
of lines are chosen by comparing the approximate re-
sults with the exact results in the limits of large and
small optical thicknesses of the gas layer at the line
center.

We shall now illustrate the Curtis-Godson method by
considering an individual line with a Lorentz profile.
The equivalent linewidth in this case is given by

where the dependence of intensity and linewidth on the
coordinate, S(x) and γ(χ), is connected with the varia-
tion of temperature and density of the absorbing mole-
cules within the gas layer in the direction of propaga-
tion of radiation, and L is the path length traversed by
radiation in the gas. In the limiting cases of large and
small optical thickness of the layer at the center of the
spectral line, the equivalent linewidth WL is equal to
J2JLS(x)v(x)dx and f%S(x)dx, respectively. Replacing
the functions S(x) and γ(χ) in (4.1) by certain average
values 5 and γ, we obtain the usual formula for WL (see,
for examples, Refs. 3 and 5). If we then compare it
with the exact expressions for the limiting cases, we
obtain the required average values of the intensity and
linewidth:

(4.2)

Similarly, we can examine the absorption of radiation
in an inhomogeneous gaseous medium in the case of a
non-Lorentz profile and molecular bands of regular or
random structure. In addition to the Curtis-Godson
method, there are also a number of multiparameter
approximations. Moreover, there are several semi-
empirical methods for examining radiation transfer in
an inhomogeneous atmosphere. They are discussed in
some detail in Goody's monograph3 and we shall not
pause to consider them here.

The influence of temperature inhomogeneity on the
intensity of radiation emitted by a molecular gas is also
important when the emitted radiation is due to transi-
tions between the ground and first excited vibrational
states of the molecules. The power flux of radiation
from any particular isothermal volume of the gas is
then proportional to the spectral density of the radiation
emitted by a perfect black body, eJ,T), which is given
by βω~ βχρ(-#ω/Τ) when ΚωΖ Τ, so that even small
changes in temperature within the gas layer have an
appreciable effect on its radiation characteristics.

Semiempirical modifications suffer from the disad-
vantage that any complication of the problem deprives
us of the ability to estimate the precision of the final
result. The above method, which is based on the com-
parison of the results obtained from the two physically
opposite models, namely, the regular and the random
models, is convenient in this respect. We shall demon-
strate this by determining the average spectral power
flux density from a plane layer of a molecular gas at
a given frequency at right-angles to its boundary. We
take the spectral density in the form

/ω = 2 j /(it) du j ea [T(x)]exp (-u ' (z))dit' (x), (4.3)

where /(«) is the appropriate distribution function and
u'(x) is the optical thickness of the gas layer between
the point χ and the boundary through which the radiation
escapes. This formula follows from the definition of
the power flux emitted at right-angles to the surface.
The inner integral is the required spectral density cor-
responding to optical thickness u. The second integral
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gives the average over the optical thickness. When the
gas temperature is constant, we have la = 2eaA(u>),
where Α(ω)= / " ( I -e'u)f(u)du is the absorption function
[see (3.24)]. This follows from the physical meaning of
the spectral power flux density.

We now introduce z(x) = [u'(x)/u](0 ^ ζ « 1) and rewrite
(4.3) for the Lorentz profile of a spectral line in the
case where the average separation between neighboring
lines is much greater than their width and the optical
thickness of the line center is large («„,„ » 1 ) . If we
use (3.22) for the distribution function within the frame-
work of the regular model, we obtain

•umlll(<u)z(;r))dz, (4.4)

where um i n=(ff/2d2)/0 S(x)y(x)dx is the generalization of
the parameter κ mm to the case of an inhomogeneous me-
dium.

In the case of the random model, substitution of (3.23)
in (4.3) yields

(4.5)

In the limit um l n « 1 , when the regular and random
models go over into the isolated-line model, we can set
the exponentials in (4.4) and (4.5) equal to unity and ob-
tain the same result, namely,

dl . (4.6)

This formula corresponds to «„,„» 1, i.e., the case
where the molecular gas layer is opaque at the centers
of the strongest lines. In the other limiting case (umax

« 1 ) when the gas layer is optically transparent
throughout the frequency range, we can use (2.15),
(2.16), and (4.3) and obtain the following simple expres-
sion for the radiant flux emitted at right-angles to the
layer boundary:

- ^ j ΛΓ· (*) dz; (4.7)

where N*(x) is the density of vibrationally excited mol-
ecules, which depends on the coordinate χ, τ is the ra-
diative lifetime of the excited molecule for the particu-
lar vibrational transitions, and ω0 is the zeroth fre-
quency of this transition.

If the temperature is constant throughout the layer,
we find that, in the case of the regular model, Eq. (4.4)
yields

/„ = 2euA (ω), Α (ω) = erf Vumlll (ω), (4.8a)

whereas the random model gives [see (4.5)]

(4.8b)

The maximum difference between these formulas is 20%
and occurs for umla= 1.27. The formulas given by (4.8a)
and (4.8b) are generalizations of (3.11) and (3.20) to the
case where the line intensity S and linewidth γ are func-
tions of height of the layer.

If we know the function T(x), we can calculate the
"perpendicular" intensity emitted by the layer using

(4.3) and, in the case of the Lorentz profile, using di-
rectly (4.4) and (4.5). There is, however, another
method, namely, the asymptotic method based on the
slow variation of temperature within the gas lay-
er. 3 7 · 4 4 · 4 5 Its principle is as follows. The radiation es-
caping through the boundaries of the layer originates
mainly from a certain region within the layer. We shall
suppose that the gas temperature in this region and,
consequently, the spectral density βω[Τ(#)] vary rela-
tively slowly in that region. This corresponds to

^ i , (4.9)

where δΓ can be interpreted as the characteristic
change in temperature within the region responsible for
the escaping radiation. We now expand e w [ r M ] in (4.3)
into a series in powers of ζ around a certain point
ζ(χω). The value of z(xj will be determined from the
condition that the integral of the linear term of the ex-
pansion must be zero. Retaining only the first two
terms in the expansion in terms of the small parameter
given by (4.9), we obtain the following expression for
the required spectral power flux density:

(u m l n (o>)), (4.10)

where Ta = T(xu). We have thus reduced the problem to
that of the emission of radiation by an isothermal gas
layer held at some effective temperature Tu. The ac-
curacy of this method depends on the sum of terms of
the series that have been neglected.57

We shall illustrate the asymptotic method by evaluat-
ing the intensity Ia for Mmlm(<«>) » 1 and umln(w) «1. We
shall assume, for simplicity, that the vibrational tran-
sition energy Κω0 is large in comparison with the tem-
perature, so that βω(Τ)~βχρ(-^ω/τ). Let us take
Mmln(u)) » 1 first. The main contribution to the final r e -
sult is due to 2~ l/[umln(a>)]. In the neighborhood of this
point, we have

em [T (z (x))] = βω [Γ (z0)] exp [ — ~ Τ (z0) ( i - z , ) ] , ζ, = ζ (zj.

(4.11)

Hence, for the regular model (we take the line profile
to be of the Lorentz shape), we have

ι

Ια = «ΛΤ(Η)] j exp[ —j£-T' (z0) (z — zo)J y Umi^m)

X exp ( - u m l n (ω) ζ) dz = βω [Τ (ζ0)],

(4.12)

where z0 is determined by demanding that the integral
must be equal to unity:

For the random model, (4.5) gives

= *„ IT (

(4.14)

(4.15)

In both cases, condition (4.9) now takes the form

hia

"mm (ω) Γ»
•|Γ ( (4.16)
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FIG. 6. The function uBan (ω) for carbon dioxide in the
terrestrial atmosphere. Vertical lines show zeroth frequen-
cies of fundamental vibrational transitions in carbon dioxide
molecules and their isotopes.

When Mmln(u>) « 1 , Eqs. (4.4) and (4.5) give

/« = eu [T (z0)] · 2 Vnumn (ω),

ζ — —

and (4.3) assumes the form
htoAT

(4.17)

(4.18)

(4.19)

where Δ Γ is the temperature drop across the entire
gas layer.

The convenience of the above method in the case of
the random model lies in that it does not become more
complicated when several bands are found to overlap.
This is not unexpected because, in the random model,
the overlapping of several bands is equivalent to the
presence of one band with intensity distribution
HS)=E,,{d/dk)6(S -Sk) (see Sec. 3). Κ we use the dis-
tribution function /raild(w) given by Eq. (A4) in the Ap-
pendix, we find from (4.3) that the spectral power flux
density from a plane layer, emitted at right-angles to
its surface, is

X exp ( - 2 2 / " - " - , Ι " ' ' " ) dx.

(4.20)

Comparison of (4.20) with (4.5) will readily show that,
in an inhomogeneous gas medium (just as in the uniform
isothermal gas), the transition from an individual vi-
bration-rotation band to a set of overlapping bands is
equivalent to the replacement

mm (<->)- • Σ V"k m,n (ω)

in the formulas for the average spectral characteristics
of the emitted radiation.

Thus, the combination of the random model and the

m ea sm 7io 7to
Ha, cm"1

FIG. 7. Height of the layer of Earth's atmosphere in which
radiant flux of frequency ω, which escapes into the surround-
ing space, originates [the temperature of this layer appears
in (4.10)].

100

50
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FIG. 8. Average spectral powerflux density due to atmospher-
ic carbon dioxide plotted against frequency:5' 1—radiant flux
incident on the Earth's surface, 2—radiant flux escaping from
the atmosphere into surrounding space.

asymptotic method can be used to determine the charac-
teristics of infrared radiation transfer in a molecular
gas layer when several bands are found to overlap.
Figures 6-8 demonstrate this in the case of radiation
emitted by carbon dioxide gas in the real atmosphere.
This radiation is produced by eight overlapping bands.
The most important are those corresponding to the vi-
brational transitions 00°0 - 01*0,01*0 - 02°0,01*0 -10°0
with frequencies ω0 respectively equal to 667.4, 617,
and 721 cm"1. Figure 6 shows the minimum optical
thickness umln(d)) at a given frequency, and Fig. 7 shows
the height of the layer responsible for the atmospheric
emission at a given frequency [the temperature of this
layer appears in (4.10) which gives the spectral power
flux density escaping into surrounding space]. Figure
8 shows the radiation fluxes produced by the carbon di-
oxide gas that fall on the Earth's surface and escape
beyond the limits of the atmosphere.2' These calcula-
tions were based on the parameters of the standard at-
mosphere.3

One of the important aspects of this problem is the
accuracy of the calculations. This is determined by
two factors, namely, the uncertainty introduced by the
use of the random model of a band and the uncertainty
due to the use of the asymptotic theory. The former
has already been examined, whereas the latter is con-
nected with the use of the small parameter defined by
(4.9) and can be estimated by examining the neglected
terms. In particular, in the above example of atmos-
pheric carbon dioxide, the error introduced by using
the asymptotic method to obtain the resultant radiant
flux escaping beyond the limits of the atmosphere turns
out to be 4%, whereas the error in the flux falling on the
Earth's surface is 2%. For the radiant flux emitted at
right-angles to the Earth's surface, the error is 4% and
7%, respectively. It is clear that the uncertainty intro-
duced by using the asymptotic method for the tempera-
ture-inhomogeneous gas layer does not exceed, in this
case, the error due to the use of the random model.

B. Transfer of infrared radiation in a nonequilibrium
molecular gas

A new situation arises when radiation upsets thermo-
dynamic equilibrium. If the time necessary for a ra-

2>For brevity, we shall henceforth refer to the radiation power
flux simply as the radiant flux.
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diative transition is less than the time for quenching a
vibration-rotation state of a molecule by collision, the
distribution of the molecules over the vibrational states
is different from the Boltzmann distribution, and the
propagation of radiation through the medium affects the
population of vibration-rotation states. This has been
examined in some detail in the case of atomic gases
with one emission line (see, for example, Refs. 18 and
58). The population of excited states is then given by
the Biberman-Holstein equation,59·60 and can frequently
be found from the formula

«:,e| τ/Υ (4.21)

where N% is the density of excited particles in thermo-
dynamic equilibrium, described by the Boltzmann dis-
tribution, and ferel is the rate constant for the quenching
of excited states by collision with gas particles; Ν is
the density of these particles, τ is the radiative transi-
tion time, and D(r) is the probability that a photon
emitted at point r succeeds in leaving the system with-
out absorption. This formula has a simple physical
interpretation (see Refs. 61 and 62 for the range of its
validity). If the collisional relaxation time of the ex-
cited states, (NkTtl)~l, is much less than the radiative
lifetime τ, the Boltzmann distribution over the excited
states follows from (4.21) (since Ds, 1). Next, if radia-
tion is trapped within the volume, so that D«NkTtlr,
thermodynamic equilibrium is not upset either, because
the characteristic time for the escape of a photon from
the volume is long in comparison with the excited-state
relaxation time due to collisions.

It is clear that, when the isolated-line model is valid,
the theory of resonance-radiation transfer within indi-
vidual lines can be extended to the case of infrared ra-
diation transfer in a molecular gas. However, in the
case of molecular gases, the distribution over vibra-
tional and rotational states is important. The most
interesting case from this point of view is that where
the distribution over the rotational states corresponds
to thermodynamic equilibrium whereas the distribution
over the vibrational states departs from equilibrium.
There is a relatively broad range of gas densities for
which these conditions are satisfied. The gas densities
must then lie within the range

' = Λ Γ Γ « # « # „ = ! , (4.22)
κ Γ τ κ ρ τ

where kv and kr are the vibrational and rotational relax-
ation constants, and kv«kr. One can verify that this
range is broad enough by examining Table VI which
lists the values of the densities Nr and Nv for a number
of vibrational transitions in CO2 in terrestrial, Mar-
tian, and Venusian atmospheres.63 The rate constants

TABLE VI. Values of Nr and Nv for vibrational transitions in
CO2 in terrestrial, martian, and venusian atmospheres.

Vibra-
tional
transi-
tion

Nr,
c n r 3

ΛΓ,,
cm"3

Earth

00"i -* 0000

ΙΟ»

3-10"

0110 - 00»0

10'»

10'5

Mars

GOO I _ 0000

101!

6-10'«

0110 - 0000

10'°

3· 10"

Venus

0001 - 0000

10'*

6-10"

0110 -* 00°0

10·»

3-1011

for the processes are taken for the temperature of the
layer at the height at which the atmospheric density is
Νυ.

In the case of the equilibrium distribution of mole-
cules over the vibrational states, the physical picture
of infrared radiation transfer (we are considering an
individual vibration-rotation band) is similar to the
transfer of resonance radiation even when there is con-
siderable overlap between the spectral lines in the
band.64 However, in this case, the profile of the mo-
lecular band plays the role of the resonance line pro-
file and, in many cases, the former is the product of a
smooth and a rapidly oscillating function of frequency.
The form of the smooth function, which represents the
variation in the amplitude of the oscillations with fre-
quency, is determined by the Boltzmann distribution of
the molecules over the vibrational states. The rapidly
oscillating function, on the other hand, is determined
by the shape of the spectral lines associated with vi-
bration-rotation transitions and the separation between
neighboring lines. The concentration of the vibrational-
ly excited molecules can be found from the Biberman-
Holstein formula:

j G (r, r') y (r') dr' + β - (1 + β) y (r) = 0, (4.23)

where y(r) = N*(r)/Ng, and β=ΙιυΝτ is the number of
events of quenching of vibrational excitation during the
spontaneous emission time. The Green's function can,
in general, be written in terms of the distribution over
the optical thickness.64

The question of thermodynamic equilibrium in a layer
of a molecular gas of characteristic linear dimensions
L can be readily resolved if we find the quantity

D(L)= \ 6(ω — a>0)exp[ — Sb(a — ω0) L] d. (a — ω 0 ), (4.24)

i.e., the probability that a photon will traverse a path
L without absorption. In (4.24) S is the integrated band
intensity and 6(ω= ω0) is the frequency distribution
function characterizing the shape of the molecular band
profile (/^6(ω-ω ο ) ί ί (ω-ω ο )) . When D(L) « 0, and
krel = kv, it is clear from (4.21) that thermodynamic
equilibrium occurs in the interior of the gas layer (it
may be upset near the boundaries of the layer).

We must now find the probability D(L) in the case
when the function δ(ω - ω0) corresponds to an individual
vibration-rotation band of a linear molecule. Compari-
son of (4.24) with (2.7) will readily show that

AW (Si)
£>(£) = - (4.25)

In the limit wm i n(wm i U)«1, when the overlap of indivi-
dual lines can be neglected, we can use (3.9) and show
that for a Lorentz line profile (y « 2B/K):

D (L) = 0.76
1

V "max ("max)
(4.26)

In deriving this expression, we used the fact that

2SL
V -2ΪΓ·

We recall that (4.26) is practically the same as the re-
sult for an individual Lorentz line if the optical thick-
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ness of the gas layer at the line center is umai» 1. The
reason for this agreement is that the main contribution
to D(L) in the case of the molecular band is provided by
strong lines for which «„,„» 1. A different situation
occurs in the case of Doppler broadening. Here it fol-
lows from (3.11) that the equivalent width of the Doppler
line is a logarithmic function of t ^ for umax »1. The
main contribution to D{L) in the molecular band is
therefore provided by lines for which wmax~ 1. Direct
calculation based on (4.24) yields64

D(L). (4.27)

The probability D(L) given by (4.27) is in this case
much greater than the analogous probability in the case
of an individual Doppler line.

In the other limiting case, when « ^ ( ω ^ ) » 1 , the
integrated characteristics of infrared radiation are
largely determined by the shape of the envelopes
tt^ou) and w ^ w ) . If we use (3.15) and (4.25), we find
that, for the Lorentz profile,

(4.28)

The above results can be generalized to the case of
an inhomogeneous gaseous medium if the characteristic
variation in the temperature of the gas layer is small
in comparison with the temperature itself. This enables
us to consider the transfer of infrared radiation in the
absence of thermodynamic equilibrium in the real at-
mosphere. As an example, Fig.~?Fshows the concen-
tration of CO2 molecules in the 0110 state as a function
of height in the terrestrial atmosphere. These data are
not very different from numerical calculations (see, for
example, Ref. 65).

C. Transfer of infrared radiation and thermal balance
of planets

The propagation of infrared radiation in planetary at-
mospheres has an important effect on thermal balance.
This is why the above model can be used to perform
numerical estimates of the contribution of individual
components of the atmosphere to its thermal state.
When taken together with the physicochemical proces-
ses occurring in the atmosphere, this enables us to re-
construct the evolution of planetary atmospheres in the
past, and to establish the tendencies which they are
likely to follow in the future. Let us consider some
problems of this kind in relation to the Earth's atmos-
phere.

According to contemporary ideas about the history of
our planet,86" β the Earth's atmosphere was initially
very tenuous. It did not contribute to the thermal bal-
ance of the Earth, and the Earth's surface temperature
was low. However, the surface temperature rose as
more carbon dioxide was released into the atmosphere
from the Earth. This was due to the infrared radiation
flux arriving from the atmosphere onto the Earth's sur-
face and originating from carbon dioxide molecules in
the atmosphere. The increased temperature of the sur-
face gave rise to an increase in the amount of water
vapor in the atmosphere, which enhanced still further

aso

aes-

SO tOO 110 z,km

FIG. 9. Concentration of vibrationally excited CO2 molecules
In the 01*0 state as a function of height in the Earth's atmos-
phere: curves 1-3 correspond to vibrational relaxation con-
stants of 2 xlO"u, 7.5 xlO"", and 3 xlO"15 cmVsec for Τ
= 300 °K with a corresponding extrapolation into the region of
lower temperatures; ζ—height of the atmosphere, y(z)—ratio
of true concentration to its Boltzman value at the temperature
corresponding to the height z.

the greenhouse effect. The eventual result of all these
processes was that the temperature of the Earth rose
until all the ice on the Earth's surface melted. Under
these conditions, carbon dioxide, which was partially
dissolved in water, could enter chemical reactions with
silicates to form carbonates in sedimentary rocks.
This led to a reduction in the amount of carbon dioxide
in the atmosphere and to a stabilization of the thermal
parameters of our planet. Figure 10 shows the varia-
tion in the composition of the atmosphere and the sur-
face temperature of the Earth according to one version
of these calculations.69 It is clear that calculations
concerned with the evolution of our atmosphere must
include the formation and decomposition of the gaseous
components of the atmosphere as well as the emission
and absorption of photons by the atmosphere at each
stage. At the same time, the theory of radiation trans-
fer need not be too precise because many of the other
parameters are uncertain and it is desirable to have
the final relationships in a simple and readily inter-
pretable form. All this is assured by the analytic ap-
proaches described above. We also note that the avail-
ability of a physical picture of the evolution of the
Earth's atmosphere is quite important and valuable be-

w" №

FIG. 10. Variation in the composition of the atmosphere and
temperature of the Earths's surface during the evolution of the
planet.
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cause the history of the atmosphere determines much
that is of value in the organic and inorganic world that
is now available to mankind.

The other range of problems in the physics of the
Earth's atmosphere is concerned with the influence of
individual molecular components on the heat balance
and climate of the Earth. An increase in the concentra-
tion of an individual molecular component in the atmos-
phere produces an increase in the flux of infrared ra-
diation onto the Earth's surface due to the molecules of
this component. Thus, an increase in the concentration
of molecules of a particular species in the atmosphere
gives rise to an increase in the temperature of the
Earth's surface.

The rise in the surface temperature of the Earth due
to the accumulation of carbon dioxide in the atmosphere
has been examined in considerable detail.4 4·7 0"7 2 At-
mospheric carbon dioxide plays an important role in
the heat balance of the Earth. The Earth's surface
temperature would fall by 10-12° if carbon dioxide were
to be removed from the atmosphere. An increase in the
amount of carbon dioxide in the atmosphere by a factor
of two, on the assumption that the atmosphere is trans-
parent in the region of absorption by carbon dioxide
molecules, would produce a rise of 1.5-3 degrees in
surface temperature. The discrepancy between differ-
ent published calculations70"79 is due to the different
way in which the spectrum of carbon dioxide was rep-
resented, to the different distribution of temperature
with height in this atmosphere, and to the different way
of separating the additional flux of radiation falling on
the Earth's surface along different channels of the
Earth's heat balance.

An increase in the concentration of carbon dioxide in
the terrestrial atmosphere has, in fact, been observed
and is connected with the most intensive activity of
Man, namely, the combustion of fossil fuels (oil, coal,
and gas). This is why the problem of changes in the
thermal balance of the Earth due to the accumulation in
the atmosphere of carbon dioxide of anthropogenic ori-
gin is very important. Figure 11 shows the change in
the surface temperature of the Earth as a function of
the concentration of carbon dioxide in the atmosphere
for different atmospheric humidities.79 3 ' The absorp-
tion spectrum of water molecules overlaps the absorp-
tion spectrum of carbon dioxide, so that water vapor in
the atmosphere provides the strongest masking of
changes in the optical properties of the atmosphere in
the infrared due to the increase in carbon dioxide con-
centration.

The accumulation of atmospheric carbon dioxide is
the most dramatic consequence of the influence of Man
on the composition of the terrestrial atmosphere.
However, there are less intensive effects of this kind
which can occur with or without the participation of
Man and affect the heat balance of the Earth. For ex-
ample, Fig. 12 shows the variation in the surface tem-

AT.deg
2000 2015

FIG. 11. Temperature variation of the Earth's surface plotted
against the concentration of atmospheric carbon dioxide:
curves 1-4 correspond to atmospheric humidities of 0%, 20%,
70%, and 1OO%,79 6[CO2]—increase in the concentration of CO2

from the present value (3.26 xlO"4). The dates shown along
the upper horizontal axis are given in accordance with the
forecasts reported in Refs.81·82 for the amounts of carbon
dioxide in the atmosphere. The change ΔΤ was calculated on
the assumption that, according to published data,8 3·8 4 79% of
energy dissipated by the Earth's surface is emitted in the
form of thermal radiation. It was assumed that also the same
fraction of the additional radiated flux ΔΙ will be radiated,
i.e., ΔΓ = 0.195Δ//σΓ3, where σ is the Stefan-Boltzmann con-
stant, and Τ is the Earth's surface temperature.

perature as a function of variation in the concentration
of atmospheric methane.85 Only that part of the emis-
sion of methane molecules that is not masked by water
vapor was taken into account. The average concentra-
tion of methane near the Earth's surface is 1.5 x 10"β

and the average flux of methane molecules from the
Earth's surface into the atmosphere (due to the decom-
position of organic material in the soil) is 2 x 1011 - 3
x 1011 cm"2.8 6 The decomposition of methane is the at-
mosphere is connected with chemical reactions in which
it participates, so that its lifetime in the atmosphere
is roughly three years. It is clear from the figure that
natural variations in atmospheric methane correspond
to changes in the Earth's temperature by hundredths of
a degree.

Several questions have arisen in recent years in re-
lation to the effect of small atmospheric impurities on
the Earth's heat balance (see, for example, Refs.
87 -89). Semiempirical methods and approaches based
on computer technology are unsuitable for this type of
estimate. On the other hand, from the point of view of
analytic approaches, this case is the most convenient
because low density provides us with a small par am-

-020 •

3'The average humidity in the atmosphere was taken as 60%,
in accordance with the parameters of the standard atmo-
sphere.80

FIG. 12. Change in Earth's temperature as a function of the
concentration of atmospheric methane. It was assumed that
ΔΤ = 0 for average methane concentration of 1.5 xlO"6 (Ref. 85).
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FIG. 13. Change in Earth's temperature as a function of the
concentration of freons in the atmosphere (Nf is the total con-
centration of freons).

eter of the theory, and lines corresponding to individual
transitions do not overlap. The situation is particularly
simple when the optical thickness of the atmosphere at
the line center of the strongest transition is small in
comparison with unity. The radiation flux due to the
small molecular impurity is then given by (4.7) and is
independent of the line-broadening parameters.

Figure 13 shows the temperature of the Earth's sur-
face as a function of the concentration of freons (CC12F2

and CCI3F) in the atmosphere. It was assumed that the
atmosphere was optically transparent for photons
emitted by freon molecules in the band 800-1200 cm'1.
The additional flux of radiation falling from the atmos-
phere onto the Earth's surface as a result of the emis-
sion of radiation by atmospheric freons is calculated
from (4.7). The present concentration of freons in the
atmosphere is 2 χ 10"10, but an increase in this concen-
tration by an order of magnitude would produce an in-
crease of 0.2 degrees in the Earth's temperature, which
is in agreement with Refs. 88-89. With the modern
level of industrial activity, this increase in the concen-
tration of freons may occur over a period of a few dec-
ades, since the lifetime of freons in the atmosphere is
also of the order of a few decades.90"M

We note one further feature of the effect of molecular
components on the heat balance of the Earth. Accord-
ing to (3.10) and (3.11), the equivalent width Wai an ab-
sorption band in the isolated-line model (large optical
thickness at the line centers) with collision broadening
is proportional to Vĵ AT, where wx is the density of mol-
ecules of the particular component and Ν is the total
density of the atmosphere. If, on the other hand, the
optical thickness of the atmosphere at the line centers
is small, then W~ Nt. Hence, it follows that the sur-
face layer of the atmosphere plays the dominant role
in molecular infrared emission by low-concentration
impurities. For example, the density of ozone near
the Earth's surface is, on the average, about 1012

cm"3, whereas, at heights of 30-40 km, the concen-
tration is 4 x 1012 - 0.5 x 1012 cm"3.94·95 Thereafter, the
ozone concentration declines rapidly. The product of
ozone density by the density of air molecules near the
Earth's surface is about 2x 1031 cm"6. At 20 km, this
quantity is just under 1031 cm"3, whereas, at 30 km, it
is equal to 1O30 cm"*. The effect of variations in ozone
density in the stratosphere on the thermal balance of
the Earth is therefore quite small. The total contribu-
tion of ozone to the thermal balance of the Earth, ex-
pressed in units of ΔΓ, is 0.4 degrees.4' (This means

that, if all ozone were to be removed from the Earth's
atmosphere and the atmosphere were to become trans-
parent near the center of the ozone absorption spec-
trum, the temperature of the Earth would fall by 0.4
degrees.) Hence, we may also conclude that the effect
of infrared emission by molecular impurities in the
stratosphere and in the upper layers of the atmosphere
on the thermal balance of the Earth is not smaller than
the influence of molecular impurities near the Earth's
surface.

5. CONCLUSIONS

We have described the asymptotic methods of the the-
ory of infrared radiation transfer in molecular gases.
They are based on models of vibration-rotation bands.
Particular attention was devoted to the simplest ap-
proaches leading to output data whose precision can be
estimated. Such approaches are interesting in two re-
spects. On the one hand, they readily yield semiquan-
titative solutions of problems connected with the influ-
ence of radiation transfer processes on different phe-
nomena and on the characteristics of the gas as func-
tions of its parameters. We gave a number of examples
of this kind which were connected with the elucidation
of the effects of individual molecular components of the
atmosphere on the thermal balance of the Earth. The
number of such problems is continuously increasing in
the context of studies of the ecology of the atmosphere
and of the properties of other planets. Asymptotic
methods are particularly convenient when qualitative
solutions are sufficient.

On the other hand, the methods that we have reviewed
are also convenient in the mathematical solution of
global problems on the transport of gas layers in the
atmosphere and in laboratory systems. They enable us
to set up simple algorithms that take into account in-
frared radiation transfer during complicated processes.
This means that mathematical models providing satis-
factory descriptions of complicated real phenomena
(e.g., in weather forecasting) can be developed with the
aid of modern computers.

APPENDIX

Derivation of the expression for f r a n d (v)

We shall begin by assuming that all the lines in the
band have the same intensity. We introduce the char-

*>The flux of radiation onto the Earth's surface due to atmo-

spheric ozone was estimated within the framework of the
isolated-line model, assuming atmospheric lack of trans-
parency at frequencies corresponding to the centers of the
strongest lines. The radiant flux due to an individual line is
given by'·2 0 (see Sec. 4, subsec. A for notation):

1 00

/ = 2 f da j azea [Γ (z)] f dl «-""•«•»<<,„ (ω) f ,

0 1

and, in the case of the Lorentz profile, this becomes

The intensity of an Individual line was estimated from the
known integrated intensity within the band and the fact that
the number of strong lines in the band is ~ (T/Bf/2 (see
Sec. 3).
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acteristic function

X(0= (A.I)

where χη(ί) is the characteristic function for optical

thickness «„ due to the n-th line and p(u^dun is the

probability that un will lie between un and «„+ du^ We

have used the fact that the total optical thickness of the

layer is given by

" = 2 " " ' * '(")= J · · • J Ρ("η)δ (u—2un) Ί«η·
η 0 0 η

Inverting (A.I), we obtain for the probability of having

a given value

/ ( u ) = (A. 2)

Let us now consider a large number of lines in a fre-
quency interval Δ ω. In the random model, the proba-
bility that the center of the n-th line will lie at a dis-
tance between ωη and ωπ+ du)n from the frequency inter-
val da>n is άω/Αω. Hence we find that the characteris-
tic function for un is:

X"W = - j j - (βχρ(ί(αΒ(ω))άωη = 1 + - ^ - | (exp (!fun (ω)-1)] don.

Since, as Δω-°° the function χ Β ( ί ) - 1 , we have in this

limiting case

Hence

"X (0 (A.3)

where d is the average line spacing. In deriving (A.3),
we assumed that χπ(ί) was the same for all lines. From
(A.2) and (A.3), we then have the required distribution
function:

/(u) = 7ĵ · j exp j — itu—j j (l-exp(ifS£a(o)))ld(<o-o0)} df,

where α(ω) is the shape of the spectral line and SLa(u>)
determines the optical thickness un due to an individual
line. For simplicity, it was assumed here that the in-
tensities and line shapes were the same at all points of
the gas. If the lines have a certain intensity distribu-
tion P{SXf^P(S)dS= 1), then (A.3) must be augmented
by integration with respect to dS with the weight P(S),
and the formula for f{u) becomes

+ 0O

(A.4)
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