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A description is presented of all the thermo- and hydrodynamic, high-frequency, kinetic, and magnetic

properties of 3He-4He solutions. The treatment does not resort to any model representations on the nature

of the interaction of the 3He quasiparticles. It is based on the fact that an expansion in terms of the

interaction for a solution at low temperatures formally coincides with an expansion in terms of the 3He

concentration. All of the experimental data on the low-temperature properties of the solution known to us

and analyzed in this study agree well with the presented theory up to the very greatest concentrations. An

entire set of new phenomena is predicted, among which the most striking are the magnetokinetic

effects-an enormous increase in the kinetic coefficients upon magnetizing the solution. The transition of 3He

in solution to the superfluid state is discussed. Detection of this effect is apparently possible even now.
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1. INTRODUCTION with the phonons and rotons characteristic of pure 4He.
With decreasing temperature the number of phonons and

A considerable fraction of the low-temperature phe- rotons declines rapidly, and the characteristics of the
nomena in the physics of the condensed state can be ex- solution are governed exclusively by the Fermi com-
plained well within the framework of the theory of the ponent (3He quasiparticles). Although the literature has
Fermi fluid. This includes the electron fluids in metals already repeatedly thrown light on the properties of
and semiconductors, superconductive systems, normal 3He-4He solutions (see, e.g., the books1'4 and re-
and superfluid 3He, etc. However, as a rule, the de- views5"10), a full, systematic description of the system
scription of these phenomena by the theory of the Fermi in the low-temperature region has thus far been lack-
fluid is phenomenological or qualitative in nature be- ing, since the law of interaction of the 3He quasiparti-
cause a microscopical calculation of the quantities gov- cles has not yet been established. However, the sys-
erning the Fermi-fluid interaction is generally impossi- tematic quantum-mechanical approach presented below
bie. Practically the only system in which one can per- makes possible a detailed microscopical analysis of all
form such calculations rigorously and completely is the the properties without resorting to any model concepts,
weakly nonideal Fermi gas. Yet, strictly speaking, one with prediction of a set of interesting effects not pre-
does not encounter a degenerate Fermi gas in nature, viously known.11*15·75·82

since all real Fermi systems condense before mani-
festing effects involving quantum degeneracy. Interest in low-temperature phenomena in superfluid

.. . , .. , ,„ solutions has considerably heightened since the experi-

• "S8 Τ*? Ζ "I < ί g *. Γ Τ-* ***** discovery (Edwards et αί.1β) of the finite solu-
in superfbud «He. Study of the properties of superfluid Q f , H e ̂  f l u i d * H e a t a b s o l u t e z e r 0 . A s T
3He-He II solutions both offers independent interest, „ .. . .. f . , . . , .

. , , — 0, the solution does not separate into layers up to a
since they possess an entire set of new, unusual prop- c o n c e n t r a t i o n o f 6 . 5 % { o n e c a n r a i s e t h e s e p a r a t i o n c o n .
erties, and also allows one to trace the origin of a large c e n t r a t i o n t o 1 0 % b ^ ^ t h e p r e s s u r e ) . As is
number of the laws common to all Fermi systems. , , i _ j ι j * j *

known, temperature decrease leads to degeneracy of
A superfluid 3He-4He solution amounts to a quantum the Fermi component. An experimental confirmation

fluid in which excitations with a Fermi-type spectrum of this fact was the discovery of a linear temperature
corresponding to the impurity 3He atoms exist along dependence of the heat capacity of the solution and of
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temperature dependences of the spin diffusion coeffi-
cients and of the heat conductivity characteristic of de-
generate Fermi systems (Anderson et al.,17'18 Abel et
al.19). Measurements of the heat capacity revealed a
certain dependence of the effective mass of the impurity
particles on the concentration of the solution. This in-
dicated the need of accounting for the Fermi-fluid
interaction of the 3He quasiparticles even at very low
concentrations of the solution and the impossibility of
treating the impurity aHe atoms as an ideal fermion gas.

However, one cannot reconstruct the exact form of
the interaction of the impurity atoms in the medium,
since the interaction involves the polarization of the
superfluid 4He background and is generally nonlocal.
In this regard, by analogy with the well-known study of
Bardeen, Baym, and Pines,2 0 '2 1 a number of authors
have employed model interaction potentials of various
types, whose parameters were chosen by comparison
with the experimental data.2 2"3 4 These potentials have
no direct physical meaning, and it is hard to justify a
choice among them from first principles. Hence it is
difficult to interpret all the experimental data simul-
taneously with equal success by using a model potential.
To gain good enough agreement with experiment, one
must resort to a theory containing a rather large num-
ber of adjustable parameters. A more detailed discus-
sion of these studies and a presentation of the results
is contained in the reviews of Radebaugh,9 Ebner and
Edwards,7 Esel'son et al.,2 and Baym and Pethick.10

Khalatnikov1·35·36 has devised a phenomenological the-
ory of the 3He-He II solution in the spirit of the theory
of the Fermi fluid of Landau.37"39 According to this
theory, all the thermodynamic properties of the solu-
tion are determined by fixing a Fermifluid function
whose explicit form is not given by the theory, but must
be established by comparison with the experimental
data. However, it has proved possible experimentally
to find the values of only the first two harmonics in the
expansion of the/function in Legendre polynomials.
This situation hinders concrete application of the re-
sults of the theory to real dilute solutions.

Nevertheless, one can conduct a complete and rather
exact microscopical study of the properties of dilute
solutions that corresponds to studying the effects of
nonideality of the Fermi gas of impurity quasiparticles
in the Landau-Pomeranchuk theory.40·41 Here all the ef-
fects of interaction up to the highest concentrations (of
the order of several percent) are governed by only one
microscopical constant that has a pictorial physical
meaning.

The treatment is based on the fact that 3He impurity
atoms dissolved in a superfluid Bose background form
a dilute, nonideal Fermi gas of slow quasiparticles
when at low enough concentrations and temperatures.
As we know (see, e.g., Ref. 42), if the interaction en-
ergy of two particles declines rapidly enough with in-
creasing distance between them, the interaction of the
slow particles is reduced fundamentally to s scattering.
Here the scattering amplitude does not depend on the
momenta, and is the above-mentioned exact micro-
scopical characteristic of the two-particle interaction

that exhaustively fixes all the properties of the solution.
The small parameter in which one performs the expan-
sion proves to be k \a | « 1. Here k is the characteristic
wave vector of the impurity fermion, while a is the s
scattering length. In this situation the properties of the
solution are analogous11·12 to the well-known car of a
system of Fermi particles having a small radius of
interaction (as compared with the mean de Broglie
wavelength), which had been studied by Huang and
Yang,43 Lee and Yang,44 and by Abrikosov and Khalatni-
kov.45 Calculations by this scheme in the Born approx-
imation would correspond to an ordinary hard-sphere
model. Generally they should yield the same results a?
with employment of model potentials in the limit of zero
momenta.46 The fundamental differences in the method
used below are the lack of model concepts as to the
structure of the interaction, and the explanation of all
the experimentally observed concentration-dependences
of the various quantities by s scattering alone. To in-
terpret the same relationships by model potentials, one
employs the momentum component of the interaction
potential, i.e., actually, the scattering with the higher
moments.

The properties of superfluid solutions in a magnetic
field have hardly been studied thus far. The existing
theory of the Fermi fluid describes the behavior of fer-
mions only in a weak magnetic field.37·47 The theory de-
veloped below permits a generalization to the case of an
arbitrary external magnetic field, since the employed
procedure for calculating the Fermi-fluid function can
also be applied in the presence of a field.13"15 A uniform
magnetic field does not affect the motion of an isolated,
uncharged fermion, nor, in the nonrelativistic approxi-
mation, the two-particle interaction. Applying the field
alters the distribution function of the particles, and
hence also alters their energy spectrum, which is a
functional of their distribution function. Thus the mag-
netic field affects not only the occupation numbers of
quasiparticles having different spin orientations, but
also the Fermi-fluid interaction. Here the occupation
numbers and the energy spectrum in the magnetic field
must be calculated in self-consistent fashion. As be-
fore, the Fermi-fluid interaction in the magnetic field
is described well by s scattering of the 3He quasiparti-
cles. However, owing to the quantum-mechanical in-
distinguishability of the fermions, only collisions of
particles having opposing spins are essential in s-scat-
tering. Therefore, in strong magnetic fields, in which
practically all the spins have the same orientation, the
Fermi-fluid interaction is now determined by ρ scatter-
ing.13 The amplitudes of p- and s-scattering of slow
particles differ by a small factor proportional to the
square of the momentum of relative motion. This con-
siderably weakens the interaction in strong magnetic
fields and substantially alters the concentration-depen-
dence of all the thermodynamic quantities. This is man-
ifested most strikingly in the distinctive magnetokinetic
effects—the enormous increase in the mean free path of
excitations and in the kinetic coefficients of the solution
in strong magnetic fields.13"15

Thus far, in discussing the properties of a dilute
3He-He II solution, we have assumed that the impurity
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atoms form an isotropic, normal Fermi fluid of low
density. Understandably, however, a phase transition
of the impurity component to the superfluid state can
occur at low enough temperature in the solution, in-
volving Cooper pairing of the 3He Fermi particles. In-
terest in this possibility has especially increased re-
cently in line with the experimental discovery of a
transition of pure 3He to the superfluid state. Our last
chapter discusses this problem. Estimates show that
the transition temperature of 3He in solution to the
superfluid state may prove not to be so low as had been
assumed previously8·21 and the detection of this phenom-
enon is apparently practical and of experimental inter-
est even at present.

2. THERMODYNAMICS OF SOLUTIONS

a) Fermi-fluid interaction

The state of the solution is fully determined by fixing
the distribution function wo(p) of the impurity excitations
(p is the momentum of the excitation, and σ is the spin
index), the density of the Bose component of the liquid
m4JV4 (m4 is the mass of a 4He atom, and JV4 is the num-
ber of 4He atoms per unit volume of the solution), the
velocity of v5 of superfluid motion, and the temperature
T. We shall be interested in the region of temperatures
and concentrations in which we can neglect the contribu-
tion of phonons and rotons (at Γ 5 0.7 K, the contribution
of phonons to the normal density proves to be less than
1% of the impurity contribution, even at a concentration
of the solution of the order of 0.5%). Another indepen-
dent variable can be the magnetic field intensity H.

First let us study the solution in the absence of super-
fluid motion, with vs = 0. According to the theory of
Landau and Pomeranchuk,40·41 an isolated 3He impurity
atom in superfluid 4He constitutes a delocalized quasi-
particle with a large de Broglie wavelength. The states
of the impurity are classified by using the continuous
energy spectrum §?οβ(ρ) (α and β are the spinor indices).
The data on the density of the normal component of di-
lute solutions (Lynton and Fairbank,48 Pellam4 9; see al-
so the book of Esel'son et al.2) have permitted the con-
clusion that the energy spectrum ^ο β(ρ) reaches its
minimum at zero momentum. In an isotropic liquid,
the spectrum ^a S(p) near the minimum can be repre-
sented as a series in even powers of the momentum p.
The parameter of the expansion is the ratio of the ve-
locity of the quasiparticle to the velocity of sound in
helium. At low temperatures and concentrations, at
which the characteristic velocities of the bare quasipar-
ticles are small, we can restrict the treatment to the
first terms of the expansion of WaB in powers of p2:

§οΡ(ρ) = {-Δ+^-[ ΐ-γ(-^) 2 ] }δ β β -βσ α β Η. (2.1)

Here the binding energy Δ and the effective mass Μ of
a single impurity atom are Δ = 2.8Κ,50·51 M~ 2.3 m3,pc

^m^So (pjha 1.5 A'1), where m3 is the mass of a 3He
atom, and s0 is the velocity of sound in pure 4He at zero
pressure, while the dimensionless parameter γ is very
small. The experimental results5 2 give y= 0.14 ±0.05.
The data of Ref. 53 give y = 0 ± 0.01. In contrast to Refs.
40 and 41, one must still retain the p4 term in the dis-

persion law (2.1). As will be elucidated below, this is
because its contribution has the same degree of small-
ness in terms of the concentration as the Fermi-fluid
interaction in which we are interested. The parameters
Δ, Λί, and γ in the spectrum of a single bare quasipar-
ticle of (2.1) are functions of the density N+ of 4He
atoms. In (2.1) we define σοβ as the Pauli matrix, Η is
the magnetic field, and β is the magnetic moment of the
3He nucleus.

With increasing concentration of the solution, the
interaction of the impurity fermions begins to play a
substantial role, and the energy spectrum of the excita-
tions of the Fermi fluid differs from the spectrum of
the bare quasiparticles of (2.1).

In the presence of an external magnetic field, the
distribution of the quasiparticles of the Fermi fluid is
described by the one-particle density matrix na$(p).
The equilibrium one-particle density matrix for a po-
larized Fermi system has the form

, 0 ) . . 1 . . e . 1 . . / ο ο\
η α ρ (ρ) tss — n (ρ) οαρ -r -κ" ρ (ρ) <*αβ · \£ι.Δ)

The values n(p) = η ^ and p(p) = σαΒιή^ (here and below,
summation is to be performed over repeated indices)
are determined from the condition that at equilibrium
the occupation numbers η£(ρ) of particles having a pro-
jected spin of ±1/2 on the axis 2R= H/# are given by the
Fermi distribution function:

η (Ρ) = Κ (ρ) + η- (ρ), ρ (ρ) - [η* (ρ) - η" (ρ)] SK. (2.3)

Here ct is the energy of the fermions having different
spin orientations, and μ3 is the chemical potential of
3He in the solution. This distribution function maxi-
mizes the entropy under the extra condition of constant
total energy and number of impurity atoms.

The energy of an excitation depends substantially on
the value of the projection of the spin on the field direc-
tion. In the absence of superfluid motion it can always
be represented in the form

(2.4)

The functions εο(ρ) and B(p) generally depend on H2.
The possibility of writing expressions for the density
matrix and the Hamiltonian in the form of (2.2) and (2.4)
stems from the fact that any one-particle operator for
particles of spin 1/2 reduces to a linear function of the
Pauli matrix σαΒ.

The total energy Ε and momentum Ρ of the system are
functionals of the basis variables n^ip), V5, Nt, and H.
According to the theory of the Fermi fluid,1·36·37 the
one-particle energy spectrum εοβ(ρ) and the momentum
ρ of an excitation in the solution are determined by the
following variational relationships:

(2.5)

The excitation energy εοβ(ρ) is also a functional of
wae(p), vs, Nit and H, and its first variational deriva-
tion determines the Fermi-fluid function/ag( ul,(p, p') of
the system:
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δε«Β (ρ) β (σαβδΗ) +|J /„„, μ ν (ρ, ρ') δηνμ (ρ') dT". (2.6)

Here we have άΓ = ά3ρ/(2ττΚ)3, and δηα β is the deviation
of the density matrix from the equilibrium value of
(2.3). The Fermi-fluid function /β β > μμ(ρ, ρ') in the ex-
change approximation can always be written in the form

faf, μν (Ρ, Ρ') = ψ (Ρ, Ρ') «αβδμν + ζ (ρ, ρ') σ α ί σ μ ν

+ Ιφ (Ρ. Ρ') "all δμν + φ (Ρ'. Ρ) Ομνδαβί 3Κ

+ Ι (Ρ. Ρ') («"αβ 9Κ) ( " μ ν ^ ) .

(2.7)
By analogy to Ref. 54, we can use Eqs. (2.3)-(2.7) to

express the function B(p) of (2.4) in terms of the com-
ponent of the Fermi-fluid function | ( p , p'):

β (ρ) = ρ —jj- ι ζ (ρ, ρ ) {η0 (ρ ) —-rt0 (ρ jJ αϊ . \£,.ο)

To determine all the thermodynamic characteristics
of the solution, we must know the expression for the
Fermi-fluid function. We shall calculate the /-function
by following the method of Refs. 12, 14, and 43-45 (see
also the books55·56). We can write the total energy of
the system to an accuracy of the third-order terms of
perturbation theory in the following form {E^o) is the
contribution of pure 4He):

1[ΐ + 2λ (2 + i ^

£ = Ei" + Σ g«3 (P) * (P) +

(2.9)

Equation (2.9) contains only one quantity characterizing
the interaction: the s-scattering length a. In the Born
approximation, the total energy of the system of (2.9) is
a bilinear form of one-particle statistical operators.
In the first order in the interaction, the /-function does
not depend on the momenta and the magnetic field:

/«β.μν(Ρ, P) = l(,n

(2.10)

Here Ea) is given by the first three terms in Eq. (2.9).
The first variational derivative of £ ( 1 > fixes to the same
accuracy the excitation energy of the Fermi fluid:

)lf,. (2.11)N.—N.

Here we have

The quantities N± and p± correspond to the number of
particles per unit volume and to the radius of the Fermi
sphere for quasiparticles having spins lying parallel and
antiparallel to the field. In Eq. (2.11), we do not take
into account the term containing γ in SaB in (2.1), since
it is substantial in s-scattering only in the higher orders
of perturbation theory.

We can derive the second-order perturbation-theory
correction to the Fermi-fluid function of (2.10) by
double variation of the corresponding term in (2.9).14

The final expression for the/-function is very unwieldy
(see Ref. 14). Hence we shall give only its value in the
absence of a magnetic field, which coincides the known
result45:

w) δ α β δ μ ν

-U-Su + aKi-

(2.12)
Here θ is the angle between the vectors ρ and p ' , and
we have p = p' = p0, po=(3ir2N3)

1/3fi is the limiting Fermi
momentum in the absence of a field, λ = poa/irK « 1 is
the small parameter of the theory, and we have w
= sin(fl/2). In weak magnetic fields in the approximation
linear in H, the functions φ(θ) and ζ(θ) in (2.12) do not
change. Here the relationship of the /-function to the
magnetic field is contained only in the function ψ{θ)12;

ψ (θ) = 16 -^- f>H tanh"' w.

Although the Fermi-fluid function of (2.10) does not
depend formally on the field, the contribution of s -scat-
tering to all the thermodynamic quantities will approach
zero with increasing field, owing to decrease in the
number of particles having spins directed against the
field. This involves the fact that only interaction be-
tween particles of opposite spins is effective in s-scat-
tering. Upon almost complete polarization of the spin
system, the properties of a low-density Fermi fluid are
determined mainly by ̂ -scattering. Here the only es-
sential interaction is that between the quasiparticles at
the Fermi surface of radius

The scattering amplitude of two slow, bare particles of
momenta px and p2 (p± = p2 = pF) in the center-of-inertia
system is determined by the angle of rotation ψ with
respect to the momentum p= (px -p2)/2:

Ββ/(ρ',ρ)=-^-(-α + -ϊ?-οο.φ). (2.13)

Here p ' = (p/ - pp/2 is the relative momentum of the
scattered particles (pl = p'2 = pF,p' = p)· In order of mag-
nitude, the constant b is equal to the gas-kinetic volume
of an atom: b ~ a3.

Upon accounting for the indistinguishability of fermi-
ons, we find the vertex Component in the first order to
be equal to

/(n-(p)] = -?^-cos9. (2.14)

The Fermi-fluid function /(0) (Θ is the angle between
the vectors pL and p2) is determined to the same accu-
racy by the forward-scattering amplitude Γ(ρ,ρ)13:

(2.15)

In the presence of aBose background, one cannot obtain
the corrections of the next orders in the interaction in
an analogous way, owing to retardation effects. The
contribution to the/-function of (2.10) and (2.12) from
retardation effects /J^~ ipo/pc)

2 is of the same order of
smallness as the third-order term of perturbation theo-
ry in s-scattering and the main term corresponding to
/>-scattering in (2.15). Consequently one can account
for p -scattering for fermions in a medium only for
systems having a high enough degree of polarization,
for which s-scattering is inconsequential. The contri-
bution of retardation to ̂ -scattering /<£> ~ (/>F//>C)

4 al-
ready exceeds appreciably the second-order correction
of perturbation theory to (2.15): / < " ~ (pF/pcf.
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In principle, the fundamental results of the theory of
the Fermi fluid are rigorously grounded only for degen-
erate Fermi systems in which all the quasiparticles lie
near the Fermi surface. However, the 3He-He II solu-
tion constitutes a Fermi fluid of low density. For di-
lute Fermi systems, the decay of the quasiparticles is
small in terms of the characteristic gas parameter
p \a \K«l even far from the Fermi surface, while in
the Born approximation the quasiparticles do not decay
at all. Hence the expressions derived above for the /-
function in first-order perturbation theory can be used
also to determine the properties of nondegenerate solu-
tions, i.e., at arbitrary temperatures. Thus it is
interesting to trace the transition to the case of a fully
polarized degenerate solution via a state of the system
in which the subsystem of particles with spins parallel
to the field is degenerate, while the number of particles
with spins oriented against the field is small, and they
obey Boltzmann statistics. Nevertheless, the region of
concentrations and temperatures in which the effect of
phonons and rotons is insignificant pertains mainly to
degenerate solutions. For this reason, we shall hence-
forth be studying the properties of degenerate solutions,
unless it is expressly stipulated otherwise.

The motion of the superfluid He Π background at the
velocity ν alters the energy spectrum (2.1) of the bare
3He quasiparticles. The dependence of the Hamiltonian
of a bare quasiparticle on v, in the absence of a mag-
netic field has been determined by Bardeen, Baym,
and Pines21 by using a Galilean transformation. The
change in the bare-particle spectrum with the onset of
superfluid motion alters the distribution function of the
impurity excitations, and hence causes all the Fermi-
fluid characteristics to depend on v,. Thus, after cum-
bersome calculations,14 by employing the results of
Refs. 1, 21, and 36, one can determine the dispersion
law and the one-particle density matrix for the quasi-
particles of the Fermi fluid (not bare particles!) in an
approximation linear in v, in arbitrary magnetic fields:

, H + (6m)av (- i-)

(6m). dn>
(2.16)

+•!

Here n<,°e> is determined by Eqs. (2.2) and (2.3), and we
have (6w)ee = M e e -m 3 6 e e ; (6m)t = M±-m3, Μββ is the
spinor of the effective mass of a single bare quasipar-
ticle having the energy spectrum ί?αβ(ρ) in superfluid
4He at rest; and we have

Here the eigenvalues $± and M±,

(2.17)

have the meaning of the energy and effective mass of a
bare quasiparticle having a defined projection of the
spin on the direction of the field. The eigenvalues of
the effective-mass spinor (l/m)e e of a quasiparticle of
the Fermi fluid are

m± p± dp±

In the first order in v, they prove to be equal to

(2.18)

The formulas (2.18) are exact for isotropic Fermi
fluids in the absence of a superfluid background, given
a quadratic dispersion law of bare particles. In this
case we must understand Λί+ = Μ. to be the true mass of
the real particles forming the fluid.

As usual, the effective-mass spinor maB (i.e., actual-
ly the quantities A1) is expressed in terms of the first
harmonics of the /-function. Since the Fermi-fluid
function does not depend on the momenta of (2.10) in the
Born approximation, in this approximation we have A*
= 1, and the total effective mass m± coincides with the
effective mass of the bare quasiparticles. Exact ex-
pressions were derived14 for the quantities A* in terms
of the Fermi-fluid function and the value of the /-func-
tion for a solution in a magnetic field in second-order
perturbation theory. These expressions determine the
dependence of the effective mass on the concentration
of the solution and the field intensity.

The effective mass Mt of the bare quasiparticles dif-
fers from its value in the absence of a magnetic field,
and it exhibits a weak concentration-dependence owing
to the fourth-order term in the momentum in the Ham-
iltonian of (2.1):

Μ
±

The dependence of the Fermi-fluid properties on vs and
Η in weak magnetic fields in which the difference in
radii of the Fermi spheres />, and p. is insignificant has
also been studied in Ref. 12.

b) Thermodynamic properties

Currently there is a large number of experimental
results on the properties of degenerate solutions in the
absence of a magnetic field. It is of interest to com-
pare these data with the values of the thermodynamic
functions of a 3He-He Π solution calculated by the
above-derived relationships. This enables one to de-
termine the fundamental characteristic of the interac-
tion of the impurity 3He atoms in the solution: the s-
scattering length a.

A direct calculation of the free energy in the absence
of a magnetic field while neglecting the terms quadratic
in vs and T/TQ (TO is the degeneracy temperature of the
Fermi component of the solution at H = 0) by using Eq.
(2.9) yields the result12

±.

(2.19)
Upon differentiating (2.19), we directly obtain the
chemical potentials of 3He and 4He in the superfluid
solution:

(2.21)
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FIG. 1. Concentration-dependence of the chemical potential of
3He. The dotted line corresponds to an ideal gas. We define χ
=NSAN3+Ni); the circles show the experimental results.5 8

Here μ^0) is the chemical potential of pure 4Be,c = N3/
NA is the atomic concentration of the impurity, and we
have

_ A'4 Λ( — A) „ Ola Μ

Reference 57 gives the values ax= 1.28,β = 1.25. We
emphasize that the given value of a t was not obtained
from direct measurements of Δ(Ν4), but from data on
the molar volumes of 3He and 4He. The ratio of the
molar volumes actually characterizes the binding en-
ergy Δ. Yet the stated method of calculating at can
hardly be considered fully warranted, as we can see
even from the fact that it leads to a change in sign of
Δ at a pressure of 6-8 atm,7 which is physically im-
plausible. One can determine the correct value of alt

e.g., from data on the velocity of second sound in the
solution.

We can represent the change in the chemical potential
of 3He, upon change in the number of particles by 6N3,
in the following form37:

(2.22)

Equation (2.22) contains the function φ(θ) of the Fermi-
fluid function in the absence of the field of (2.12).

Upon substituting (2.20) in Eq. (2.22), we find the total
effective mass of an excitation in the absence of a field:

-^-=1 + ^ λ Μ ' 1η2— 1) + 2γ ( — ) \ (2.23)

The osmotic pressure Π in a system having a finely
porous membrane through which only the superfluid
component can flow (superleak) can be calculated from
the condition of equality of the chemical potentials of
the solvent on both sides of the membrane12:

- ^ ν ( ^ ) 2 ] . (2.24)

Let us now define the excess enthalpy of the system WB

π, Torr

20

15

10

5

-2.0

-kO
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FIG. 3. Excess enthalpy of a degenerate solution. NA is
Avogadro's number; the circles show the experimental data of
Ref. 58.

by the following relationship:

Here -l30 and -/4 0 are the latent heats of vaporization
of pure 3He and 4He per atom at T= 0, and W is the en-
thalpy per unit volume of the solution. To an accuracy
of terms of the order of (T/To)

2, we have W= μ.3Ν3

+ μ4ΛΓ4 and
W* = (μ, + ί,0) Λ', - Π. (2.25)

The magnetic susceptibility χ of the solution with ac-
count for the exchange Fermi-fluid interaction in the
system of dissolved 3He atoms is3 7

(2.26)

Here xl d is the susceptibility of an ideal Fermi gas
with the energy spectrum of (2.1) with H=0,Fl and Zo

are the Fermi-fluid harmonics of the functions φ and
ζ of (2.12) defined in the usual way, and χ|0 ) is the
diamagnetic susceptibility of pure 4He.

In a superfluid solution, the total momentum Ρ of the
fluid can always be represented in the form P = p(n)vn

+ p<s)v,, where vn is the velocity of the normal motion,
and p ( n ) and p ( s ) are the densities of the normal and
superfluid components, respectively. Calculation by
the definitions (2.5) and (2.16) yields12

p(n)= m,Ni + m3Nt-pM=:MN3[l + 2y (-f^-)2J. (2.27)

This agrees with Ref. 1 with Eq. (2.23) taken into ac-
count.

Figures 1-5 compare the theoretical curves calcu-
lated by Eqs. (2.20)-(2.27) with the experimental data
of Refs. 16, 18, 58-63. The value of the s-scattering
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FIG. 2. Osmotic pressure in a degenerate solution. 1—data
of Refs. 59, 60; 2—results of Ref. 58.

FIG. 4. Total effective mass of impurity quasiparticles. 1—
data of Ref. 18; 2—experimental results of Refs. 58 and 16,
respectively.

161 Sov. Phys. Usp. 23(2), Feb. 1980 E. P. Bashkin and A. E. MeTerovich 161



FIG. 5. Magnetic susceptibility of the solution. 1—experi-
mental data6 1-6 2·1 8; 2—results of relative measurements of the
magnetic susceptibility63 normalized to the value for χ =1.3%
as calculated by Eq. (2.26).

length a was determined by the requirement of best fit
simultaneously with all the results of measuring both
the thermodynamic and kinetic properties (see below)
of the solution. It turned out that a= -1.5 A. The sign
of the scattering length corresponds to attraction be-
tween the impurity 3He atoms.

As we see from Figs. 1-4, the presented method
gives a good description of the interaction in a real
solution up to a concentration of the order of 3%. For
comparison, the dotted line in Fig. 1 shows the concen-
tration-dependence of the chemical potential of 3He in
the solution in the approximation of a noninteracting de-
generate ideal Fermi gas (in all the diagrams χ is the
molar concentration of 3He in percent). Figure 5 shows
all the experimental data on the magnetic susceptibility
known to us. The large scatter of points in this diagram
and the poor agreement of the experimental results with
one another, even as to the sign of the interaction of
the impurity 3He quasiparticles, casts doubt on the ac-
curacy of a part of the data. Moreover, a certain de-
cline in the susceptibility with increasing concentration
apparently indicates a weakening of the effective at-
traction with increasing momentum of the fermions.
This does not agree qualitatively with the results of
the rest of the thermodynamic measurements (see Figs.
1-3).

One can perform calculations by the scheme pre-
sented above for nondegenerate solutions only in first-
order perturbation theory. However, this diminishes
the accuracy only insignificantly, since the regions of
applicability of Boltzmann statistics to the impurity
quasiparticles correspond to low concentrations of the
solution for which the corrections for nonideality are
small.

In the Boltzmann region Γ » To, the principal concen-
tration correction 6P"lat to the free energy, which is due
to the interaction of the impurity quasiparticles, has
the following form for s-scattering55:

The phase of the amplitude of s-scattering of slow par-
ticles is δο= -pa/K, and we have

(2.28)

The result (2.28) coincides with the corresponding
term in (2.19). This reflects the fact that the Fermi-
fluid function of (2.10) in the Born approximation does

not depend on the momenta. The free energy of the
solution and the chemical potential of 3He in the Boltz-
mann region T» To are then given by the following for-
mulas:

-=£• ** (2.29)

(2.30)

Here the temperature dependence of all the thermody-
namic quantities is determined only by the terms in
(2.29) and (2.30) that correspond to an ideal Boltzmann
gas of the impurity excitations.41 We note that in Eqs.
(2.29) and (2.30) the expansion is not performed in c1/3

(λ~Ρο~°1/3) a s in the case of a degenerate solution with
Τ « To, but in the first power of the concentration c.

The effect of the magnetic field on the thermodynamic
functions of the solution becomes substantial when the
characteristic parameter βΗ/Τ0 is not too small. In
actually attainable fields, this corresponds to solutions
with a low concentration of 3He for which the interaction
of the impurities is described well even in first-order
perturbation theory. This enables one to avoid un-
wieldy calculations involving the Fermi-fluid function in
the second approximation.14 We note that application of
a magnetic field appreciably affects not only the Fermi-
fluid interaction, but also the thermodynamic functions
of an ideal Fermi gas. This involves the substantial de-
pendence of the radii pt and p. of the Fermi spheres on
the field intensity.

Direct calculation of the energy of (2.9) in the Born
approximation yields the result:

(2.31)

The quantities N± are calculated by using the equation

while the chemical potential of 3He is equal to

4πΒ«» .0 χ .t/3 Nl13 + NV3

Here the #t(H) are the numbers of particles of the dif-
ferent spin orientations per unit volume of an ideal
Fermi gas, and μο(Η) is the chemical potential of the
fermions in the absence of interaction. Henceforth, it
will sometimes be convenient to employ the dimension-
less variables in place of the quantities p±, N±, N±, and
H,

Γρ=22/3Γ,.

Here TF is the degeneracy temperature of a fully po-
larized solution. In these variables, the equations de-
fining the concentrations N± for an ideal Fermi gas have
the following form:

^-~xi~22/3Se, xi + xl-2, (2.33)

while the chemical potential μο(Η) is given by

(2.34)
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It is also easy to obtain the value of the chemical po-
tential of 4He in the solution

μ4 = μ;» -A-

and the magnetic susceptibility of the solution

(2.35)

Analogously, we can determine the values of the rest
of the thermodynamic quantites in magnetic fields in
the usual way.

For nondegenerate solutions, the term in the total
energy that corresponds to interaction keeps its pre-
vious form (2.31) in first order:

aiirt-^-' iv^- (2.36)

Thus, in the presence of a magnetic field, in contrast
to the energy (2.28) in the absence of a field, 5£ l n t of
(2.36) depends on the temperature, since the pertinent
numbers of particles N± of a definite spin orientation
in a nondegenerate ideal Fermi gas, as tabulated by
Stoner,64 are functions of the temperature.

As mentioned above, in strong magnetic fields for
which N_/N3 «1, the thermodynamics of the solutions
depends on the amplitude of ̂ -scattering of the impurity
excitations of (2.14). Here the pole of the one-particle
Green's function G(p) is given by

With the aid of Galitskii's relationship65 for the eigen-
energy contribution Σ(ρ) of the fermions in first-order
perturbation theory and of Eq. (2.14) [q=(p-p')/2l:

, q) =

Moreover, it determines the chemical potential

• (̂4+"?-). (2-37)

this pole determines the excitation spectrum ε(ρ)

(2.38)

One can also easily derive the same relationships by
using the/-function of (2.15) by the ordinary formulas
of Landau's theory of the Fermi fluid.

The expressions (2.37) and (2.15) define all the ther-
modynamic properties of the polarized solutions. Thus
we have the following expression for the total energy:

and the effective mass of the excitations

(2.39)
The presence of the magnetic field also leads to a dis-
tinctive magnetoosmotic effect. Actually, since the
radius of the Fermi sphere of the 3He quasiparticles
with spins aligned with the field as jV— 1 increases by
a factor of 2 1 / 3 owing to the orienting action of the field,
the osmotic pressure in a system having a membrane
impermeable to the impurities is increased by a factor
of about 2 2 / 3 as compared with (2.24):

(2.40)

This effect practically disappears with rising tempera-
ture and transition to the Boltzmann region, while the
magnetoosmotic effect is completely absent if we neg-
lect the interaction for an ideal Boltzmann gas.

3. VIBRATIONAL PROCESSES IN SOLUTION

a) Hydrodynamic vibrations

The propagation of low-frequency sound vibrations in
a 3He-He II solution is described by a system of hydro-
dynamic equations1 that has the following form in linear
approximation:

m* ' • m3 - ^ + p(n) div vn + p<» div v, = 0,
8N,

at
+ N3divvn -°> ll· = 0,

p(n) Jls. 4. p(») .£!»_ _|_ Vf> =

(3.1)

Here S is the entropy per unit volume of the solution,
and Ρ is the pressure.

Although the equations (3.1) are not formally altered
by applying an external magnetic field, the thermody-
namic quantities figuring in them are functions of the
field intensity H, and are defined by the relationships
derived above. Lhuillier and Francois66 have studied
the effect of a weak magnetic field on the hydrodynamic
properties of the solution. We shall immediately treat
below the case of arbitrary magnetic fields.13"15 We
shall assume that the small perturbations of all the
equilibrium quantities are varying in the field of a
sound wave by the law exp(tw/ - ik· r). Upon neglecting
terms of the order of Τ/Το, we can employ the thermo-
dynamic identity for Ρ to determine easily the sought
dispersion equation for the velocity of propagation of
the vibrations s= ω/Λ12:

Here we have
or 4.

(3.2)

ι), with t= 3

The velocity of propagation of first sound in the ab-
sence of a magnetic field is determined by the large
root (of the order of the velocity of sound s0 in pure 4He)
of Eq. (3.2) with account for the expressions for the
thermodynamic functions (2.20), (2.21), and (2.27):

Here we have

The last term in Eq. (3.3) describes the nonlinear con-
centration-dependence of the velocity of sound in the
solution observed by Abraham et al.67 Equation (3.3)
shows that the parameters characterizing the interac-
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tion of the 3He quasiparticles do not enter at all into the
expression for the velocity of first sound. Thus the lat-
ter coincides with the velocity of sound in a solution of
an ideal Fermi gas having the spectrum of (2.1) in su-
perfluid 4He.

Figure 6 shows the experimental data67 and the curve
corresponding to Eq. (3.3). The parameters a2 and β2

proved to be equal to a2= -2.26, /32= -1.38 for γ = 0.1452

(if y = 0,53 then 02=-1.64).

Just as in pure He II, fourth sound can propagate in
the degenerate solution68 when the solution is contained
in capillaries so narrow that their diameter proves
smaller than the depth of penetration of a viscous wave
or the mean free path of excitations. Here the vibra-
tions will propagate only in the superfluid component of
the liquid, while its normal component proves immo-
bile. The velocity of fourth sound is determined by the
equations (3.1), in which we should set vn= 0:

(3.4)

Applying an external magnetic field affects the veloci-
ties of propagation of first and fourth sounds only
slightly. Only the small nonlinear terms proportional
to c 5 / 3 are altered by polarizing the solution.

In contrast to the velocities of first and fourth sound,
the velocity of second sound in the system of impurity
excitations is considerably altered upon magnetizing
the solution. The nature of this phenomenon is analo-
gous to the magnetoosmotic effect treated above. In an
approximation linear in the concentration, according to
the dispersion equation (3.2), the velocity of second
sound in the solution is determined by the expression

Since the principal term with respect to the concen-
tration in (3.5) is proportional to the square of the Fer-
mi velocity, then upon complete polarization of the
solution, the velocity of propagation of second sound in
the polarized solution exceeds its value in the absence
of the field by a factor of 21 / 3 . In the approximation of
an ideal Fermi gas, we can find the relationship of the
velocity of second sound to the magnetic field by using
the formula (2.34) for the chemical potential:

(3.6)J * _

zoo

2 1 S τ,'/.

FIG. 6. Deviation from linearity of the concentration-depend-
ence of the velocity of first sound in the solution (linear rela-
tion—dotted line). Circles—experimental data.67

Figure 7 shows a graph of the function of (3.6). Account
of the temperature effects ~(T/TF)

2 smooths out the
break in the curve at # = 1.

Account of the Fermi-fluid interaction for the ther-
modynamic functions in the dispersion equation (3.2)
yields more accurate expressions for the velocity of
second sound in the solution in the absence of a mag-
netic field12:

(3.7)
In the limiting case of a completely polarized solution,
we have14

(3.8)

We note that the velocities of first and fourth sound of
(3.3) and (3.4) are defined to an accuracy of terms of
the order of c2, whereas the velocity of second sound in
the absence of a magnetic field of (3.7) is defined only
to an accuracy of c 5 / 3 . This is explained by the fact
that the effects of retardation, which we have neglected,
make a contribution to the velocity of second sound of
the order of c 5 / 3 , whereas the corresponding terms in
the expressions for the velocities of first and fourth
sound completely drop out. In the case of ^-scattering
of (3.8), one can also account for terms of the order of
c5/3 in the velocity of second sound.

b) Propagation of high-frequency vibrations

In the last section we have treated low-frequency
(ωτ«1) hydrodynamic vibrations in the solution (ω is
the frequency of the wave, and τ is the characteristic
relaxation time). In the quantum system 3He-He II,
various high-frequency modes with COT» 1 can also
propagate. We note that polarization of the solution by
a magnetic field sharply increases the characteristic
relaxation time τ (see Chap. 4). Consequently, in a po-
larized dilute solution the condition ωτ » 1 can be ful-
filled even for infrared frequencies. In principle, high-
frequency vibrations that are characteristic of both a
Fermi fluid (zero sound, spin waves) and of a Bose
system (high-frequency first sound) can propagate in
the Fermi-Bose quantum liquid 3He-4He.

1.5

i*

a

a

tf

to
0.1 0.1 0.1 0.1 1.0 UX

FIG. 7. Relative dependence of the square of the velocity of
second sound In a degenerate 3He-4He solution on the magnetic
field. We define $f= 2βΗ/Ττ. Account of the temperature ef-
fects Τ/Ττ smooths the break in the curve at # = 1.
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According to Landau's theory of the Fermi fluid,38 the
oscillations of the first type correspond to nonisotropic
oscillations of the Fermi surface of the 3He quasipar-
ticles. The high-frequency first-sound in the solution
is analogous to the high-frequency vibrations in pure
He II (Andreev and Khalatnikov69). They amount to vi-
brations of 4He in which the impurity quasiparticles al-
so participate owing to the interaction of the 3He atoms
with the superfluid background.

The high-frequency vibrations of the solution are de-
scribed by a collisionless kinetic equation for the one-
particle density matrix

(3.9)

by the continuity equation

•£• (m4JVt + m3 j naa άΥ) + div (m4iVlVs+ j pnaadr) =0 (3.10)

and by the equation of superfluid flow

Here [ε,η]αβ is the commutator of the spin matrices,
and Eo is the total equilibrium energy of the system.

We shall represent the deviation 6naB from the equi-
librium value in the following form by using (2.16):

*«αβ = ν (Ρ) δ α ί + λ (ρ) σ α Ρ ; nals = η'α% + 8 η β Ρ

(3.12)

According to (2.4), (2.6), and (2.16), the excitation en-
ergy ε ο β proves to be

t<***e'Ji + ̂ fjUiVt + (6m)av (Χ)^ρ.ν>+2ββΙι j ψνάΓ + 2σαβ j ζλ dr.

(3.13)

1) High-frequency vibrations in the absence of a mag-
netic field. In the absence of a magnetic field we can
employ the expression (2.12) for the/-function. Then
the system of equations (3.9)-(3.11) describing the
high-frequency vibrations in the solution is substantial-
ly simplified. We shall seek small perturbations of the
basis variables ν, λ, vs, and 6JV4 in the form exp(iutf
-ik-r). WhenH=0, Eqs. (3.9)-(3.11) reduce to two
independent equations for the vibrations of the magnetic
moment σοβ ηΒα per unit volume of the solution and for
the scalar distribution function naa. Since a<0 and the
Fermi-fluid interaction is small, only a symmetric
spin wave with the azimuthal number m = 0 and High-
frequency first sound can propagate in the solution in
the absence of a magnetic field, while the existence of
undamped waves of the zero-sound type proves impos-
sible.1 1·1 2

The corresponding dispersion equation for the sym-
metric spin waves in solution in the Born approxima-
tion has the form3 8·9 4

of propagation of the vibrations is exponentially close
to the Fermi velocity according to (3.14) (cf. Refs. 11,
12):

"o — fo = "o exp (1/λ) < v0, λ = poa/nfi. (3.15)

The expression (3.15) for the velocity of spin waves is
written with logarithmic accuracy. A calculation of the
pre-exponential coefficient would require accounting
for the values of all the previous derivatives of the /-
function of (2.12) for χ= 0.

The absorption of the high-frequency modes is usual-
ly governed by the collisions of the quasiparticles of
the Fermi fluid with one another. With declining tem-
perature, the absorption declines in proportion to T2.

There is also a collisionless mechanism of damping
of the high-frequency vibrations that involves Cheren-
kov absorption of the waves by quasiparticles. The
probability of these processes depends on the number
of quasiparticles moving in phase with the wave. If the
velocity of propagation of the high-frequency modes
considerably exceeds the Fermi velocity v0, then when
Τ « To, the collisionless damping is exponentially
small. The described mechanism of Landau damping
proves to dominate whenever the velocity of the wave
is so close to the Fermi velocity that the energy of the
quasiparticles moving with these velocities lies within
the region of thermal blurring of the Fermi edge.

Just this situation arises for spin waves in dilute
3He-4He solutions, in which the velocity of propagation
of the vibrations of (3.15) is exponentially close to v0 in
terms of the 1/3 power of the 3He concentration.

The fundamental experimental difficulty in studying
high-frequency vibrations propagating at a velocity
close to the Fermi velocity is the identification of the
collective mode on the background of the signal of the
free quasiparticles of the Fermi fluid. The most accu-
rate method of determining the velocity of the wave is
apparently time-of-flight measurements. Here, in or-
der to resolve the signals of the wave and of the free
fermions, the time difference of arrival between the
signals At~ L(u -vo)/vl (L is the distance between the
receiver and the emitter) must be large in comparison
with the width of the pulse of high-frequency vibrations
At~ l/ω. That is, we have L> υΙ/ω(μ - v0). On the oth-
er hand, for the pulse to be detected by the receiver,
the signal must not decay in the distance L:L<vo/u".
Here ω" = Ima> is the absorption coefficient of the high-
frequency mode. Hence we see that experimental res-
olution of the contribution of the wave requires fulfill-
ment of the condition94

-TT<- (3.16)

Here we have £0= £(p0,p0) = -2irafi2/M, and n0 is the
equilibrium Fermi distribution function in the absence
of a magnetic field. When T= 0, the velocity MO= ω/fe

This condition is stricter than simply that of weak at-
tenuation (ω" « ω).

Another method is possible in principle for resolving
the signal of the collective mode. It involves the fact
that the incoherence of the radiation of the free quasi-
particles diminishes the amplitude of their signal in
proportion to l/L2, even when we neglect relaxation.95

The collisionless damping of the symmetric spin
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wave is governed by the imaginary component of the
dispersion equation (3.14) as derived by the usual rule
of bypassing the poles94

ρΙ—jij-) . (3.17)

Here we have z=u/kvo=u/vo, and njiz) is the value of
the distribution function for 3He quasiparticles moving
at a velocity equal to the velocity of propagation of the
spin wave, i.e., with v= ω/k. The real component of
the dispersion equation (3.14) determines the tempera-
ture corrections to the velocity w0 of the wave at T= 0
of (3.15):

We note that the second term in (3.18) is small in com-
parison with the difference between the true value of u0

and that given by Eq. (3.15) with logarithmic accuracy.
However, this term at Γ/Τ0«βχρ(-1/ |λ |) fully deter-
mines the temperature-dependence of the velocity of
spin waves.

The condition of small attenuation that was used in
deriving Eq. (3.17) implies in this case that ω" « ω
-fet>o~ftt>oexp(-l/ |λ |), owing to the closeness of the
velocity of propagation of the spin wave to the Fermi
velocity. This means that the region of applicability of
the expression (3.17) for ω" is bounded by the condition

»,M=« P (-2 .-"wi )<i . (3.19)

In this case the inequality of (3.19) is equivalent to
the condition (3.16). Thus spin waves in a 3He-4He
solution can be detected only at low enough tempera-
tures Γ « Toexp(-1/ |λ |). This corresponds to the nu-
merical inequality

Here χ is the molar concentration of 3He in the solution.

Let us take up the role of collisional damping in the
case in which the wave velocity is close to the Fermi
velocity. The coefficient of collisional damping of the
high-frequency mode with account for the quantum
properties of magnons is expressed in terms of the re-
laxation time τ as follows38:

For collisional absorption the condition (3.16) is ful-
filled for the frequencies

In order that such a frequency region can exist, the
temperature must be low enough:

Γ< "*? , B—tT·—const.

Here we have accounted for the fact that in a normal
Fermi fluid τ~ 1/Γ2.

Upon employing the experimental data,2 the derived
inequalities prove equivalent to the following numerical
equations:

This temperature bound is weaker than the derived
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above for Landau damping. By comparing the coeffi-
cient of Cherenkov absorption of (3.17) with ω^ η one
can easily determine the frequency interval lying be-
tween ωί and co2 and the condition on the temperature
Τ(Κ)<10αοβχρ(-2αοΓο/Γ) under which collisionless
damping dominates.

At higher temperatures of the solution such that Γ
s To, the damping involving the finite lifetime of the
quasiparticles of the Fermi fluid is important. How-
ever, the low concentration of the solution causes the
damping of excitations of 3He to be small in proportion
to the smallness of the gas parameter λ.β5 In the Born
approximation, damping of the quasiparticles does not
exist at all. This enables one in the first approximation
of perturbation theory to solve the problem of propaga-
tion of magnetization waves in a dilute 3He-4He solution
for arbitrary temperatures.

However, as we can easily convince ourselves, the
smallness of the interaction causes the dispersion
equation (3.14) in the Boltzmann region to have only a
strongly damped solution |lmu> | » |Reo> |.Μ In contrast
to the breakdown of the condition (3.16) for resolving
the contribution of spin waves, this leads to an impos-
sibility in principle of propagation of a collective mode.
This agrees with the result derived above that spin vi-
brations in the solution in the absence of a field are
practically undetectable, even at very low temperatures
Τ~Γ ο βχρ(-ΐ/ |λ | )«Τ ο .

The equation in the scalar distribution function naa of
the impurity excitations obtained by averaging Eqs.
(3.9)-(3.11) over the spins describes the dispersion
law of first sound near absolute zero, at which the re-
lation time of the 3He quasiparticles rapidly increases
and exceeds the period of the sound vibrations (high-
frequency first-sound)12·35:

QM + JLRM- -J-U-. (3.20)

Here u- ω/k is the velocity of propagation of the vibra-
tions, and we have

(3.21)
Also, s 4 is the velocity of fourth sound of (3.4).

The solution of the dispersion equation (3.20) u~ s0

amounts to the velocity «χ of high-frequency first sound
in the solution:

(3.22)

Thus the velocity of first sound of a given frequency
near absolute zero proves smaller than at higher tem-
peratures (at which a low-frequency hydrodynamic lim-
it exists) by an amount of the order of (po/pcf, as de-
termined by Eq. (3.22). In other words, the tempera-
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ture -dependence of the velocity of first sound should
show a maximum.

2) High-frequency vibrations in a magnetic field.
Application of an external magnetic field changes the
pattern of propagation of spin vibrations qualitatively.
As always, in determining the dispersion law of spin
waves in a magnetic field, we shall restrict the treat-
ment to first-order perturbation theory. Here the ex-
pressions (2.16) and (3.12), (3.13) for η ο β and ε ^ are
considerably simplified, and the kinetic equation (3.9)
breaks down into the scalar component

^ - k v ) , - 6 + k v ~ ^ p . v s + - ^ 6 ^ + 21, j v d r ]

+ k • νδ. [Η -jjL 6ΛΓ, - 2i8Jl j λ dr] = 0,

(3.23)
and the vector component

(3.24)

Here we have v= 2εο/8ρ, 5t= (1/2)[δ(ε, - μ3) ± δ(ε. - μ3)],
and we have accounted for the fact that the/-function of
(2.10) does not depend on the momenta in the first order
in the interaction.

We shall take the direction of the magnetic field SW
as the ζ axis. Equation (3.23) for the components of
the vector λ perpendicular to the field direction deter-
mines the spectrum of transverse spin waves. Thus,
for the circular components \± = \x±i\y, the dispersion
equation for T= 0 leads to the form14

(3.25)

Here we have

(»)=τ
ω —(2flffM)

with ΒΗ = βΗ - £0 (JV, -Ν.). In the region of small wave
vectors u » xt near the energy gap corresponding to
free precession of the nuclear spins, the spectrum
(3.25) is quadratic in k:

2gff Me' (36π)*'3

~ Η "+" 2Μ 10|α|
(3.26)

Apart from small terms in the concentration, it re-
sembles the spectrum of a ferromagnetic Fermi fluid
in the absence of a field as obtained by Abrikosov and
Dzyaloshinskii,54 while in weak fields (<%"«1), it goes
over into the corresponding result of Silin.47

Here the Cherenkov damping of the spin wave is ex-
ponentially small94:

The major dissipative mechanism is collisional relaxa-
tion absorption.

We should stress that, in a Fermi fluid that posses-
ses a magnetic moment at equilibrium, the spectrum
of transverse spin waves should also contain terms

quadratic in k that are due to the nonlocal nature of the
interaction of the quasiparticles and to the deviation of
the exact quantum kinetic equation from the quasiclas-
sical equation (3.9). We can easily convince ourselves
in the given case of a low-density system that an ac-
count for these effects would lead only to corrections
to the second term on the right-hand side of Eq. (3.26)
that are small in terms of the concentration.

In the short-wave region kv » £0 {Nt -N.)/K, the solu-
tion of Eq. (3.25) is exponentially close in terms of the
parameter -irfi/pta to the asymptotic value ω - 2ΒΗ/Η
= kvt. The region of existence of such a solution is re-
stricted in frequency and magnon wave vector by the
condition of applicability of the quasiclassical kinetic
equation (3.9). The results derived for the damping of
spin waves in the absence of a magnetic field in the
previous section of the article can be directly extended
to the case of short-wave {kv» o>int) transverse spin
waves. The dispersion equation of the latter acquires
a form analogous to (3.14).

Application of an external magnetic field Η enables
the propagation of long-wave weakly damped transverse
spin waves, even in a nondegenerate solution with Τ at
T> To. After calculating the integrals with the Boltz-
mann equilibrium distribution functions n, and «_, the
corresponding kinetic equation is transformed analo-
gously96 and yields the following dispersion equation for
the transverse magnetization oscillations94:

°+l·-' i-£-n № o+^—»,-* (3.27)

Here we have Ω=ω-2βΗ/Κ+ i»lat,vT = (T/M)1/2 is the
thermal velocity of the quasiparticles, and we define

γι·
(3.28)

We shall seek the long-wave weakly damped solution
of Eq. (3.27) in the form of a series expansion in pow-
ers of kvT/u>int. In the zero-order approximation, the
solution ω= 2βΗ/κ=ω0 corresponds to uniform free
precession of the nuclear spins of 3He. By using the
asymptotic representation of the function J(x) in (3.28),
we can find the corrections that are quadratic in kvT/
u>lnt to the homogeneous solution ω= ω0:

(Dint , . 2llint; , · Τ . . oH t ο Oft\
63 = O)ft-r~~-^ it W = (l)«4-' Η ί ϋ Π Γ ΐ ' " — m \d#A*7J

In (3.29) we have accounted for the fact that, in the
Born approximation for the population difference Nt -N.
that enters into ω,ηί, one must employ its value in an
ideal Boltzmann gas while neglecting the Fermi-fluid
interaction: Nt-N. = N3 ta.nh(fiH/T). The absorption
coefficient ω" of the wave is

(3.30)

When the wave vectors k are not too small, the Cheren-
kov damping of (3.30) can prove larger than the colli-
sional damping ω ^ π ~ Ν3α

2νΓ.

In the short-wave region in which the existence of a
gap in the dispersion law is not essential, strong colli-
sionless damping renders the propagation of a spin
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wave in a nondegenerate solution impossible.

Thus the observation of spin waves in a 3He-He Π
solution in the absence of a magnetic field requires ex-
tremely low temperatures. Application of a magnetic
field enables the propagation of weakly damped trans-
verse spin modes over a broad range of temperatures.
Here an increase in temperature narrows the region of
wave vectors in which undamped magnons exist. Ob-
servation of spin waves in the Boltzmann region is pos-
sible in rather strong magnetic fields.

As was shown above, the transverse spin waves do
not involve the vibrations of the superfluid background.
The equations (3.24) for the ζ component of the vector
λ and (3.23) determine the velocity of propagation of
coupled spin and high-frequency sound waves. We note
that, in second-order perturbation theory, the coupling
of the spin and sonic modes in a magnetic field also
arises from the existence in the Fermi-fluid function
(2.7) of a term linear in the spin operators

Let us restrict the treatment to the approximation
linear in the concentration. To do this, it suffices to
keep in the energy ε0 only the term independent of the
momentum: εο« -Δ. To the same accuracy we have
dB/9Nt=0. After unwieldy calculations, we find the
transcendental dispersion equation for the velocity of
propagation of coupled spin-sonic oscillations11:

Here we have ? ( ? ) = Q(u) + uR(u)/v0, the functions
Q(u),R(u), and wjiu) are defined by expressions (3.21)
and (3.25), and Zo= -2λ is the zero-order harmonic of
the spin component of the Fermi-fluid function.

The dispersion equation (3.31) always has a root of
the order of the velocity s 0 of sound in pure 4He, which
determines the velocity of propagation of the high-fre-
quency sound wave in the solution. In the employed ap-
proximation, it coincides with the value s t of hydrody-
namic first sound of (3.3). The given mode amounts to
an oscillation of the density of impurity atoms and an
associated oscillation of the projection of the magnetic
moment on the direction of the external field. A de-
pendence of the velocity of propagation of the wave ut

on the magnetic field arises in the higher orders with
respect to the concentration of fermions.

In large magnetic fields for which vt»v. (vt = p±/M
are the velocities of the quasiparticles at the corre-
sponding Fermi surfaces), we can easily convince our-
selves that Eq. (3.31) has no real roots differing from
u=ui.

On the other hand, in very weak magnetic fields for
which

the solution uH of Eq. (3.31) is known to exist It is
close to the velocity u0 of propagation of spin waves in
the solution in the absence of a field in (3.15)14:

As the magnetic field is increased and attains a cer-
tain critical value Hc, the velocity of propagation of a
spin wave becomes complex (here the real component
of the velocity is smaller than the Fermi velocity v,),
and the wave suffers strong Landau damping involving
decay of the magnon into a particle and a hole. The
size of the critical field Hc is equal with logarithmic
accuracy14 to

This corresponds to the numerical equation

Here x=N3/(N3

tion.
) = c/(l is the molar concentra-

A more general approach to the problem of suppres-
sion of the high-frequency modes by a magnetic field
has been developed by the authors of Refs. 70 and 94 as
applied to the case of transverse zero sound in pure
3He. This method allows one to take exact account of
all the harmonics of the /-function. This involves the
closeness of the velocity of propagation of the wave to
the Fermi velocity and the possibility of separating out
the logarithmic singularities in the determinant of the
dispersion equation. Here the critical field Hc is sim-
ply expressed in terms of the value of the velocity of
the high-frequency modes in the absence of a field.

4. TRANSPORT PHENOMENA

a) Kinetic phenomena in the absence of a magnetic
field

The kinetic properties of degenerate 3He-He II solu-
tions at low temperatures are governed exclusively by the
the impurity excitations. The mean free path of the 3He
quasiparticles is limited by their mutual collisions.
The values of the kinetic coefficients in the Fermi fluid
can be determined by solving the kinetic equation by the
method of Abrikosov and Khalatnikov.1·71 The exact ex-
pressions for the coefficients of heat conductivity H,
viscosity η, and spin diffusion D derived by Brooker
and Sykes72 have the following form in the absence of
a field:

C(K).

(4.1)

Here WK, Wn, and WD amount to the phenomenological
probabilities of collisions of pairs of quasiparticles
near the Fermi surface for the corresponding proces-
ses, θ is the angle between the directions of the mo-
menta of the interacting particles, φ is the scattering
angle in the center-of-inertia system, while the coeffi-
cients H(\^), C(\,), and C(XD) are related to the colli-
sion probabilities W by rather unwieldy relationships72;
( . . .) denotes averaging over the angles.

To an accuracy of terms corresponding to />-scatter-
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ing of the 3He quasiparticles, we have13

//(λ*) = 0.52(1 — 0.26λ),

£(λη) = 0.81(1 — 0.18λ); C(XD) = 0.80(1 — Ο.ΙΟλ).

The final results for the kinetic coefficients look like
this1 2:

.0.80(1 -2.18λ).

(4.2)

The characteristic relaxation time in the degenerate
Fermi system T=(^2n6/m*T2)(Wr/cos(e/2)Y1 has the
following concentration-dependence:

A comparison of the calculated kinetic coefficients
with the experimental data1 8·1 9 · 7 4 is shown in Figs. 8
and 9. It shows satisfactory agreement between the
theoretical and experimental results.

b) Magnetokinetic effects

The mean free path of quasiparticles having a spin
directed along Η increases with increasing magnetic
field, since the efficient mode of scattering for these
particles is that with particles with spins directed
against the field, the number of which declines with in-
creasing H. The corresponding magnetokinetic effects
are manifested especially markedly in determining the
kinetic coefficients, whose size is proportional to the
mean free path of the particles.

In order to determine the kinetic coefficients, one
must solve the collisional kinetic equation for the den-
sity matrix. As always happens for weakly inhomogen-
eous systems, one must set the local-equilibrium den-
sity matrix on the left-hand side of the kinetic equation
(3.9) and linearize the equation with respect to small
values of the gradients. When we choose the ζ axis
along the direction of the magnetic field, the equilibri-
um density matrix and the Hamiltonian of the excitations
(2.4)-(2.6),(2.16) are diagonal in spin space. There-
fore two equations for the diagonal components of the
density matrix nt arise in place of the four equations
for n a S :

10

2 1 Bx,%

FIG. 8. Concentration-dependence of the heat conductivity.
The points are the experimental results of Ref. 19.
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FIG. 9. Concentration-dependence of the spin diffusion coef-
ficient. 1—experimental data18; 2—results of Ref. 74.

^ + V ^ ^ - ^ V e ± = / ± ( p ) . (4.4)

The diagonal elements of the density matrix n± and the
excitation energies ε4 determine the distribution func-
tion and the energy of particles having a definite pro-
jection of the spin on the direction of the field. In the
primary approximation in terms of the concentration,
the collision integrals entering into (4.4) have the usual
form:

X W {n±"f (l-nf) (l-nf.)-
(4.5)

Here W= (2πΚ)3(α/Μ)2 is the probability of scattering of
the particles having the momenta pj and p^ in the state

The procedure of determining the kinetic coefficients
differs from the standard procedures in that, instead of
a single kinetic equation for the particles at the Fermi
surface | p | = />0, there are the two kinetic equations
(4.4), related via the collision integrals of (4.5), for the
distribution functions n± of particles lying on Fermi
spheres of differing radii p±.

After unwieldy calculations for the hydrodynamic vis-
cosity and heat conductivity, one gets the following ex-
pressions14:

) = iLi

η(0) 2d>

( ) _ Xl
x(0) 2i

(4.6)

The viscosity and heat conductivity in the absence of a
magnetic field that enter into (4.6) are

They are calculated in the same way as 7j(#*)and
by the approximate method of Ref. 71, and differ from
the exact values of (4.2) by factors of the order of unity.
Figure 10 shows a graph of the functions η(^)/η(0) and
H ( # 0 / K ( 0 ) as given by the formulas of (4.6). In strong
magnetic fields 3f— 1, the viscosity and heat conductiv-
ity of (4.6) increase without limit:

x(0)

(4.7)

' 3 ( 1 —

The limiting values of the kinetic coefficients are at-
tained in a completely polarized solution at^f» 1. In
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FIG. 10. Relative variation of the viscosity and the heat con-
ductivity In a magnetic field.

this case only one of the equations of (4.4) remains,
and one can employ the exact expressions (4.1) to de-
termine the viscosity and the heat conductivity. In
these expressions one should substitute the probability
Ψ(θ, φ) of collision of the particles, which is related
to the amplitude of ^-scattering of (2.14):

(^*)%^ sin· -§-coS»<p. (4.8)

In this case, the coefficients C(X,) and H(XX) for the
functions W of (4.8) prove to be C(X,) = 0.79 and H(\,)
= 0.55. Finally we have

That is, they change substantially in their concentra-
tion-dependence and differ from their values in the ab-
sence of a field η(0), κ(0) of (4.2) by a large factor of
the order of

We have assumed above that the entire Fermi compo-
nent of the solution is degenerate, including the system
of excitations of 3He with spins oriented against the di-
rection of the field. Here, in the field 2βΗ= Tr, the
number of particles with spins antiparallel to the field
vanishes. This corresponds to an infinite increase in
the kinetic coefficients of (4.6)-(4.7) as ^ f - 1 .

Actually, there is always a certain number of fermi-
ons with spins directed against the field at nonzero tem-
perature. An account for this fact yields a substantial
difference of the kinetic coefficients in strong magnetic
fields ^ 2 1 from the values given by Eqs. (4.7) and
(4.9)7S:

4 ) " ! V « . ·=(!-«?) TwIT.

Figure 11 shows a graph of the function V(z):

(4.10)

<"2di
,(-«-(-1 et-'—l

In
l+e> -1-t

Equation (4.10) holds for a degenerate solution at TF

» Τ for almost complete polarization of the solution
(Tp/T)3/2V(z)»l.

The dimensionless parameter z = (1 -2f)Tr/T actually

FIG. 11. Graph of the
function Viz) from
(4.10).

-2 -t β 1 2 3 * if

characterizes the distribution function n"(p). When ζ
» 1 , the system of quasiparticles with spins directed
against the field is degenerate. Since V{z »l) = z~3'2,
Eq. (4.10) coincides with (4.7). In stronger fields (-z)
» 1 , there is an exponentially small number of parti-
cles with reversed spins, and the function n~ is a Boltz-
mann function. Here the hydrodynamic viscosity of
(4.10) increases exponentially with increasing magnetic
field: V(z- -°°)=0.70 exp(-«). Thus, with increasing
temperature, the increase in the kinetic coefficients as
functions of the field becomes slower, and the asymp-
totic value of (4.9) is attained in stronger fields.

The magnetokinetic effects (increase in the kinetic
coefficients of the solution with increasing magnetic
field) can also be observed in a nondegenerate solution.
This requires that the Fermi component should prove
to be sufficiently polarized to make s -scattering inef-
fective, i.e., βΗ»Τ. In the Boltzmann region Γ » TF,

75

we have

exp(2j>g/r) + l
(0) 2 (4.11)

In strong magnetic fields with βΗ» Τ, the viscosity of
the solution increases in the same way as the mean free
path 2, in (4.11) of the quasiparticles having spins di-
rected along the field: η(Η) = TJ(O) exp(2j3#/r)/2. The
limiting value of lt in strong fields and in the Boltz-
mann region is determined by />-scattering: Z,(°°)/Z,(O)
~ (B/T)2(B/MsD2. This value is reached in fields βΗ
~ Tln(02/Afrso).75 (Here Θ is the Debye temperature of
4He.) Although the mean free path of the impurity ex-
citations increases strongly upon magnetizing a dilute
solution, the scattering of the 3He quasiparticles by
thermal phonons in the strongly polarized solution is
almost always inconsequential.75"78

The fundamental experimental difficulty in detecting
magnetokinetic effects is that of ensuring a high enough
degree of polarization of the spin system, which is
governed by the relationship between the degeneracy
temperature (TF[K] »4.2*2 / 3), the magnetic field 2βΗ
(2/3 = 0.16 [mk/kOe]), and the temperature. A field
#~75 kOe at a low enough temperature (2βΗ~12
mK) can polarize a solution having a concentration
down to x~ 10"4 (TF~ 8 mK). Here the mean free path
of the 3He atoms increases by a factor of 105 and
reaches tens of centimeters. The values of the kinetic
coefficients increase by just as great a factor. Thus
the hydrodynamic viscosity increases to a value of
~10"2 Ps, which corresponds to the viscosity of water.
For the system of quasiparticles, the fundamental fac-
tor may prove to be scattering by the walls. It becomes
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possible to observe various effects of nonlocality char-
acteristic of a Knudsen regime. In particular, thermal
creep or the radiometric effect can be exhibited, while
a tube of centimeter diameter can serve as a superleak
that transmits only the superfluid component.

Such a considerable increase in relaxation time im-
plies considerable expansion of the region of existence
of weakly damped high-frequency modes ωτ » 1. This
corresponds to the condition ω » 5 ( 1 0 ? ? 1 / 3 ) 4 ? 2 , where
Γ is the temperature in mK. Owing to the converse
condition, undamped hydrodynamic vibrations of a
strongly polarized solution are actually quasistatic.

5. SUPERFLUIDITY OF 3He IN SOLUTION

a) Transition temperature of 3He to the superfluid state

Thus far we have been treating the 3He impurity sub-
system as a normal isotropic Fermi fluid. In the case
of attraction between the dissolved atoms, a possibility
exists in principle of rearrangement of the spectrum of
Fermi excitations owing to Bardeen-Cooper-Schrieffer
(BCS) pairing and of transition of the Fermi component
to the superfluid state. By using a model potential for
the interaction of the impurity quasiparticles, Bardeen,
Baym, and Pines2 1·8 have estimated the temperature Tc

of transition of 3He in solution to the superfluid state
for singlet pairing. They predicted21 that Tc is of the
order of 10" 6 Κ at zero pressure, while declining with
increasing pressure. Conversely, employment of an
empirical potential with five adjustable parameters6 0

qualitatively alters this result, while elevating the
transition temperature under pressure to Tc~ 10"4 K.
The possibility of a superfluid transition in concen-
trated solutions at high pressures owing to triplet pair-
ing of the impurity fermions has also been dis-
cussed.7 9·8 0 Fay97 has also performed some interesting
model calculations of Tc.

According to all the experimental data, the s-scatter-
ing length a is negative, which corresponds to attrac-
tion between the impurity atoms. Therefore one can
easily find the temperature of superfluid transition in-
volving s -pairing of the quasiparticles11 by using the
results of Gor'kov and Melik-Barkhudarov81:

(5.1)

Here lny = C is Euler's constant. At zero pressure,
Eq. (5.1) is equivalent to the following numerical ex-
pression18 2 .

For a solution of molar concentration #=0.03, this cor-
responds to a temperature Tc« 1.4 mK.

In contrast to the electronic Fermi fluid in a metal,
the application of the BCS theory to degenerate 3He-4He

TABLE I.

P, atm

0
10
20

M/m3 (m 3 is the mass

of a 3Hc atom, Μ is the

effective mass)

2.33
2.57
2.85

V, cm 3 • mole'1

(molar volume)

27.580
25.180
23.744

a, A

—1.5
—1.7
—2.4

solutions is not a model approximation. For a suffi-
ciently dilute solution, it gives an exact description of
the superfluid transition. Application of the formulas
of the theory of superconductivity (see, e.g., Ref. 55)
enables us to determine the jump in heat capacity of
the solution at the phase-transition point:

It also yields the value of the energy gap in the spec-
trum of Bogolyubov excitations Δ(Τ) at zero tempera-
ture: Δ(0) = 1.75 TC. Here the coherence length ξ
= * - ? ? ? / ? ( 0 ) considerably exceeds the mean distance be-
tween dissolved atoms ro~K/po. In a sufficiently dilute
solution, one can expect manifestation of an analog of
the Josephson effect. Experimentally, one can observe
the transition of 3He to the superfluid state, e.g., by
measuring the magnetic susceptibility, in calorimetric
experiments, and from resonance absorption of ultra-
sound at the frequency of the energy gap.

Since the parameter λ enters into the thermodynamic
functions in the form of small corrections to the con-
tribution of an ideal Fermi gas, one can determine
most accurately the pressure-dependence of the s-scat-
tering length from experimental data on the kinetic co-
efficients of the solution under pressure.8 2 By using
the data of Murdock et al.7i for a solution with x = 1.3
x 10"2, we find the value of α at a pressure P= 10 atm
(see Table I). At a pressure P= 20 atm and concentra-
tion x= 1.3 x 10'2, the power-series expansion in λ is
only qualitatively valid. Hence the value of a at Ρ = 20
atm was determined from the data of Ahonen et al.63 on
the magnetic susceptibility of a solution having #=0.27
x 10"2 by employing Eq. (2.26). Figure 12 compares
the susceptibility calculated by Eq. (2.26) with account
of the data of Table I with the experimental results.6 3

The dotted lines in Figs. 12 and 13 correspond to cal-
culations in the region where the expansion in the pa-
rameter λ is extrapolative. When P= 10 atm and χ
= 1.32 x 10"2 (where the λ-expansion is valid), the os-
motic pressure calculated within the framework of the
presented scheme (2.24) attains a value of 1.51 Torr.
This agrees satisfactorily with the measured value 1.59
Torr.6 0 Upon using the data on the susceptibility of the
solution for x- 1.33 x 10" 2,6 3 while accounting for the
concentration-dependence of the total effective mass of

Ρ=20 atm

FIG. 12. Comparison of the experimental data on the magnetic
susceptibility of dilute solutions under pressure6 3 with the re-
sults calculated by Eq. (2.26) with the aid of Table I.
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(plt + pu) vnk + (plh + p2k) vnt

+ Pih ("u — vnt) + pik {v2l — vni)

Ρ = -£„ + μιΡι + μ,ρ, + TS. (5.5)

FIG. 13. Concentration-dependence of the transition tempera-
ture of 3He In dilute 3He-He Π solutions to the superfluid state
at pressures of 0, 10, and 20 atm.

the excitation of (2.23), the relationship 8(lnM)/dP= 1.5
x 10"2 atm"1,57 and the temperature corrections, we find
the following relationship for low pressures: θΐηα/
81nP=0.12. Figure 13 shows the concentration-depen-
dence of the transition temperature of 3He ;n a solution
to the superfluid state8 2 at pressures of 0, 10, and 20
atm [see Eq. (5.1) and Table I ] . The authors6 3 cooled a
solution having x= 1.33 x 10"2 to a temperature of 2.4
mK and observed no phase transition. In line with Fig.
13, the latter should occur at Tc

a 0.5 mK (P= 10 atm).
Since Tc depends exponentially on a, the accuracy of the
obtained results strongly depends on the accuracy of
the employed experimental data. Yet we can hope that
the calculations give the correct scale of all the quan-
tities for the treated phenomena.

b) Equations of three-velocity hydrodynamics

At low enough temperature T<TC, the solution
amounts to a macroscopic system in which two forms
of condensate exist simultaneously, and corresponding-
ly two forms of superfluid motion. The properties of
such a liquid must be described by the equations of
three-velocity hydrodynamics with two superfluid velo-
cities and one normal velocity83·84:

=0, Pj+div(p2va

(5.2)

Here p1 and p2 are the densities of the particles of each
type (the total density of the solution is p=px+ p^); vn,
vlt and v2 are respectively the velocities of the normal
and the two superfluid motions; j = pvn+p1 + p2 is the mo-
mentum per unit volume; and S is the entropy per unit
volume. The meaning of the quantities μ1; μ2, ρ 1 ; and
p2 is defined by the thermodynamic identity for the en-
ergy per unit volume of the solution Eo in a system of
coordinates in which vB=0:
d£0 = TdS + μ^Ρ! + μ ^ + Pi<i (ν, — vn) + P«d (v, — vn). (5.3)

Here the energy in the laboratory system is

Ε = -|" P'A + (Pi + PJ) vn + £„.

The momentum flux tensor has the form

All the formulas that we have written thus far differ
from the corresponding formulas of two-velocity hy-
drodynamics only in the trivial doubling of the number
of terms describing the relative motion of the super-
fluid and normal components. However, an essential
feature appears upon introducing quantities that play
the role of the densities of the superfluid components.85

Since the effective mass Μ of the 3He quasipartides
is 2.3 times as large as the mass m3 of a 3He atom, the
motion of the quasiparticles transports a mass of 4He
that is not at all small in addition to the mass of 3He.
Cooper pairs are produced by the weak interaction be-
tween the fermions. They amount to a bound state of
the quasiparticles, whose properties are hardly al-
tered by the onset of superfluidity. Therefore it is
evident that the superfluid motion of 3He must also be
accompanied by transport of a mass of 4He. If the ve-
locities of motion are not too great, then the relative
momenta pl and p2 can be expanded in powers of the
small relative velocities vx -v n and v2 -vn with con-
stant coefficients:

Pi = Pff (v, - vB) + piV (v, - vn),

(5.4)

(5.6)

The set of these coefficients pj,!e> (α, β= 1,2) is an ana-
log of the density of the superfluid component in two-
velocity hydrodynamics. As we see from the thermo-
dynamic identity (5.3), the quantities pj,y are equal to
the second derivatives cf the energy Eo with respect to
the relative velocities. Therefore the matrix p'^' is
symmetric, i.e., we have

PS> = PS>. (5.7)

We can say that three-velocity hydrodynamics mani-
fests three independent quantities p}i', p2 2 ·, and pS in
place of the density of the superfluid component. The
last of these describes the above-mentioned effect of
entrainment by either of the superfluid motions of both
components of the solution.

The relationships (5.3) and (5.6) enable us easily to
find the dependence of all the thermo- and hydrodynam-
ic quantities on the relative velocities. Thus, the en-
ergy Ε of the solution in the laboratory system of co-
ordinates is8 5

B=-i-(pO)i;n + p\-)pl+2piYv1vi + p(')^) + £«»(5, p,, p2). (5.8)

Here E° is the energy of the solution while at rest, and
the quantity ρ<π> = ρ - p}*' - p22» - 2pjj» plays the role of
the density of the normal component In order that the
kinetic component of the energy of the solution be posi-
tive definite, as we see from (5.8), we also require the
condition ρί2

) 2<ρ}ί'ρ2!\ in addition to the positivity of
p}}', p 2 2 ' , and p( n ). Yet the quantity p^' itself can in
principle be either positive or negative.

Equation (5.2) together with the conditions (5.6) and
(5.8) constitute a complete system of equations of hy-
drodynamics if we know the thermodynamic functions of
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the solution and all three superfluid densities.

Moreover, we must stress the fact that there is an
ambiguity in the definition of the corresponding veloci-
ties when two superfluid motions exist. In principle,
one could define each of the velocities as the ratio of
mass flux of particles of a given type to their density.
Then the above-discussed entrainment effect would be
lacking by definition. However, an essential point is
that with such a definition, superfluid motion is not a
potential one. Nevertheless the condition of potentiality
plays a very important role in formulating the complete
system of hydrodynamic equations. In preserving the
potentiality condition, we are obliged to account for the
possible transport of both components of the solution by
each of the superfluid motions.

On the basis of the BCS theory, we can easily give a
microscopic derivation of the formulas for the mass
fluxes and thus calculate the quantities POV85:

lation of the concentration of the solution. The corre-
sponding velocity is determined by the formula

pfi> = τ N"

(5.9)

Here Ns is the number of "superfluid" 3He atoms,
while the size Δ(Γ) of the energy gap is determined by
usual formulas of the BCS theory. At zero tempera-
ture, the density of the normal component vanishes,
while the total mass flux proves to be j = p2V2+m3JV3v1.
We note that in dilute solutions the inequality p[\'2
<Pn>p22) * s satisfied with much room to spare, since
p[\> and p[? are proportional to the concentration, while
P22* does not contain this small factor.

The existence of the effect of entrainment of both
components of the solution by each of the superfluid
motions is also confirmed by detailed calculations by
the diagram method of the properties of a system with
two Bose condensates at T=0.ee

The equations of three-velocity hydrodynamics (5.2)
admits the existence of sound waves of three
types.8 3 ' 8 5 · 8 7 Let us determine the velocities of the
sound vibrations of a superfluid solution. One can
easily do this by employing the linearized equations of
(5.2) upon considering the fact, as we shall see from the
result, that the velocities of the three types of sound
vibrations satisfy the condition cx » c 2 » c3. Here c2

has a power degree of smallness with respect to the
solution, while c3 has an exponential degree of small-
ness (just like the transition temperature of the Fermi
component to the superfluid state). Without taking time
for the simple calculations, we shall present the re-
sults.85

The velocity of vibrations of the first type is deter-
mined in the usual way in terms of the compressibility
of the solution

It depends weakly on the temperature and is close to
the velocity of first sound in pure 4 He.

The vibration of the second type amounts to an oscil-
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p»p«
tf)' /*g.\

\ dx* )P.T
(5.10)

Here χ ρί/(ρ1 + p2) is the concentration. Thus the vibra-
tions of the second type amount to nothing other than
the well-known88"90 collective vibrations of the super-
fluid Fermi gas of the impurity 3He particles.

The vibrations of the third type are primarily an os-
cillation of the temperature. In this sense they are
analogous to second sound in an ordinary superfluid
liquid. The square of the velocity of the vibrations is

TS»
(p,—pW—pSV)1 c ΜΝ,Νη"

(5.11)

This also is highly reminiscent of the expression for
the velocity of second sound; here C= TBS/dT is the
heat capacity per unit volume of the solution. At the
point T= Tc of the transition of the Fermi component to
the superfluid state, c3 falls to zero in proportion to
(Tc - ΤΥ12. When T« Tc it is proportional to the first
power of the temperature: c3= (9/2π)1/4 (τ/Ρ0).

The formulas (5.9) cease to hold at very low tempera-
tures at which the fundamental contribution to the tem-
perature-dependence of the thermodynamic quantities
and the superfluid densities does not come from
Bogolyubov excitations, but from phonons. In this case
there are two types of phonons corresponding to the
first two types of sound vibrations of the solution. How-
ever, the fundamental contribution to the temperature-
dependence of all the quantities comes from the pho-
nons of second sound, since their velocity is much
smaller85 (for more details, see Ref. 91).

Here the waves of third sound amount to sound vibra-
tions in the phonon gas of second sound, and their ve-
locity of propagation is c3 = c2//3 = i>0/3. We should
stress that the frequency of the third-sound vibrations
in the studied temperature range should be very low,
since the wavelength should considerably exceed the
mean free path of the thermal excitations, which is ex-
tremely large at such low temperatures.

The hydrodynamic and high-frequency vibrations in a
solution of a superfluid Fermi fluid in a superfluid Bose
fluid have also been studied by Volovik, Mineev, and
Khalatnikov92 by using the kinetic equation and the phe-
nomenological /-function.

Many of the obtained results can also be employed for
other types of Fermi fluids of low density in which the
interaction between the bare particles declines rapidly
enough with increasing distance between them (e.g., for
a screened Coulomb potential).

As we see it, it would be most interesting to study
Fermi systems having a high degree of spin polariza-
tion. A considerable polarization of the spin system
can be attained, not only by using an external magnetic
field, but also by many other methods. An example of
a fully polarized low-density Fermi fluid is the ferro-
magnetic phase of crystalline 3He,93 in which the mean
free path of the vacancions proves to be quite consid-
erable. For electronic systems, one can create a non-
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uniform occupancy of the spin states, e.g., by methods
of injection of spins having a definite orientation. A
recently developed method98*100 of magnetic polariza-
tion of liquid 3He is also of considerable interest. For
such dense Fermi systems, some of the results ob-
tained above are also rigorous.
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