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Various aspects of the problem of nonresonant interaction of high-power optical radiation with a liquid are
discussed. The nonlinear response of the liquid to a pulse of radiation that significantly affects the
thermodynamic state of the liquid (in particular, transforms the liquid into the vicinity of the critical point) is
described. Specific features of boiling of the liquid under the action of the laser radiation are pointed out. The
instability of the planar vaporization front, arising from the action of radiation on the free surface of an
absorbing liquid, with respect to small spatiall perturbations of the phase separation boundaries and the
perturbations of the temperature distribution related to them are analyzed. The generation of sound pulses and
monochromatic sound waves in the liquid,, as a result of the action of laser radiation, and their
transformation with subsequent propagation are described. The efficiency of "thermal" and "striction"
mechanisms for photoexcitation of sound are compared. The phenomenon of deep melting penetration
(dagger-shaped penetration zone) of metals under the action of laser radiation,, related to the presence of a
liquid phase (metallic melt) in the interaction zone, is discussed. The resullts of studies concerning the
interaction of high-power light fluxes with metallic targets are presented. It follows from these results that
within a well-defined range of laser radiation intensities a metal-dielectric transition occurs in the interaction
zone, but the appearance of the dielectric phase has no qualitative effect on the nature of the interaction.
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"/ made a very important discovery in the bathtub," said Mr.
Morkou, without any embarassment. "V-very, v-very impor-
tant!" nodded the dog approvingly. "We discovered that
water is v-very, v-very wet."

Gianni Rodari, The Adventures of Chipollino

1. INTRODUCTION

a) Purpose of the review

Almost immediately following the creation of the first
lasers, when experimentalists had access to devices
that were capable of generating electromagnetic radia-
tion with a degree of coherence that had not been seen
until that time, and, of focusing it into small volumes,
creating enormous flux densities, the basic directions
for the development of the physics of the interaction of
laser radiation with matter were clear. At this time,
most of the studies concerning nonresonant interaction
simply involved the use of the highest possible radiation

•Translator's note: The literal Russian terminology refers to
a molten "dagger-shaped" zone penetrating deep into a metal.

flux densities for acting on matter. Later, with the
creation of picosecond lasers, studies concerning the
response of matter to ultrashort high-power pulses of
radiation were also included. There is no need to list
here all the essentially new effects that were discovered.
It is sufficient to mention such effects as self-focusing,
optical breakdown in dielectrics, the nonlinear photo-
electric effect in metals, multiphoton ionization of
gases, and so on.

With all of this work, we, "without any embarrass-
ment," take the liberty to assert that many phenomena
that arise with nonresonant interaction of laser radia-
tion with matter, the study of which does not require
the highest possible radiation intensities or the short-
est possible pulse durations, have either been studied
inadequately or not at all. Apparently, this can be
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explained by the fact that each successive accomplish-
ment in laser technology (the creation of new types of
lasers, increase in the output power of existing types
of lasers, and so on) provided such wide possibilities
for carrying out essentially new research that this un-
avoidably led to some reorientation on the part of
specialists, possibly, to the detriment of research that
had become traditional.

Such problems, undeservedly bypassed by specialists,
include first of all various phenomena arising from the
action of high-power light fluxes on a liquid. These
phenomena, as a rule, have no similarities with the
action of radiation on matter in other aggregate states,
which makes their study especially important. This
.review is devoted to discussing some problems taken
from this area. We have attempted, as far as pos-
sible, not to dwell on problems that have been dis-
cussed previously in one way or another. Chapter 4,
which concerns the generation of sound by laser radia-
tion and the accompanying phenomena, is an exception
(due to the importance of the problem and the large
number of new results obtained recently).

b) Basic notation

The content of the review is interrelated by the over-
all subject matter. However, we attempted to make
the presentation in such a way that each chapter, if
necessary, could be read without using the material
from the rest of the review. For this reason, we con-
sidered it useful to present here a list of the basic no-
tation used throughout the review. We use the following
notation below.

A is the absorptivity of the liquid surface (0«A « 1);
Am is the atomic weight; C is the specific heat capacity;
c is the speed of light in a vacuum; Κ is the absorption
coefficient for radiation (cm"1); NA is Avogadro's
number; p is the pressure; q is the flux density of
optical radiation; rQ is the radius of the focal spot; Τ
is the temperature, which is measured everywhere in
energy units; u is the speed of sound; ν is the specific
volume; a = (L/v)(9v/dT)p is the coefficient of volume
expansion; β = -(1/ν)(δν/8ρ)τ is the isothermal compres-
sibility; κ and χ are the coefficients of thermal con-
ductivity and thermal diffusivity, respectively
(x = y.v/Cp); λ is the specific heat of vaporization;
ρ = 1/f is the density; and τ is the duration of the
laser pulse.

In addition, unless otherwise stated, the index "0"
everywhere denotes the initial (equilibrium) value and
the index "C" everywhere denotes the critical (rela-
tive to the liquid-vapor transition) value of the corre-
sponding quantities, while a prime denotes their devia-
tion from the initial or equilibrium values. The re-
maining notation is introduced in each chapter inde-
pendently and is used only within that chapter.

2. OPTOTHERMODYNAMIC PHENOMENA IN A
LIQUID

Apparently, one of the most important problems in
optothermodynamics from the practical point of view
is the problem of strong compression and heating under

the action of a laser pulse of a predetermined shape.
This problem has been formulated and studied within
the framework of the problem of laser-induced fusion
(see the review in Ref. 1 and the literature cited
therein). However, this is not, by any means, the
only problem in which a macroscopic system is trans-
formed from a given initial state into a given final
state along a prescribed path under the action of high-
power optical radiation (the problems that constitute
the subject of optothermodynamics2 can be briefly
described in this manner).

In particular, there is considerable interest in the
optothermodynamic problems that concern the interac-
tion of radiation with a liquid. Problems that are re-
lated with different types of phase transitions, will be
examined separately in view of their particular im-
portance, (see Chapters 3, 6). Here, we shall con-
centrate on studying those cases for which the curve
that encloses the phase volume of the system, (the re-
gion of allowable values of thermodynamic variables)
subjected to the action of radiation, is located entirely
within a single-phase region.

One of the first problems within this group is the
problem concerning the transition from the normal
state (/>„, p0) into the vicinity of the critical point
(/>1, pj), which was examined in Ref. 2. This problem
is solved most easily in the case that the transition
occurs along isobar and isochore segments. Let the
laser radiation be focused onto the free surface of a
liquid and let the following inequalities be satisfied:
ro«L,ro«/C"x, where L is the length of the neck of the
caustic. Then, in order that there would not be enough
time for the pressure in the focal volume to drop, the
duration of the laser pulse rt must satisfy the inequality
Ti< < yo/M (i n the more general case, r0 must be re-
placed in this inequality by the smaller of the quan-
tities rwL,K'x).

Let us note that the technically simplest case, when
the transition occurs according to the scheme (/>„, p0)
- (ίο» Pi)— (Pn Pi) [in t h i s case, the shape of the laser
pulse along the (/»„, p 0 )- (p0, pt) branch can be arbitrary,
provided that its duration satisfies the inequality
yy>rju\, cannot be realized, since the liquid unavoid-
ably gets into a metastable region along the (p0, p0)
- iPo> Pi) branch, and begins to boil. The effects
stemming from such phenomena will be discussed in
Chapter 3.

One of the possible variations in the phase trajectory
is the transition (pm po)~ (plt p 0 )- (plf p j . The tran-
sition (p0, p 0 )- (/»!, p0) is brought about by a short laser
pulse r^rju with an arbitrary shape. Estimates
show that the liquid usually is not heated significantly
in this region (the typical heating is several degrees),
The transition from the state [plt p0) to the final state
(/>!, pt) occurs under the action of a shaped laser pulse.
The shape of the pulse is chosen in such a way that the
drop in pressure, caused by the removal of stress in
the focal volume into the unperturbed liquid, would be
compensated by an increase in p due to an absorption
of radiation. Most of the heating of the liquid occurs
in this region. In this case, the duration of the pulse
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FIG. 1. An example of the shape of a laser pulse that, by act-
ing on the free surface of a liquid, transforms the liquid in the
focal spot Into the vicinity of the critical point.

must be of the order of ro/u, while its intensity must
increase monotonically, in view of the increase in the
heat capacity Cp^p^p) and decrease in density p.3

The approximate shape of the entire laser pulse is
illustrated in Fig. 1. Numerical estimates for ethyl
alcohol (T c = 521 K; £c = 69bar; p c = 0.27 g/cm3) for
a transition from the normal conditions (p0 = 1 bar,
p0 =0.815 g/cm3) into the supercritical regionpl =70
bar, pl=pc, 7\ =525 Κ with .Κ =0.5 cm' 1 and rju
= 4.10'7 s give a temperature increment τ'=3.4 Κ on
the isochore branch, an energy Wx =0.1 J for the short
laser pulse, and a total pulse energy of W = 20 J.

In this manner, the energy parameter examined lie
within the limits accessible to very modest laser tech-
nology that is available today, and in an actual laser
setup, the criterion for optimality should not be the
condition for minimum laser pulse energy, but the
possibility for predetermining the pulse shape.

Other possible problems in optothermodynamics in-
clude the generation of high-power pressure pulses
having a given shape in a liquid, the study of induced
critical opalescence, (i.e. brought about by the same
radiation that transforms the liquid into the vicinity of
the critical point) and so on.

The examples of optothermodynamic problems pre-
sented above concerned the situation in which the sound
excitation has enough time to encompass only a small
part of the entire liquid within the time of the radiation
pulse, ( M T « F I / 3 , where V is the total volume occupied
by the liquid). In this case, the problems of opto-
thermodynamics can be solved, generally speaking,
only with the use of laser pulses that have a particular
predetermined shape, which presents additional diffi-
culties for performing the appropriate experiments.

However, another formulation of the problem is pos-
sible. Let the liquid completely fill a volume, enclosed
by a thermally insulated airtight solid cuvette that is
transparent to the radiation. In this case, for suf-
ficiently long pulses (UT»VI/3), independent of the re-
lationship between V and the size of the focal volume,
the energy in the laser pulse is "spread out" by the
sound waves throughout the entire volume V, and in
addition, there is no further loss in energy due to the
conservative nature of the system. Since pressure
gradients are smoothed out with the speed of sound,
for at H T » Vil3, the pressure will have a smooth com-
ponent, depending only on the time, on which weak
spatial-temporal "ripples" will be superposed. These
ripples are caused by the interference of sound waves

that are generated in the liquid as a result of the ab-
sorption of radiation and they are multiply reflected
from the walls of the cuvette. Neglecting these "rip-
ples," it may be assumed that the pressure in the
given case is only a function of the time elapsed from
the beginning of the radiation pulse and is the same at
all points inside cuvette at any fixed moment in time
("quasistationary approximation").

But, then, for many problems in optothermodynamics,
the problem of predetermining the shape of the radia-
tion pulse is removed, which simplifies the experi-
ments significantly.

Such problems, besides their intrinsic physical inter-
est, are very important in applications. For example,
they simulate the phenomena occurring in systems for
pumping solid state lasers, in which the radiation
sources are powerful pulsed lamps that are placed in
a cooling liquid.4'5 For this reason, we will consider
these phenomena in somewhat greater detail.

As an example, let us examine the following one-
dimensional problem.6 Let an electromagnetic plane
wave irradiate one of the faces of a rectangular cuvette,
filled with a liquid (the Poynting vector of the wave is
normal to the surface of the cuvette). The absorption
coefficient of the liquid satisfies the condition /Γδ» 1,
where δ is the thickness of the liquid layer in the direc-
tion of propagation of the radiation.

The condition for the applicability of the quasi-
stationary approximation now has the form W T » δ. On
the other hand, the upper limit to the duration of the
laser pulse is determined by the inequality χ τ Α 2 « 1 ,
which allows us to neglect the effects of thermal
conductivity.

The values of the pressure that can be attained in the
liquid during the experiments, corresponding to the
given problem, are limited by the strength of the
cuvette and in actual cases do not exceed several
hundred bar, which lies within the limits of the ap-
plicability of linear acoustics. For this reason, it is
convenient to choose the pressure as one of the inde-
pendent thermodynamic variables and to linearize the
problem with respect to this variable.

However, in the more interesting case involving ra-
diation intensities of any significance, when the liquid
can make a transition into the supercritical state, it is
not possible to choose a second independent variable,
with respect to which the problem could be linearized.
This is related to the fact that the part of the laser
pulse energy that goes into increasing the pressure in
the liquid is "spread out" throughout the entire volume,
which leads to "physical averaging" of the pressure.
This does not occur with any other variables. The pro-
files of temperature, density and so on remain "frozen"
in the liquid and, even though their average values are
small (the average change in density throughout the vol-
ume, in general, equals zero), the local variations can
be very large in the range Kx s 1 (where χ is the dis-
tance measured from the inner surface of the cuvette
in the direction of propagation of radiation; this region
will be referred to below as the core). And, since
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most of the energy is liberated in the core, even small
errors in the determination of thermodynamic vari-
ables in this region can lead to large distortions in the
real situation. For this reason, the phenomenon can be
described correctly only on the basis of a solution of
a nonlinear hydrodynamic problem. Such a solution and
its comparison with experiment will be presented
briefly below.

Let us first make some remarks concerning the for-
mulation of the problem. If the source of the radiation
is a pulsed lamp, then due to its wide-band emission it
is necessary to take into account the wavelength de-
pendence of the absorption coefficient for radiation.
However, it is possible to introduce some averaged
absorption coefficient, which describes adequately the
dissipation of radiation energy in the liquid.5 In ad-
dition, the pulsed lamp is usually placed directly in-
side the cuvette, which alters the symmetry of the
problem. However, if the condition KR»1 is satisfied,
where R is the external radius of the envelope of the
lamp, which, as a rule, occurs under actual experi-
mental conditions (see below), then the problem de-
scribing the absorption of radiation in the core is two-
dimensional. So far a s the liquid outside the core is
concerned, as will be seen below, if the system has
translational symmetry along the axis of the lamp
(which makes the problem two-dimensional), the shape
of the inner surface of the cuvette is generally un-
important.0

It is convenient to choose the specific enthalpy w
as an independent thermodynamic variable. Since we
make use of the principle of corresponding states
below, the variables entering into the formula for the
enthalpy include the true enthalpy of the liquid, mea-
sured from absolute zero, and, as already mentioned,
the pressure p. In this case, the equation of state of
the liquid has the form p=p(w,p). The coefficient of
absorption for radiation in the liquid is determined by
the state of the liquid, i.e. K=K(w,p). With these
assumptions, the equations of hydrodynamics have the
following form:

•£-<>.
= p(u>, p),

= K(w, p).

(2.1)

(2.2)

(2.3)
(2.4)

These equations must be supplemented by the initial
conditions

ρ (0, χ) = j>0, w (0, x) = w0

and by the conservation of mass law

(2.5)

(2.6)

Here, q(t) denotes the intensity of the radiation incident
on the liquid \g(t) =0 at t« 0].

1'Assuming that the minimum distance from the envelope of the
lamp to the surface of the cuvette is large in comparison with
Κ"4 (the walls of the cuvette do not enter into the core region).

In order to solve the problem, it is convenient to
represent the quantity w' = w -wQ in the form w' =w[
+w'2, where the terms wx and w2 satisfy the equations

Ρ-5Γ- =

dp
" at •

(2.7)

(2.8)

We thereby separate two essentially different mech-
anisms for heating the liquid: as a result of absorption
of radiation and as a result of an increase in pressure.
Estimates show that in the core region w[»w^, while
in the remaining volume of the liquid the opposite in-
equality is satisfied.5 Physically, this indicates that
within the core the liquid absorbs nearly all the radia-
tion, it is strongly heated and it expands, pressing
like a piston against the remaining mass of the liquid,
which is compressed adiabatically and as a result heats
up.

It is clear from what has been said that the quantity
w[ can be neglected outside the core in comparison
with w'z, while the problem (2.1)-(2.6) can be linearized
with respect to all variables in view of the small adia-
batic compressibility of real liquids. From here, we
immediately find that w'z =p'/p0.

The equation of state of the liquid in the region of the
core can be represented in the form

p(u>, (2.9)

As will be evident from what follows, p' is always in-
versely proportional to 6, while at the same time the
other quantities on the right side of (2.9) depend weakly
on δ. For this reason, ior sufficiently large δ, the
change in density within the core, caused by an increase
in pressure, can be neglected in comparison with the
change connected to the increase in enthalpy. Estimates
show that the limits placed in this connection on the
quantity δ, usually reduce to the same condition Κ δ » 1.
In addition, taking into account the fact that near the
core t»2«M;i, w e fmc* tha-t here the equation of state
degenerates in to the equation of an isobar p = pp(wx).
From what has been said, it is clear that within the
limits of applicability of the present analysis the actual
value of p in the equation for the isobar is unimportant.
For this reason, the subscript/» will be deleted in what
follows, Pp(w1) = p(wx). The same is true concerning K,
i.e. J

In this case, Eq. (2.7) can be solved in general form
with respect to wx for practically arbitrary functional
dependences of ρ and Κ on wx.

The method for solving such equations is presented in
Ref. 7. Omitting the cumbersome computations, we
immediately present the final result:

<°M

ρ(u>) Γκ(!/>) fp(u. ' )du>l du>, (2.10)

where wM{t) = ινχ\^0 is the maximum value of the enthalpy
of the liquid, attained at the time /. The quantity wM

is most easily determined in the case of bulk absorption
of radiation (Κ =μρ, μ =const). In this case [see (2.7)]
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I

w'u = μ J ι V)d1' · (2.11)

we obtain for p' the expression

Equation (2.10) determines the function wl =M>1(*, <)

in an implicit form.

It is convenient to represent changes in density in the

form p'=p[ + pi, where pi is connected to the direct

heating by radiation (i.e. with w,), while p.£ is connected

to the heating due to adiabatic compression (p^ =/>'(«|).

Using the law of conservation of mass (2.6) and taking

into account the fact that according to (2.10)

pj (!»,) ix sa j p, -~ dwl

(2.12)

where ρ = ulpo/^-o a n d \ S-*V * s the optical thickness
of the unperturbed liquid.

Equations (2.9)-(2.12) together with the condition
p' =p,(w1) + (p'/»l) represent a complete solution to the
problem posed. Corrections to the solution, due to the
influence of the increase in w2 and/) on the formation of
the profile of thermodynamic variables near the core
can, if necessary, be obtained by the method of suc-
cessive approximations.

We emphasize that at ρ((ω1)<0, the liquid in the core
expands, and furthermore, inasmuch as the volume of
the core is small, in order that the conservation of
mass law be satisfied, | pi^v^)^p'M\, i.e., the
change in density in the core can be very large.

In this manner, in the case being examined, the
liquid in the core region is comparatively easily
transformed into a state with low density and high
pressure and temperature. We emphasize that for a
cuvette with a good airtight seal such states of the
liquid are comparatively "long-lived." The time re-
quired for smoothening the density and temperature
profiles is of the order of (Α^χ)"1, which in typical
situations4'6 constitutes 0.1 s and can be significantly
increased, since the quantity Κ can vary over a wide
range.

For the reasons indicated, such a method for acting
on a liquid with radiation appears to the authors to be
particularly useful for studying the physico-chemical
properties of a liquid at values of p, p, and Τ that are
difficult to attain.6

Let us again examine Eq. (2.12). For small energy
deposition, when the linear approximation is also valid
in the core region, (2.12) reduces to

t

ρ' »Γ04- f q(t')dt', (2.13)
ο

where Γο denotes the Gruneisen constant for the given
liquid under the initial conditions (Γ = au2/C%). The ex-
pression (2.13) has a simple physical meaning and can
be immediately written down without any calculations.
Indeed, sf£q(t')dt' is the total change in the internal
energy of the liquid (here, S is the surface area of a

face of the cuvette through which the radiation is intro-
duced), while Γ, by definition, is a dimensionless co-
efficient of proportionality between the volume internal
energy density of the body and the pressure corre-
sponding to it.2) From here, expression (2.13) follows
immediately.

In the other limiting case of very large energy input,
when P(M> M )«P 0 , the following asymptotic value is
obtained from Eq. (2.12) for the increase in pressure
dp':

B

p(w) dw)~ (2.14)

/ J pdw converges for any arbitrarily weak attractive
force, existing at large separation distances between
molecules in the liquid, and has the physical meaning
of a volume energy density, which the liquid acquires
on condensation at constant pressure from an infinitely
rarefied state to a state corresponding to an enthalpy
density equal to w0. But, then, in order of magnitude
f~opdw~ulpo, i.e. the expressions (2.13) and (2.14)
differ only by a renormalization of the Gruneisen con-
stant, so that the function (2.12) can formally be re-
written in the form (2.13), introducing an effective
Gruneisen constant T(wM). From the fact that Γ,, is of
the same order of magnitude a s Γο, it follows that
Γ(«)Μ) varies comparatively little.

Let us return to Eq. (2.12), which can be written in
the form p' =pf(tvM), where/(wM) is a dimensionless
function of the enthalpy. We assume everywhere below
that K(w) = μρ(ι*>), μ = const (bulk absorption). Then,
referring w to the critical value of the enthalpy wc,
within the limits of applicability of the principle of cor-
responding states, it may be expected that the func-
tion f(w/wc) will be a universal function that describes
the response of various liquids to the action of radia-
tion. Quantitative calculations, using real equations
of state tabulated in Ref. 9 and 10, have shown that the
function f(w/wc) for greatly different liquids (ethyl
alcohol, benzene, ammonia, water) almost coincide
within the error admitted by the method.

We emphasize that the initial conditions must also
satisfy the principle of corresponding states (i.e.,
the ratios po/pc and wo/wc must be the same for dif-
ferent liquids). Figure 2 illustrates the function
/(M'M/M'C) a t Po/Pc = 0.015 and wo/wc = 0.37, which
corresponds to the normal conditions for ethyl
alcohol. The values of Γο and Γ, in this case equal
r o =0.6and Γ. = 1.6.

Everything that has been stated above corresponds to
the case for which there is no liquid-vapor transition
as a result of the action of radiation. Let us determine
when this will occur. Since p =/»(/), while w =w(t, x),
for each moment in time there corresponds a single
value of ρ and a continuum of values for w, contained
in the intervalp'/po^w'^w^. For this reason, the
states of the liquid on the (w,p) surface will be repre-
sented by some two-dimensional region, bounded on the
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FIG. 2. (w, p) diagram for action of radiation on 96% ethyl al-
cohol. 1—universal function/(«??/?>?); the initial region of this
curve is shown on a smaller scale in the upper left. 2—the bi-
nodalline for ?<ifK <fi=p/pc = l. 5); the liquid boils for «)H>M;B.
The further evolution of the heterogeneous phase mixture is
shown with boldface dots; the arrows indicate the direction of
motion of the dots with time; ®denotes a critical point. 3—the
binodal line for π> πκ Gr=2.6); boiling does not occur. The ex-
perimental data correspond to the pressure pulses illustrated
in Fig. 3 (Ο—Ι, Δ—2, V—3, •— 4); inifce latter case, only
the point for which ivM<wB is shown.

right by the curve p =p(wu), determined by Eq. (2.12),
to the left by the straight line p'=p,jv', and above by
the straight line p =/>M, corresponding to the maximum
pressure attained in the liquid at the end of the laser
pulse. Further, let the equation ρ =pa(w) describe the
liquid-vapor phase equilibrium curve (binodal). Then,
the liquid will not boil if one of the following conditions
is satisfied: w u < u>B, where wB is the smallest root of
the equation p(w) =pB(w) [here and below p(w)sp(tuu)
and is determined by Eq. (2.12); see Fig. 2], or this
equation has no solution in general. In the latter case,
for sufficiently large inputs of energy, the liquid will
be transformed into the supercritical state along a
path completely lying within a single-phase region.

Since/(WM/H;C) is a universal function, the single
parameter that determines the presence or absence of a
solution to the equationp{w)=p^{w) is the quantity/»
[see (2.12)]. With a variation in ρ (for a given liquid,
this in essence reduces to a variation in Λο) the curve
p(w) varies congruently. There exists a certain char-
acteristic value pK at which it is tangent to the binodal.
Since the equation of the binodal also approximately
satisfies the principle of corresponding states,11 the
universal quantity will not be pK, but TtK =p\/pc. For
the curves shown in Fig. 2, irK«2.1. In the case of
ethyl alcohol, this corresponds to an initial optical
thickness ΛοΚ~ 83.

For p<pn and sufficiently large energy input (wM>wB),
the liquid will boil.3) A rigorous analysis of the boiling
process is impossible on the basis of the one-dimen-
sional considerations presented above. However, it is

3'For pulsed heating of a liquid, the liquid boils with a transi-
tion into a metastable state, which is the greater, the greater
the rate of energy liberation. For this reason, boiling begins
when »'M exceeds «fe, as suggested in the text. These prob-
lems will be examined in greater detail in Chapter 3 of the
present review.

physically evident that if the liberation of energy in the
liquid will continue, then due to the fact that the total
volume is enclosed, it will lead to an increase in pres-
sure as before. In this case, the points that describe
on the (w,p) diagram the state of the liquid and the vapor
phase in the boiling layer will move along the two
branches of the binodal curve ("liquid" and "vapor";
see Fig. 2) in the direction of the critical point. With
further liberation of energy, this process must con-
tinue until the pressure in the liquid is equal to pc.
At this instant, the points that describe the state of the
heterogeneous phase mixture, moving along both branch-
es of the binodal curve, will coalesce at the critical
point, i.e., the entire boiling region will move into the
vicinity of the critical point. With further liberation of
energy, the liquid will again heat up as a single-phase
system.

In this manner, for any value of the optical thickness
of the liquid layer in the cuvette that satisfies the in-
equality Λο>ΛοΚ (where A^ is a constant for the prob-
lem) and arbitrary initial conditions in the region
po<Pc,Po>Pc, with sufficiently large inputs of energy
at some point in time there will necessarily exist a
region in the liquid located in the vicinity of the critical
point.

This assertion becomes completely obvious, if it is
recalled that, as noted above, there exists a profile
in the liquid at each fixed moment in time for values
of the specific enthalpy, the magnitude of which falls
into the interval wm(t) * w « wu(t). Beginning at some
instant the critical value of the enthalpy falls within
this interval, so that a region arises in the liquid in
which w =wc. Inasmuch as the pressure is the same
at all points in the cuvette, at the instant that £(0 be-
comes equal to/>c, the indicated region is necessarily
near the critical point. The condition Λο>ΛοΚ guar-
antees that the pressure in the liquid does not exceed
pc before wK falls into the interval [a;m; wM].

The moment at which the critical point is attained
can be detected experimentally by the appearance of
critical opalescence. By measuring the energy intro-
duced into the liquid and the pressure at the instant
critical opalescence appears, it is possible to de-
termine two critical parameters (pc and wc) im-
mediately. For this reason, the indicated method
can be used for diagnostics of the critical point.812

It is important that the pressure in the liquid can be
determined directly by the indications of gauges placed
in the liquid,5'12 as well as by measuring the density
outside the core (/»' =u\p'), which in turn can be
carried out by optical measurements with great pre-
cision. In other words, pc and wc can be determined
without direct contact with the liquid during the exper-
iment, which makes it possible to study corrosive and
toxic liquids when necessary.

Another important advantage of the indicated method is
the possibility of using small volumes of the liquid
being studied for performing the measurements (act-
ually, volumes ~1 cm3).

Let us proceed to a discussion of the experimental
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results. The appropriate experiments were performed
in Ref. 5 and 12 for the purpose of simulating the opera-
tional conditions of powerful pumping sources for solid
state lasers, which imposed great limitations on the
experiments. The most important of these is a limi-
tation on the maximum radiation energy density with a
magnitude ~ 5 J/cm2 (with τ" 500 μβ), which is attained
by the maximum performance of the pulsed lamps used
in Refs. 5 and 12 as radiation sources (a tubular pulsed
Xe 400 lamp, ψ 11 x 250). The lamp was placed co-
axially inside a cylindrical steel chamber (6=7 mm).
The space inside the chamber was filled with the
liquid being studied (96% aqueous solution of ethyl
alcohol, in which a special dye was dissolved, which
allowed varying its coefficient of absorption). In order
to detect pressure pulses that arise in the liquid at
the time the lamp is flashed, piezoelectric pressure
gauges were used, calibrated according to the ruptured
diaphragm method.13 Typical oscillograms of the pres-
sure pulses are shown in Fig. 3. This figure also shows
the shape of the pulse of radiation, lying in the absorp-
tion band of the liquid (220-400 nm). The comparatively
rapid relaxation of pressure after the lamp is flashed
for large energy of input (curve 4) is explained by the
inadequate airtight seal of the cuvette.

The results of the measurements of pressure pulses
for different values of the absorption coefficient and
energy input to the liquid are shown in Fig. 2 in terms
of dimensionless variables. The good agreement be-
tween theory and experiment is evident. However, the
available experimental data are insufficient for a
complete description of the function f(wM/wc): all the
experimental points fall on the initial part of the cor-
responding curve.

The optothermodynamic method for diagnostics of the
critical point was first attempted experimentally in
Ref. 12. The experimental setup was the same as in
Ref. 5, but the chamber in which the lamp was placed
had an optical window that allowed recording the radia-
tion scattered by the liquid. A 96% ethyl alcohol solu-
tion was again chosen as the liquid to be studied, which
permitted a comparison of the measured values of the
critical pressure with the tabulated data.

The characteristic radiation of the pulsed lamp scat-
tered from a thin ("A"1) layer of liquid adjacent to the
surface of the lamp envelope was studied in the surface

e-

FIG. 3. Oscillograms of pressure pulses in an airtight cuvette
(1-4) and the shape of the radiation pulse (5). Λ0 = 12 (1, 3) and
Λο = 180 (2,4); the total energy input constitutes 1. 7 J/cm2 (1,
2) and 4. 7 J/cm2 (3,4). For Λο =180, the instant at which boil-
ing appears corresponds to a pressure p'(wB)& 14 bar5.

A'bar fe, relative units

FIG. 4. The action of radiation on a 96? aqueous solution of
ethyl alcohol. 1,2—intensity of scattered radiation, 3—inten-
sity of radiation from the lamp, 4—pressure pulse in the liquid
with Pu>Pc corresponding to the curve 1. For pll<pc, when
the critical point is not attained, the peak in the scattered in-
tensity is also absent (2)12.

of the lamp envelope and in a direction perpendicular
to the axis of the lamp. Typical results of the measure-
ments are shown in Fig. 4. It is evident that the inten-
sity of the scattered radiation for Λο>ΛοΚ has a distinct
maximum for p~pc, the position of which in general
does not coincide with the maximum in the intensity of
the radiation emitted by the lamp. In addition, the ef-
fect has a threshold character: when the critical pres-
sure is not attained in the liquid, the peak in the inten-
sity of the scattered radiation is also absent.

In this manner, the data obtained in Ref. 12 indicate
the efficacy of the optothermodynamic method for di-
agnostics of the critical point and for measuring the
critical parameters of a substance.

3. THE LIQUID-VAPOR PHASE TRANSITION
UNDER THE ACTION OF LASER RADIATION

In this chapter of the review, the modern understand-
ing of the kinetics of boiling in a superheated liquid
are briefly presented. In making this presentation, our
purpose is not to describe any specific experiments,
and the basic theoretical situation is presented in a
very compressed manner, but with a detailed indication
of the appropriate literature.

At the same time, we would like to emphasize that
many problems in the kinetics of boiling (which will be
described below) are clearly inadequately studied,
especially from the experimental point of view. The
action of laser radiation on the liquid being studied
appears to us as a very convenient method for creating
local superheating in the liquid, which has many ad-
vantages in comparison with the traditional methods
(electric heating and so on). The main advantages are
the possibility of introducing large energy fluxes into
the liquid and the possibility (for small coefficients of
absorption) of a comparatively uniform distribution of
this energy throughout the volume of the liquid being
studied.

The reasons indicated encouraged us to include the
present section in this review.

a) Metartable liquid

Let us briefly recall some of the general principles of
the thermodynamics of a metastable liquid.3·11
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FIG. 5. Tv diagram of the states of a liquid (schematic).
XCB-binodal, JCC£>-spinodal, C-critical point, /-stable region,
Πα, //e—metastable region.

For clarity, we shall make use of the Tv diagram,
illustrated in Fig. 5. The region / is a thermodynam-
ically stable single-phase region. The (binodal) curve
ACB separates it from the metastable region // (JIa

corresponds to the superheated liquid, IIB corresponds
to the supercooled vapor). The curve ACB is a pro-
jection onto the Tv plane, the line of intersection of two
surfaces representing the chemical potentials corre-
sponding to the liquid μι, and gaseous μ ν phases. For
this reason, by definition, μ!, = μ ν everywhere along the
curve ACB. In the metastable region IIa, μ ν < μ ^ i-e.
the gas (vapor) phase is thermodynamically more
favorable than the liquid phase (in region ΙΙ6μν> pL,
i.e., the liquid phase is more favorable in this region).
However, since for the chemical potentials of each of
the phases the binodal curve is not remarkable in any
way, the liquid in region IIa (or the vapor in region //e)
remains stable relative to small heterogeneous phase
fluctuations. This indicates that fluctuations less than
some critical value are dissipated without causing an
instability. The separation into two phases begins only
when the fluctuations attain a critical magnitude. When
such a critical fluctuation does not penetrate deeply into
the metastable region, it appears as a nucleus for a new
phase (a gas bubble or liquid drop) with a thin transi-
tion layer between the two phases, which permits intro-
duction of a physically sensible boundary separating
the phases and a corresponding surface tension σ. For
definiteness, let us examine further the region IIa. The
minimum work for the formation of a gas bubble with
radius r equals4'

where η is the number of particles per unit volume of
the gas phase.

For a fixed state of the liquid, the work R^ depends
only on the radius of the bubble r. The radius of the
critical bubble rK corresponds to the maximum of the
expression (3.1).

For a stationary boiling process, the state of spon-
taneous formation Of nuclei J ("nucleation rate") in this
case equals

/=»,Be-'WT, (3.2)

where »0 is the number of particles per unit volume of

the metastable phase. The factor Β has the dimensions
of sec"1. There exist various methods for roughly
estimating this factor.11 In order to determine the
quantity Β correctly, the solution of a kinetic equation
that describes the boiling process is required. Appar-
ently, this was done most consistently in Ref. 14, but
the expressions obtained therein are very cumbersome
and will not be presented here. Typical values for di-
electric liquids are B~ 10"10 s ' 1 .

If the system in region / is abruptly transformed into
region//,, at t =0, then a characteristic time τ8 is
required in order to establish stationary boiling. The
transition of the boiling process into a stationary state
was first discussed in the classical work of Ya.B.
Zel'dovich,15 who obtained the following expression for
the nucleation rate:

/·=/«,-W" (3.3)

4'Using the thermodynamlc identities, the expression for Rmitl

can be written in various other equivalent forms3·11.

where J is determined by Eq. (3.2). In subsequent
studies,16"19 it was shown that Eq. (3.3) gives a correct
quantitative description of the temporal evolution of
the boiling process. More rigorous estimates of the
characteristic time TS are made in Ref. 18 and 19. In
accordance with Ref. 18 TS is given by

where Ν is the number of particles in the gas phase,
located in the gas bubble with dimensions r. The index
Κ denotes that the expressions entering into (3.4) are to
be considered for the case of a bubble with critical size.
A similar expression was also obtained in Ref. 19.
Estimates using Eq. (3.4) give a value τ8~ ΙΟ"9-10"8 s
for dielectric liquids11; for molten metals τ8 is sig-
nificantly lower (10"13 - 10"11 s20). As evident from Eq.
(3.3), if the time for heating the liquid is small com-
pared to T8, then the boiling process does not have time
to "adjust itself" to changes in the degree of overheat-
ing, which leads to a deeper penetration into the meta-
stable region than with slow "adiabatic" heating of the
liquid.

We note that the characteristic time for boiling,
generally speaking, is not related to τ 8 and depends on
the formulation of the problem. For example, it can
be defined either as the average time required for the
appearance of at least a single bubble of critical size
somewhere in the volume of liquid being studied or as
the time over which the total volume of the vapor phase
becomes commensurate with the volume of the liquid5'
and so on.

The difference μ!, - μ ν increases in proportion to the
penetration into the region IIa, which leads to a de-
crease in rK [see (3.1)], so that finally a macroscopic

5)In this case, assuming the discussion does not concern the
crudest estimates, it is necessary to take into account the
fact that energy is expended on the formation of bubbles, and
for this reason, the degree of overheating of the liquid de-
creases in proportion to the increase in the number and di-
mensions of bubbles, which, in its turn, alters the kinetics of
the phase transition. A correct solution of such a self-con-
sistent problem was first given in Ref. 21 for the case of con-
densation precipitation from a supersaturated solution.
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treatment becomes impossible.

The metastable region II is separated from the region
with absolute thermodynamic instability (the region of
lability) III by the curve KCD (spinodal). Both curves
ACB and Κ CD coalesce at the critical point C. The
isodynamic stability coefficients vanish along the spi-
nodal, i.e.,

( — ] = — = 0 — 1 - ^ - \ =κβ =0
\ as ) ρ cp ' \ dv }T

 p r '

so that in region /// Ct and βτ are negative.

Let us examine the details of phase transitions in a
metastable liquid (region IIa) near the lability boundary.

The nucleation rate in this case is determined accord-
ing to Eq. (3.2) as before (but, of course, with a dif-
ferent value for the factor B), but the expression for
iimin cannot now be represented in the form (3.1). It
turns out22 that critical fluctuation near the spinodal
curve has nothing in common with the nuclei of a new
phase, but rather represents a smooth change in the
density of the liquid, which nevertheless is everywhere
greater than the equilibrium density of the gas phase
p v . The characteristic size of the region is greater the
closer we approach the spinodal curve, while on the
spinodal curve itself it becomes infinite. On the whole,
a phase transition near the lability boundary proceeds
as shown schematically in Fig. 6. In this manner, the
problem concerning the magnitude of the surface tension
near the spinodal, first states by Gibbs,23 is removed,
at least for a critical fluctuation, since the boundary
separating the phases is simply absent.

The lability region /// is a region in which arbitrarily
small perturbations of a single-phase system have a
tendency toward unlimited growth, which finally leads
to a separation of the system into two phases.

The kinetics of a phase transition in the region of
absolute instability were first discussed by Zel'dovich
and Todes.24 However, this work was performed be-
fore the development of the fluctuation theory of the
critical point (see, for example, Ref. 25) and for this
reason needs to be made more precise.

We note that the application of the methods of the
fluctuation theory of critical phenomena to the study
of metastable states, in its turn, requires additional
corroboration due to the finite lifetime of such states,

FIG. 6. A phase transition near the lability boundary (schem-
atic). t'v and vh denote the specific volume of the stable gas
and metastable liquid phases, respectively. The boldface line
represents the critical fluctuation. The arrows indicate the
direction in which the fluctuations develop. Subcritical fluc-
tuations dissipate, which supercritical fluctuations grow until
the density in the center of the fluctuation attains py =t» v " ' ;
after this, the fluctuation "spreads out".

while it is necessary to find the settling time in order
to determine the scaling properties. This time in-
creases without limit as the singular point (in this
case, the spinodal curve) is approached. However,
these problems have not been studied in detail as far
as we know.

In concluding this section, we note once again that due
to the recent progress in the techniques of laser ex-
periments, most of the problems discussed here pass
from abstract discussions to experimentally observa-
ble effects. In particular, it would be possible to ob-
tain a great deal of information by studying the scat-
tering of light on large scale density fluctuations near
the lability boundary, by studying experimentally the
kinetics of a phase transition in the region of absolute
instability, and so on. However, as far as we know, no
experiment of this type has yet been performed.e)

It should be especially noted that, in using lasers to
create metastable states, it is necessary to focus the
radiation inside the volume of the liquid being studied.
When the radiation acts on the free surface, the creation
of metastable states is inhibited by the appearance, in
this case, of an instability in the vaporization front,
with which the following section is concerned.

b) Instability of the vaporiation front

The experimentally observed laws governing the va-
porization of condensed substances as a result of the
action of laser radiation can be satisfactorily explained
by starting with the model of surface vaporization (see,
for example, Ref. 32). In accordance with this model,
vaporization occurs from a thin (of the order of inter-
atomic distances) surface layer of a condensed phase,
to which energy is transferred by thermal conductivity
from the region in which light is absorbed. Since the
depth to which light penetrates inside the condensed
phase, even for the most strongly absorbing sub-
stances (metals), is large in comparison with the
thickness of the layer from which vaporization occurs,
the temperature profile inside the evaporating body
has a maximum.

It is easy to see that in this case the planar phase-
separation boundary can turn out to be unstable with
respect to small perturbations in its shape.127 Indeed,
when some part of the boundary is displaced toward
the hotter condensed phase, the flow of heat to this
region increases, which leads to further acceleration
of the boundary. In this manner, the physical nature
of the instability being examined consists in the fact
that the vaporization front moves in the same direction
as the temperature gradient. For this reason, it is
apparent that the amplitude of the increasing perturba-

6)Ihteresting results concerning the spinodal properties of bi-
nary liquid mixtures, solid solutions, and alloys are con-
tained in Ref. 26—28. We also draw attention to a recent re-
view125, which is concerned with the spinodal separation of
different thermodynamic systems and which contains an ex-
tensive list of references. However, inasmuch as most of the
problems examined in the cited references lie outside the
framework of the present review, it is not possible to exam-
ine the work presented therein in detail.
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tions is limited in this case by the thickness of the sur-
face layer, in which the flow of heat is directed from
the condensed phase to the vaporization front, i.e., the
distance at which the temperature maximum occurs.

This description of the development of the process
assumes that bulk boiling does not occur. Section C
of this chapter will be devoted to this problem. It is
significant, however, that bulk vaporization in fact
leads to the same result as the thermal instability
being studied, viz., to the destruction of the over-
heated layer and dispersing of the condensed phase. In
this manner, the appearance of metastable states in
experiments involving laser vaporization is unlikely and
there is no sense in discussing this problem.

Let us briefly consider the quantitative description
of the instability mentioned. The temperature distribu-
tion established in the condensed phase satisfies the
equation

(3.5)

expression for the rate of vaporization takes the form

Q~Aq<i(t)K exp {-Klx-X(y, t)]},

where X{y,t) is the coordinate of the phase separation
boundary. For simplicity, we neglect the temperature
dependence of the optical and thermophysical properties
of the substance. In addition, we assume that qo(t) var-
ies little over the time ~ x/V%, where Vo is the speed
of the vaporization front in the quasistationary regime.

Equation (3.5) must be supplemented by boundary con-
ditions. We will choose the boundary condition for
x-°° in the form r r 5 - 0. The other two conditions are
given on the boundary x=X(y,t). One of these relates
the normal (with respect to the perturbed boundary)
component of the temperature gradient in the condensed
phase to the energy expended on vaporization. If the
perturbation has a small curvature, this condition can
be written approximately in the form7'

for v, 0. (3.6)
where the dot indicates a derivative with respect to
time.

The second boundary condition determines the de-
pendence of the speed of the vaporization front on the
temperature of the surface of the condensed phase and
follows from the equation describing the kinetics of
vaporization. In experiments involving laser vaporiza-
tion, the vapor pressure on the surface usually sig-
nificantly exceeds the pressure of the surrounding
atmosphere, and for this reason, it can be assumed
that the vaporization occurs in a vacuum. In this case,
the mass flow and the speed of the vaporization front
are proportional to the saturated vapor pressure, (see,
for example Ref. 32, as well as Chapter 5 of this
review). Taking into account the effect of the finite
curvature of the evaporating surface on the magnitude
of the pressure of the saturating vapor above it,3 the

where U and Xt are constants, equal in order of mag-
nitude to the speed of sound in the condensed phase and
the microscopic heat of vaporization, respectively (we
neglect here the weak temperature dependence of U,
which is not important for the following analysis), the
exact values of which are obtained from a comparison
with the experimental data on the saturating vapor
pressure; Rl>2 are the values of the main radii of
curvature of the evaporating surface (the normal is di-
rected into the gas phase).

Equation (3.7) is valid for Τ«λ 1 . It will be assumed
everywhere below that this inequality is satisfied. We
note also that if Eq. (3.7) is formally generalized to
interatomic distances, then for RllZ~nll/3 all the terms
in the exponential are of the same order of magnitude.
From here follows the effective relationship between

h

The problem (3.5)-(3.7) has a quasistationary solution
in the form of a plane vaporization wave, propagating
with a constant speed Vo. Let us introduce an "instan-
taneous" variable ξ =x-Vot. The solution to the quasi-
stationary problem Τ0(ξ) is not difficult to obtain in an
explicit form. However, below, we only need the values
ô» To(°)> a n d °>e derivative Toe(0), which can be ob-

tained from the following simple considerations. Let
us use the law of conservation of energy, which is
obtained from (3.5) by integration with respect to ξ and
has the form

pV0 (λ + CT, (0)) = Aqt.

Neglecting CTo(0) in comparison with λ and using (3.7),
we then obtain

(3.8)

T)A more precise condition, which takes into account the temp-
erature jump in the Knudsen layer and the kinetic energy of
the vapor, is used in Ref. 127.

The value of T^O) is determined from Vo and the
boundary condition (3.6).

Let us now examine the stability of the stationary
solution with respect to small perturbations of the
temperature distribution and the shape of the phase
separation boundary in the form

Τ = Τ, (ξ) + 7\ (ξ) exp (Iky + yt),

X = V,t + Xi exp (iky + yt).

Here, (l/J^ + 1/H2)~ -Xm, while the boundary condi-
tions imposed on the perturbed boundary ξ
=Xlexp(tfey+y<), must be transferred to the plane
ξ = 0, expanding all the functions entering into them in
a series in powers of X r The stability problem is then
solved in the standard manner.

The analysis of the resulting dispersion relation-
ship, performed in Ref. 127, shows that for the un-
stable branch of the spectrum y(ft) = 0 at k = 0 and is
negative for small positive values of *, i.e., the prob-
lem is stable with respect to long wavelength perturba-
tions. However, besides the trivial solution kl =0, the
equation y(k) = 0 usually has two other real roots k2

and k3. In this case, in the region k2<k<k3 the in-
crement y(fe) is positive, i.e., perturbations with such
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wave numbers lead to the development of an instability.
Finally, at k>k3 the quantity y{k) is negative, so that
the short wavelength perturbations also do not lead to
the appearance of an instability. However, the reasons
for stabilization of the instability in the long wavelength
and short wavelength regions are very different.

The suppression of instability in the long wavelength
region is explained by the fact that the dominant role in
improving the conditions for heat transfer near the
"indented" region of the surface is played by the heat
flow "from the sides," i.e., in a tangential direction
with respect to the unperturbed surface. When the
curvature of the perturbed region is small, the tan-
gential component of the heat flux is also small, so
that the improvement in the conditions for heat trans-
fer turns out to be insufficient to compensate for the
heat losses related to the increase in the vaporization
rate, and such perturbations are extinguished.

In the short wavelength region, the perturbation is
stabilized by the presence of surface energy on the
phase separation boundary and is explained by the fact
that for a large curvature in the perturbed phase
boundary the increase in the vaporization rate, related
to improved conditions for heat transfer, is compen-
sated by a decrease in this rate due to the drop in the
pressure of the saturating vapor above the indented
surface.

In the region of instability (k2<k<k3) the quantity
y(k) at first increases monotonically with an increase
in k, reaching a maximum for some value k =knax, and
then, with further increase in k, it begins to decrease
monotonically.

Analysis shows127 that the quantity k2 is always of the
same order of magnitude as K. However, the values of
&max and k3 significantly depend on the parameters of the
problem. In general, these quantities are obtained
from a numerical analysis of the dispersion equation.
The analytical expressions are cumbersome and are not
very accurate. However, in the physically important
and interesting case, when the quantities k2, kmUL, and
k3 satisfy the conditions kz<^kmx<^k3t a complete
analytical analysis of the problem is possible. In this
case

(3.9)

(3.10)MO)

where CA=Cp/n0 is the atomic heat capacity (i.e., a
number, since the temperature is measured in energy
units).

The quantity yralx = y(*max) for kma^k^K can be
found directly from Eq. (3.7). The contribution of the
perturbation in the temperature distribution to the
dispersion equation, in this case, is small in com-
parison with the contribution from the perturbation in
the shape of the vaporization front (the small param-
eter is K/k). For this reason, it can be assumed in
(3.7) that T(X,y, t)« T0(X,y, t). Substituting here the
expression (3.8) for X and neglecting the quantity

FIG. 7. The boundary for stability of a plane vaporization
front. The stable region is shaded.

of the condition

°~TtW

,, we obtain from (3.7)

7Όι(0). (3.11)

The relationship between the instability of the phase
boundary and the direction of the temperature gradient
in its vicinity, as noted above, is immediately evident
from the expression (3.11).

Using the condition (3.6), the expression (3.11) can be
rewritten in the form

Since the time for establishing the quasistationary va-
porization regime is of the order of x/V%,32 it is evident
from (3.12) that, in this case, the instability develops
significantly earlier than the establishment of the quasi-
stationary vaporization regime.

We note that expressions (3.9) and (3.12) can also be
used with weakly nonstationary vaporization, if VQ and
To are viewed as slowly varying functions of time (on a
time scale much greater than Vmlx)·

It is evident from Eqs. (3.9)-(3.12) that the magnitudes
of kmix, k3, and ymax also decrease with a drop in the
intensity of the laser radiation, i.e., the region in which
the instability exists decreases (we recall that the low-
er boundary of the unstable region k2 depends weakly
on the parameters of the problem), as well as the max-
imum value of the increment. For some, sufficiently
small values of k0 the region in which the instability
exists completely disappears, i.e., stable motion of the
plane vaporization wave becomes possible. The thresh-
old for the appearance of instability q*, normalized rel-
ative to the quantity qK = ϋρλ/A, depends on the single
dimensionless parameter A = Ko/(\ln0)~Knlx-'3. The
corresponding curve is shown in Fig. 7. It is evident
from the graph that the region of stability has a real
physical meaning only with the action of radiation on a
metallic target. In this case, the characteristic value
of q* is of the order of 10 6 - 10" W/cm2. In the case of
dielectric liquids, the maximum value of q* does not
exceed 102 —103 W/cm2, while its typical value is much
less than this magnitude.8' Such low intensities, as a
rule, are not physically interesting, so that it may be
asserted that when laser radiation is incident on the

c*m«/n0 in comparison with as a result

8)The magnitude of q* for dielectric liquids varies over a wide
range, mainly due to the large variation in their coefficients
of absorption. Values of q* of the order of 102-103 W/cm2

correspond to K~ 103 cm' 1 , the maximum value of Κ en-
countered at laser frequencies for pure liquids.
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free surface of a dielectric liquid the plane vaporiza-
tion front is always unstable. The development of the
vaporization process in this case is determined by the
nonlinear stage of the indicated instability and requires
a separate examination.

We emphasize that the type of instability studied in
Ref. 127 has a very general character. The results
presented above are easily generalized to the case of
a nonplanar phase separation boundary (interaction with
aerosols), the case of sublimation of solids, and other
types of phase transitions.

A distortion in the shape of the phase-transition front
can lead to the excitation of capillary (in liquids) or
Rayleigh (in solids) waves. Without changing the qual-
itative nature of the instability, such waves must lead
to temporal modulation of the reflection coefficient for
radiation and to other experimentally observable effects.
This class of problems is interesting in itself and was
not considered in Ref. 127.

In experiments concerning laser vaporization of con-
densed substances, many characteristic phenomena
have been established that could be related to the
thermal instability of the phase separation boundary.
Thus, for example, it has been observed repeatedly
that there is a sharp change in the nature of the light
scattered from a metallic surface and in the magnitude
of its reflectivity with the onset of intense vaporization,
and that a significant part of the products in the laser
destruction of metals consists of a liquid phase, while
the average specific energy for destruction is always
lower than the specific heat of vaporization (see, for
example, Ref. 32). All of these phenomena can in-
directly indicate the development of a thermal instabil-
ity and the dispersing of the liquid phase related to it.
The instability in the vaporization front under the action
of laser radiation on the free surface of dielectric
liquids (acetone, ethyl alcohol) observed in Ref. 33 and
explained therein as an explosive decomposition of the
metastable phase, in our opinion, should be explained
not by this reason, but rather by thermal instability.
We emphasize, however, that direct experiments, in
which the thermal instability of the front of the phase
transition is directly studied, have not been carried
out and, from the experimental point of view, this
problem remains open.

c) Volume and surface formation of vapor

The question concerning the relative contribution of
volume and surface formation of vapor as a result of the
action of laser radiation on the free surface of an ab-
sorbing liquid is apparently one of the most confused
questions in the entire subject of this review. So far
as we know, the first discussion of this problem ap-
peared in Ref. 29.9) The authors of the cited work, be-

9>We should also mention Bef. 31, in which the growth of vapor
bubbles and the role of artificial centers for vapor formation
in the liquid phase under the action of laser radiation on a
metal were studied theoretically and Bef. 128, in which the
force acting on a growing vapor bubble due to the recoil of
evaporating molecules, caused by the unsymmetrlcal evapor-
ation in the presence of a temperature gradient, was calculated.

ginning with the theory of homogeneous nucleation,3·15

estimated the total surface area of the vapor bubbles
located in the entire heated layer of liquid relative to
the surface area of the free surface of this liquid. It
was assumed that the criterion for comparing volume
and surface mechanisms for vapor formation should be
the commensurability of the corresponding surface
areas. It followed from the results in Ref. 29 that in
the case of a metallic target volume vapor formation
can be neglected up to temperatures that are close to
critical. However, the cited reference contained many
inaccuracies, while the estimates made in it were based
on approximations which were too crude. A more sys-
tematic analysis, taking into account the real tempera-
ture distribution in the liquid and the presence of im-
purities as well as bubbles of dissolved gases in the
liquid, which are centers for vapor formation,30

showed that there is a critical value for the intensity
of laser radiation qB, at which the volume process for
vapor formation predominates. Unfortunately, the
formulation of the problem adopted in Ref. 30 also
turned out to be imprecise, which led to a significant
decrease in the magnitude of qB.

The problem concerning the role of volume boiling
was studied most rigorously in Ref. 129. In this work,
a temperature profile was obtained that corresponded
to a plane stationary vaporization wave with a free
liquid surface, taking into account the energy expended
on melting (metals), the temperature jump in the
Knudsen layer, and the loss of energy related to the
vapor expansion. The effects due to volume vapor
formation were examined as a perturbation supported
on the motion of such a wave. The criterion for the
transition to volume vaporization was the commensura-
bility in the perturbation with the corresponding un-
perturbed quantities. In this case, inasmuch as the
process of vaporization from the free surface is self-
consistently related to the gas dynamic vapor ex-
pansion,32 while the evaporation in bubbles is related
to the dynamics of bubble growth, i.e., with a com-
pletely different phenomena, it is clear that the com-
mensurability of the total surface area of bubbles,
located throughout the overheated liquid, with the free
surface area cannot be such a criterion. It is more
natural to compare the mass flow, evaporated from the
free surface, and the energy expended on evaporation
from the free surface with the energy expended on the
formation and growth of bubbles, and so on.

Of all such criteria, the one chosen should give the
smallest value of qB. Such a criterion will determine
the transition to volume vapor formation. It was shown
in Ref. 129 that such a criterion is the commensura-
bility of the average distance between bubbles with the
average dimensions of the bubbles. In this case, on the
one hand, the bubbles that enter the free surface of
the liquid at each instant will significantly perturb
this surface, since the total surface area of such
bubbles becomes commensurate with the surface area
of the free surface. On the other hand, the total vol-
ume of the vapor concentrated in the bubbles becomes
commensurate with the volume taken up by the over-
heated liquid phase, which must significantly alter the
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average values of the thermophysical constants of the
liquid near the boiling point. Both circumstances must
lead to a significant distortion in the temperature dis-
tribution, calculated without taking the volume vapor
formation into account, i.e., the volume boiling ceases
to be a small perturbation superposed on the surface
evaporation.

However, the quantity qB, computed in Ref. 129, is
greater, as a rule, than the threshold for the appear-
ance of the thermal instability described in the pre-
vious section. For this reason, the unperturbed mo-
tion is not the plane wave of surface vaporization, but
the regime that forms at the nonlinear stage in the
development of the indicated instability. This changes
the entire formulation of the problem, so that the
question concerning the role of volume vapor forma-
tion due to the action of laser radiation on a free sur-
face of an absorbing liquid, in essence, remains open.

4. OPTOACOUSTICAL PHENOMENA IN AN
ABSORBING LIQUID

In concluding our treatment of the interaction of high
power radiation fluxes with dielectric liquids, let us
consider the various optoacoustical phenomena, i.e.,
the problems related to the generation of sound due to
absorption of laser radiation in the liquid. Essentially
new and interesting results, both theoretical and
experimental, have been obtained in recent times. In
this chapter we will discuss some of them. In doing so,
without attempting to "grasp the infinite," we shall
choose only those aspects of the problem that in our
opinion have general interest and that exhibit the
physics of the phenomenon.

a) Thermal and striction mechanisms for sound excitation

Optoacoustic effects in liquids, as in any other iso-
tropic medium, can arise as a result of two physical
mechanisms10': striction ("striction mechanism") and
heating of the medium, accompanied by the appearance
of thermal stresses ("thermal mechanism"). The
striction mechanism allows optical excitation of sound
in both transparent and absorbing media and, in this
respect, it is more general than the thermal mechan-
ism. However, it should be kept in mind that the ab-
sorbing properties of a medium, generally speaking,
depend on the intensity of the optical radiation, and for
this reason, it may be assumed that the thermal mech-
anism for optical excitation of sound is also effective
for all media assuming that the exciting radiation is in-
tense enough. An example of the thermal optical exci-
tation of sound in a "transparent" medium is the optical
(laser) breakdown of a medium, accompanied by the ex-
citation of shock waves and acoustic waves in the

10>When radiation is focused on the free surface of a liquid34·35

or on the boundary separating two liquids with significantly
different coefficients of absorption for radiation36, a third,
vaporization mechanism, arises due to the recoil action of
vapors. This mechanism will not be discussed here. Some
effects due to the action of the recoil pressure of vapors on
molten metals will be examined below in Chapters 5 and 6.

medium.

In this review, we shall examine in detail only the
thermal mechanism for optical excitation of sound in a
liquid. As far as the striction mechanism is con-
cerned, this mechanism, as will be shown below,
plays a secondary role in absorbing liquids, with the
exception of cases involving the generation of low-
frequency sound and hypersound, when striction can
become the dominant mechanism.

Evidently, it makes sense to compare the efficiency
of the striction mechanism with the efficiency of the
"linear" thermal mechanism. The latter mechanism
involves the case when, as a result of heating the liquid
due to the absorption of radiation, there is no change
in the aggregate state (boiling, ionization, and so on)
and the absorption properties of the liquid (as all the
thermophysical parameters); if they do change in the
irradiation process, then they change insignificantly
(only as a result of a change in temperature and pres-
sure in the absorption region).11'

In order to compare the efficiency of the two optical
methods for exciting sound, we first obtain the equation
that the sound pressure must satisfy in the presence
of both mechanisms. The starting point is the system
of linearized equations of hydrodynamics, supplemented
by the equations of state and heat transfer in the liquid:

(4.1)

Here, the index 0 is omitted for brevity, in denoting
the equilibrium values of thermodynamic variables; s
is the specific entropy of the liquid; ν is the velocity
of the liquid; η and ζ are the coefficients of shear and
bulk viscosity; ε is the dielectric permeability of the
liquid; Ε is the electric field intensity of the optical
radiation in the liquid (the brackets ( · · ·) denote an
average with respect to a period of the optical oscil-
lations); Q is the density of heat sources, due to the
absorption of optical energy in the liquid, given by
Q = -(V, S), where S = (c/4n)((E, H)) is the flux density
for optical energy (Poynting vector). On the basis of the
system (4.1) it is easy to obtain the equation

(4.2)

U)In the absence of resonant absorption, when the absorption
coefficient can be represented in the form Κ=μρ (μ is a con-
stant) , the relative change in K, resulting from a change in
temperature 7" and preseure p·, is given by (K'/K) = -aT'
+ βτ, ρ·. Taking into account the fact that for a liquid, Ι α I
S10"3 deg"1, β S10"4 bar"1, we obtain the result over a wide
range in variation of T' and p' that I K'/K I « 1. For more
details see Chapter 2 of this review.
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•where

Far away from the region in which there exists an elec-
tromagnetic field (E = 0), the thermal and striction pres-
sure forces a r e absent, while the process for propa-
gation of sound is isentropic. For this reason, in this
region, the right side of Eq. (4.2) is equal to zero. In
the region where there are sources of pressure (Ε Φ 0),
thermal conductivity and viscosity can usually be ne-
glected (if liquid metals and very viscous liquids are
not considered), which is equivalent to neglecting the
first term on the right side of Eq. (4.2). The quantita-
tive condition for this is a s follows:

•tCCmln/X· 1iln/v}· (4.3)

where v= η/ρ is the kinematic viscosity, τ is the
characteristic time for a variation of the power in the
optical excitation (in the optical generation of sound
pulses, when the power of the pulsed laser radiation
is not modulated, τ is the duration of the laser pulse;
in generating monochromatic sound with a frequency Ω,
when the power of quasicontinuous laser radiation must
be modulated at the same frequency Ω, the time τ~Ω" χ );
loan is the minimum size of the region for absorbing
the exciting radiation. When the conditions (4.3) a r e
satisfied, the heat transfer term χ,ΔΤ' in the last
equation of the system (4.1) has no significance, so that
pT(t>S'/dt)»Q(t), while the first term on the right side
of (4.2) is actually smaller than the second term.

In this manner, when the conditions (4.3) are satis-
fied, the first term can be neglected in the entire
region for generation (E * 0) and propagation (E = 0)
of sound. The condition (4.3) for nonmetallic and not
very viscous liquids is often easily satisfied. The
greatest limitations on the magnitude of τ occurs in
strongly absorbing liquids, for which usually I mm
~K~l. Thus, for CO2 laser radiation (λ = 10.6 μπι),
water, for example, has an absorption coefficient
Κ = 800 cm*1 and the condition (4.3) leads to the require-
ment τ « 10"4 s (the fact that for water χ « ν» 0.01
cm2/s has been taken into account). For visible and
near infrared radiation, in cases of practical interest
the dimension U ~ l m m . In this case, the condition
(4.3) for water is satisfied only for infrasound.12'

The relative contribution of the thermal and striction
mechanisms is determined by the ratio between the
second and third terms on the right side of Eq. (4.2).
In order to establish this ratio, we shall examine the
typical situation for observing optoacoustical effects
in absorbing media, when the exciting optical beam (or
several combined beams) is incident on the boundary

12)We note mat the condition (4.3), which represents the condi-
tion that thermal conductivity and viscosity have a small ef-
fect on the efficiency of the thermal mechanism for generating
sound, provides a lower limit to the frequency of sound Ω.
The same transport processes, as is well-known, provide an
upper limit to the sound frequency by the condition that me
absorption of the sound wave is small (i.e. by the condition
Ξ Ω «1): Ω « {«Vx, a2/»}. For most liquids, this condition
is satisfied up to hypersound.

of a liquid from a transparent medium (for example,
air). The boundary of the liquid can be either free or
covered with a transparent solid plate (the walls of a
cuvette), while the region in which the radiation is
absorbed—"the sound antenna"—in adjacent to the
surface of the liquid. Depending on the ratio between
the radius of the light beam r 0 and the mean free path
of a photon in the liquid K'x, the sound antennas can
have different geometric shapes: for A r 0 » 1, they are
shaped like a "disc"; for Kro« 1, they are shaped like
a "needle"; for Kro~ 1, the sound antenna has the same
sizes in all dimensions. [Here and everywhere below,
it is assumed that the duration of the optical radiation
τ » (cK)'1]. We note that in the case of transparent
liquids, in which radiation can be focussed into the bulk
of the liquid without significant energy losses in pro-
pagating to the focal region, the optoacoustical effects
are usually observed by varying the focussing "depth"
(observations of stimulated Mandel'shtam-Brillouin
scattering, accompanying the generation of hyper-
sound; excitation of sound and shock waves with optical
breakdown in transparent liquids). In this case, the
shape and dimensions of the sound antenna are de-
termined by the shape and dimensions of the focal
region.

Let us first examine the optical generation of sound
pulses by a quasimonochromatic optical pulse with dura-
tion τ.1 3' In this case, we have

1.22. LJEB.

where n = VE is the index of refraction of the medium and
q0 is the maximum intensity of the optical pulse. The
ratio

(α/Cp) dQIdt aryit (4.4)
(8π)-1(ρ«β/«ρ)τά<Ε»)| Cp(p«e«p)r

It is a maximum for Kra~ 1 (an equidimensional sound
antenna). In this case, the thermal mechanism for
generating sound is dominant, if

T%- 2Cr(pdild9)T ' v '

For example, for water with γα 2 1 MM we obtain the
estimate τ « 1 5 ms.

For "disc-shaped" and "needle-shaped" sound an-
tennas, the estimate of the duration τ becomes more
rigorous [the factor 1/2 is replaced by the factors
(ifr,,)"1 and (Kr0), respectively, small in comparison
with unity].

In this manner, it may be roughly assumed that for
optical generation of sound pulses in absorbing liquids
the thermal mechanism dominates for pulsed durations
τ~ 1 ms and shorter.

Let us now discuss the optical excitation of quasi-
monochromatic sound waves with frequency Ω and
wavelength XQ =2ir/k, where k is the wave number. For
the striction mechanism, such sound waves can be ex-
cited as a result of the propagation of two light beams

13>It is assumed that the time τ determines both the duration of
the optical pulse, as well as the width of its front and trailing
edges ("bell-shaped" pulse).

118 Sov. Phys. Usp. 23(2), Feb. 1980 F. V. Bunkin and M. I. Tribel'skiT 118



in the medium, intersecting at an angle θ with fre-
quencies ωί and ω2, such that ωι — ω2 = Ω;
2(wli2/c)w sin(0/2)~&. In this case, it is evident that

Ι Λ (Ε-, | - EJ ~ £

For the thermal mechanism, it is also possible to use
two intersecting light beams or a single beam with in-
tensity modulated in time (with frequency Ω). The lat-
ter method will be discussed in detail below. The pos-
sibility of generating sound in the region of interference
of two coherent light beams was discussed in Refs. 37-
40. This phenomenon was studied experimentally in
Refs. 39 and 41 (a train of pico-second pulses) and in
Refs. 40, 42, 43 (a single pulse separated into two
intersecting beams).

Without going into details, we note that in any of the
cases cited above, involving the thermal mechanism
for generating sound, the relationship | dQ/dt | ~KSlq0

is valid. Now, it is simple to generalize the estimate
(4.4) to the case of monochromatic sound (τ— Ω"1;
1 + (Kro)

2~ 1 + (kr0)
2 + (Kr0)

2. It is evident that the stric-
tion mechanism becomes significant in the case of suf-
ficiently low and sufficiently high sound frequencies Ω.
For low frequencies, the boundary is established by
the condition (4.5) with the substitution τ— Ω"1, inas-
much as in this region rji = (^/κ)Ω« 1. With an in-
crease in the frequency Ω, the role of the thermal
mechanism at first increases, and then in the region
of frequencies for which rji» 1 and k»K, it begins to
decrease. It still dominates in this case under the
condition that

,, , ancu'K

For water with Κ £0.2 cm"1 we obtain the estimate
Ω«10 9 s ' 1 .

In this manner, it may be roughly assumed that, for
optical excitation of quasimonochromatic sound waves
in absorbing liquids, the thermal mechanism dominates
for frequencies/=Ω/(2π) ranging from 102 to 109 Hz.

b) Propagation of sound. The near and far wave zones

Let us now estimate the magnitude of the pressure
pulses that are generated in the liquid as a result of
the absorption of laser radiation and their transforma-
tion as they propagate to distances that are large in
comparison with the characteristic dimensions of the
problem. We begin our analysis with the case of the
generation of pressure pulses in the near-surface layer
of a liquid (the near wave zone). For simplicity, we will
assume that the following conditions are satisfied:
/Cr0» 1 and r o » u T , where τ is the duration of the laser
pulse. This allows considering the problem as one-
dimensional. Further, let L be the characteristic
dimension of the region encompassed by the perturba-
tion in the time τ:

-' for
: for

The characteristic magnitude (amplitude) of the pres-
sure created in the liquid by the laser pulse is given
by the product of the Griineisen constant Γο and the
volume density of the input energy [see Eq. (2.15)],

i.e.,

p' = r0Ag0T~. (4.6)

The simple estimate (4.6) coincides in accuracy with the
amplitude of the pressure pulses obtained in Ref. 44 as
a result of a rigorous solution of the equations of hydro-
dynamics. However, in deriving (4.6) and in contrast
to Ref. 44, we did not make use of any particular mech-
anisms for generating sound. Thus, Eq. (4.6) remains
valid both for the "thermal" as well as the "striction"
mechanisms for exciting sound. In the latter case, the
existence of a nondissipative "extinction" of the electro-
magnetic wave, arising from the "transfer" of electro-
magnetic energy into sound energy as a result of the
striction effect, should be taken into account in de-
termining K.

It is physically evident that when radiation acts on the
free surface of a liquid the compression pulse must be
replaced by a rarefaction pulse, which has approxi-
mately the same amplitude and duration. When the
radiation acts on the surface of the liquid that is bounded
by a rigid surface (the wall of a cuvette) the rarefaction
pulse must be absent. Rigorous calculations44 verify
the correctness of these deductions.

Let us make some remarks concerning the duration
of the pressure pulses τρ. The problem being analyzed
has two characteristic times: the duration of the laser
pulse τ and TS, the time required for the sound wave to
traverse a distance ~K~1[TS~ (uK)'1). When T«TS, the
duration of the pressure pulses ~τ. When τ » TS, two
cases should be distinguished: for a rigid boundary the
pressure pulses excited in the liquid and reflected from
the boundary have the same sign and duration ~r; for
this reason, the duration of the pulse arising as a re-
sult of their interference also will be ~τ. For a free
surface, as a result of the interference of generated
and reflected pulses, which have different signs, a
pulse with mixed polarity and duration ~TS arises. Let
us estimate the efficiency for conversion of radiation
energy into sound energy η:

(«prilP'Wl'di _ ,

J q (I) it
pu3

From here, we obtain for M T K « 1

(4.7)

For KTif»1, the conversion coefficients for the cases
of a rigid and free surface are different due to the dif-
ferent values of τρ.

For a rigid surface

For a free surface

Comparing (4.7) and (4.8), we conclude that the con-
version coefficient for a free surface must have a max-
imum for UTK~1. In general, the expression for η has
the form44
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efficiency factor F. 1—
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boundary; ξ 4 4

(4.9)

-where F(UTK) is a universal dimensionless function. A
graph of the function F(UTK) is presented in Fig. 8.

It is evident from (4.9) that the conversion coefficient
increases with an increase in the radiation intensity.
However, it is not possible to increase the coefficient
significantly in this manner, since the processes of
vapor formation, which were not taken into account in
this analysis, begin to play the dominant role at suf-
ficiently large intensities.

As an example, we present the value of the con-
version coefficient for water:

where q0 has the dimension W/cm2.

In analyzing the phenomena that occur in the far wave
zone at distances from the center of the focal spot
large in comparison with r0 and K~l, it is necessary
to take into account the fact that the sound wave changes
into a spherical wave, so that in its amplitude must
decrease like r'1 in order to conserve the flux of
sound energy. For this reason, in the far wave zone
an additional factor rjr appears in the estimate (4.6).
In addition, it is necessary to take the directivity of
the sound antenna into account, which leads to the ap-
pearance of/(n), a dimensionless function that depends
on the direction of the observation point (directivity
pattern). The function/(n) satisfies the following nor-
malization condition:

or a similar condition, the precise form of which de-
pends on the formulation of the problem. For a rec-
tangular laser pulse, when the observation point lies
along the axis of the laser beam /(n)~Kr0,

45 so that as
a whole the amplitude of the pressure pulse p'
- rouro(AioT/L)ro/r, i.e., it is proportional to Aqor\,
the total laser power absorbed by the liquid. This
value for p' is attained at time t~r/u. A strictly spa-
tial problem concerning the optical generation of pres-
sure pulses is solved in Ref. 46.

Let us now consider the process for generating mono-
chromatic sound.45 We shall assume that at the instant
ί = 0 a beam of optical radiation is incident normally
on the planar surface of a liquid that occupies the
half space ζ > 0. The intensity of the beam in the plane
z=0 has the form

q (r) (1 + m cos at), r = {x, y),

m is the modulating factor 0« w< 1. The process lead-
ing to the steady state for the modulated beam are

qualitatively the same as for the unmodulated beam and
are described above. For this reason, we shall im-
mediately go on to the analysis of the stationary re-
gime for generating monochromatic sound. Inasmuch
as, the basic mechanism for generating sound in the
most interesting frequency range is the "thermal"
mechanism as is shown above, we limit our analysis
to this range. In addition, for simplicity, we assume
that the beam has a Gaussian intensity distribution, i.e.,

In what follows, we examine the case of a free liquid
surface and we assume that the distance R between the
point of observation and the region in which heat is
liberated is large in comparison with the dimensions
of this region ifi»r0, K~l).

In the far wave zone, where

R >
where ntl and ηχ are the components of the unit vector
n = R/R along the Ζ axis and in the surface of separation
(Z = 0), respectively, the solution to the equations of
hydrodynamics has the form of a spherical wave

pi (R, ί) = - Re [pk (R) exp [i (fcR-Qt))}.

For the wave amplitude pi(B.) we obtain

Amau Kk' (4.10)

Here, γ =kSiS is the amplitude absorption coefficient
for sound and Ρ s qotr % is the total power of the laser
beam. The directivity pattern is determined by the ex-
pressions

)] (4.11)
kj. = fcnx, | n | | == cos θ, | η χ | = sin Θ.

We will examine several limiting cases.

1) Narrow beam (kr0 «1). In this case, F(kx)» 1,
while/(n)*/^). For fe«Ji,/(n)»cos6, i.e., the di-
rectivity pattern coincides with the directivity pattern
of an acoustical dipole, which is understandable since
all the dimensions of the region in which heat is liberat-
ed in this case are small in comparison with the sound
wavelength, i.e., this region represents an acoustical
point monopole. The analysis of a point monopole, sit-
uated on a free surface, is the same as the analysis of
a dipole in a uniform medium.47

As the modulation frequency increases (i.e., with an
increase in k), as is evident from (4.11), the function
becomes more complicated, but the maximum in the di-
rectivity pattern coincides with 0 = 0 up to k =K. For
k»K, the maximum in the directivity pattern occurs
at an angle 64# = arccos(K/fe). Atk»K, the directivity
pattern corresponds to the radiation emitted by a long
(in comparison with the wavelength) chain of coherent
monopoles, situated along the axis of the laser beam,
and a chain of imaginary monopoles with opposite polar-
ity, situated above the liquid surface, coupled with it.
The emitted radiation has a narrow directional charac-
ter: sound is emitted mainly along the surface of the
liquid and uniformly in all directions. The direction of
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the maximum forms an angle ir/2 - 6M~K/k« 1 with the
surface of the liquid, and its angular width (at half-
amplitude) is given by Δ 6= 2 JSK/k« 1. The value of

2) Wide beam (krg»l). In this case the function
F(kj) is significantly different from zero only for the
angles θ%(kro)~1«l, i.e., f(n)*F(k±). The radiation
is narrowly directed, but this time along the axis of the
laser beam.

Using (4.12), we obtain in this case f(n) = βχρ[-(0/Δ0)2],
where A9=2/(kr0). The linear width of the "sound spot"
at a depth R is given by

We shall also clarify the problem concerning the
optimal frequency of modulation flopt, so that the ampli-
tude of sound at a given point of observation R would be
a maximum. We limit ourselves to the case that the ob-
servation point lies in the direction of the maximum in
the directivity pattern and the maximum itself is situ-
ated at 0 = 0. In this case, with the usual power law
dependence for the dispersion coefficient (y(fc)~&"; v"2),
the maximum for the expression (4.10) occurs for
k=k<»t=Kg(\). Here, \ = y(K)R, while g(A0) is a
slowly varying function (according to a power law).

However, it is significant that in the most interesting
case, when Δ ο « 1, any noticeable increase inpiQX) with
an increase in k ceases for k ~K. For further increase
in * up to the value *opt, which satisfies the condition
y{koft)R" 1, the magnitude of the pressure increases
slowly, after which an exponential decrease in Pi(R)
begins [see (4.10)]. In other words, for Δ ο « 1 the
magnitude of the pressure over a wide range of fre-
quencies uK<Ω<Ωορΐ depends weakly on Ω and is close
toAioptW· T n e c a s e i n which Δ ο £ 1 has little interest,
since sound in this case is strongly damped even at the
optimum frequency.

The total energy flux P&, removed by the sound, can be
obtained from (4.10) by substituting γ =0 and integrating
over the entire solid angle for the half space Ζ > 0.
Knowing Ps, it is easy to obtain the value of the conver-
sion coefficient η = ΡΒ/πτ%ί0. As an example, we pre-
sent the value of η for a wide beam {kr0^ 1):

1,u I Ama Kk \2
1 ρ \ 2CB K' + k' I '

(4.12)

From (4.12), it is evident that the maximum efficiency
corresponds to the case k =K.

We shall now examine the near wave zone, where the
observation point is located under the spot being ir-
radiated (r^r0) at a depth L<^kr% [however, as before,
L»Kml and L»r0, so that it is possible to assume at
the same time that the conditions for Fresnel diffrac-
tion are satisfied, L»krl/(KL),L»krl(ro/l)2]. In
this case, the sound wave has the form of a plane wave
with an amplitude

Pk(r) =
Amau Kk (4.13)

FIG. 9. The amplitude of the sound wave in the near wave
4 r; £, = 75 cm; ft = 1

3) · 1(T3 W/cm2.

p
zone.48 Water; £, = 75 cm; ft = 1.25 cm"1; /f = 0.17 c m J ; ro = 12
cm; qa = (15 ± 3 2

pressure) coincides with the width of the laser beam
(according to intensity). We note that while in the far
zone, where the sound wave is spherical, the ampli-
tude p'k(R) is determined by the total power of the laser
beam Ρ [see (4.10)], in the near zone the amplitude of
the sound is determined by the intensity qo=P/(-nr2

0).

An analysis of the frequency dependence of (4.13)
shows that &opt is significantly different from Κ only
for the uninteresting case of large Δο,

The generation and propagation of monochromatic
sound in a liquid (water) as a result of the absorption of
laser radiation was studied experimentally in Ref. 48.
In order to excite sound waves, a single mode
YAG : Nd*3 laser at a wavelength of 1.06 μτα was used.
The intensity of the radiation was modulated with a
Pockels cell, to which a sinusoidal voltage was ap-
plied so that the output radiation had the form

where Ω is the modulation frequency. The amplitude
of the sound was measured with a hydrophone, the
signal from which was input to a two-dimensional auto-
matic recorder after amplification and phase demodula-
tion. The results of the measurements in the near and
far wave zones exhibited good agreement between the
experimental values and the values computed according
to Eqs. (4.10) and (4.13).

Figure 9 shows the amplitude of the sound wave with
frequency Ω [the first Fourier component of the non-
monochromatic signal with the modulation (4.14)] as a
function of the distance from the center of the sound
beam [qr = 0.64#0 is the amplitude of the fundamental
in the expansion of (4.14) in a Fourier series]. The
amplitude of the sound wave on the beam axis, com-
puted according to formula (4.13), in this case con-
stitutes (12.5± 2.5) · 10"9 bar.

Figure 10 shows the theoretical dependence of the

^'relative units

In the near zone, the beam does not have time to di-
verge and its width (according to the amplitude of the

ΰ S №

FIG. 10. The dependence of the sound amplitude in the far zone
on the absorption coefficient for radiation. Water; L = 75 cm; *
= 4.2 cm"1; r o = 2 cm.48
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sound amplitude in the far wave zone on the absorption
coefficient for radiation in water and the corresponding
experimental values (I, = 75 cm,* =4.2 cm" 1 ,r o = 2 cm,
so that L » * r 2

) , i.e., the far zone, andfer o » l , i.e., a
wide beam; Κ was varied over the range 1 to 12 cm"1).
As follows from previous remarks, the sound amplitude
has a maximum for k ~K. The experimentally observed
divergence in the sound beam for the same values of
L, k, r0, and Κ constituted 0.19-0.2 deg. The computed
value of the divergence in these cases constituted 0.23
deg. In this manner, within the experimental accuracy,
the results of the measurements coincide with the theo-
retical predictions, which indicates the correctness of
the theoretical description of the phenomenon.

Under actual conditions, the effect of spatial fluctua-
tions in the intensity of laser radiation, as well as the
rippling of the free liquid surface, may be important
in generating monochromatic sound. The role of these
factors was analyzed in detail in Refs. 45, 46, 49, and
50. The influence of bubbles arising from gases dis-
solved in the liquid on the conditions of laser generation
of sound and so on were studied in Ref. 51.

Of great interest are the results obtained recently
by scanning laser radiation along the surface of a liquid.
This is a unique method for obtaining an extended sound
source, moving with practically an arbitrary Mach
number, the motion of which is not related to any flow
around the body of the emitter.5 2"5 4 However, it is not
possible for us to give a detailed discussion of this
work.

5. DEEP MELTING PENETRATION OF METALS

In the final two chapters of this review we shall ex-
amine the problem of the interaction of radiation with
metallic melts.

One of the interesting and important, for applications,
problems in this area is the problem of the so-called
deep or dagger-shaped melting penetration. The es-
sence of this phenomenon consists in the following. An
analysis of the dependence of the depth h of melting
penetration into a metallic target by laser radiation as
a function of the radiation intensity in the focal spot with
a pulse having constant duration and as a function of the
location of the focal point of the lens relative to the
irradiated surface yields the following picture. At
first, a slow increase in h is observed with an increase
in the radiation intensity q. Metallographic analysis of
the melting zone shows that the shape of the melting
zone is at this stage similar to the situation in which
the surface of the sample is heated by a heat source"5

that has the dimensions of the focal spot and an in-
tensity A?.3 2·5 5

However, when some characteristic value of the in-
tensity q =q is attained, the behavior of the function
h(q) changes sharply: the depth of the melting penetra-

14'The path length for radiation in the case being examined is
always small in comparison with characteristic dimensions of
the problem, so that it can be assumed that the energy in the
laser pulse is deposited directly on the surface of the target.

u -

UJS

f,7S ZJ5
"{, W/cm2

FIG. 11. The depth of melting penetration into copper as a
function of the radiation intensity (stationary target).*

tion begins to increase significantly more rapidly with
an increase in q while the melting zone itself acquires
a shape that is elongated in the direction of the laser
radiation (this is the origin for the name of the phe-
nomenon, viz. deep or dagger-shaped melting penetra-
tion). Typical functions h(q0) for a series of metals,
as well as a metallographic picture of the melting pene-
tration zone is shown in Fig. 11 and 12. Experiments
were performed with metals having commercial-grade
purity using the UL-20 laser setup56 (pulse duration
τ = 1.45 ms) and the SLS-10-1 laser setup 5 7 5 8 with a
smooth, nearly rectangular pulse shape with τ = 2 and
4 ms.

An analysis of the dependence of the depth of melting
penetration on the position of the focal point of the lens,
converging the laser beam relative to the surface of the
sample, showed that the maximum depth is attained
when the focal point is situated not on the surface of
the sample, but rather beneath it.56 The indicated
dependence is shown in Fig. 13.

In order to understand all of these phenomena we note

FIG. 12. The structure of the melting penetration zone In t i-
tanium for different values of the radiation intensity (stationary
target57). ?0 (105 W/cm2) = 0.59 (1), 1.1 (2), 2.3 (3), 2.7 (4),
3.1 (5), 4.1 (6), 5.2 (7), 6.0 (8), and 7.4 (9).
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? W/cm2

FIG. 13. The dependence of the melting penetration depth in
aluminum as a function of the average intensity of illumination
in the irradiated zone for different positions of the focal point
of the lens relative to the surface of the target. Stationary tar-
get. Pulse energy 15 J. 1—lens with F = 34 mm, 2—same with
F = 50 mm.56

that for the laser radiation intensities examined (106-
107 W/cm2) the melting of metals is always accompanied
by the existence of three phases: solid, liquid, and
vapor; and, in addition, since the intensity of the vapor
formation increases extremely rapidly with an increase
in the surface temperature, the vaporization process
occurs mainly on a small part of the surface of the
molten metal, located near the center of the focal
spot and having, as a result, the highest temperature.

It is natural to assume that for q =q the free surface
of the melt is strongly indented, forming a funnel, as a
result of the recoil force of the vapors from the sample.
At the same time, the molten metal is pushed out of the
melting zone, which lowers the effective heat source
beneath the surface of the sample, and so on. Such a
funnel-shaped indentation of the free surface of an ab-
sorbing liquid when laser radiation is focused on it was
observed in Ref. 15 (Fig. 14). After the action of the
laser pulse ceases, the melt that was first pushed out
of the melting zone fills the crater once again and
crystallizes there.

In this manner, the phenomenon of the deep melting
penetration arises from the interaction of the laser
radiation with the liquid phase (melt) of the metal.
At the same time, all the qualitative features of the
phenomenon can be explained within the framework
of the indicated treatment: the presence of a threshold

FIG. 14. A laser funnel in glycerine. A continuous CÔ  laser.
Stationary target r o « 4· 10"2 cm; ?0« 105 W/cm2. Funnel depth
approximately 20 cm.59

value for the laser radiation intensity q, as well as the
dependence of the melting penetration depth on the po-
sition of the focal point of the lens relative to the sur-
face of the sample (see below for greater detail).

Deep melting penetration is not the only phenomenon
that results from the presence of a liquid phase in the
irradiation zone. Thus, for example, the authors of
Ref. 60 investigated the process causing the formation
of a crater in a metallic target due to the removal of
the liquid phase from the melting zone by the recoil
pressure of the vapors, and they estimated the rate at
which the depth of the zone increases at the stage of
the process when this depth is small in comparison
with the diameter of the focal spot so that the problem
can be considered as being one-dimensional. The in-
fluence of the liquid phase on the formation of a crater
with arbitrary depth is discussed in Ref. 61.

Here, however, we shall consider in detail only the
problem of deep melting penetration, which, on the one
hand, is very important for applications,62'63 and on the
other hand, is entirely relevant to the subject of this
review, since all the main features of the phenomenon
are explained by processes that occur at the liquid-
vapor boundary, while the existence of the second phase
boundary (solid-liquid) can be completely neglected.

We note that although the connection of the phenomenon
with the presence of molten metal in the irradiation zone
was indicated in Ref. 56, attempts to describe it quanti-
tatively have only been made recently. Thus, a model
was proposed in Ref. 57 and 64, in which the process of
deep melting penetration was explained by a periodic
displacement of the liquid phase from the bottom of the
crater. It was proposed that the vaporization front is
stationary until some characteristic temperature is
attained at the surface of the liquid (the temperature of
developed vaporization). After this, as a result of in-
tensive vaporization, the "hot" layer of the melt is re-
moved from the crater by the recoil pressure of the
vapors and the process is repeated. In spite of the
evident crudeness of this model, the authors of Ref. 57
and 64 were able to obtain satisfactory agreement with
experiment for the dependences of the rate of melting
penetration on the laser radiation intensity that they
computed on the basis of this model.

We also note Ref. 124, in which a complete quantita-
tive analysis of the physical phenomena related with
the process of deep melting penetration (using laser
as well as electron beam action) and in which simple
estimates of the various parameters of this process
were obtained. We also note Ref. 126, in which the
plasma and gas dynamic phenomena in the crater ar is-
ing with developed deep melting penetration were
analyzed.

We emphasize that a rigorous approach to the prob-
lem of deep melting penetration in general involves the
solution of a multidimensional self-consistent problem
in optics, hydrodynamics of the flow of molten metal,
kinetics of vaporization, and the hydrodynamics of
vapor expansion. The difficulties that are encountered
along the way, are so great that it is hardly possible
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to progress beyond course estimates without extensive
use of numerical methods.

However, it is significant that the practically im-
portant problem concerning the magnitude of the
threshold for deep melting penetration can be solved
in a rigorous manner without the use of questionable
or poorly substantiated assumptions. In addition, since
the solution to this problem simultaneously clarifies
all the important features of the physics of the deep
melting penetration phenomenon, we have considered
it useful to examine this problem in greater detail,
using the approach developed in Ref. 65.

Following this work, we now study the deformation of
the free surface of the melt by the recoil vapor pres-
sure in a stationary melting regime for the metallic
sample, which is motionless relative to the laser tar-
get under the condition that χτ»τ2.

We shall use perturbation theory, neglecting the dif-
ferences in the thermophysical properties of the solid
and liquid phases. Since we are particularly interested
in the melting of the sample, it is natural to examine
only such laser radiation flux densities that are less
than the threshold for developed vaporization ? 7 . 3 2 6 6

At the same time, it is possible to neglect the motion of
the melt, due to the removal of mass as a result of
vaporization, as well as the energy expended on
vaporization.15'

Approximating the free surface of the melt by the
surface 2=0, in the zeroth order approximation, we
find that in this case the temperature distribution sat-
isfies the Laplace equation for the half space z>0.
For definiteness, let us assume that the laser beam
has a Gaussian intensity distribution

Then the temperature distribution along the surface
of the target has the form

(5.1)

where Ts =AqoroSii/(2χ),/„(*) is a modified Bessel
function (for simplicity, we will assume everywhere
below that To = 0), while as a whole the temperature
profile has the following asymptotic form:

Γ (!·, τ, (5.2)

which is satisfied with an accuracy not less than 5%
for

If the saturated vapor pressure of the samplep$(T)
at the characteristic temperature T=TS is large in
comparison with the external pressure, which is the
case, as a rule, under real experimental conditions,
then the recoil vapor pressure, with an error not ex-
ceeding several percent, is determined by a function
valid for vaporization into a vacuum:

p=-2-fttf1)· (5.3)

The true value of p deviates from Eq. (5.3) as a result
of the presence of a flow of vapor atoms, returning to
the surface as a result of collisions in the gas phase.
But, in this case, this flow is always small,32·87 which
is what makes Eq. (5.3) applicable.

In Ref. 65, the Einstein model of a condensed body,
in which the Einstein frequency was an adjustable
parameter, was used to determine the function Ps{T).
However, it is better to use the function

P.(D-P. « ? (—τ+ις-) = ??«? (—γ-), (5.4)

which is obtained as a result of an approximate integra-
tion of the Clausius-Clapeyron equation with two adjust-
able parameters p0* and λ^ (see, for example, Ref. 66).
In this case, \ = \Am/NA has the meaning of an atomic
heat of vaporization, while p0 and TB denote the normal
pressure and the normal boiling point.

We note that, in the case we are considering, the con-
dition λ λ « Τ is always satisfied, so that the exponent
entering into (5.4) is a rapidly varying function of
temperature.

In the equilibrium case, the shape of the free surface
of the melt is determined from the equality of the recoil
vapor pressure of the sample and the hydrostatic pres-
sure beneath the indented surface. We obtain the ex-
plicit function p(r) by substituting the temperature
T=T(r), determined by Eq. (5.1) into Eqs. (5.3) and
(5.4). From here, we immediately conclude that the
characteristic range over which p(r) decays equals

(5.5)

Knowing the function p(r), it is possible to determine
the shape of the free surface of the melt in the next ap-
proximation. Denoting the deviation of the points on the
free surface from the plane 2=0 for small curvatures of
the surface (perturbation theory is applicable only in
this case) as £, we have the following equation for the
function £6 8

(5.6)C(°°)=o,

where σ is the surface tension; a is the capillary
constant (o = •Jpg/o, g is the acceleration of gravity,
directed along the ζ-axis).

Equation (5.6) can be solved in general form,l e ) but
for the subsequent analysis it is sufficient to limit
ourselves to its asymptotic solution for a r « l , since
for metallic melts and actual sizes of the focal spot,
the inequality a r o « l is always satisfied and the in-
dicated asymptotic expression is valid up to the iso-
therms Τ =Tm, where Tm is the melting temperature.

15)AU the quantitative limitations that follow from the formula-
tion of the problem will be presented below.

16)The problem concerning the shape of the surface of the liquid
phase is examined in Ref. 69, where the solution to Equation
(5.6) is obtained for arbitrary p(r), as well as for different
examples of this function. However, in this reference, the
relationship between the form of the function p(r) and the
parameters of the laser beam and the thermophysical prop-
erties of the melt is not established.
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FIG. 15. The shape of the melt surface, deformed by the re-
coil vapor pressure. 2 corresponds to the greatest intensity
(1-/3 = 3.8; 2-/3 = 19.6); ξ = [Ur) - t(rj]/£o.

This asymptotic expression has the form

ζ (ι) = ζ. [Ei (-X>)-2C-2 la - ^ ι ] ,

Here, Ei(-#2) is the integral exponential function and C
is Euler's constant (C = 0.57721...).

Figure 15 shows a graph of the function ζ(r) - £(rm),
where rm is the radius of the melt boundary (T(rm)=Tm)
for different values of the parameter β,

It is evident that even within the limits of applicability
of perturbation theory the deformation of the free sur-
face of the melt sharply increases near the axis of the
laser beam with an increase in the radiation intensity.

By now requiring that the curvature of the free sur-
face of the melt be small in comparison to rp, which
guarantees the applicability of perturbation theory, we
obtain the condition qo<q, where

Ara \' π 1

rpP*

R _ i . ln !„

(we used the fact that for metals in a condensed phase
the atomic heat capacity equals 3, so that ? =3χρΝΑ/

It will be shown below that Eq. (5.7) simply deter-
mines the threshold for deep melting penetration. How-
ever, before going on to the rest of the analysis, we
note that all the characteristic parameters of the prob-
lem, including also the quantity q, can be estimated on
the basis of the following simple arguments: the radius
of the focal spot r0 is the characteristic dimension over
which the temperature of the target changes in the given
formulation of the problem. The characteristic tempera-
ture of the surface of the target can be found from di-
mensional considerations. Forming a combination from
the quantities Aq0, r0, and χ that has the dimensions of
temperature, we find that Τs~Aqara/v*. In addition,
since the temperature distribution along the surface
of the target has a maximum at the center of the focal
spot, by expanding T(r) in a series with respect to
powers of r, we find that near the maximum

7'(r)«7-8[i_i.(^.)--i-...]. (5.8)

Substituting the series (5.8) into Eq. (5.4), which
determines the temperature dependence of the saturat-
ed vapor pressure, we find that the characteristic
dimension over which the recoil vapor pressure changes
is rp=r0J2Ts/\l, which is identical in precision with
expression (5.5). Since the deformation of the melt is
due to the recoil vapor pressure, rp is at the same time
the characteristic dimension of the base of the funnel
that arises at the surface of the melt. The depth of this
funnel £„ can be estimated from Eq. (5.6). Taking into
account the fact that Δ£ ~ζο/γ% and that ί-ρ2»α2, we
find from (5.6) that

"T*. (5.9)

The estimate (5.9) practically coincides with the quan-
tity £0, obtained above as a result of a rigorous solu-
tion of the problem.

Finally, the quantity q is determined from the condi-
tion £0~rp, which (to within a numerical factor of the
order of unity) leads to the expression (5.7). We
emphasize that Eq. (5.7) determines the laser radiation
intensity that corresponds in the experiments to the
threshold for deep melting penetration. In actuality,
exceeding the intensity q leads to a strong indentation in
the free surface of the melt, which explains the ap-
pearance of the deep melting penetration (see the be-
ginning of this chapter). With this, due to the sharp
(exponential) dependence of ζ0 on q0, the condition
qo<q actually has a threshold character, i.e., insig-
nificant deviations of q0 from q lead to stricter in-
equalities for the compared quantities (rp and £0).

Let us now find the threshold for developed vaporiza-
tion qv. The integral energy flux, removed by heat
transfer pT, can be determined on the basis of Eq.
(5.2). Taking into account the fact that the solid angle
in which the heat transfer occurs equals 2ir, we find
that

Neglecting the kinetic energy of the vapor particles in
comparison with λ1 and the return flow of atoms, in
correspondence with earlier remarks, and taking into
account the fact that the effective vaporization occurs
from a spot with radius rp, we find the following esti-
mate for the integral flux of energy expended on vapor-
ization Py =irrlXljy (jv is the flux density of vaporized
particles)

where m=Am/NA is the mass of an atom.

The threshold for developed vaporization qv can be
determined from the formal equality Py =PT. We have

_ (in «v + -i-l» l n

^L.
3ρχ/2λ

We note that the sharp dependence of Pv on T s for
comparatively slow dependence of PT, just as in the
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case of q, ensures satisfaction of the stricter inequal-
ities for the compared quantities with small deviation
of q0 from qy.

The expression for qy, obtained in Ref. 66 from di-
mensional considerations, differs from (5.10) by the
absence of the numerical factor 6/V? and the expres-
sion in parenthesis.

It is evident from the remarks made above that the
optimum values of q0 for deep melting penetration
occur in the interval q<qo<qy. Such an interval ex-
ists only if q<qr, which leads to the condition

-£££L > ! [(In βν+...)(ln β*—...)]· (5.11)

We emphasize the weak dependence of the criterion
(5.11) on the dimensions of the focal spot r0. Physical-
ly, this indicates that the possibility for obtaining the
optimal conditions for deep melting penetration are
mainly determined by the thermo-physical properties of
the sample and not by the properties of the laser beam.

Reference 65 compares the quantity q, computed ac-
cording to the method described above, for 13 metals
with the results of experimental measurements of this
quantity carried out in Refs. 56-58, and good agree-
ment between theory and experiment is demonstrated.
Typical values of q for ro~ 10"2 cm are of the order of
105 W/cmz for low-melting metals and 106 W/cm2 for
high-melting metals. The value of qr, computed in
Ref. 65 for the conditions of the experiments in Ref.
56-58, always exceed 5 by a factor 1.5-2.

Free oscillations of the surface of the melt were also
studied in Ref. 65. Such oscillations lead to scattering
of laser radiation. The crystallization of the melt,
caused by such oscillations, can be explained by the
presence of so-called "ring-shaped waves" on the
surface of the melt, repeatedly observed experimentally
(see the monograph in Ref. 61 and the references cited
therein concerning this problem) and so on. It is shown
that the maximum amplitude always occurs for the
harmonic that corresponds with the smallest natural
frequency of such oscillations and that for sufficiently
large values of q0 this amplitude increases mainly as
the scale factor £0, i.e., as εχρ[-6λρχ/(Α^νϊί0)].

The calculations presented above did not take into
account the influence of hydrodynamic flow of the melt,
caused by the removal of mass due to vaporization, on
the formation of the temperature profile in the melt.
This is permissible only to the extent that the effective
coefficient of thermal diffusivity, due to this flow, is
small in comparison with χ, i.e., if the inequality
W 0 «x, where V is the speed of the vaporization front,
is satisfied. Taking into account the fact that V is de-
termined from the condition Vp =mjy, we obtain, in the
approximation being considered,

i.e., that the condition Vro<^x is equivalent to the con-
dition Py « P r and does not contribute additional lim-
itations to the problem at hand. In the case of de-
veloped vaporization, such a flow must be taken into

account. The problem concerning the shape of the
surface of the liquid phase in the limiting case of strong
evaporation, when the hydrodynamics of the flow of the
melt predominates, was discussed in Ref. 70. How-
ever, we note that if only the action of the radiation on
the preliminarily melted metal (liquid mercury and so
on) is of concern, then the temperature gradients will
be very large with such large intensities, the melt
layer will be thin, and, in essence, the problem re-
duces to the classical problem concerning the formation
of a crater in a solid, for which the process of vapor-
ization can be examined as sublimation, neglecting
the existence of the liquid phase.32·61

6. METAL-DIELECTRIC TRANSITION UNDER THE
ACTION OF LASER RADIATION

The idea of a transition of a liquid metal into a liquid
nonmetallic phase was first proposed by Zel'dovich and
Landau in 1943.7l The idea was based on the fact that
at high pressures and temperatures ~104 Κ the thermal
excitation (and therefore, the conductivity as well) of
dielectrics becomes so large that the difference between
a dielectric and a metal, in essence, disappears. This
makes it possible to bring about a continuous transition
from the dielectric to the metallic phase and vice versa.
But, then, at lower temperatures and pressures there
can exist a line for the metal-dielectric transition
terminating in a corresponding critical point, which,
generally speaking, does not have to coincide with the
line for the liquid-vapor phase transition.

An experimental study of the electrical conductivity
of liquid metals17' has shown that near the critical point
for the liquid-vapor transition a small change in the
density of the metal leads to a sharp change in its
electrical conductivity, and in addition, this occurs
both for the supercritical state as well as for the sub-
critical state, i.e., in the liquid phase. According to
the data in Ref. 72, a decrease in the density of mer-
cury by 20% in the supercritical state leads to a drop in
its electrical conductivity by four orders of magnitude.
Approximately the same drop in electrical conductivity
occurs also in the liquid phase of mercury when its
density is decreased to half its normal value. It is
evident from Fig. 16, that the temperature dependence
of the relative electrical resistance of a sample with
constant density near the critical point for the liquid-
vapor transition has a form that is typical for dielec-
trics (sharp decrease in electrical resistance with an
increase in temperature). This kind of behavior for the
electrical conductivity suggests the existence of a
critical point for a metal-dielectric transition. How-
ever, it should be emphasized that a change in the state
of a metal occurs in a continuous, although sharp,
manner. For this reason, in this case there is no
phase transition line, which is replaced by some region
of values for thermodynamic variables that has a small
but finite width, i.e., the transition is diffuse.

With an increase in laser energy there appeared the

17)The most reliable data exist for mercury and cesium (see
the review in Bef. 72 and the reference cited therein).
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FIG. 16. Isochrones of the relative electrical resistance of
mercury as a function of temperature. Mercury, T c - 1753
*10 Κ; Pc = 1520 Τ 10 bar; p c = 5. 7 Τ 0. 2 g/cm3.73

possibility of irradiating a metallic target in order to
obtain temperatures and pressures corresponding to
the critical values in the irradiation zone. For this
reason, it was natural to make an attempt to study the
influence of the metal-dielectric transition on the evolu-
tion of the interaction process between the laser radia-
tion and the target material. This problem was first
examined in Ref. 66 on the basis of a qualitative analy-
sis of the phenomena that result from the appearance
of a dielectric phase in the subcritical state of the
metal. However, due to the complexity of the problem,
the authors of Ref. 66 introduced a series of simplify-
ing assumptions (in particular, concerning the trans-
parency of the vapor), as a result of which the picture
they presented concerning the interaction of the laser
radiation with the target in the region of parameter
values of interest to us was extremely simplified and
far from reality in many of its details.

A rigorous analysis of the phenomenon, as noted in
Ref. 74, is possible only on the basis of a numerical
solution to the appropriate problem, taking into account
a definite equation of state and a definite dependence of
the abospriton coefficient and conductivity of the metal
on temperature and density. This was done most sys-
tematically for the supercritical state of metals in
Refs. 75-77, the results of which we will now discuss.

The following problem is examined theoretically in the
references cited above. A uniform flux of radiation is
incident from the vacuum onto the surface of a metal
that occupies the half space ζ <0. The radiation· is
partly absorbed and partly reflected. The intensity of
the radiation is high enough to cause the temperature
in the absorption region to attain (within the duration of
the laser pulse) the critical temperature for the sub-
stance. The heated metal expands into the vacuum,
forming a plasma flame, while the absorption zone
shifts from the surface of the metal to the dense plas-
ma region. A shock wave forms in the metal as a re-
sult of the action of the recoil pulse, arising with the
expansion. The regime studied in Refs. 75 and 76 is
similar to the one which is referred to as "slow com-
bustion" in the hydrodynamics of burning.68 In this case,
the shock wave is weak, while the speed of motion of

the absorption zone for the laser radiation ("combus-
tion front") is subsonic.18) The qualitative picture of
the process being considered is as follows. A weak
shock wave propagates in the perturbed metal. Behind
the shock wave, there is a compression region, which
passes into a region where stress is intensively re-
lieved. In the latter region, there occurs a transition
of the dense metallic vapor into a rarefied vapor, which
constitutes a plasma that is almost transparent to the
laser radiation and that expands towards the laser beam.
The boundaries between the regions are, to a significant
extent, arbitrary. The separated surfaces are only the
shock wave and plane, from which light is reflected,
i.e., on which the real part of the dielectric perme-
ability Ree(w) vanishes.

The dimensions of all the indicated regions change
with time and the problem as a whole is nonstationary.
However, after the shock wave is separated from the
stress-relieving wave and enters into the bulk of the
substance, in a system of coordinates fixed to the re-
flecting surface, a stationary19' structure is estab-
lished for the most interesting region of absorption of
laser radiation, where the gradients of all the vari-
ables are large. Adjacent to the left of this region is
the region of the substance compressed by the shock
wave, in which the values of the hydrodynamic vari-
ables and also quasistationary; to the right, there is a
region with a nonstationary flow, which is a self-
similar, centered rarefaction wave.20' The profiles
of the hydrodynamic variables in this wave and the co-
efficient of absorption of radiation can be written down
in explicit form (the substance in the rarefaction wave
constitutes an ideal equilibrium plasma). This permits
the use of the values of the variables at the head of the
rarefaction wave as boundary conditions for numerical
integration of the equations that describe the stationary
part of the flame.

In order to determine the equation of state, the co-
efficient of absorption, the thermal conductivity, and
the other properties of the substance in the entire re-
gion of densities and temperatures required for cal-
culations, the authors of Refs, 75-77 analyzed a large
quantity of experimental data7 3 ' 7 9"8 2 and used the results
of some theoretical calculations.83"84 This permitted
the use of a tabulated equation of state for the numeri-
cal integration of the equations together with analytic
extrapolation and interpolation into regions for which

18)Such a "slow combustion" regime occurring in the case of
interaction of laser radiation with matter was first studied in
Eef. 78.

19)More precisely, the structure is quasistationary, since such
a dependence will enter into the boundary conditions (see
below), even though the equation that describes the change in
the variables in this region does not depend on time, so that
as a whole the solution will depend on time as a parameter.

20)Strictly speaking, the flow is not terminated with a rarefaction
wave. For z — <*>, this wave has a nonhydrodynamic "tail",
which represents a free molecular flow.67 However, the
presence of such a "tail" has no effect on the problem being
examined, since the mass contained in it and the fraction of
radiation absorbed by it are neglible.
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there were no experimental data.

As previously noted, the most complete experimental
data concerning the equation of state and conductivity
have been obtained for mercury. For this reason, the
calculations were performed for this particular case.
In order to obtain approximate equations of state for
other metals, it is possible to use the principle of
corresponding states. As shown in Ref. 85, such an
approach is known to be applicable to metals for one
group of the periodic system of elements and give good
results for metals as a whole. In this manner, the
data75·78 acquire great generality, if the following di-
mensionless variables are introduced:

ρκ α BpcTc, qK ι

where Β = R/Am is the reduced gas constant, σ is the
conductivity, and e is the electronic charge. In the last
equality appearing in (6.1), we made use of the Wiede-
mann-Franz ratio and expressed κ in terms of σ. The
characteristic value for the radiation intensity qK for a
mercury target equals approximately 107 W/cm2.

The typical structure of the absorption zone is shown
in Fig. 17. For convenience, two scales are shown
for q: the left scale uses dimensionless units (6.1),
while the right scale corresponds to units of W/cm2,
for mercury; ζ is given in cm (for mercury). The
rarefaction wave is adjacent to the right of the vertical
line that bounds the region of the numerical computa-
tion. The reflection coefficient in this case equals 1%,
while the optical thickness of the plasma flame Λ =2.3.
The narrow zone near the surface Ree =0, in which
the substance rapidly expands and is rapidly heated,
is shown in greater detail in Fig. 18, in which, be-
sides 5 =18 data are presented for 5 =8.3 and (j =31.6.
The weak dependence of the profile p(z) for ζ < 0 on the
radiation intensity is explained by the small compres-
sibility of the substance for p>pc On the other hand,
the rate of expansion of the subst nee for z>Q increases
sharply with an increase in ?. The temperature pro-
files are also very sensitive to a change in the in-
tensity (the temperature distribution in the region ζ < 0,
where radiation does not penetrate, is determined by

a? U 2J 18 if 2,cm

FIG. 17. The structure of the absorption zone for a rectangu-
lar laser pulse acting on a mercury target, τ = 300 ns; ω
= 1.78 · 1015 s"'; q = 18? » 2 · 108 W/cm2. & and ?. denote me in-
cident and reflected fluxes, respectively. The origin of coor-
dinates coincides with the surface Ree = O.75

FIG. 18. The same as Fig. 17. The region near the reflecting
surface is shown on a smaller scale. 1—5 = 8.3; 2—5 = 18; 3—
»-qi ft 15,789 = ol.b. ^

the electronic thermal conductivity). The same flame
structure is retained for a ruby laser as well. In the
case of CO2 laser radiation, the radiation is reflected
from the hot rarefied plasma.

Let us now discuss the behavior of Ree(z) and the
metal-dielectric transition. For the case illustrated
in Fig. 17, the value of Ree at the head of the rarefac-
tion wave, equal to 0.992, slowly decreases with an
increase in the plasma density, and at a distance
~10"3 cm from the reflecting surface, Ree =0.972
(here f =3.2, £ = 0.178); then, in a narrow zone ~10"s

cm the substance becomes almost completely dielec-
tric21)(Ree =0.9993, f = 1.4, £ = 0.51), and immediately
after this, the dielectric is transformed into a metal in
a region with dimensions ~3 · 10'5 cm and reflects the
light completely (Ree = 0; f = 1.16; ρ = 1.6). The coef-
ficient of absorption of light Κ has a similar behavior.
The function K(p) in this case is illustrated in Fig. 19.
If necessary, using Fig. 18, we can recompute it in
terms of K(z) or K(T). Such a behavior for ε and Κ is
explained by the simultaneous change in the tempera-
ture, density, and electronic concentration. But, it
may also be explained qualitatively as follows (see Fig.
19): 1) the region ab corresponds to the appearance of
a gap in the electronic spectrum (metal-dielectric tran-
sition); 2) be corresponds to a gap that is completely
open, but the temperature increases, and the conduc-
tivity increases with it;7 9·8 4 the degree of ionization is
small; 3) cd corresponds to the formation of plasma,
the concentration of free electrons increases and Κ
increases in spite of expansion; 4) de is a region with
multiple ionization. The degree of ionization at in-
creases slowly, and for this reason, Κ decreases as a
result of expansion (K~p^ofiT"3*). The nonstationary
part of the flame, corresponding to the rarefaction
wave, is not shown in Fig. 19.

We emphasize that the density gradient is very large
in the metal-dielectric transition region, while the tern-
perature does not change as much, which is explained
by the comparatively large thermal conductivity. For
this reason, the formation of a sharp density front

21'The criterion for the substance to be considered as a dielec-
tric is the vanishing of the plasma frequency, i.e., the ab-
sence of free electrons.
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FIG. 19. The same as Fig. 17. The dependence of the coeffi-
cient of absorption of radiation on the density of mercury in the
flame.75

gives rise to a sharp change in the optical properties
of the substance. Since the density gradient also in-
creases with an increase in the radiation intensity (see
Fig. 18), the width of the zone in which the substance is
transformed into a dielectric in this case decreases.
For intensities q s 52, the dielectric zone completely
disappears, and the transparency of the plasma slowly
decreases as the reflecting surface is approached, after
which the plasma is sharply metallized, i.e., the func-
tion K(z) becomes monotonic. We emphasize that at
such intensities the plasma is heated to very high tem-
peratures (q = 52 corresponds to T(0) = 2.11), and it is
precisely this that explains the disappearance of the
dielectric region: the hot dense plasma, which itself
is not transparent, is compressed up to metallic
densities.

When the radiation intensity is decreased, the
width of the dielectric region increases. However, this
phenomenon is weakly manifested, since there is a
rarefied comparatively weakly ionized plasma in front
of the dielectric phase, which is also almost trans-
parent to the radiation.22'

Calculations of the effective specific energy of vapor-
ization Aeff =q/jm, where jm= mjy is the mass flux den-
sity,75 and of the specific recoil pulse7 5'7 6 as a function
of the intensity of the laser radiation (see Fig. 20 and
21) were performed. It is evident that both functions
are monotonic and the presence of the dielectric phase
has no effect on their behavior. The monotonic in-
crease in Xeff and the decrease of the specific recoil
pulse with an increase in the laser intensity and pulse
duration is explained by the fact that an increase in
these parameters in the laser action regime of interest
here leads to a "useless" increase in the dimensions of
the flame and to an increase in its temperature, while
the fraction of the energy expended on vaporization de-
creases. The decrease in Xta with an increase in the
radiation frequency is related to the fact that the high-
frequency radiation (ruby laser) is not absorbed as well
(K~ ω'2) and is reflected from the denser substance,

22)We emphasize that even though the radiation absorption coeffi-
cient in such a plasma is small, the extent of the flame is
large, so that its optical thickness becomes of the order of
unity, which leads to the stationary nature of the vaporization
regime.

f.ff

0.5

a)

2 1 S

b)

FIG. 20. The dependence of the effective heat of vaporization
for mercury \,ff (a) and the optical thickness of the flame Λ (b)
on the radiation intensity. 1—τ = 300 ns, ω = 1.78· 1015 s"1; 2—
T = 300ns, ω=2.713·10Ϊ 5 s"1; 3—r = 10ns, ω = 1.78·1015 β4.
The arrow indicates the instant that the dielectric phase disap-
pears.7 5

while, since the optical thickness of the flame depends
weakly on the characteristics of the laser pulse (see
Fig. 20), a large fraction of the energy in the ruby
laser radiation is deposited in the region that is optical-
ly inaccessible to the neodymium laser radiation. For
this reason, ruby laser radiation destroys the target
more effectively. We are not familiar with any ex-
perimental data concerning the quantity Xefr in the range
of radiation inte sities being considered. A compar-
ison of the specific recoil pulse, computed in Refs. 75
and 76, with experiments performed with a series of
metals,32 shown in Fig. 21, demonstrates the good
agreement (in order not to complicate Fig. 21 need-
lessly, we presented data only for An and Al). We
note that the dependence of the specific recoil pulse
on the radiation intensity, expressed in the appropriate
dimensionless variables, is a universal function. This
permits an immediate determination of two critical
parameters, Tc and pc, by comparing the experimental
curve with that illustrated in Fig. 21 with the help of a
scale transformation. After this, pc is determined from
the principle of corresponding states. This method can
be used for determining the critical parameters of high-
melting metals, which is difficult to do using other
methods.

The stability of the stationary regime for the expan-
sion of the flame examined in Refs. 75 and 76 was
studied in a recently published work,77 in which the non-
stationary equations of hydrodynamics were numerically

50

FIG. 21. The dependence of the specific recoil pulse on the
radiation intensity. Reduced coordinates, ω = 1.78·1015 s"1; the
solid line denotes the computed curve, τ =10 ns.7 5 · 7 6 Experi-
ment32: τ = 7.5 ns; 1—Zn, 2— Al.
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FIG. 22. Computed density (-) and temperature (x) profiles at
different times. Rectangular pulse, τ = 10 ns; ω = 1.78· 1015 s"*;
9 = 1 GW/cm2. i(ns) = 0 (D, 1 (2), 3 (3), 7.5 (4), and 11 (5)."

integrated without any simplifying assumptions. The
profiles of temperature and density, obtained in this
work, are shown in Fig. 22. The formation of the shock
wave and its motion into the bulk of the substance can
be easily seen. The width of the layer of the substance
compressed by the shock wave increases with time,
inasmuch as the shock wave moves at a greater velocity
than the stress-relieving wave. From the instant that
the shock wave separates from the stress-relieving
wave, the structure of the absorbing layer becomes
quasistationary. The nonstationary solution quickly
passes into the stationary regime, which demonstrates
the stability of the latter.

In summarizing the remarks made above, we con-
clude that the possibilities for experimental observa-
tion of the metal-dielectric transition, caused by the
action of laser radiation on a metal, are very limited.
Indeed, the presence of a dielectric phase should have
no effect on the results of indirect experiments (mea-
surement of the effective heat of vaporization and the
specific recoil pulse). For this reason, the only way
to make such an observation is to observe the "trans-
parency" effect directly. Here, there are two realistic
approaches. The first is to study the function K(z) in
the expanding flame by probing the flame with a thin
beam from an auxiliary laser in a direction that is
perpendicular to the propagation of the primary laser
beam. As far as we are aware, this approach has not
been used. However, it should be emphasized that
obtaining reliable results by this method is accompanied
with great difficulties due to the small thickness of the
dielectric layer and the multidimensional expansion of
the focal spot on the periphery, which distorts the re-
sults of measurments.

The second approach was used in Refs. 86 and 87,
and reduces to the action of radiation on a thin metallic
film. In this case, a large part of the metal can be-
come a dielectric and the target becomes completely
"transparent." It is also useful in this case to use a
weak probing beam with a different frequency, but acting
this time in the direction of propagation of the primary

beam, as done in Ref. 86 (the transmission of the
characteristic ultraviolet radiation of the plasma flame
through the foil was studied in Ref. 87). In this case, in
correspondence to the previous remarks, the higher the
frequency of the probing radiation, the earlier is the
onset of the transparency effect for this radiation.
The main difficulty in this method lies in the fact that
it is difficult to determine whether the "transparency"
is due to the metal-dielectric transition in the super-
critical region or simply as a result of the evaporation
of metal and the trivial transition to a nonconducting
gas phase. In our opinion, the available experimental
facts are not sufficient to give a unique answer to this
question.

We note, however, that in order to attain critical
values for the substance, it is not necessary to use
only a laser pulse. Thus, for example, a thin metallic
film can be placed in a helium atmosphere.23' In this
case, the helium can first be compressed to a pres-
sure that exceeds the critical pressure for the metal
being studied (for cesium, for example, pc = 120
bar,72 so that there are no particular serious difficul-
ties in setting up this experiment). But, then, with the
action of the laser radiation the substance in the target
will be known to be in a supercritical state, so that
any questions concerning the nature of the transparency
can be uniquely answered. However, as far as we are
aware, such experiments have not been performed.

7. SOME PROBLEMS. CONCLUSION

As evident from this review, the physics of the inter-
action of powerful radiation fluxes with a liquid is quite
varied, and the phenomena that arise in this case have
not by any means been studied completely, either
theoretically or experimentally. We have constantly
tried to direct the reader's attention toward the ap-
propriate "white spots," more precisely, toward those
spots that we could notice. However, our remarks
concern the most varied phenomena and occur in various
parts of the review. For this reason it is useful to
repeat here the most important observations, and also
to indicate some of the most interesting problems (in
our view) that it was not possible for us to discuss.

First, this includes the group of problems related to
the optothermodynamic critical point for a metastable
and absolutely unstable liquid that requires thorough
theoretical and experimental study.

A comparatively large quantity of interesting experi-
mental material concerning optical breakdown in
liquids24 and prebreakdown phenomena88"108 exists si-

23>Hellum Is convenient because it has a high ionization poten-
tial, and for this reason, the degree of its Ionization during
the laser pulse will be small so that this will not distort the
picture of the interaction of radiation with the target.

M)We note especially the method of high-speed holography,
used in Kef. 109 for studying the dynamics of optical break-
down in a liquid and the accompanying phenomena. Holo-
graphic recording allows separating out the output signal
from the intense background noise, caused by the scattering
of laser radiation on cavitation bubbles and white light from
the breakdown region.
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multaneously with the most rudimentary state in the
theory of this phenomenon, for which only a few ref-
erences are available and these are concerned mainly
with describing the propagation and evolution of the
shock wave that arises with breakdown.110*112

The "vaporization" mechanism for generating sound
has been little studied either experimentally or theo-
retically, in spite of the fact that there is every reason
to expect that its significance must increase with an
increase in the intensity of laser radiation. For suf-
ficiently large radiation flux densities, the vaporization
mechanism must be predominant, which can significant-
ly increase the efficiency for converting radiation en-
ergy into acoustical energy.

The very interesting phenomena of photoacoustical
cavition3 5·1 1 3"1 1 5 and laser sonoluminescence116117 and
the optothermodynamic effects arising with the action
of radiation on aerosols1 1 8 ' 1 1 9 should also be mentioned.

Finally, we note that optothermodynamic effects are
by no means limited to the interaction of laser radiation
with a liquid. In this respect, solid solutions, in which
the characteristic time for the development of an in-
stability, as a rule, is many orders of magnitude great-
er than the corresponding quantity in liquids, are also
interesting. Laser induced ferroelectric phase tran-
sitions in crystals and gaseous media have been ex-
amined in Ref. 120-123.

In conclusion, the authors consider it their pleasant
duty to express their gratitude to S. I. Anisimov,
V. A. Gal'burt, M. F. Ivanov, I. E. Poyurovskii and
V. I. Fisher, who presented the results of their work77

prior to publication. The authors are grateful to V. S.
Teslenko and L. K. Chistyakova, who helped in com-
piling the references, as well as to V. M. Podgaetskii
for analyzing a variety of experimental data.
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