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Feynman path integrals in a phase space are analyzed in detail. The analysis is based on the theory of operator
symbols, in contrast with the traditional approach based on the direct use of canonical commutation relations.
Particular attention is paid to the Weyl and Wick symbols, which are the most important in applications. The
set of paths on which the integral is concentrated is studied. It is found that these paths are always
discontinuous. This discontinuity is responsible for errors in certain papers on path integrals in a phase space.
The most important properties of the Weyl and Wick symbols are reviewed.
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INTRODUCTION the mathematics of theoretical physics, primarily be-
l l Method of path integrals cause of two circumstances: First, the path integral

is unusually graphic and versatile. With it, any quan-
The method of path integrals plays a central role in tum-mechanical quantity can be written as the sum of
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the effects of virtual classical paths. The simple de-
pendence on the Planck constant h makes it simple to
see that in the limit h " 0 the quantum- mechanical quan-
tity is determined primarily by a real classical path,
i .e. , by a path which satisfies the principle of least
action. Second, the method of path integrals is very
convenient from the technical standpoint. It is a sim-
ple matter to use this method to construct perturba-
tion-theory series and semiclassical asymptotic ex-
pressions.

In this paper we shall work from the theory of opera-
tor symbols to analyze path integrals systematically.

2) Path integral in a phase space, operator symbols, and
quantization

The Feynman path integral in a phase space1 is
t

(1)

(within a total derivative), and Η is the Hamiltonian of
of the system. The integral in (1) is evaluated along
one set of paths or another, depending on the problem
at hand. [For example, to find the matrix element

where L is the Lagrangian

{q2 | we would evaluate the integral in (1)
along paths satisfying the boundary conditions g(0)

What is the mathematical meaning of this integral?
In other words, how do we evaluate it?

According to one point of view, the integral in (1) is
simply a convenient hieroglyphic, shorthand for an al-
gorithm and perturbation theories.2 This point of view
is too restrictive. On the other hand, the traditional
(Wiener) view of the path integral as an integral along
a measure in a function space runs into excessive com-
plexities here and is thus also imperfect.1'

Another reason that the interpretation of integral (1)
from the standpoint of measure theory is unsatisfac-
tory is that it must also be suitable for systems of fer-
mions, and in this case the integration is carried out
over "anticommuting variables." This approach is also
algebraic in nature and clearly is related to no measure
of any kind. Our own point of view is that the integral
in (1) should be understood as the limit of a finite num-
ber of approximations. But which approximations? It
has been shown previously4 that the integral in (1) is
very sensitive to the choice of its approximations; the
resulting ambiguity is of the same nature as the uncer-
tainty in quantization. This is a fundamental point,
and we shall pursue it in more detail.

To specify the quantization means to establish a
common rule according to which each classically ob-
servable quantity f{p,q) is associated with a quan-

15 We note, however, that an approach to path integrals is
being developed at the present time on Ihe basis of far-
reaching generalizations of the concept of a measure. See
Ref. 3 for a detailed discussion of the questions involved
here.

turn-mechanical observable/, i.e., an operator in a
Hilbert space.2' The correspondence / — / should be
linear. In this situation the function/ is called the
"symbol of operator" / . Once this correspondence has
been established, an operation arises in the function
space which duplicates the product of operators: If
fthth are the symbols of the operators f,f\,fi, and
f=Mz> then/=/!*/.;· The operation denoted by the aster-
isk, being bilinear in/i and/2, is specified by the inte-
grals )

= (| Kh {p, g; />„ ?,; p s , q£ /, (j>lt gt) fc (p

(2)
The Weyl and Wick quantizations are the most impor-
tant for practical applications. The Wick quantization
is an extremely important tool for studying systems
with an infinite number of degrees of freedom.

3) Use of symbols of operators to construct a path integral

We denote by Η some Hamiltonian and by H(p, q) its
symbol. At small values of t we have

3 (f) = exp (·£ Η ) = 1 + · £ Η +0 (t·).

The symbol of the operator G(t) is thus

G (<) = 1 + -£- Η+0 (ί*) = «(·/«№ (i + 0 (p)). (3)

We denote by U(t) the operator whose symbol is U(t)
= exp[(i /ih)H] . It follows from (3) that

G (t) = 0 (t) (1 + 0 (t·)). (4)

Let us consider the operator identity
In it, we replace the operator G(l/N) by the operator
U(t/N). As a result we find an approximate expression
for G:

GAt) = {O{-L·))". (5)

It follows from (4) that Umir.«,6ir(i) =G(i). Since the
symbol of the operator U(t/N) is known, we can trans-
form from operators to symbols in (5):

G*W = 0{+).....u(i.). (6)

Noting that the operation asterisk is specified by inte-
gral (2), we find an expression GN as a multiple inte-
gral, G = linv . «, Gs. An analogous construction can be

2> For example, with the product pq we can associate the
operator /Uj or the operator q$ or also the operator
($q + 3i>)/2, where ρ and $ are the ordinary momentum and
coordinate operators.

s> The correspondence/—/ is not completely arbitrary. The
principal requirement imposed on it is the correspondence
principle:

lim (/, ρ, q), (2) lim-jp

where/ l f / 2 is the ordinary product of functions, and [flf f2]
are the Poisson brackets. All the other requirements im-
posed on the quantization stem from technical convenience.
(This definition of quantization is a particular case of the
more general definition proposed in Ref. 5. See also Refs.
6 and 7.)
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carried out in the case in which the Hamiltonian Η de-
pends on t. Tobocman's paper8 is based on similar
considerations.

4) Scope of this paper

Expression (6) is the initial finite approximation of
the path integral (1). The functions Kh in (2) are dif-
ferent, depending on the nature of the symbols, i. e., on
the quantization method, so that the integrals in (6) are
also different. It has been shown4 that to take the limit
in a simple-minded way in (6) for the basic types of
symbols would be to erase the differences among them,
so that the result would always be the same (and this
result would thus be correct only under certain special
circumstances).

In this paper we shall analyze the behavior of inte-
gral (6) in the limit JV-°°. We shall see that the limit-
ing expression has the original form in (1) only in the
case of Weyl symbols; in other cases, the expression
has certain added details, the most typical of which
is the appearance of integrals with a displaced argu-
ment in the exponential function in (1). For example,
the integral

H(p(t + 0), q(t))dt

appears in place of the integral

, g(t))di.

(7)

(8)

Nonintegral terms also arise in the exponential func-
tion in (1), taking different forms for different kinds
of symbols. After the correct expression for integral
(1) has been written, it is found that this integral is the
limit of finite approximations of a general kind, one of
which is (6). The approximation is constructed in the
following manner. We consider the Hubert space

, h) of paths with the scalar product

(9)

(x, x) = j x2 (<) at, * = (/>, />„, ?,,..., qn), xa=
ι

In $Xh, h) we consider a sequence of nested finite-
dimensional subspaces#yC<%Jv*i which consist of dif-
ferentiable paths. The integral

j (H (p, q)-p'q) At for ρ (t), q (t) 6&Cw
t,

is a function of a finite number of variables. Replac-
ing the path integration in (1) by an integration over SKs,
we find a finite approximation of integral (1): J
= ]lraK.*JN. To a large extent, the limit ΛΓ—°° in inte-
gral (6) is based on intuition, so this limit must be jus-
tified. A justification "at the physical level" will be
given in the present paper. This justification will be
less than rigorous because of a free transposition of
various limits. The rigor can be restored by ordinary
methods, by making natural assumptions regarding
the Hamiltonian. We will also determine the paths on
which integral (1) is concentrated. We shall show that
these paths are necessarily discontinuous. This cir-

cumstance clarifies the difference4'between integrals
(7) and (8). Furthermore, it will be shown that the set
of paths on which the integral is concentrated is not
determined unambiguously: This set can be varied by
increasing the smoothness of the coordinates at the
expense of the momenta (or vice versa), but it is im-
possible to arrange events such that both the coordi-
nates and the momenta are continuous. This circum-
stance is in agreement with the uncertainty principle.5'

In addition to these qualitative results, this paper
contains many equations which express various physi-
cal entities as path integrals. As a rule, these equa-
tions are not new, and their derivation by the theory of
symbols is primarily of methodological value (aside
from the refinements mentioned above). The advan-
tages of this derivation over the traditional derivation
(based on commutation relations61) are that, first, it is
simpler and, second, it can be extended to the case in
which the phase space is curved and in which there are
no natural coordinates in this space with canonical rela-
tions (Poisson brackets). An example of this type is
given in Ref. 10.

Finally, we note that this method which takes a limit
in integral (6). A similar attempt was made in Ref.
2, but the equations derived there are, unfortunately,
not exactly correct": They do not have the argument
shifts as in (7).

To make this paper self-contained, we are also fur-
nishing a supplement with a brief review of the proper-
ties of the various symbols.

1. PATH INTEGRAL FOR THE EVOLUTION
OPERATOR SYMBOL

a: Weyl evolution operator symbol

1) Basic construction

We denote by Η some operator in L2(R"), and we de-
note by H(p, q) its Weyl symbol:

H= jii<«?+ei><p(a, P)dadp, Η (p, q) = j «««Ρ+Μφ (α, β)άαάβ,

(1.1)
where£ = (?i pn), g = (h qn), a = («i, · · · ,

<*„), 0=Oi ,/U, α£=Σ<*,£,, βζ=Σβ,ϊ,; da
= άα1·" do^, άβ = άβ1·· ·<№„. We shall be using some
similar notation below. Here βι and qt are the ordi-
nary momentum and coordinate operators in R":

4 ) Incidentally, this difference is unimportant in the c a s e of
quantum field theory : It a r i s e s only in the quasi local t e r m s
and is thus e l iminated by r e n o r m a l i z a t i o n .

5 ) It was shown in Ref. 9 that a path integral can be calculated
along paths with a continuous coordinate and a discontinuous
momentum.

6 ' Equations for the bas ic physical quanti t ies in t e r m s of path
integra ls b a s e d on canonical r e l a t i o n s w e r e der ived in the
1950 ' s and I 9 6 0 ' s in Refs. 12-16.

7 ) Incidentally, Ref. 2 r e p r o d u c e s the bas ic p a r t of Ref. 4 ,
which contains a construct ion of the path integral by means
of symbols , with an e r r o n e o u s re fe rence to a p a p e r 1 1 by one
of the authors of Ref. 2 instead of Ref. 4.
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(/>*/)(«)-•f-ΚΓ. ( ? * / ) ( s )

The functions φ(α, β) may be either ordinary functions
or generalized functions; furthermore, they may de-
pend on the Planck constant h as a parameter. Accord-
ingly, the symbol H{p, q) may also depend on h as a
parameter. Where necessary we specify this depen-
dence by a subscript: Hh{p, q), φΗ(α, β).

For convenience we set

x = (p, g), ω = ( _ ° κ ο").

Uy = (p,q), then

(P.1).(J). ?=(])• ?-(j)

(/„ is the unit matrix of order n). We denote by f({x)
{i — 0,. . . , N) the Weyl symbols of certain operators,
and we denote by Gs(x) the Weyl symbol of their pro-
duct. Using the formula for the composition of Weyl
symbols (see the Supplement), we immediately find

/j 2) that ίι «τ « ti, and we assume #2* =J»

xa>y

where xs =x. This equation takes a simpler form if
we set /o = 1 and change the notation of the integration
variables, 3Ί~"*ι, y*~*y*-i in the case k > 1, xn~*Xk*i'·

^ ί K "G » { x · · ·fl d"v *"
(1.3)

The integration can be carried out over the variables
x,. Since these variables appear in a power no higher
than the second in the exponent, we can use the statis-
tical-phase method here.

We transform KK:

ί xN+iaxN

l a

for odd N,

w+i) for even JV.

(1.4)
Equating the derivatives with respect to x{ to zero, we
find

— as, = 0 , y» — 0, fc = 2, . . ., N. (1.5)

Now the cases of even and odd Ν diverge slightly. Let
us first consider the case of even N. In this case Eqs.

can be solved unambiguously for the *:,:

(1.6)

The fact that Eqs. (1.5) can be solved unambiguously
means that the quadratic form on the second row in
(1.4) is nondegenerate. We can thus apply the statisti-
cal-phase method in its simplest version.

We now introduce the continuous parameter τ, such

where Tk — h-^/^itz-h; χ(τ), χ(τ), andy(r) are con-
tinuously differentiable functions of τ; and g(j;x) is a
continuous function of the variables τ and x.

Under these conditions we can take the limit tf—°° in
(1.6):

(1.7)

Expression (1.4) for ifjr is an integral sum, except for
the first and last terms on the first row. In the limit
AT—00 these terms become equal to x{tz)wy{ti) and
y(h)wx(ti), respectively. Also using (1.7), we find the
following expression for K = ]imKs:

Κ =
4 >~

ων (t,) - -f j χ (τ) ω» (τ) άτ

u

1 Γ ·
"~Τ J α :(τ) ί ί>ν(τ)

T + τ ί*»» w+»('

f -
] χωΐΰτ

»)+τ

(1.8)

We now incorporate the factor (l/irfe)2"" in the normal-
ization of the differentials in front of integral (1.3), and
we introduce the notation G =limGf f. For G we find the
final expression

»,
G(h, i,|x) = jexp{-l[J ? (T; »(x))dt

i,

—|- J »<oy dx + x<ay (O + » (ίι) ωχ + \ y (Q ay (i.) ]} ]\ Ay (x).

(1.9)
The integral is evaluated over all paths.

We turn now to the case of odd N. The solution of (1.5)
in this case is

(1.10)

The equations are thus not always solvable and the solu-
tions not always unambiguous. The condition under
which the equations are solvable follows from the first
group of equations in (1.10) with k = (iV +' l)/2 (we re-
call that xHt\=x):

• Σ (1.11)

Where the equations are solvable, the solution depends
on xN as a parameter. It follows that the stationary-
phase method can be used to evaluate the integral over
X2, . . . , Χχ-ΰ the remaining integral, written as a
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function of xN, is necessari ly

j « xil = ( 2 π ) " δ (Cw<pw) = (2π)» ctf δ (φ*),

where φκ is the left side of (1.11), and cN*0 i s some
constant.

As before, we examine the continuous limit, and as
before, we introduce the functions x(r), x(r), a n d y ( r ) .
F r o m (1.10) we find

x (τ) τ) _ y «,)).

For Α"=1ϊηι/^ we find an expression like (1.8):

K = x(t^jy{t^—i- j x{x)ay(x)Ax—i- j χ (τ) ay (τ) dx + y ( t , )«
«. i,

+ [ χ (χ) ωχ (x) dx + xtaz (t,) =* — -|- f ι/(τ)ω^(τ)<1τ
<Ί t ,

+ [* - χ (» («j) + » (ίι))] ω?(*i) + y (ί,)ωΐ + 4-ϊ ft) ωίί (<,). (1.12)

From (1.12) we see that the integration over x{t\) leads
to a factor

This result is in complete agreement with the circum-
stance that in the limit N-"*> the condition (1.11) be-
comes

(1.13)

Using (1.13), we can write the final expression for G as

- 4 j f] dj/ (τ).

(1.14)

We have a few final comments on this topic.

a) For a given quantity we find two integral represen-
tations, (1.9) and (1.14). One representation can be
transformed into the other in the following manner:
We denote the integrands of the path integrals in (1.9)
and (1.14) by Fi{x,y) and F2bc,y), respectively; Ft(x, y)
is a function of the point in phase space, x, and a func-
tional of the path y =y{r). Here F2 contains the factor

~χ· Κ i s easy to see that

x, y) = (55)» J h (χ< V)

This relation corresponds to multiplication of the given
operator by the unit operator

GN ( i a >

2 -~ ~ & ~~
-rr-ίΧίΛΧ+ΧΙΰχ+Χίύχ) ~ ^

I elh Ax A.T

before the limit is taken.

b) Equations (1.9) and (1.14) can be simplified slight-
ly by setting

y (ί) = χ + u (t).

Equation (1.9) becomes

G(i 2 , |u)= j exp | - i - x--i- f

(1.9')
Equation (1.14) becomes

C («„ t2; x) = j exp {-1- [ j g (τ; * + u (τ) άτ
<ι

-4
(1.14')

c) We can transform integral (1.9') by substituting
δ(α- ^.uUi) +«te)]) into the integrand and then carrying
out a further integration over a. This is an identity
transformation, since / 6(« - ^[«(/j) + u{ti)])du = 1.

As we see in Sec. c below, the result will not be
affected if we do not complete the integration over a in
(1.9):

G(t2,tt;x)= J exp {-̂ - [ j (g(x;

(1.15)

In other words, the integral is not changed if the inte-
gration is carried out over only those paths which sat-
isfy the following condition instead of over all paths:

| ( u (ί,) + «(ί2)) = α, (1.16)

where a is an arbitrary point in phase space. Although
the integrand in (1.15) depends on a as a parameter, the
integral does not depend on a.

This property of integral (1.9') is analogous to the
properties of the path integrals which arise in gauge
field theories. It might naturally be called the "gauge
singularity."

From this standpoint, the transformations u{t)~u(t)
+ c, where c is a constant, can be treated as guage
transformations; relation (1.16) can be thought of as
the condition which fixes the gauge; and the integral in
(1.14') can be found from (1.15) by choosing a special
gauge, a = 0.

At first glance, the gauge property of integral (1.9')
seems contradictory: It follows formally from (1.9')
and (1.15) that

G(t2, /,; x) =G(« 2 , i,; x) j da = G (f2, fj x)-ac.

Contradictions do not arise because of the definition
of the path integral: Roughly speaking, this integral
is a fraction in which both the numerator and denomin-
ator contain a factor / da. This point is explained in
more detail in the following section.

2) Approximations of a general type

The path integrals in (1.9), (1.9'), (1.14), (1.14'), and
(1.5) were introduced in the preceding section on the
basis of intuitive considerations. In the present sec-
tion we shall give them a more exact meaning; we shall
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essentially be giving them a mathematical definition.

We first consider the integral in (1.14'). We denote
by#fai, t2) the Hilbert space which consists of the func-
tions x(t), ίι« ί« ί2, which take on values in the phase
space [i.e., this Hilbert space consists of classical
paths with a scalar product

(1.17)

where

X ( t ) = ( p , ( t ) , . . ., p n ( i ) , 9 l ( t ) , . . . , ? „ ( i ) ) ,

Σ (P! (*)+«?(*)]·
1

We denote by PN the family of orthogonal-projection
operators with the properties

dim Psm («„ is) = d (Λ')< οο,

(1.18)

where / is the unit operator in#"fl.t2, and the limit is
understood in the strong sense. The second condition
in (1.18) means that the subspaces 3%, -Pn^tx.t2 are
nested: # " C # £

We denote by §f{t\t t2)C 2f{h, i2) a set of continuously
differentiate paths, and we denote by &\h, t2)
c %\tlt t2) that subset of ̂ which consists of paths satisfy-
ing the condition

x(ti) + x(t2) =0. (1.19)

We set βή, =PN#a(tl, t2). In the space Sfth, t2) we con-
sider the operator £ with a region of definition consis-
ting of the space ̂ (h, t2)

Bu = «>4r. (1.20)

In the spaces §f\ we now consider the operators BN

which satisfy the conditions

ά&Β,,φΟ, ΒΝ = Β·Ν, lim BHPwf = Bf. (1.21)

The latter condition must hold for any / e^°(i 1 , t2).
[in (1.21), as in the similar limiting expressions which
we will see below, we mean the convergence in the
sense of the metric of the Hilbert space $ff{t\, t2).]
Finally, we denote by tfu, L = aimPNjf\ti, t2) the
Lebesque measure in the space §f\. We set

GNJJ1^^^1^L. (1.22)

Obviously, expression (1.3), which has the same nota-
tion, transforms into the particular case in (1.22) after
an integration over xt and the substitution /*(y)
= expUAfelf2 - h/N]giT,,;y)}, for odd N. Case (1.22)
corresponds to a special choice of subspaces %Ή
=PN^f(tl, t2) and operators BN. The integrals in (1.14)
and (1.15) are determined in a completely analogous
way. The only difference is that instead of the function-
al i\\g(r;x-¥u{r))&r in the first case we consider the
functional S*\g((T; y(r))dr + ^!)ω^)(ί2), and in the sec-
ond case we consider the functional S't\g{T,χ + α + ϊι(τ))άτ
-αω(ΰ(ί2) -iiUi)).

We turn now to integral (1.9'). We consider the Hil-
bert space #(f,, i2) =#"(*!, ί2)ΘΗ2η, where 3f(h, t2) is

2the space of paths considered previously, R2" is a real
Euclidean space of dimensionality 2n with an ordinary
scalar product, and w is the number of degrees of
freedom. The elements of #*Ui, t2) are the pairs
{*, a}, xGtfUi, t2), at^R2", and the scalar product is
defined by

({*, a}, {y, β}) = ( * , (o, β). (1.23)

With each pathM(i)e^"(ii, t2) we associate an element w
of the space %?Uu h):

u = {u, a}, (1.24)

We denote the set of elements u in (1.24) by %?(tit t2).
In §f we consider the operator Β whose region of defi-
nition is §f:

-, ω (u(id-u(ii))}. (1.25)

We see that
u (i,) OJU (id -

It follows that the quadratic form in the exponential
function in (1*9') is equal to -(l/2ife)(S, Bu). We now
consider, in the space §f{t\, t2), the projection opera-
tors Ps with the properties in (1.18) and the operators
BN in the spaces %f% =Ps2f(h, t2) with properties ana-
logous to (1.21):

detSw^O, limSwPw/ = 5/, lim BJ,PW/ = S*f

for any fE.%f(h, t2). (In contrast with the operator BK,
the operator Β is not self-adjoint and in fact not even
symmetric.8') We define the function GH by an expres-
sion like (1.22):

x~Us. $Νΐ)}
d L i

where a={«(i), Uui

(1.26)

u t2).

In the following section we shall show that the func-
tions Gs and GN defined by Eqs. (1.22) and (1.26) con-
verge to the function G(h, t2 \x) in the limit W-«. This
function is the Weyl evolution operator symbol. The
operator with the Weyl symbol g{t",x) serves as the in-
finitesimal operator of this evolution.

3) Derivation

We should check to see that the functions Gs and GN

defined by (1.22) and (1.26) converge to the function
G(ti, h \x), which is the Weyl symbol of the operator
G(fi, t%), which in turn satisfies the conditions

8) In the space^i j , t2)
 w e consider the operator J defined by

/ {*, «>={*, -a).

It is simple to show that the operator «ZBas self-adjoint. In
this connection it is natural to single out a class of approxi-
mations for which the condition (PK J"SMPH) * = PN ^NPM holds
in addition to (1.26).
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where g(t) is the operator with Weyl symbol g{f,x).

We first use approximations (1.22) and (1.26) to cal-
culate the path integral in the case git;x) = u(t)x, where
u{t) is some arbitrary function. The integrals in (1.22)
and (1.26) are evaluated by the stationary-phase method.
These integrals should be evaluated at a fixed N, and
then the limit ΛΓ—» should be taken. Under our as-
sumptions regarding the operators BH and Bs, the re-
sult will be the same as if we had applied the station-
ary-phase method directly to the limiting exponential
function. The calculations are very simple and can be
omitted. They are slightly different in the cases of
approximations (1.22) and (1.26), but, as expected, they
lead to a common result9':

d
Is 12

— i - f f sign(i — s)u(t) o>u(s)dids]}.
ii «1

(1.27)
The same result is found by evaluating integral (1.16).
The parameter a drops out of the answer. We now as-
sume that g(T;x) is an arbitrary function which can be
represented by a Fourier transformation:

We note that

'g(o; υ) Αν) do, (1.28)

where «(τ) = /ζδ(τ - σ)ν. We need to find the path inte-
gral

K)Ui'J- (1-29)

Substituting the value of the internal integral in (1.28)
into (1.29), transposing the integration over dv and da
with the path integration, and using Eq. (1.27), we find

( 2 IJ

F' = ί ( ί e~U°B(σ; υ) ά ν ) ά σ = \ Ζ (σ; χ) da. (1.30)

[The second term in the exponential function in (1.27) is
equal to -(h/4i)vwv sign(O) =0 in the case u{r) = hv5(r
-σ) since νων = 0. The uncertainty in sign 0 is unim-
portant here.]

Let us consider the more general integral
'2 1

Fn=\(\g(°;yW)d<>)ne-XrKl[dy, n > l .
ίί

Working in a similar way, we find

(1.31)

9 )The role of the denominators inEqs. (1.22) and (1.26) is that
they are sued to cancel out det PN and det BN. We wish to
call attention to the fact that the limiting operator Β = lim BN

is not degenerate: It follows from the condition Bf = 0,
/«J^iii, h) [i.e.,/(i1)+/(f22=O] that/ = 0. On the other
hand, the operator B= tim Bx is degenrate: Buo= 0, where
ua ~ {u0, ct}, UQ(X) = const = a .

Fn --' \ g (",; i'i) •.. g (on; vn) d"v d"o \ e >\

= f ϊ(σ,; vt) ... }(oH; ^ r ' ^ ^ - ^ - ' - ^ r S ' ^ - ^ ^ -

It follows in an obvious way from (1.32) that

Fn = Ο ((t, - «,)») as i , — (,.

Ay

(1.32)

We now consider the integrals in (1.9) and (1.14).
Expanding exp(l/ih!g(y(T), r)dr) in a series, and using
the results, we find

G = 5 (•a-)"-CT-̂  = 1+-a- f *( ' ! *)K+o«h-W, (1.33)
η ' ι,

where FK is given by (1.32) for η > 0, F0 = l, and the
second equation holds in the limit tz~ti. We can now
prove the composition formula

. t' | ,ύ G (f, , , dx,

(1.34)

For this purpose we use the expansion (1.33). We
transpose the summation with the integration over X\
and x2; then the integral in (1.34) transforms into a sum
of terms of the type

J \ g («ι! yi) • · • *(""•; "m) g (T,; u,) ... ?(τη; »„)

xe

x e "
•ixitaxt+xtutx+χωχι)fj dy, [J duk [] do, [] dt* dxt dx2,

(1.35)
where the integration over af is between the limits h
« σ, * t' and that over τ, is between the limits V * T,
«ft.

Integrating over *i and x2 in (1.35) (the stationary-
phase method is convenient here), we find a new ex-
pression for (1.35):

- ^ j - \ g(°i' "i) · · • f(«»i »m)g(tt·, "i) · · • ?(T»; «-.)

(1.36)
We now change the notation, setting Uk=vmtk, Tk = am^,.
Then (1.36) can be rewritten in the more compact form

-^f j g (fii v,)...g (Tm+n; ym+n) θ (f - σ,)

... θ (t'-am) θ ( o m + 1 - f) ... θ (o m + n -i ')

(1.37)

and the integral over all at is between the limits t\
« σ( * ;2· The sum of expressions (1.37) over all m
and η satisfying m+n=N can be written

•777- j ?(σι;»ι) ··· ?(ojv;«jy)(9(i'—o,)
+ θ (σ, - ί')) . . . (0 (Γ - σΛ.) + θ (σΝ -1'))

(1.38)
By virtue of (1.33), the sum of the right sides of (1.38)
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over all
(1.34).

0 is equal to G(f2, h \x). This proves Eq.

Differentiating identity (1.34) with respect to t2, set-
ting t' =h, and using the second equation from (1.33),
we find

(1.39)

We adopt the notation G(f2, ti), g(t) for the operators
whose Weyl symbols are G(i2, h \x) and g(t;x), respec-
tively. Equation (1.39) is equivalent to the operator
equation

4) Paths on which the path integral is concentrated

The path integrals G = limGff and G = limGj, defined
above, where GK and GN are determined from (1.22) or
(1.26), are superficially reminiscent of integrals over
a measure in a function space with a density

δ ('M+'W) exp {-sk J„;(,)«ί(τ) dt}

or

respectively. Obviously, however, neither of these ex-
pressions could be interpreted as the density of any
measure in any sense. We must therefore refine the
formulation of the problem of determining the particu-
lar paths on which these path integrals are concentra-
ted.10' We can formulate the problem as follows: We
assume that 3f is some Hilbert space consisting of
classical trajectories x(t), h « t« h. We denote by S{r)
a sphere of radius r in &f. We now consider a sequence
of orthogonal projection operators with properties
(1.18); we denote by 3fs the space PH2f and by S,,{r)
the intersection of S(r) with # V We consider the inte-
gral

\
vesK

(1.40)

where (f~y is the Lebesque measure in Ps&f, L
= dimPff#', and BN are operators with properties (1.21).
We denote by Jff(°°) the integral analogous to (1.40) but
extended to the entire space PN2f, and we set

* » Μ - 7 * & · (1.41)

Obviously, limr . «, 2N (r) = 1.

We now assume that there is some sequence of pro-
jection operators PK with property (1.18) such that

1) for each r» 0 there exists a limit J M = limr.«,J'if(r)
and

2) there exists a limit UmT.jZH(r), and limr.«,5(r) = l.

1 0 ) It these integrals were integrals over a measure, the prob-
lem would be one of describing a space in which this measure
was concentrated.

In this case we say that the path integral in (1.14) is
concentrated in the space #*. Analogously, we are
defining what we mean when we say that the integral
(1.9) is concentrated in the space 2f.

If the function e

inih(»>B») generated a measure in any
function space K, then any Hilbert space containing Κ
would have these properties. Our definition of the
space in which the integral is concentrated is thus a
natural generalization of the definition used in the situ-
ation in which the integral is generated by a measure.

The definition could of course be altered in such a
manner that the role of the Hilbert space and ^ would
be played by a Banach space or a linear topological
space with suitable properties. This approach can ap-
parently yield the same exhaustive description of the
trajectories to which the integral is concentrated as is
currently done, for example, for a Wiener measure.
We shall not pursue this point further.

We now show that the integral in (1.14) is concentra-
ted in the space 9t\t\, f2) with scalar product (1.17).
For simplicity we assume the case of one degree of
freedom. We introduce an orthonormalbasis in 2t\ty, t2)
consisting of vectors which satisfy the condition x{t\>
+ x(i2)=0: (e' ' / r a"*1 ) l/0),(0/e"/ r ( e t l )). The expansion
of a trajectory in this basis is an expansion in the Four-
ier series

(1.42)

where ct(n>) and β{ηι) are the Fourier coefficients of
the momentum and coordinate, respectively, and x(m)
= x{- m). From (1.42) we find

f ζω*dx = πι ^ m (α (m) β (m) — β (m) α (m)).
Ί

We denote by SfH the subspace of $t\t\, h) which con-
sists of trajectories whose Fourier-series expansion
contains those terms in (1.42) for which \n \ « N. Look-
ing ahead to the calculations below, we shall abandon
the sphere in 9fv and instead consider the ellipsoid
Sff(a, μ, r) defined by the inequality

V ίσ (ηύ Ι α <m\ I2 -I- u (πύ\ β (m) \2) < r2 (1 43)

We can find the integral JN over ellipsoid (1.43):

]\ da da dp dp7

= f ds6(s— 2 (σ(m) |a(m)|=>

/ f f (r )= J e
Sjrd". μ. r)

+ ,i(m)|p(m)|*))

= ± \ at \ exp { i 2 m («(>») β <m) —Pc

+ i p [ s -

+ β (m) ρ (m) μ (m))] ] \\ da da dp dp"· dp

I " - II.
2
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J 2πίρ \ π 2
1

/, ρ·ΆΌ(ηι)μ(ι»)\
\ nV Ι

(the integration contour swings below the poles).

The integral JNH is equal to J>M =(Λ2Α2)2ΛΓ*1ΐΛ(2ΛΤ
+ 1)!!]4. Hence

/JV (oo) J 2πίρ -dp.

Furthermore,

where

p'h'g (m) μ (m)

The infinite product in (1.45) converges if

(1.44)

(1.45)

^ < o o . (1.46)

In the case a(m) = μ{ηι) = 1, in which we are interested,
condition (1.46) is obviously satisfied. The first factor
in the integrand in (1.44) assumes the value δ(ρ) in the
limit r—°°. The function F(p) is obviously regular at
p = 0 under condition (1.46), and F(0) = 1. We thus
have limr, »i?(r) = 1.

We have proved our assertion. This discussion
leads, however, to another, extremely curious result:
It turns out that it is possible to specify a space of
paths on which the integral in which we are interested
is concentrated and for which the smoothness of the
momenta is improved at the expense of the smoothness
of the coordinates; alternatively, it is possible to spec-
ify a different space, in which the smoothness of the
coordinates is improved at the expense of the smooth-
ness of the momenta. We denote by^""1" the Hubert
space of paths with the scalar product

(*,*) (i.47)

Here ^ ^ ' " denotes the subspace of paths for which
a{2n +1) =β(2η +1) =0 with η >Ν. Ellipsoid (1.43) in
the space 3lfK is a sphere in <%̂ (σ, μ). We now assume

σ (2n + 1) = (2B + 1)1+ε, μ (2B + 1) = (2B + l)-2«, ε > 0. (1.48)

Condition (1.46) obviously holds. We can show that
condition (1.48) guarantees the continuity of the mo-
menta. It follows from (1.47) that

(1.49)

On the other hand, from (1.48) we have Σ/ΐ/σ(2κ +1)
<°°, so that

S|a(2n+i)l<°°· (1.50)
ι

Condition (1.50) implies that the momenta are continu-
ous. With regard to the coordinates, we see from
(1.48) that their differential properties are worse at
any ε ~> 0 than those of functions which are square-
summable. (They may have singularities which are not

square-integrable.) For ε > 1/2 the coordinates may in
fact be generalized functions. By changing the roles of
σ(η) and μ(«), we are improving the smoothness of the
coordinates at the expense of the momenta.

This result agrees well with the uncertainty princi-
ple: The value of any function at a point can be mea-
sured only if this function is continuous at that point.
Consequently, the coordinate and momentum cannot be
simultaneously continuous. When we try to get more-
detailed information on the coordinate (i.e., when the
smoothness of the coordinate is improved) we find we
can do so only by degrading the situation for the mo-
menta (conversely, the smoother the momentum, the
poorer the differential properties of the coordinate).

Which space should we use to evaluate the integral?
The answer apparently runs as follows: The space
5f{t\, h) is suitable in all cases. In some cases, bet-
ter results (i.e., a faster convergence of the finite-
dimensional approximations) can be obtained with a dif-
ferent space #""•". The particular situation determines
which space should be used. For example, if g = (j,)p2

+ v(q), then it is natural to consider a space which
guarantees the continuity of q but not its differentiabi-
lity. It seems obvious that in this case the integral will
be determined primarily by paths that are similar to
Brownian trajectories.

5) Perturbation theory

Equation (1.33) (more precisely, the first equation
there) can be thought of as a perturbation-theory series
for the evolution operator symbol. The corresponding
unperturbed infinitesimal operator is jf=O. The terms
in this series are given in (1.32); they are expressed
explicitly in terms of the Fourier transformation of
the symbol representing the infinitesimal evolution
operator. This circumstance is frequently disadvan-
tagous. We shall accordingly put the perturbation-
theory series in a form which explicitly involves the
symbol representing the infinitesimal operator itself.

We consider an operator in the functional space

L = - τ " d t d i ' (1.51)

where (h,~k) is an arbitrary interval which includes the
interval (tit h). [in practice, the cases (Γι, h)={h, t2)
and h =-°°, ~h =+°° are convenient.] We note that the
functional

£,= j ?(σ,;ι;Ι)...?(σΛ;1;Β)ί-«*"'1»-+-+Ι[<ννίσ» (1.52)

is an eigenfunctional for L with the eigenvalue

2 s '£n (°
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The function in (1.32) can thus be written

- e''"1· ( } ? ( < τ ; ζ (σ)) do) " j r f f r ) _ T .

Using (1.33), we finally find
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G(tlt 4,1 J (1.53)

b: Wick evolution operator symbol

7J Basic construction

We denote by a*{i), and 5(i) (f = 1,. . . , n) the Bose
or Fermi creation and annihilation operators:

where Η is some operator in the Fock space, and
H{a*, a) is its Wick symbol,

#=Σ#(«ι ik\ii..-h)i*(il)...a*{ix)i{jl)...i{jth

Η ( ο * , α ) = S Η ( i , . . . i K | ; , . . . / , ) a* ( i , ) . . . a * ( i k ) a ( j , ) . . . a ( ; , ) .

In the Bose case, a{j) =(l/JZ)(q(j) +ip{j)) are holo-
morphic coordinates of the phase space, and a*(j) =(1/
JVkqii) - ip{j)) are antiholomorphic coordinates of the
phase space. In the Fermi case, a(j) are the genera-
tors of a Grassman algebra with involution. In both
cases, we can use the notation a*=(a*{j) a*(j)),
ab =T/a(j)b(j). When applied to a number or a func-
tion, the asterisk means complex conjugation (unless
otherwise stipulated); when applied to an element of the
Grassmann algebra, it means an involution; a(j) and
a*(j) are independent variables in the Bose case and
independent generators of the Grassmann algebra in
the Fermi case.11)

The basic equations and their derivations are essen-
tially the same in the Bose and Fermi cases, so we
shall discuss only the Bose case in detail. The Fermi
case will be covered in the final subsection of this sec-
tion.

We denote by /|(σ*, α) the Wick symbols of the opera-
tors/, (t = l , . . V N ) , δκ =£-·/„; also, GK is the
Wick symbol of GN. Using the composition formula for
the Wick symbols, we find

(a·, a) = • • • fs («fc-i,

jr_i daw_,,

As before, we introduce the continuous parameter t,
<t<tz), and we set

14' The relationship between the Wick symbols and the operators
in the Bose case can also be described by equations analogous
to the Weyl equations in (1.1). We denote by/(e*. a) a func-
tion in the phase space which can be represented as a Fourier
transform:

/ (o«, a) = { f(l·, ») e«a

We set

Π dl· iz.

The function/ is the Wick symbol of the operator/. The im-
portant distinction between the Wick and Weyl symbols is
that the Weyl equations in (1.1) are meaningful for essential-
ly any functions/, while the analogous Wick equations are
meaningful for only entire analytic functions of pk, qk of a
certain class, (see the Supplement).

«ι, = a ft»), a% = a*(xh),

fk(a*, a) = e'h

where α(τ) ={α(τ; 1),. . . , α(τ; η)} is the phase path in
the complex coordinates, a(f, k) = (1/-/2) (q(t't k) + ip(t; k)),
α*(ί) = {α*(τ;1),. . . , α*(τ;η)}, a(r;k), and^(T;a*,a) are
continuously differentiable functions of τ, τ* =ί2 - (fe/
lSf)(t2 - h), and Δ = {l/N)(t2 - h). Furthermore, the
form of the integrand in (2.1) suggests that the notation
«o =«*i α* = α is natural; equivalently, it suggests the
boundary conditions

a* (f2) =a*, o(t,) = o (2.2)

for the phase paths α(τ). Under these assumptions, KN

has the following value in the limit N-~<*>

i + 0

d "* ( T > a (τ - 0) ^τ + (o« (f, + 0) - a*) a ( 2 . 3 )

[the last term for Ks in (2.1) does not appear in the in-
tegral sum]. Incorporating the factor (2irft)"w'1)n in the
normalization of the differentials, we find the following
final expression for G = l

, ίι|β·,α)= , o(t-0))dx

-a») a)

χ \[ da* (τ) do (τ).

(2.4)

We wish to call attention to the following circumstances.

1. Equations (2.3) and (2.4) contain the expressions
τ - 0 and ti+0. These expressions remind us of the
analogous shift of the arguments in the expressions be-
fore the limit is taken:

«-1

0
g(x; α* (τ), a(x-0))dx,

K-2

2 (

(a* (xK-d -a*)a-+ (a* (t, 4- 0) - a·) a. (2.5)

[We recall that T» =t2 - kA, Δ = (ί2 - h)/N; the first
equation in the second row was found with the help of
the Lagrange equation, and τΧιι« τ» < τ».] If the tra-
jectory α(τ) is continuously differentiable, then we can
of course replace τ - 0 by τΝ and h + 0 by f2. Actually,
however, as in the Weyl case, the integral (2.4) is con-
centrated on discontinuous paths. The shift of the ar-
guments is therefore important. Also important is the
subtle point that the shift of the argument a(j) in the
expression for Κ is smaller than in the first term in the
exponential function in (2.4). This can be seen from Eq.
(2.5); in the expression for the first term before the
limit is taken the shift is Δ = τΑ - τΜ, while in the ex-
pression for Κ before the limit is taken the shift is
T* - m̂-i * Δ · This circumstance could be incorporated
in Eq. (2.4), but we shall not do this since we shall be
discussing below a refinement of Eq. (2.4) which ex-
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plicitly incorporates the difference in the shift of the
arguments [see Eq. (2.19) below].

2. We also note that in the absence of an argument
shift the first term in the exponential function in (2.4)
would be

g(x;o*(x), o(T))dt. (2.6)

The integrand in (2.6) is meaningful if the function
gir; a*, a) is a continuous function of τ and of the phase
variables />*, %. At the same time, the expression in
(2.1) before the limit is taken contains the sum

in an exponential function. Since the arguments ak, (7i4l

have different numbers, they are independent complex
variables. Expression (2.1) thus assumes that it is
possible to continue the function g(r; a*, a) analytically
into the complex region in the phase variables pk, qh.
This is a point of fundamental importance: According
to the meaning of the problem at hand, the function
g(r; a*, a) is the Wick symbol of an infinitesimal evolu-
tion operator, but we know that the Wick symbol A(a*,a)
of any operator A is an entire function of phase vari-
ables.

3. We mentioned earlier that Eq. (2.1) suggests that
the notation a* = a*, as — a would be natural; this nota-
tion is equivalent to (2.2). Let us adopt this notation;
we note that a0 and ο$ are not present in (2.1). We are
thus justified in setting aa = aN = α, α% = α* = α*. With
this notation we can now rewrite Eq. (2.1) in the more
compact form

H da* da». (2.7)
ι

The formal limit ΛΓ—« in (2.7) would lead us to Eq.
(2.4) without the term in the exponential function which
is outside the integrals. The same result could be
found by ignoring the shift of the argument in the last
term in the exponential function in the integrand in
(2.4). Adding to Eqs. (2.2) their complex conjugates,
we find

a (/2) = a, a* (f,) = a*. (2.8)

In the absence of an argument shift, Eq. (2.8) cause the
term outside the integrals in the exponential function in
(2.4) to vanish.

4. Equations (2.2) and (2.8) show that integral (2.4) is
to be evaluated along closed phase paths. These equa-
tions, however, play very different roles. The most
obvious difference between them can be seen by examin-
ing an approximation of the general type for the inte-
gral (2.4). We see that, because of the argument shift,
the holomorphic coordinates of the phase path, a(r),
a*(r), participate in the construction of the approxima-
tion on the interval ti« τ «f2 - <*> while the antiholo-
morphic coordinates participate on the interval t\ + σ
« τ «t2, Where σ > 0 is some number. Equations (2.8)
thus hold on intervals of the paths a{t) and a*it) which
are not involved in the construction of the finite-di-
mensional approximations. At the same time, Eqs.

(2.2) hold on important parts of the paths. Although
these differences are not so obvious, they can also be
seen in the original approximation [(2.1), (2.7)] of inte-
gral (2.4).

There is yet another important circumstance related
to these differences. When the method of steepest des-
cent is applied to integral (2.4) on a stationary trajec-
tory, Eqs. (2.2) always hold. At the same time, if this
trajectory is complex, it may not satisfy (2.8).

Taking all these circumstances into account, we in-
corporate (2.2) in the description of the integration
range for integral (2.4), and we omit (2.8).

2) Approximations of a general type

We set

α (t) = α + b (t), a* (t) = a* + b* («). (2.9)

Using conditions (2.2), we can transform (2.3) for Κ

to

(2.10)

We adopt (2.10) as the basis for the further construc-
tions. We denote by tfUi, t%) the Hilbert space of the
trajectories a(t) = 1//2 (q{t) +p(t)) with the scalar pro-
duct

(2.11)

We denote by ^(h, t2)C3?(tu t2) the subset of Λ ι , t2)
which consists of continuously differentiable paths, and
we denote by #°(fr, I jJC/ld, t2) the subset oiffih, t2)
which consists of paths satisfying the condition

a («,) = α (i.) = 0. (2.12)

We consider the operator Ba, which is defined on

We note that the operator £„ is nilpotent: It follows
from (2.13) that B" = 0 f or» > (t2 - h)/a. It follows that
for any δ > 0 and/*0, /eiPVj, t2), we have

Be (6 (/*,/) + №/*, /))>0. (2.14)

We turn now to a description of the approximations.
We assume that PN are orthogonal projection operators
in %\h, t2) with properties (1.18), # * =Ps%Xh, h),3fl
=PN$'\h, t2). We denote by BK>e operators in 3VH

which have the following properties:

1) \ixaBlfJPNf=BJior any path fe^%, t2).

2) For each δ > 0 there exists a number JV0 such that
at Ν>ΝΛ a relation analogous to (2.14) holds,

Re (β (/*, /) + (£*-,„/*, /)) > o (2.15)

We define FN,cj6\h, h;a", a) as follows:

i'w. «. •> (6 I *2. i l l a*, " ) = r \ g{f,a*(z).a(T-e))dx

ο**, b) - 6 (b*, b) j } J | d4 do·.

(2.16)
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where b e#"°(*i, t2), α(τ) = a + δ(τ), ε > σ > 0, and δ > 0
is a number which satisfies condition (2.15). We de-
note by ί^',ε,^δ \t2, h\a*, a) the analogous function ob-
tained from (2.16) in the case gir; a*, a) = 0.

We then set

G w . « . o ( 6 | f i , t 2 | o * , o ) = F j , i e _ σ ( β | t l , ( , | . < , « )

(6).

(2.17)

(2.18)

Equation (2.18) serves as a definition of the path inte-
gral:

α*((2)—α,
odjj-a

(2.19)

The evolution operator symbol G is related to Gti(, by

G(tu ij|a*, a)= limG^.i*,, J2|a*, a). (2.20)

We note a characteristic feature of integral (2.19): It
involves holomorphic path coordinates a{r), α*(τ) on the
interval h + ο * τ « ί 2 and antiholomorphic coordinates
of this path on the interval h « τ « ί 2 - σ (see footnote 4
at the end of Sec. 1).

Equations (2.16)-(2.20) contain a description of a
scheme of finite approximations of the path integral for
the evolution operator symbol. These approximations
are quite general and seem to be the most convenient
for applications.

It should be kept in mind, however, that this scheme
is still not the most general scheme possible; it is
easy to see that it does not include the original approx-
imation, (2.1). This omission can be remedied by
generalizing the scheme: We "permit" the numbers
σ, ε, and δ to depend on N.

3) Derivation; paths on which the integral is concentrated

As in the Weyl case, the generalization of Eqs.
(2.18)-(2.20) is based on an evaluation of an integral
for the function g(t; α*, α), which is a linear function of
a and a*. We assume git; a*, a) =j{t)a* +j*{t)a. It is
convenient to assume f{t) =f*(t) — 0 for t < h and t > i2.
We set

(2.21)

In terms of this notation, the exponential function in
(2.16) becomes

(«*/ + / » + № * /) + (/ b)) + (Bab*, 6)-6(6*,6). (2.22)

Using the method of steepest descent, we can evalute
the integral in (2.16); for GN,C.,(5) we find the following
expression:

eK If

To find the operator (δ - BN

equation
)~l we should solve the

Taking the limit N~°° in this equation, and using (2.13),
we find

δφ(τ)-θ(»2-σ-τ)θ (τ- = ψ (τ). (2.24)

We will have to take the limit δ —0 below. Obviously,
Eq. (2.24) with δ =0 can be solved only if !/<T) =0 for
τ > ί2 - σ. Under this condition, this equation has a
solution with the boundary condition φ[ίι) = <ρ(ί2) =0,
which is defined uniquely for £i + σ < τ < ί2:

) = 1ίηι(δ-ΰο)-1ψ= f ψ (s) ds.
τσ

For h < τ < tl + σ, the function φ is not defined on this
interval; it is arbitrary, except for the single require-

1 2'ment
1 2' *!)= 0*.

We now recall that ε>σ, so it follows from (2.21) that
the function/2 has the necessary property ( i .e. , / 2 = 0
for τ > f2 - σ ) . We finally find

f*{$)ds.

Hence,

lim lim ((δ -Bs,a)-ipNf2, />„/,)= f t e(s—t—B + a)f(s)f{x)dsdT.

Thus
u

G(i,, h\ a*, a) = exp[-i-j (a*/

tl<x. »

e(s-i-O)/*(i)/(x)didT].

(2.25)

The term -0 in (2.25), which supplements the definition
of β(τ - s) at T = S, is not important if the functions/(s)
and/(r) are ordinary functions, but does become im-
portant for generalized functions.

Let us assume that the function g(a; a*, a) can be rep-
resented as a Fourier transformation:

g(t; a*, a)= j g (τ; ν*, υ) <.-««·.+.»·> dy* du. (2.26)

Using (2.25), we can evaluate the integral

Gl n ) (i2, tt; a*, a)

Η ι
- lim f ( f g{x; α* (τ), α(τ-ε))) Vi B°6*' b) Π db*d6.

(2.27)

As in the Weyl case, we substitute (2.26) into (2.27),
and we transpose the path integration with the integra-
tion over T, v, and υ*. We then use integral (2.25) with

12^ We recall that the region of definition of the operator Βσ is
the spacejp'r'(f 1,i2), which consists of paths with homoge-
neous boundary conditions.
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As a result we find 5) Method of steepest descent

G ( ">(i 2 , t,\a*, a)

= ί*(τ,ί «*, Vi)...g(xn; vt, O^WZ.»)+(S.;W-»S*,«(^-·

X d"v d"v d"t.

(2.28)

The integral in (2.4) can be expressed in terms of the
integrals in (2.28) by a series

,. t, ·, a). (2.29)

It follows from Eqs. (2.28) and (2.29) that G(f2, *ι |α*,α)
is a Wick evolution operator symbol; the infinitesimal
operator corresponding to this evolution has the sym-
bol git;a", a). To derive this result from (2.28) and
(2.29) would be to reproduce the corresponding part of
the derivation completely for the case of Weyl sym-
bols, and we shall accordingly skip this step.

As in the case of Weyl symbols, we are defining what
we mean when we say that the integral in (2.4) is con-
centrated on some set of functions or other and when
we say that is concentrated on a set of paths 3f(tu t2)
which are square- summable. However, there is hard-
ly any point in a further refinement of the set of paths
on which the integral in (2.4) is concentrated (this re-
finement would be similar to that which was carried out
for the case of Weyl symbols).

4) Perturbation theory

We can put the perturbation-theory equations in (2.28),
(2.29) in a form which is at once more compact and
more convenient for applications. We consider the op-
erator L in the functional space

i = _ i J efr-i-OjAyjjIjgd.di. Γ,«,, ζ^ι,. (2.30)
Π--ι. »<-~ f

We note that the functional ίι = β

ίη"'*)?ίΎ'"*1τ)"*τ))ΛΤ i s an
eigenfunctional for L if g(j; α*(τ), α(τ)) = α*(τ)/(τ)
+/*(τ)β(τ):

Lu = ~ f 6(i-i-0)/*(i)/(t)did№. (2.31)

Equation (2.25) for the evolution operator symbol can

thus be rewritten

G(i2, <i|a*, a) = e' o(t)=o, ·
ι·<Τ)-ο·

(2.32)

We now note that series (2.29) is none other than an ex-
pansion in the eigenfunctions of the operator L. It then
follows from (2.28) and (2.29) that Eq. (2.32) remains
valid for functionals g(r; a*, a) which are Wick symbols
of operators of a general kind. We note that all the ar-
gument shifts in the preceding steps are concentrated
in the term -0 in Eq. (2.30). It is not difficult to see
that the presence of this term is equivalent to the fol-
lowing equation (at least from the standpoint of the per-
turbation theory):

£ff~0. (2.33)

In using the perturbation theory we are thus justified
in ignoring the term - 0 in (2.30). replacing it with
(2.33).

The equation for the stationary path of the integral,
(2.16), transforms in the limit ΛΓ—°°, 6 — 0 into an equa-
tion for the stationary path of integral (2.19):

1 · | ^ ( τ ; α*(τ+ε), ο(τ)) 0,

— )-0,

ί(<τ<ί2-σ,

(2.34)
ί, + σ<τ<<2.:), α (χ-ε))

The boundary conditions on these equations are a(ti)
= α(ί2) = a, a*(ti) = «*fe) =a*. We note, however, that
α(τ) appears in Eq. (2.37) only for h < T < h - v> and
a*(r) appears only for t\ - σ< τ < ti. Accordingly, only
the following relations are important:

(2.35)α* (ί.) ι = a.

The functions a[t) and a*(t), which serve as the solution
of Eqs. (2.34) with conditions (2.35), are not necessari-
ly complex conjugates. If they are not, this means that
the trajectory is complex, a(t) = l/SZ(g(t)+ip(t)), a*(t)
= \/-ii(q(t) -ipti))'· q(t)=(q(f, 1), . . . ,q(f,n)), pit)
=(p(t;l), . . . ,p{f,n)), where q(t,k) a.ndpti;k) are
complex functions. The functions a(t) and a*(t), which
are the solution of system (2.34) with condition (2.35),
may also be other than complex conjugates in the limit
ε = σ = 0. In this case the relations α(ί2)= a*, a*(ti)
= a* can of course not be satisfied. Accordingly, when
we use the method of steepest descent we should treat
the functions a(t) and a*(t) as independent functions sat-
isfying Eqs. (2.34) and condition (2.35). The reason
that the functions a{t) and a*(t) are not complex conju-
gates is that the operator Ba, defined in Eq. (2.13), and
its limit B = ]imu.aBIJ are not self-adjoint.

Let us consider some simple examples.

1) g(τ; α*, α) =/*(τ)α + α*/(τ). (This example was dis-
cussed in the preceding section.) With ε = σ = 0, Eqs.
(2.30) yield

= 0,

Also using (2.35), we find

Τ

α(τ) = α-ί j/(s)di, α* (τ) =a*-i j f*(s)dt
l l τ

If / and / * are complex conjugates, then the functions
α(τ) and α*(τ) may also be complex conjugates only if
It*fas~O.

2) gir; a*, a) — ωα*α (a harmonic oscillator). With ε
= σ = 0, Eqs. (2.34) yield

Hence, using (2.35), we find

α·(τ) = α·β|('-'=' , α (τ) = <»««'>-*>".

In this case the path integral is Gaussian, so it is equal
(within a factor) to the value of the functional in the in-
tegrand on the stationary path:

The simplest way to find the constant c is to use Eq.
(2.29).
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In this case we have ~g(r; ν*, ν) =-ωδ'(ν)δ'{ν*), so that

, 10
l",

ΙΓίίΐ ^
- i j ο Jfcl9t.,..fc,8»{'! |»=»·-

Because of the term -0 in the argument of θ we have

a*" β-'·Σ'>*>Ίιί<τιι-
τι-<» I _ ο

for η> 0. We thus have c(tit h)=G{tx, t2;0,0) = 1, which
is the same as the result found previously.13)

6,/ Fermi case

Equation (2.4) and its refinements—Eqs. (2.17)-
(2.20)—remain in force; it is simply necessary to re-
place the ordinary integration by an integration over
anticommuting variables. The heuristic derivation
and justification of these equations remain essentially
the same; the only difference is that the functions f(r)
and/*(r) now do not take on numerical values but anti-
commute with each other, with the operators a(i) and
a*U) and with their symbols a{i) and a*(i).

The perturbation-theory equations, (2.32) and (2.35),
also remain valid. The only point to note is that the
variational derivatives should be understood as left-
hand products, and it should be kept in mind that they
do not commute, in contrast with the Bose case, so
that their order is rigidly fixed.

The situation is slightly different with the set of paths
on which the integral is concentrated. Instead of the
space #"(fi, h) of square-summable paths we should
consider the space of paths satisfying

j||a*(t)o(t)||dt<oo,

where Ji n. denotes the norm in the Grassman algebra.

c: Symbols of other types

1) Definition ofp-q and q-p symbols

The definition oip-q symbols, like that of the q-p
symbols, which we shall discuss below, is analogous to

1 3 ) We note that the series

dnt,

is easily summed for any function Μτ4, T2) :

#_„)» ( ?"• . . Σ « ν ' Λ I d»x

_ (· 6^2

" J i t (χ,) δο· (τ,) ... δι> ( i n ) 6u« (χη)

Hence

-ω\Κ(1. s)»«(!)»Wd! di ι
! d"t.

where Κ is an operator in L2(tv i2) defined by the function
K, (Kf) (T)=Jt*l

2K(T,$f{s) ds. In our case we have Κ(τ, s)
= he (T—S—0), i.e., the operator k is a triangle with a zero
diagonal. Accordingly, det (1+ωκ)= 1.

the definition of the Weyl symbols.

We assume that /(/>, q) is a function in the phase space
which can be represented as a Fourier transformation:

/ (p, q) = f /(u, y) «'«""«"Mu dp.

We associate with this function the operator

/ = f /(u, yje'^'e'i'dudii.

The function/is called the "p - q symbol" of the opera-
tor /. If the function / is associated with another oper-
ator,

/ = f / (u, ι;) β'5·««"> du di>.

then the function / is called the "q —p symbol" of the
operator /.

2) Basic construction

The original finite-dimensional approximation of the
p - q symbol of the evolution operator is

GN(P, ,11,. <.} =

where

( ϊ ι

Ρο = Ρ·

1) + Pi I

(3.1)

(3.2)
Ρκ-ι (? —

By analogy with the preceding results, introducing the
continuous parameter τ , ( i t « τ « ί2), we set />*=/>(τ»),
ήτ» = ̂ (τ»), τ» = ί2 - K/N(t2 - <ι), and we combine all the
terms in (3.2) other than the first into an integral sum.
Then we take the limit AT-» in (3.2):

Κ = lim KN = ρ (q (i2) - q) - ( ρ (τ) 9 (τ) dt. (3.3)

Incorporating the coefficient of the integral in (3.1) in
the normalization of the differential, and taking the
formal limit N—°°, we find the final expression for G:

G (i2, i, | P, q)

ι

' +

P(t,)-P,

(3.4)

The initial finite-dimensional approximation of the q
- p symbol of the evolution operator is

-^K, t, | p, ?) =

where q^ = q,pN=p, Δ = i2 - ίΐ/JV, and

K N = P i (?i — 9) + Pi (9i — 5i) + . . . + P N

+ Ρ (ί —

(3.5)

(3.6)
As before, we introduce the continuous parameter T,
and we group all the terms except the last in an inte-
gral sum. Then we take the limit N~°° in (3.6):

Κ = lim KN = - J p'qdt + ρ ( ? - q (t,)). (3.7)
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The final expression for G is

h\p, q)

«««)··«.

(,
~ [ ί («№ Ρ(Χ-°). 3(t))-P«)<ix+p(g-9(l,))|

(3.8)
As in the Weyl and Wick cases, the integrals in (3.4)
and (3.8) are the limits of finite-dimensional approxi-
mations of a more general type than the original. These
approximations are constructed by analogy with the
Weyl and Wick symbols. The sign of τ - 0 in (3.4) and
(3.8) has the same meaning as the analogous sign in the
case of Wick symbols. Precisely as in the Wick case,
we must not replace τ - 0 by τ in any of these equations,
but in contrast with the Wick case the shift of the argu-
ment is introduced in only one place in Eqs. (3.4) and
(3.8).

Approximations of a general type can be constructed
and justified on the basis of the same considerations as
in the Weyl and Wick cases. In particular, to justify
approximations of the general type of integrals (3.4) and
(3.8) we would naturally use, respectively, the p-q
and q - p symbols of the operator of the evolution gen-
erated by the infinitesimal operator q(t) =u{i)f> +v{t)q.
Here the p-q symbol is

G(h, t,; P, q)

and the q - ρ symbol is

1, «1,

9(s-i-0)i>(s)ti(i)dsdf}],

(3.9)

tt; p, ? ) = e {4"[j (u(x) ρ + ν(τ) q) άτ

— f e(s-i-0)u(s)v(2)dsdi]}.

(3.10)

Equations (3.9) and (3.10), like the analogous equations
in the theory of Weyl and Wick symbols, can be used
as a basis for a perturbation theory for calculating the
evolution operator symbol for the case of an arbitrary
infinitesimal operator. The perturbation-theory series
is given by an equation analogous to the corresponding
equation in the theory of Weyl and Wick symbols:

G(h, tt\P, q) = e (3.11)

where g(r; p, q) is the p - q or q - p symbol of the infi-
nitesimal evolution operator, and the operator L is

9(s-i-0)- , (ή 6ρ (ί)

for the p-q symbols and

τ ί-0);' dp (s; 6? (()

for the q - p symbols.

dsdi

dsdt

(3.12)

(3.13)

The perturbation-theory series is constructed by ex-
panding the second exponential function in (3.11) in
powers of its argument. Each term of this series is
expressed explicitly in terms of the Fourier transform
of the function χ(τ·,ρ, q) with respect to ρ, q. The re-

sulting equations are analogous to Eqs. (1.33) and
(2.29), and we shall not dwell on them here.

To study the set of paths on which the integrals in
(3.4) and (3.8) are concentrated we proceed in the same
manner as in the Weyl case, and we find the same re-
sults.

3) Matrix elements of the evolution operator

We shall make use of the relationship between the q
-p operator symbols and their matrix elements in the
χ representation. We assume that A is the same oper-
ator in L2(R"), that A(p, q) is its q - ρ symbol, and that
{χ \λ \y) is a matrix element. Then (see the Supple-
ment)

(3.14)

As the operator A we consider the q - p symbol of the
evolution operator. Substituting the expression for G
from (3.8) into (3.14), integrating first over p and then
over p(h), we find

, h\x, y) = (x\G\y)

e '•

χ δ (p (<,) - p ) i^P(v") Π dp (t) d? (i) d"p
t,

1 f "T 15 (iWrti-O). ί№)-ϊί>4τ+Ρ«ιΧ»-ΛΙι»)

1,
— J (ϊ№ Ρ(τ- 0). «(τ)) -Ρ5) ίτ

We finally find

G (h, tt) | i, y) = (x | G | y)

Γ -= J e d tndp(T)dg(T).

(3.15)

A few comments are in order regarding this derivation.

1) The integral over p is evaluated by making use of
the function in the integrand.

2) In integrating over p(h), we take into account the
dependence of the term outside the integral on p(h),
and we ignore the dependence of the first term in the
argument on p{ti). Our defense for this approach runs
as follows: Let us consider a finite approximation of
the integral in (3.8) given by Eqs. (3.5) and (3.6). In-
tegrating first over p and then over ps =p(h), we find a
finite approximation of the last integral in (3.15); it is
easy to see that 6(q(fx) -y) is replaced by the integral

,

where Δ = (/2 - fi)/N. Setting <j>-i =qih), we find that in
the limit JV— °° the integrals in (3.16) become 6(q(t2)
-y).

For the integral in (3.15) we can construct finite ap-
proximations of a general type by working from the ap-
proximations oi the symbols. The approximations are
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of the form ~ ψ(ί) ~
t-*+06 (-.-00

(4.3)

» Ί Ι Ίβ»(<·.«ι I*. »)=

In contrast with the case of the symbols, the denomin-
ator is not found from the numerator in the case gir;
p, q) = 0; it remains the same as for the operator sym-
bol G. The reason for this difference is that in the
case g(T",p, q) = 0 the evolution operator is a unit opera-
tor, and its symbol is identically 1, while the matrix
element is 6{x-y).

We are naturally interested in what would happen if
we replaced the q -p symbols by p - q symbols or Weyl
symbols in this construction. The answer, easily seen,
is that Eq. (3.15) is altered in the following manner:
In the case oip-q symbols, p{r - 0) is replaced by
ρ{τ), while q{r) is replaced by q(r - 0). In the case of
Weyl symbols, the only change is that p(r - 0) is re-
placed by ρ(τ); there is no argument shift of p(r) or
q{r). These distinctions are important: In choosing
the symbol for the infinitesimal operator, we should
use the formula corresponding to this symbol to derive
the matrix element of the evolution operator. If the in-
finitesimal operator is of the form g(t) =A(t,p) + B{t, q),
of course, then the ρ - q, q -p and Weyl symbols of this
operator are the same, so it makes no difference which
version of Eq. (3.15) is used. In general, this is not
so; a very simple example is an operator of the type
g=qp in L^H1). Its q-p symbol is pq, while its Weyl
symbol is pq - (h/2i). Therefore, if we use the ver-
sion of Eq. (3.15), in which the shift of the argument
is ignored, and if we substitute g=pq into it, in order
to calculate (*\etiHh \y), we obtain a wrong answer.1*'

2. PATH INTEGRAL FOR THE SCATTERING
OPERATOR SYMBOL AND FOR A PARTITION
FUNCTION

a: Path integral for the scattering operator symbol

1) Formal definition of the scattering operator

We assume that some system evolves over time in
accordance with the Schr'odinger equation

(ίΛ-fj— £(t))* = o. (4.1)

We write the solution of Eq. (4.1) with the initial condi-
tion Ψ(ί') = ψ as

y(t) =G (Ι, ί') φ.

The operator G{t, t') satisfies the operator equation and
initial condition

G(f, (4.2)

i. e., it is an evolution operator. We now assume that
the solutions of (4.1) with the initial data ψ(θ) = ?>efl,
where D is some region in the state space, have in the
limits i~-±°° the asymptotic form

14>We find (x\ ettl^ih \y), where gt Is the operator whose Weyl
symbol is pq. Obviously, g= Q+ (ft/2i); consequently,

where Ho is some operator different from H(t). It
follows from (4.3) that φ. and ψ* are linear functions
of φ:

(4.4)

(4.5)

where V±=\imt^

y ( i ) = «-<&·'«·<? (f,0).

According to (4.4),

the operator

is called the (formal) "scattering operator." Clearly,

S = limS(t,t'),

where

(4.6)

S (i, t') = V (t) V-1 («') = «-'«•'"'G (t, 0) (G (t1, 0))"1 «''*·«* -

(4.7)

From (4.7) we find the evolution equation for S(i, t')
which is analogous to (4.1) and an initial condition:

(4.8)

where

ff,. (4.9)

Equations (4.7) and (4.8) (in the interaction picture) are
the basis for writing the scattering operator symbol as
a path integral.

In most applications,

(4.10)

where ffut is independent of t. The scattering operator
in this case depends on α as a parameter; S = Sa and is
called "adiabatic." In some particularly simple cases,
the adiabatic scattering operator has values in the limit
a—0. This case includes, in particular, the case of
nonrelativistic quantum mechanics, with

where v(x) is a rapidly decaying potential.

2) Weyl symbol of the scattering operator

We consider the Hamiltonian

We assume that the potential ν(f, q) tends rapidly toward
zero as |i|~"°, at a fixed q. A typical example is

v(t: q) =e-«lilK (?). (4.12)

The operator e'*»"* has a Weyl symbol e"?/2m(". Using
the composition formula for Weyl symbols and (4.7),
and carrying out some obvious transformations, we
find a relationship between the operator symbols
G(i2)ii) and S(f2)fi):

778 Sov. Phys. Usp. 23(11), Nov. 1980 F. A. Berezin 778



-S(h,tt\p,q)

= ^ J β <*„ ί, Ι Ρ, * ) e- ^ > ° +

χ δ ( 2 ρ — ρ, — p2) dp, d/>2 d},.

(4.13)

Substituting in G(f2, /j \p,q) from (1.9), we find a path-
integral expression for S{t2, h)'·

S (h, h I p, q)

= j e x p { ~ [ j (g(t; y (t)) — \y<s>y) άτ + xay (h) +y (h) a>x
ί

type in (4.16) as their asymptotic expressions in the
limit \t —°°:

(4.14)

where Ap=p(t2)-p(t1).

The integral in (4.14) has the same gauge singularity
as the original integral in (1.9). This property can be
proved by precisely the same arguments as in Subsec-
tion a3; we shall skip the proof.

The operator S(t2, ti) has a value in the limit fr— -«,
/2~+°°· Its symbol should have the same property.
We can transform (4.14) to make this circumstance
immediately obvious. We fix a number Τ > 0 and set

vT (t; 9) = θ (Γ - Ι ί Ι) ν (ί; j).

We denote by ST(t2, h) the operator found from S(h, h)
by replacing v(f,q) by vT(f,q), and we denote by ST(t2,h
p, q) the symbol of the operator ST(t2, tj. Clearly,
S(t2, h) = l im r .«S r ( i 2 , ii), and the symbols of these
operators are related by an analogous expression. We
now note that for t2 > T, h <~T we have

ST(.h, i,) = Sr(i2, Γ)5Γ(Γ, -Γ)5 Γ (-Γ, ί,). (4.15)

Furthermore, the operators ST(t2, T) and S r (- T, tj
are found from S(t2, T) and S(- Γ, ti), respectively, in
the case v{t;q)= 0. Accordingly, the path integrals for
their symbols can be calculated by the stationary-phase
method, i .e. , are concentrated on classical paths.
Taking into account the form of the operator Ho, we
find that these paths are

q{t) = a-\ 1, p(t) — b, a, const. (4.16)

We now transform from operators to symbols in (4.15),
using the composition formula for Weyl symbols. We
write ST(t2, ti \p, q) as a single path integral, noting that
the path integrals for the symbols of the operators
ST(t2, T) and ST(- T, ti) are concentrated on functions of
the type in (4.16). As a result we find that the path
integral for the symbol of the operator ST(h, ti) is con-
centrated on functions of the type

\t\<T,

a- + £-t t<-T,

Pit),

P-

t>T,

where q{t), and p(t) are arbitrary functions, and at and
pt are constants.

We now let Τ go to °°, and we thereby transform from
the operator ST(t2, ti) to the operator S(t2, t\).

We would naturally expect on the basis of the consid-
erations above that the path integral for S(t2, t\ \p, q)
would be concentrated on paths having functions of the

Ρ (t) = Ρ (/) + Poi^

q (t) = q (t) + •£- (
(t) + Pmr. (t),

u t s + (i) + ftn«- (0),
(4.17)

where p(t) J 0 in the limit \t \ - « , q{t) has finite limits
at i-*±«, limt,^q(t)=qant, lira,..„q(t) =qin, and rt(f)
and st(/) are fixed functions with the properties

lim r ± (i) = lim * ± (t) = 1, lim r± (i) = lim s ± (i) = 0. (4.18)

These functions are otherwise arbitrary. In particu-
lar, we can set

r+ (t) = s+ (ϊ) = θ (ί), r . (ί) = s. («) = θ (-ί). (4.19)

All the functions in (4.17) which have limits at f —±°°
will be assumed to converge rapidly enough to satisfy
limiting relations of the type U.mt.i:^tpU)=0 and such
that integrals of the type /?„ \tp{t)\dt, etc., exist.

Under the assumption that the integral in (4.14) is
concentrated at paths of the type (4.17), we transform
the terms outside the integral in the argument in (4.14):

y(t))+

- P (t,)

(4.20)

All the terms on the right side of (4.20) except the last
clearly have limits as t2 —-H», h ~"-°°. With regard to
the integral term in the argument in (4.14), we easily
see that for functions of the type in (4.17) it also has
limits as i2~"+00, h —-«. The argument thus has limits
as t2 " " + 3 0 , h —-°o only if

4-(Pout + P,n)=P. (4.21)

Proceeding on the basis that the integral in (4.14) clear-
ly has a limit as t2~~+°°, h~-°°, we would naturally as-
sume that it is concentrated at functions of the type
(4.17), which satisfy the gauge condition (4.21). Equa-
tion (4.21) only partially eliminates the gauge singular-
ity of the integral in (4.14). To eliminate it completely,
we must supplement it with an analogous equation con-
cerning the coordinates. In contrast with the momen-
ta, this relation is not dictated by any sort of neces-
sary condition. We choose it in the form

γ Gout+ ?!„) = >·, (4.22)

where r is an arbitrary constant. Using conditions
(4.21) and (4.22), we can write the scattering operator
symbol as

S(p, ?)=jexp{-i.[ [ ( ^ I + 1,(i; ?(/))_|(p?_9p))di

+ γ (PoutYout — PmSln) - 1 (Pout - An) J } δ ( ρ — -i- (Pout + An) )

Χ δ ( r - - (q~out + ?!„)) Π d P W d ? № dPo,,t dpl n.

(4.23)

[The functions pit) and q(t) are related to the functions
pit) and q{t) by (4.17).] Although the right side of
(4.23) depends on the parameter r, the left side does
not. The arguments leading to the integral in (4.23)
have been somewhat intuitive. We shall derive Eq.
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(4.23) below at the level of rigor of this paper.

In (4.23) we can carry out the integration over?.
For this purpose we use the stationary-phase method.
Varying the argument with respect to p, we find

^-'i('). (4.24)

Before we substitute the expression for pit) from (4.24)
into the argument in (4.23), we transform it:

= y ?P ||" - y

+ y (ioutPout

( i 2 p | u t — i,

4 ~ "~* 1 (* *
+ y fafoutPout — ilnPln) — y J gp df + . . . ,

(4.25)

where the ellipsis denotes terms which tend toward
zero in the limits h ~~+x, h ~*-°° ·

Using (4.24) and (4.25), we find

2

' T \ \f—^(θ(0 Pout+e(-i)Pln)2]di

Pout —?mPin)+ · · · ·

(4.26)

A summable function stands within the integral, so we
take the limit h~+*>, ίχ--°° in (4.26). We finally find

S (p, g)=Jexp{-s-[ j [~f J2+^(6WPout+6(-i)pln)+i'(t; q{t))]it

~ 11Pout— Pin) -r- Pout?out — Pmffin J j

6 ( p — y (Pout + Pin)) ΠΧ δ \r—y (gout + gm)) vyp—y UOut-ι-Pib;; iyaq w ap o u t ο

(4.27)

Comment. In evaluating the integral over p, we car-
ried out the transformations in the argument required
by the stationary-phase method, but we ignored the de-
terminant which arose. This procedure is justified on
the basis of the definition of the path integral,

where Ss(p, q) is a finite integral constructed in the
manner of Sec. 1, and S^/», q) is the integral found
from SN(p, q) in the case v\t; q) = 0. The determinants
which arise in the integration over p are the same in
the numerator and denominator and thus cancel out.
We apply Eq. (4.27) to the case

•>(«; ?) = /(') 9- (4.28)

Using the stationary-phase method, we find

mi'+/(O = o. (4.29)

Hence,

«(()=-·5^- j |i-..i/Wd.+«+-li. (4.30)
— oe>

The asymptotic behavior of q(t) in the limits t—±°° is

Thus

Pout=l>—y
1 Γ

-2^- J
(4.31)

- y j i p d i + . . . = ^ - j ( 9 ( i ) p o u t + 9(-0Pin)2dt 6(^™|Λ(

The appearance of relations involving the integration
variables means that corresponding δ-functions appear.
Taking account of these functions and also of the factor

+Piaia
(4.27), we can evaluate the inte-

gral over poat, pia, and b. As a result we find as a
supplement to (4.31)

b = P. (4.32)

We should now substitute expression (4.30) for q(t) into
the argument of the exponential function in the path in-
tegral in (4.27) and then integrate the result over a. As
a result of the obvious calculations, using (4.31) and
(4.32), we find15'

(4.33)

As expected, the result is independent of the parameter
r which appears on the right side of (4.27). Equation
(4.23) must be justified; this can be done by means of
arguments which are the same as those used for Eqs.
(1.9) and (1.4), and we shall omit this justification.

3) Wick symbol of the scattering operator symbol

We assume H=H0 + H1(t),

(4.34)

. a · (Pm) « ( ? „ ) · . · «(<71)d'"pd'1g.

Using the interaction picture, (4.8), we note that the
path integral for s(h, h) is the same as the path inte-
gral for the evolution operator which is generated by
the infinitesimal operator g with the symbol g(t;a*,a)
=H1(t;eitaa*,e'itaa). Applying Eq. (2.32), we find

S (fj, t, I a*, a)

= e""Lexp[— j # ! (τ; e«""a* (τ), β-'™α(τ)) dt] | ^ .
a(l,)=

(4.35)

15) To streamline the calculations, we first integrate by parts:
<· i.

\ <l*dq = qq — \ ? g d l .

I '* *
It is easy to see that

Hence, using (4.29), we find that the argument is

y \ /W^Wd'+ytPouWout—Pln?ln)—5(Pout —Pin)·
— OO

Substituting in the expression for q(t) from (4.30), and using
(4.31) and (4.32), we find (4.33).
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Equation (4.35) is the basis for the diagram technique
in perturbation theory. In the relativistically invariant
case, it is more convenient to consider the field vari-
ables than the integration variables α(τ) and α*(τ). As
a result, Eq. (4.35) is transformed into the Hori equa-
tion, which is the most convenient starting point for the
development of the Feynman-diagram technique. The
corresponding formal transformations can be found in
Ref. 2.

b: Path integral for a partition function

1) Expression of the partition function as a path integral

We denote by A some operator in L2(R"), and we de-
note by A(p, q) its Weyl symbol. In this case

Sp Λ = J (5.1)

If A is an operator in a Fock space, its trace in the
Bose and Fermi cases is expressed in terms of the
Wick symbol in slightly different ways:

Sp A = -L- J A («·, α) , da· da, (5.2)

where ε = 1 in the Bose case and ε = - 1 in the Fermi
case. We assume that G(/3) is an evolution operator
with an imaginary time t =-ίΗβ. Setting g=-ihH, t\ = 0,
ti=$, in Eqs. (1.9), (1.15), and (2.4), we find the Weyl
and Wick symbols, respectively, for the operator G(/3).
Then using Eqs. (4.36) and (4.37), we find the partition
function. Equations (1.9) and (1.15) yield

(5.3)
and

Ξ (β) = Sp G (β) = -jJLpr j exp { - j [H (y (τ)) + -jL ν(τ) ων (τ)] dx

Η-^αω (if (0)-v (β))+-25-ν (0) <oy (β)} fl Ay (χ),

(5.4)

respectively. The integral in (5.3) is evaluated along
closed paths, while that in (5.4) is evaluated over all
paths. As expected, Eq. (5.3) can be found from (5.4)
by carrying out an additional integration over a.

We turn now to the Wick symbols. Here it is more
convenient to consider the expression in (2.1) before
the limit is taken. To find the corresponding approxi-
mation of the partition function, we should multiply
(2.1) by ea'L)"*1 and then integrate over da*da. We in-
troduce the notation a* = «?, a = aN. We note that the
integrand in terms of this notation does not contain aQ

and a%, so we are justified in writing a^ = aN and a%
= «o*· w i t h this notation in mind, we find the final
expression for the partition function:

τ r ^ " (τ)
* dT * '

da·da.

(5.5)

The integral is taken over periodic paths with a period
β in the Bose case and over antiperiodic paths in the
Fermi case:

α (β) = εα (0), α* (β) = εα» (0). (5.6)

A few comments are in order regarding this derivation.

1) According to the derivation, the path integrals in
(5.3)-(5.5), like the corresponding integrals for the
evolution operators, should be understood as the limit-
ing values of the ratios

S ( P ) = ]™'W1-· (5.6')

where ΈΝ(β) is the direct finite approximation of inte-
grals (5.3)-(5.5), which can be found from the numer-
ator in the corresponding equation for the evolution
opei itors [see (1.22) and (1.20)] by an additional inte-
gration over dpdq. The denominator F*® is the same
as in (1.22) or (1.26). This method of defining the path
integral is not convenient, because of the different
properties of the differential term in the numerator
and denominator in (5.6). In both cases the term is of
the form (y, By), where B = o>(d/dt), but in Eq. (5.3)
the boundary conditions are periodic, while in (1.26)
there are no boundary conditions at all. There is a
corresponding difference in Eqs. (5.4) and (1.22). This
inconvenience can be avoided in the following manner:
We consider the operator

9-τ). (5.7)

and we denote by Ξ£0>(β) the corresponding partition
function, Ξ""(/3) = Spe'e/io. Finally, we set

(5.8)

where Hff(/3), Ξ™'>λ(β) are finite-dimensional approxima-
tions of the corresponding integrals, constructed from
the same system of finite-dimensional projection oper-
ators P w .

The role of the operator Ηο(\) is as follows: It has a
single eigenvalue £0(λ) = 0, while all its other eigen-
values have the behavior Επ(λ)-*+°°in the limit λ—«.
Accordingly, limx.»Sx(|3) = l. Instead of (5.7) we could
consider any other operator having the same property.

In the case of the Wick symbols, an approximation
of the general kind for the integral in (4.39) can be
constructed with the help of an equation analogous to
(4.43):

Ξ(β)= lim lim lim
By (β)

The parameter ε > 0 appears in the numerator and de-
nominator of the right side because of the argument
shift in Eq. (5.5). As Η0(λ) in the Wick case it is natu-
ral to consider the operator

ί)0 (λ) = λ 2 ω (k) a* (k) a (k). (5.9)

2) We wish to call attention to the fact that the path
integral for the partition function in the Wick version,
in contrast with the path integral for the evolution oper-
ator symbol, contains an argument shift only in the
first term in the argument of the exponential function.
The reason lies in the different properties of the dif-
ferential term in these integrals: In both cases it is
of the form (Ba*, a), where B = d/dr, but in the case of
the partition function the operator Β has periodic or
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antiperiodic boundary conditions and is thus self-ad-
joint, while in the case of the evolution operator it has
homogeneous boundary conditions and is thus symmet-
ric, but it is definitely not self-adjoint.

2) Example

We consider a system with a single degree of free-
dom: the Bose version of second quantization. We set

H = W*~a (5.9')

(corresponding to a harmonic oscillator).

Taking into account the periodic boundary conditions,
we can expand the path in a Fourier series:

We thus have l im c . .T E O, λ) =-Λβλ/2,

Ρ, 0 *(τ)= f| β·*-* (5.10)

As 3ffi we consider the subspace of paths for which the
Fourier coefficients are nonvanishing only for |w| * N.
In this case,

ΞΝ (β) = jexp [ -

Analogously,

ψ

Si», n (Ρ) =

Hence

. Π
λ ι η | - 1

Sw λ (β) ω ι»

Ι η 1=1

We find

Φ(Ρ,

Ν

We denote by Φ (β, λ) the function within the first limit.
We have

in Φ.= £ [in (1 + - ^ — ' < » ) + ln ( l--*^ e ~ ) ]

(5.11)
where Λε(β, λ) is an absolutely converging series, in
which the limit ε~*0 can be taken term by term. Ob-
viously,

We denote by Τε(β, λ) the first term on the right side of
(5.11). We use an identity which holds on the interval
-if <%<ir:

From (5.12) we find

τ la 1\ *Ρλ Γη Ι 2"'· \ / ι 2 " ε \ η I 2 n e \ / 2 n e \ 1

,-Λβλ/2

We finaUy find

ί e ο A

SUPPLEMENT

PROPERTIES OF THE SYMBOLS

a: Weyl symbols

1) Definition

We assume/> = (/>!,. . . ,pn),q = (qi,. . . ,ζτΠ), where
Pi and ^ are the canonical coordinates in the phase
space Rin; Η is an operator in the space l?(Rn); and
H(p, q) is its Weyl symbol,

Β (ρ, «) = f ««α"+Ρ«> φ (α, β) ά<ζ <1β,

^ (ί. ϊ) = [ ,««ί+Ι»ί) φ (β, Ρ) da dP,
(S.I)

where p = (pi ί η ) . 5 = (?ι» · · · >5«). a n d £ , and q}

are the ordinary momentum and coordinate operators.
The function φ in (S.I) may be either an ordinary func-
tion or a generalized function. In particular, we do not
rule out the case in which H{p, q) is a polynomial. In
this case, φ{&, β) is a linear combination of derivatives
of a δ-function, and the relationship between an opera-
tor and its symbol is purely algebraic. If

then

where m and η are multiple indices [τη=(τηΛ, w 2 , . . . ) ,
« = («i,«2, . . · ) ] ; pm=pTip22, q" = <&•&, • · · ; and
(?*§") denotes the symmetric product. [The "symmet-
ric product" of noncommuting operators A*1,. . . Ajf is
the operator (A1, - · · , Afp), defined by

where «( are numbers and Μ = (fej + · · · + feff.] In partic-
ular, if ff(/),i)=(/»z/2m)+j;(i), t h e n £ = (j$2/2w)+i;(£);
if H(/>, q) =pq, then # = (l/2)( pq + qfi) = (jp + (h/2i).

2) Relationship with the matrix elements

We consider the q representation. Solving the Cauchy
problem for the equation

(S.4)

3 j Κ (s, »') / («·) d»,

where K(s, s') =(s \H\S') is the matrix element of the
operator H, given by

and then setting t = 1, we find

Hence

782 Sov. Phys. Usp. 2311H, Nov. 1980 F. A. Berezin 782



= 7 ^ΓΡΓ J *<P, ,,."' ( J ^ + 1 * ) + - £ ( < ' + '

Equation (S.5) can be inverted:
(S.5)

(S.6)

3^ Multiplication law

If H = HiH2, then the matrix elements for these opera-
tors are related by

Κ (χ, y) = j X, (r, ,) tf, (,, ») d«. (S.7)

Hence, using (S.5) and (S.6), we find the relationship
between their symbols:

/>, g)= (H,

where

ρ (?s — ?i) = - 2

dpi di,,

(S.8)

(S.9)

A A/?A2

and Αχ Α2 is a rectilinear triangle in phase space
with the vertices A = (p, q),Ai = (p1, gi),A2 = (p2, q2). In
particular, with η = 1, this triangle has an area |s/21.
We consider the following operator in Ll(R*")·.

L = T{dpldqi~dp1dq1) • (S.10)

Setting U(t) = eitL, we easily find

— (Pa—p;)(?i—ql)]f(pi, ρί· q[, id dp; dp· d?; d,j'z.

Comparing (S.ll) with (S.7) and (S.8), we find

where HtH2 =H1(p{, q\)H2{pi, qi).

From (S.12) we find a power-series expansion of

(S.13)

This equation can be rewritten

--5-4-.,+£-£)//.<?. a I ·

(S.14)

The first terms of the expansion in powers of Η yield

ih I Ull, Oil, dll: all, \

(//,.//,)(P, 5) = //I(P, ?)//a (P.'.'»+-2-(-e^--af-—ST^r).

in accordance with the general definition of quantization.

In conclusion, we write the composition formula in

terms of the Fourier transform of the symbols:

f - -ίτ-(αβ'-βα') ic * c \
φ (α, β)= j φ! (ο — α ' , β— |4')φ2(α', |V)e

 2 da'il|J'. lO. lOi

[Equation (S.15) can be derived most simply from Eq.
(S.12).]

4} Hermitian-adjoint operator. Trace

The matrix elements of the Hermitian-adjoint opera-
tors Η and Ηχ—ίϊ* are related by K^si, S2) =if(s2, si).
Using (S.5) we find that the symbols for these operators
are complex conjugates:

«ι (p, 5) - α (ρ, q). (S.16)

Furthermore, Sptf = JK(s, s)ds. Hence, using (S.5),
we find

Iff (P. ?)dpdg. (S.17)

Analogously,

p, ?)dpd,. (S.18)

5^ Linear canonical transformations

We denote by 0 a unitary operator in L2(ii") which
performs a linear canonical transformation,

where (̂ jj) is a real simplicial matrix, and α and 6 are
arbitrary vectors. It follows from (S.I) that the sym-
bols of the operators Η and #1 = UHH'1 are related by

i (P. 9) = // Up + Bq + 0, Cp + UJ + 6), (S.20)

In other words, a linear transformation of the symbols
reduces to a change of variables. It can be shown5'17

that this property is an unambiguous characteristic of
Weyl symbols. We note the relationship between the
quantum- mechanical and classical linear canonical
transformations. Ignoring the first equations in (S.13),
and eliminating the caret (*) on β and q, we find a
classical canonical transformation, which may natural-
ly be called the classical version of transformation
(S.13). Inversely, putting a caret on p and q in the
equations for the classical linear canonical transforma-
tion, we find the quantum-mechanical canonical trans-
formation which may naturally be called the quantum-
mechanical version of the classical transformation.

6) Reflections

We associate with each classical linear canonical
transformation a unitary operator U, defined within a
factor, which performs the quantum-mechanical ver-
sion of this operation in accordance with Eq. (S.19).
We thus have a projection representation of the group
of classical linear canonical transformations. In gen-
eral, it is not possible to reduce the ambiguity in the
association of an operator with a canonical transfor-
mation, 1 6 ) but for certain families of canonical transfor-

16) Within a factor, the operator corresponding to a parallel
translation by a vector χ + (α,β) is τχ = exp {i /hWp—aq)}- If
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mations this can be done. One such family is the fam-
ily of reflections

Pi = — Ρ + 2p0, ? ! = — « + 2?0. (S.21)

The reflection in (S.21) at the point (p0, q0) is naturally
associated with the operator Upovo which has the Weyl
symbol

vv..«° (P. ?) = ("*)" β (Ρ—ίο) δ ( ? - go)·

From (S.8), (S.14), and (S.22) we find

Κ ,,„, , . ? ^ , ,„= - ί + 2 9 ο .

(S.22)

(S.23)

We consider a Hilbert space of operators with a scalar
product (A, B) = SptAB*). Equations (S.18) and (S.22)
show that in this space the reflection operators UPtq

play the role of generalized orthonormal system analo-
gous to e"* in ordinary space, L2. The Weyl symbols
serve as a Fourier transformation:

">' ( s - 2 4 )

, H(p,

This interpretation of the Weyl symbols may serve as
the basis for some far-reaching generalizations.18 The
Weyl symbols were introduced by Weyl in his well-
known book,19 but he gave no equations of operator cal-
culus there. The equations given in the present paper
are scattered over a large number of papers, some of
which have been speculative or philosophical in na-
ture.2 0 At this point it does not seem possible to say
just who should be credited with each particular equa-
tion. One of the first papers using the Weyl symbols
in the modern manner was that by Grunewold.21 (A con-
struction based on a path integral is carried out in that
paper, but for a corresponding automorphism in opera-
tor algebra rather than for an evolution operator in a
state space.) The analytic properties of the Weyl sym-
bols were the subject of Ref. 22.

b: Wick symbols. Bose version

1) Definition and basic properties

We denote by F2 the Fock space of entire antianalytic
functions f(z) of η variables with the scalar product

Π «««β- (S.25)

The product of differentials incorporates a normaliza-
tion factor which ensures that

(/,/) = ! for / («) ? 1. (S.26)

there existed a factor cOd *0 which made the correspondence
unambiguous, this factor would have to satisfy the equation

— f ? i ) . (*)"5Γ

Equation (*) is contradictory, since its left side is symmetric
with respect to χ and y but its right side is not. Consequent-
ly, the ambiguity in the representation of the group of linear
canonical transformations is a fundamental property of quan-
tization. [Equation(*) follows from the equation fxfy

= ei/u xwyTx + „, which in turn follows from (S.15).]

In ^ there are creation and annihilation operators δ*
and ak:

(a\t) (z) = zhf (z), («„/) (.) = » - 4 - / («).
dzh

(S.27)

With each operator written in the normal Wick form,

a-2^m»(>V«i·. (S.28)

we associate a corresponding Wick symbol,

4i,.)-Siir a>.-. (S.29)

[The coefficients Am in Kqs. (S.28) and (S.29) are the
same; here m and η are the multiple indices.] The
symbol .A(z, z) is a contraction in R2" of the entire ana-
lytic function of two invariables,

A (v, z) = 2 4.Λ"

(see below). The effect of the operator on a vector is
defined by

1 Γ - - -r<'-»>"-±-\A(z,»)l(v)*h T-T (S.30)

The symbol of the operator A =AiA2 is expressed in
terms of the symbols of the operators Ax and A2 by

The functions A{z, v)Al(z, v),A2(v, z) in Kqs. (S.30) and
(S.31) are analytic continuations of the corresponding
symbols. The symbol for the operator λλ=Α*, the
Hermitian adjoint of A, is the complex conjugate of the
symbol of the operator A:

AX (7, <) = A 6, z). (S.32)

In particular, the symbol for the self-adjoint operator
is real.

The trace of the operator can be expressed in terms
of its Wick symbol by means of

c Ϊ * f ? Γ \ Π A~ A tG ΊΊ\
op Λ = . „ 1 A (Zi Z) II uz O2. \OMW/

In J^ we consider a family of vectors which depend on
the parameter v:

?, ,^/? (S.34)

(These vectors are "coherent states.") It turns out that
the Wick symbol of the operator A is its average value
over this state:

A (», »)=
(Φ.. ΑΦ-)

(Φ-, Φ-) ·

From (S.35) we see that it is possible to continue the
symbol analytically to C2n:

(S.35)

A(z, (S.36)

[From (S.25) it follows that (ΦΓ Φ,-) =eUhm.] The Wick
symbols have yet another important property: In F2

there is an orthonormal basis consisting of the vectors

(S.27)

where k = {ki,. . . , kn) is a multiple index, and \k\
=Tjk, (fei are the so-called occupation numbers).
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We denote by \\Akl\\ the matrix of the operator A in
the basis (S.37), where k and I are multiple indices.
We consider the generating function for the matrix
elements Akl

.;..)=2- (S.38)

The function A is closely related to the Wick symbol of
the operator A:

Α$,ζ) = Α6,ζ)ί*". (S.39)

To conclude this section, we write the expansion for
the composition of symbols in powers of h. We con-
sider the operator

where zk =xk+iyk. We recall that the solution of the
Cauchy problem for the heat-conduction equation,

•£•-=4... (S.40)

is given by the Poisson kernel. In complex coordinates,
it can be written

u (i; z, z) = ( Kt (z — !;, 2 — v) f (υ, ι;) J | dv dp,

where

(S.41)

κ, (z, z)=-L i r " · (S.42)

[Equation (S.38) has the same normalization of differen-
tials as in the preceding integrals.] Comparing Eqs.
(S.41), (S.42), and (S.31), we find

(A, . A,) fz, z) = " " , ( , (Γ, v) A, (v, z) | ,._,>«7. ( S . 4 3 )

(The operator Δ^ acts on AltA2 as on the function v, v.
The arguments ζ, ζ serve as parameters.) Equation
(S.43) can be rewritten in the equivalent form

ϊ, ζ) == At (ζ, z + h-!L) l·, z)\- -
(S.44)

The first few terms of the expansion in powers of h are

(Λ, . A,) (z, z) = Α, (ϊ,«) A, (z, z) + h 2£l- Mi.,
oz dz

in agreement with the general concept of quantization.

2) Relationship between the Wick and Weyl symbols

In the space Fi we consider the operators

ί*=—τ,?- (os+ij). fh= , ,- ("h-ct)· (S.45)

It is easy to see that these operators satisfy the same
commutation relations as the ordinary coordinate and
momentum operators. Furthermore, it can be shown
that by diagonalizing the operators qk of the type in
(S.45) we find the ordinary q representation, in which
the operators />» and qk have the form in (1.2).17' We

17> We set Λ* = l//2(? t + ipk), I; 1/V2" (?J — ipk), where qk

andpk are the coordinate and momentum operators in the
q representation and have the form in (1.2). We set

thus find it possible to consider both the Wick and Weyl
symbols, Amijk{z, z) and Ayeri(p, q), for the same op-
erator A. The arguments of these functions are re-
lated by (S.45):

1 , , - . 1 , - , (o Ap\
?k = —7=-(2)i + zs), pn~- Tx\'n~ ·»)· \O.1o)

To relate the Wick and Weyl symbols we first give the
Wick symbol of the reflection operator Up ,o; it turns
out to be

* 1 (S.47)

where z0, Fo are related to />0» q0 as in (S.46).18' It fol-
lows from the second equation in (S.24) and from (S.35)
that

/^jj» J

( 2 \ « Γ
•J-) j ^Weyl (P. ?)« dp dp.

(S.48)

The Wick symbol is thus a solution of the Cauchy prob-
lem of the heat-conduction equation (S.40), for the time
t = h/2; the Weyl symbol is the initial condition for
this problem.

3) Anti-Wick symbols

We write the operator A in the anti-Wick normal
form:

•3= 2 A " (S.49)

The generating function A\z, z) for the coefficients^,
is called the "anti-Wick symbol" of the operator .A:

(S.50)

The functions *» r . . , kn{s) form an orthogonal (but not nor-

mal) basis ϊηΖ.2(Λ") ! * * , _ . Jn = hi/iZki H^is/Sh ...H»Js/i/h)

where Hk j are the Her mite" functions]. We consider the map-

ping of L, L20Rn)— F 2 , defined by

It is easy to see t h a t i is an isomorphism of spaces and that
LbkL~l= Sk tLt>k*L~1=af, where ak and 5A* are operators of
the type in (S.27). Accordingly, LfaL~l= 1/V2" (a» + αΛ*),
LpkL~i= l//2(.ak — 2S*). Finally, we note that the isomorphism
i, can be specified in integral form by means of the generat-
ing function for Hermite polynomials:

7 ^ ί ^ [ - ^ ^ -
(Ref. 23).

l s ' Equation (S.47) is found in the following manner: Using

(S.44), we find that if Ρm{s is the Equation with the Wick

symbol in (S.47), then

where zo= l//2~(/>0+ ipa). ^ follows that the operator Vpo,o

differs from the operator up!lQ0 by a factor: £>o«o= c(?o>9o)
VpHO- Hence, using (S.24) and (S.235), we find a relation-
ship between the Wick and Weyl symbols which differs from
(S.47) in the presence of a factor c on the right-hand side.
We also note that both the Wick and Weyl symbols of the
unit operator are identically 1. Consequently, c " l .
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The Wick and anti-Wick symbols of a given operator
are related by

v)e
-r(i-»)(z-»)

(S.51)

In other words, the Wick symbol is the solution of the
Cauchy problem for the heat-conduction equation,
(S.40), at the time t = h; the anti-Wick symbol is the
initial condition. Equation (S.51) permits a generali-
zation of the definition of the anti-Wick symbol: We ^
assume that the Wick symbol A(I, z) of the operator A
permits integral representation (S.51) with some func-
tion A{v, v); then A{v, v) is called the anti-Wick symbol
of the operator A.

There are several important duality relations be-
tween the Wick and anti-Wick symbols. Let us ex-
amine the most important of them:

1) SpAB' = ~ f i(J, z)B(z", s) Y[ Λζά'ζ. (S.52)

2) We assume that D(A) is a set of values of the quad-
ratic form (A/,/), with/ running over the unit sphere,
II f\\ = 1 . [it can be shown that D{A) is a convex set on
the complex plane; see, for example, Ref. 24.] We
furthermore assume that D(A) is a set of values of the
Wick symbol of the operator A and that D(A) is a con-
vex shell of the set of values of the anti-Wick symbol.
Then

D(A)cD {A) czD (A). (S.53)

3) We assume that A is a self-adjoint operator and
that φ{χ) is a function of a real variable which is con-
vex downward.

JL ( φ (4 (!, ζ)) [J di d! sg Sp φ (i) < -^- j <p (Α (Ϊ, %)) ]\ άι St. (S.54)

Equations (S.53) and (S.54) are useful for studying the
spectrum of the operator A.

We note in conclusion that the anti-Wick symbols, in
contrast with the Weyl and Wick symbols, exist for
only a comparatively narrow set of operators. For ex-
ample, the Schr'odinger operator H = (p*/2m) + v(q) has
an anti-Wick symbol only if the potential is consistent
with the integral representation

It necessarily follows that the potential is analytic.
Wick symbols were introduced in Ref. 25 (for both the
Bose and Fermi versions). Their properties were
studied in detail in Ref. 26. The anti-Wick symbols
first appeared in papers on quantum optics.21 >28 The
properties of these symbols which we have seen here
have been taken from Ref. 29. The relationship be-
tween the Weyl and Wick symbols was established in
Ref. 30.

c: Wick symbols. Fermi case

The definitions of the Wick symbol [Eqs. (S.28) and
(S.29)] remains the same; the only difference is that
now zk and F» are not complex variables but the genera-
tors of a Grassmann algebra Λ with involution. The
superior bar denotes the involution. Consequently,
A(z, z) e Λ. Equations (S.32) and (S.39), which relate

the symbols of the adjoint operators and which relate
the symbol of an operator and the generating function
for its matrix elements in the basis of occupation num-
bers, are completely conserved. The definition of the
scalar product, (S.25), in the Fock space and also Eqs.
(S.30) and (S.31) for the action of an operator on a vec-
tor and for the product of operators remain the same,
with one change: The factor \/h" in front of the inte-
gral should be replaced by h" (the sign / means, of
course, an integral over the anticommuting variables).
Equations (S.27) and (S.43) remain valid, but with re-
finements: 3/3;^ in (S.27) means the left-hand deriva-
tive, and the operator \ v in (S.43) is

Δ,£— (β/3οΓ) 3/βΐ;,, I S . 5 5 )

where the indices r and I denote the right-hand and
left-hand derivatives. Equation (S.44) can be modified:

(S.56)

(?/9?denotes the left-hand derivative z.nd's/dv the
right-hand derivative). The equation for the trace
changes substantially:

f ΐ, z)eh
dzdl. (S.57)

The correct order of the factors must be observed in
all the equations. (This is unimportant in the Bose
case. However, the equations of the preceding section
which are cited here have been written in a form such
that they remain applicable in the Fermi case.)

In the Fermi case we can also examine analogies
between the Weyl and anti-Wick symbols. The Weyl
symbols and the associated path integrals were studied
in detail in Ref. 31, and we will not discuss them here.

The anti-Wick symbols in the Fermi case lose all
their remarkable properties, and there is no particular
point in studying them here.

d: p-q and q-p symbols

1) Definition and basic properties

We associate the following operators with the function
H(p, g) of the type in (S.I)

#,= j ei a ?

e'S(a. PJdodP, ·&*= J β'βν"?φ(α, βΗαόβ, (S.58)

where p{, q} are the momentum and coordinate opera-
tors. The function H(p, q) is called the ρ - q symbol of
the operator H\ and the q-p symbol of the operator 62.
If the function H(p, q) is a polynomial,

Η (ρ, 5) =

the operators Ht and H2 can be defined in a purely al-
gebraic manner:

We assume that Η is some operator and that HK( p, q)
and H;t(p, q) are its ρ - q and q-p symbols, respec-
tively; also, K(su S2)=(s1|ff|s2) is the matrix element
in the q representation. The symbols Hi and Hi are
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related to K(slt s2) by

-£-(*-«>

f
J

^ (ρ, ι,)
ρς

d i ,

** <l'">>

K(q,

r..(p, f,)« '"

it,

(S.59)

dp.

Equations (S.59) are derived in the same way as the
analogous equations-for the Weyl symbols. From them
we find multiplication laws and equations for the trace:

M - f

&

I f

(S.60)
-η- (.q-iiXP-P,)

=(25ir J Aa(p· < ) d p d ' ·
(S.61)

We also find a relationship between the p - q and <? -
symbols of a given operator,

-•^-(q-ί,ΗΡ-Ρι)
dpi dji,_ 1 f „

ρ ς ' (2πΛ)η J 5 ρ
1

„ , . i f „ , , "?? <»-»•«''-''•»

9 Ρ (2jlrt)n J pq

(S.62)

In contrast with the Weyl and Wick symbols, the re-
lationship between the symbols of adjoint operators is
complicated. If-A = fi*, then

A- -(P, o) = B-- (p, q). ( S . 6 3 )
ep qp

We note that the function (ΐ/2πΛ)β1/'*°""'ι)*"<'>' serves as
the Green's function for the Cauchy problem for the
equation du/dh=id2/dpdqu. Equations (S.62) can thus
be rewritten

i7; f (p, q)^h^Hrp (p, ,). (S.64)

It also follows that the expansion of compositions (S.60)
in powers of h is

pq pq ' iq pq " «i^.
1

U - - » B . - ) ( p , ?) = «"'
 a

" '
a
» M - - (p,, o)J5-- (p, 9 0 |._ . ( S . 6 6 )

2; Relation with the Weyl symbols

Comparing the third equation in (S.59) with (S.6), we
find a relationship between the Weyl symbol H(p, q) of
the operator Η and its q - p symbol:

H (P. 9)

= TT f H~. (Pi, ϊι)« *'
JXft J op

- ΎΓ (•)-?.)(''-".)
P. 9)·

(S.67)

Comparing this equation with Eq. (S.64), we find

II(p,q) = e~ 2 β ί " " / / / | ? (P, „). (S.68)

The /><7 and 17̂  symbols are the basis for the theory of

FIG. 1.

pseudodifferential operators; the modern state of this
theory is presented in Ref. 32.

Comment. The equations relating the symbols in
(S.64), (S.67), and (S.68) and also (S.48) and (S.51) sug-
gest an interpolation. We set

Β ti ) = « °>'>dqH~f{p, q).

A,{-, z) = e l z).

The mutual relations between the interpolation sym-
bols Ht,As and the four types of symbols discussed
above are conveniently described by the diagram in
Fig. 1.
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