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We present on a heuristic basis the universal sufficient conditions for applicability of the method of geometric

optics. In formulating the criteria, we make essential use of the concept of the "Fresnel volume" of a ray,

whose boundary links the first Fresnel zones "threaded" on the ray. The fundamental criterion of

applicability requires that the parameters of the medium and of the wave should vary little over the transverse

section of the Fresnel volume. The second criterion, which stems from the first, requires that rays incident on

the same given point should lie mostly outside the Fresnel volume of an adjacent ray. The effectiveness of

these criteria has been demonstrated in many problems of electrodynamics and acoustics that allow a solution

more precise than the ray solution. On the basis of the presented criteria, one can reveal the regions of

inapplicability of the ray method (focal and caustic regions, penumbra regions in diffraction by screens and

convex bodies, regions where lateral waves arise, etc.). If we know the dimensions of the regions of

inapplicability, we can also solve a number of related problems. The most important of these problems are:

the problem of determining the field in the neighborhood of caustics and foci and the problem of analyzing

the wave pattern as a whole. The proposed criteria also allow a generalization to three-dimensional quantum-

mechanical problems, while outlining the limits of applicability of the quasiclassical approximation.
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1. INTRODUCTION

a) Purpose of the article

The method of geometric optics is an effective in-
strument for finding wave fields under conditions of
smoothly inhomogeneous and slowly nonstationary
media. The geometric-optical approach rests substan-
tially on rays, which play the role of a skeleton that
bears the wave field.

In spite of the extremely broad application of the
method of geometric optics, which sometimes appears
as "geometric acoustics" or "geometric seismics",
and which has a quantum-mechanical "twin brother" in
the quasiclassical approximation, thus far the limits of
applicability of this method in three-dimensional prob-
lems have not yet been elucidated.21 Below we shall

«This article is written from the materials of a lecture1 given
by the authors at the 5th All-Union School on Diffraction and
Prorogation of Waves (Chelyabinsk, 1979V

2 'The conditions for applicability of the geometric-optical ap-
proximation for one-dimensional problems, i.e., essentially
the conditions for applicability of the WKB approximation,
have been studied in many articles. These conditions reduce

try to formulate universal sufficient conditions for ap-
plicability of the method on a heuristic basis that rests
on the Huygens-Fresnel picture of the formation of the
wave field. The proposed heuristic criteria for appli-
cability also enable one to solve a number of related
problems (see Sec. 4 and the Conclusion).

b) Fundamental equations of the method of geometric

optics

The method of geometric optics is based on the as-
sumption that the properties of the medium, as char-
acterized by the refractive index n(r), and the param-
eters of the ray field:

»-*«"·. *~2-, (1.1)

vary smoothly on the scale of wavelengths in the me-
dium, which is X = X0/w.

to the requirement that the refractive index η should vary
little over one wavelength in the medium: λ (dn/dz) « » ,
where λ= λο/η, and \=2KC/U> is the wavelength in
a vacuum. V. L. Ginzburg34 has made a complete physical
analysis of the problem with account taken of the zeros and
poles of the refractive index.
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The generally adopted expansion of the amplitude A
in (1.1) in an asymptotic series in powers of l/ik0 is3):

Substitution of this expansion into the Helmholtz equa-
tion V2^ + k\n2u = 0 enables one to determine the sought
amplitudes Am and the eikonal ψ of the wave:

(1.2)

(1.3)

Here we have / = $0), A0

m=A0

m(0) as the initial values
of the eikonal and the amplitudes at τ = 0. The inte-
gration in (1.2) and (1.3) is performed along the rays,
as defined by the system of equations

£ = p, ^ . = 1 V ^ , (1.4)

Here we have ρ=^7φ, while τ is a parameter of the ray,
which is associated with the arc length σ of the ray by
the equation di =do/n.

The quantity 2in (1.3), which is called the divergence
of the rays, is equal to &(0)/β>{τ), where £&(r) =3 (x, y, z)/
9U> V, T) is the Jacobian of the transformation from the
Cartesian coordinates x, y and ζ to the ray coordinates
ί, η, and τ. One can easily calculate the Jacobian

&)(T) if one knows the equations of the family of rays
r = r(£,T7, τ) (the variables ξ and η specify the "num-
bers" of the rays). The divergence Sot the rays is
proportional to the ratio of the cross-sections ds of the
elementary ray tube

d«ι>·άΐ·

Here the superscript "0" corresponds to τ = 0. Addi-
tional information on the fundamental equations of geo-
metric optics is contained, e.g., in Refs. 4-6 and 35.

c) The necessary conditions for applicability of
geometric optics

Usually one restricts the treatment solely to the
zero-order approximation

A , „ . * All"·"* (1.6)

Then one takes the limits of applicability of geometric
optics to mean the limits of applicability of precisely
the zero-order approximation (1.6).

The necessary conditions for applicability of geomet-
ric optics in (1.2) require the absence of sharp varia-
tions of the amplitude A, a sufficient smoothness of the
phase fronts, and a sufficient slowness of variation of
the refractive index n per wavelength:

;p, * |V»|«». k^-^-. (1.7)

Owing to (1.5) and (1.6), the first of these conditions
limits the rate of variation of the divergence of the rays
X|v/| «I, while the first and second conditions imply
the inequality

* < | Λ , , ι |. (1.8)

Here /?i>2 are the principal radii of curvature of the
phase front.

d) Cumulative errors

The zero-order approximation of geometric optics
satisfies the Helmholtz equation only approximately, to
an accuracy of terms of the order of μ2 =(l/kanL)2.
Let us assume that

u = u,, + u = A,e«o*4-u. (1.9)

Here u is the correction to the geometric-optical field
M0. Then we can easily show that w satisfies the equa-
tion

v 2 u+i; n i i=- e i ' .*AA. (1.10)

Here V2J40 is of the order of μ2 with respect to V2M0 or
t o kln2UQ.

In spite of the smallness of the closure error
ν^Α^β^οψ, it can lead to cumulative errors at large dis-
tances that involve diffraction effects? This is just
why the inequality μ ~l/k0L« 1 and the conditions (1.7)
and (1.8) associated with it prove to be only necessary,
but not sufficient, conditions for applicability of geo-
metric optics. Yet the sufficient conditions must in
some way reflect the cumulative errors. In approach-
ing the formulation of the sufficient conditions for ap-
plicability, we shall discuss the ways of constructing
the Fresnel zones in an inhomogeneous medium, and
shall introduce the Fresnel volume as a key concept for
further constructions.

2. FRESNEL VOLUMES OF RAYS IN
INHOMOGENEOUS MEDIA

a) The Fresnel volume. The physical content of the
concept of a "ray"

In line with the Huygens-Fresnel principle, the field
at the point of observation is formed by the interference
of the secondary waves that are generated by the pri-
mary wave at each point of the phase front.51 The de-
cisive role here belongs to the first Fresnel zone,
since the secondary waves from the first Fresnel zone
differ mutually in phase by no more than π. There-
fore they do not cancel one another, whereas the cumu-
lative contribution from the higher Fresnel zones is
very small, owing to the addition of oscillations oppos-
ed in phase.

We shall call the volume bounded by the envelope of

3'We recall that one actually performs this expansion in the
dimensionless small parameter μ ~ l/feonZ, (Z, is the char-
acteristic scale of the variation of A and n), as was first
demonstrated by S. M. Rytov (see Refs. 2, .3, and also 4, 35).

4 'Properly speaking, all phenomena that lead to deviations from
the laws of geometric optics are commonly called diffraction
phenomena.

5)Owing to the arbitrary choice of the phase front, the excita-
tion of the secondary waves actually occurs at every point of ι
space. As we know, the Huygens concept has been systema-
tically realized by R. P. Feynman by using path-integrals.7
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FIG. 1.

the first Fresnel zones the Fresnel volume.®

The Fresnel volume marks out the portion of space
that can be naturally considered to be the region of
localization of a ray treated as a physical object. In
fact, if we wish to single out a given ray by passing
the wave through an aperture in a screen (Fig. 1), then
the dimensions of the aperture must be greater than
the cross-section of the Fresnel volume. If we narrow
the aperture to dimensions smaller than the dimen-
sion of the first Fresnel zone, then this distorts the
field associated with the given ray. Thus the Fresnel
volume defines the region of space that gives rise to
the wave field at a given point; It constitutes the physi-
cal content of the concept of a "ray". For wavelengths
that are finite (though small, λ « L), the physical ray
has ? finite thickness, in contrast to the mathematical
ray ? = ?(?) , which amounts to an infinitesimally thin
line in space.

b) The equation of the boundary of the Fresnel volume

Let us construct the Fresnel volume for a point
source in an inhomogeneous medium. Let the source
lie at the point r t and the observer at the point r2 (see
Fig. 1). We shall call the ray η — Γ2 that joins the
points ri and r2 the reference ray. In the neighborhood
of the reference ray ??~"?2, let us draw the two-seg-
ment virtual ray η τ ' — r2, which consists of two seg-
ments of rays that satisfy the equations (1.4). Such a
ray corresponds to the Huygens secondary waves exci-
ted at the point r ' . We denote by ^(r,,, rt) the optical
path (eikonal) along the ray that joins the arbitrary
points r e and rb:

η do. (2.1)

The boundary of the Fresnel volume is the surface
F(T') = Q, which includes the points r ' such that the
optical path ψ v i r t = ψ(η, τ') + <??', r2) calculated along
the virtual ray n — r'—ra differs from the optical path
^nt = ^ ri> r2) along the reference ray by one half of the
wavelength \0 = 2u/ko = 2ttc/w (the corresponding phase
advances ko&et a n <* feo'i'Tirt differ by it). This surface
amounts to the envelope of the first Fresnel zones
threaded onto the reference ray. Its equation can be
represented in the follow ing form (see Fig. 1):

(2.2)

8'This name seems more suitable to us than the other terms
that have been applied to various special cases: "region es-
sential for diffraction",8 "spatial Fresnel zone",9 "three-
dimensional Fresnel zone",1 0 etc.

Similarly, one constructs the Fresnel volume for
another formulation of the problem, namely, when the
eikonal ψ° is given on some surface S. In this case the
equation of the envelope of the first Fresnel zones is
written in the form

* (OH **,-*„,!-£

(2.3)

Here r2 is the point of observation, Γ ι Τ 2 is the ref-
erence ray, and r{ —r' —Γ2 is the virtual ray (Fig. 2).

We note that the Fresnel volumes of the higher-order
virtual rays (e.g., three- or four-segment) usually lie
inside the surface -F(r') = 0 . Hence we can neglect
them.

c) Approximate equation of the boundary of the Fresnel
volume

In actually finding the Fresnel volume, we can employ
the smallness of the wavelength as compared with all
the characteristic distances in some given problem.
This enables us to expand the eikonals in Eqs. (2.2)
and (2.3) in terms of the deviations r ' from the refer-
ence ray. If r 3 is the point on the reference ray closest
to r ' (see Figs. 1 and 2), then we have the following
expression, apart from quadratic terms in r ' - r3:

F(r') « l | ( r ' - r 3 , V3)
2№(r,, r,) + ̂ (r,, r 2 )] |—^=0. (2.4)

Here v3 is the derivative with respect to r 3. A linear
term is lacking in this expansion, owing to the extremal
properties of the reference ray.

Analogously we get the following for the surface in
(2.3):

ύ\ Ι—£ = °·
(2.5)

If the quadratic terms in (2.4) and (2.5) vanish, as hap-
pens at caustics, then we must take account of the cubic
terms, etc.

d) The Fresnel volumes of a plane and a spherical wave
in a homogeneous medium

In a homogeneous medium we have ψ(τβ, r t) =n | r a - r t |.
Therefore we can assign an explicit form to Eqs. (2.2)-
(2.5). Κ the points r t and r2 lie on the ζ axis, while
p' =/#' 2 + y 2 , then the approximate equation (2.4) de-
scribes the ellipsoid of rotation

Here we have £ t = z' - z\, and L2 =zi-z'. The cross-

Hr't-O

FIG. 2.
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section of this ellipsoid in the plane z' = const has the
radius

Analogously, in the case of a plane wave propagating
along the ζ axis, we obtain from (2.5) the equation of
the Fresnel paraboloid

(2.8)

The cross-section of the latter is

(2.9)

3. HEURISTIC CRITERIA FOR APPLICABILITY OF
GEOMETRIC OPTICS

Starting with the Huygens-Fresnel picture of the for-
mation of the field in an inhomogeneous medium, let
us formulate the following fundamental criteria for ap-
plicability of geometric optics:

Criterion I. The parameters of the medium, as well
as the parameters of the wave {amplitude and phase
gradient), must not vary appreciably over the cross-
section of the Fresnel volume.

This condition presupposes that inequalities of the
following form are satisfied:

et |Vn|<.n. (3.1)

Here Vj. is the operator for differentiation transverse
to the ray pt = dip/dxj, and af is the transverse dimen-
sion of the Fresnel volume.7' If we substitute the amp-
litude Ao, expressed in terms of the divergence 3?, into
(3.1), then we can obtain the bounds on the radii of
curvature R\& of the phase front from (3.1):

αϊ « | Λι, , |. (3.2)

If several rays arrive at the point of observation
rather than one, the resultant field proves to be the
sum of the fields associated with the individual rays.
Near caustics, where the rays converge strongly, the
first inequality of (3.1) breaks down, owing to the un-
bounded growth of the gradient of the amplitude. When
the inequalities of (3.1) break down, one of the rays can
be shown to lie inside the Fresnel volume of an adja-
cent ray. Therefore it is expedient to formulate anoth-
er auxiliary condition for applicability, which is a con-
sequence of criterion I, but which substantially facili-
tates the analysis of the problem in a number of cases:

Criterion II'. The phase difference kj^y - ifc) corre-
sponding to rays arriving at the very same point must
not be smaller than π:

k0 | ψι - f2 I 3* η (3.3)

"We note that criterion I is satisfied for a zone plate and for a
circular aperture whose radius is an even number of Fresnel
zones, but the field differs from the geometric-optical field.
In order to rule out these degenerate situations, in the case
of jumpwise variation of the parameters of the medium or
of the field, we must take af in the inequalities of (3.1) to
imply not necessarily the first Fresnel zone, but some char-
acteristic Fresnel scale that is comparable with the radii of
the first Fresnel zones.

(correspondingly, the path difference | φι - ffe | must not
be smaller than λο/2).

Upon somewhat simplifying the formulation of the
problem, we can say that a ray must not traverse an
appreciable fraction of its path within the Fresnel vol-
ume of other rays arriving at the same point. When
criterion Π breaks down, we risk taking double (or
more than double) account of the contribution of the
same rays to the resultant field.e>

The criteria discussed here in some form or other
have been employed or have arisen in many studies,
starting with the ground-breaking studies of Fresnel.
In a number of cases they permit a rigorous substan-
tiation. For example, in the diffraction of waves in
homogeneous space (the initial conditions being assign-
ed on some surface), the geometric-optical field cor-
responds to the stationary points of the Huygens-Kirch-
off integral.8 In this case the π-neighborhood of a sta-
tionary point (i. e., the neighborhood in which the phase
differs from the stationary value by no more than ir)
is a cross-section of the Fresnel volume. Here the
inequalities of (3.1) require constancy of the param-
eters of the wave and the medium within the bounds of
such a π-neighborhood of the stationary point, while
criterion Π forbids the overlap of the π-neighborhoods
of close-lying stationary points. We can also identify
the cross-section of the Fresnel volume with the π-
neighborhood of a stationary point in many other prob-
lems that allow an exact or approximate integral rep-
resentation of the field. The general substantiation of
the criteria being discussed in the case of a smoothly
inhomogeneous medium stems from the condition of
applicability of the stationary-phase method to the
calculation of Feynman continual integrals, by means
of which the Huygens principle can be most fully for-
mulated.32'33 In an extremely simplified formulation of
the problem, one uses only two-segment virtual trajec-
tories. Then one can derive criteria I and II by using
the Huygens-Kirchoff integral with the approximate,
rather than the exact, geometric-optical Green's func-
tion.11

In the cited cases and some others, criteria I and Π
arise from the stating of well-known facts. The new
point that we are stressing is the universality and suf-
ficiency of these criteria, even in inhomogeneous media.
The sufficiency and universality of criteria I and Π is
confirmed by the fact that, in all of the numerous cases
known to us, criteria I and Π agree with the other meth-
ods of determining the limits of applicability of the
method of geometric optics: from the first omitted

8 ) L. A. Vainshtein has pointed out a special case to the authors:
in the problem of the radiation from a point source on an ideal
conductive plane, the Fresnel volumes of the direct and of the
specularly reflected rays with a phase difference less than π
intersect over most of the path. Nevertheless, the ray des-
cription remains valid. The special character of this example
involves the uniformity of the boundary conditions throughout
the course of propagation. Consequently the fundamental cri-
terion I is satisfied, and the geometric-optical approximation
yields an exact solution of the problem.
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term, by comparison with the exact, asymptotic, or
numerical solutions, etc. We shall present the perti-
nent examples and comparisons in Sees. 5-9.

Another new point is the pure ray recipe proposed in
Sec. 3 for constructing the Fresnel volume in an inho-
mogeneous medium. Thus the limitations I and Π,
which are diffractional in content, are expressed in ray
language. Therefore it will not be a great exaggera-
tion to say that geometric optics has acquired internal
criteria of applicability.

4. RELATED PROBLEMS THAT CAN BE SOLVED BY
EMPLOYING THE HEURISTIC CRITERIA

a) Estimates of the error of the zero-order approximation
of geometric optics

The criteria formulated above enable one not only to
answer the fundamental problem posed (of the sufficient
conditions of applicability of the ray method), but also
to illuminate a number of related problems that offer
independent interest.

One of these problems is to estimate the errors of
the zero-order approximation of geometric optics. We
can hope that the parameters that figure in the inequali-
ties (3.1) and (3.2) can serve as a heuristic measure
of the inexactness of the field of (1.6):

By itself, the estimate (4.1) cannot give reliable
error levels throughout space. Yet it can suggest pre-
cisely where the error y is known to be small, and
where it is known to be large. In other words, these
estimates permit one to outline both the region of ap-
plicability and that of inapplicability of geometric op-
tics. The boundary of these regions can be defined
roughly by the condition

•Λ.«~1. (4.2)

b) Estimates of the wave field in focal, caustic, and other
zones of inapplicability of geometric optics

At first glance it seems that geometric-optical cal-
culations can be appropriate only in the region of appli-
cability of the ray method, where its error is small:
y b e u t « 1. Nevertheless, in a number of cases the ray
approach can yield an estimate of the field that is cor-
rect in order of magnitude, though crude, for the field
in a region of inapplicability of the ray method, in par-
ticular, in a penumbra zone or in the vicinity of foci
and caustics. For example, let us examine the boun-
daries of caustic and focal zones. One can determine
these boundaries by using (4.2), but one can also use
criterion Π (see Sec. 7).

While assuming the boundaries of the caustic and fo-
cal regions to be known, let us give estimates of the
field inside these regions. First of all, we can do this
by employing the values of the geometric-optical field
at the boundary of a focal (or caustic) zone:

· ( 4 · 3 )

Γ at the boundary of the focal zone

A method for estimating that differs in form, but is
equivalent in essence, is based on the law of conserva-
tion of the energy flux in the ray tube, with the extra
assumption that the initial energy flux Π° = η° |-Αο|2Δδ0 is
uniformly smeared out over the focal (or caustic) zone:

Π» = n° | A" |« \S° = nfoc I Kfoc 1
2 AStoc. (4.4)

Here ASfoe is the width of the ray tube that corresponds
to the focal (or caustic) zone (Fig. 3), and AS0 is the
initial cross-section of the ray tube. We obtain the
following estimate from (4.5):

| Ufoc; 1 ~ \A« | ]/^ "'^f * » (4.5)

This is close to the estimate of (4.3), since &an&S/
w°AS°. We shall demonstrate the effectiveness of these
estimates below (in Sees. 5-9). A need for such esti-
mates arises, e.g., in solving the problem of the pos-
sible occurrence of some particular nonlinear process-
es (harmonic generation, self-action, breakdown, etc.,
in a region of field concentration in foci and on caustics.

Estimates similar to (4.3) and (4.5) also are valid in
other regions of inapplicability of geometric optics,
e.g., in a penumbra region.

c) The problem of stability of the geometric-optical
solution

There is another related problem—the behavior of
geometric-optical solutions under small perturbations
of the parameters of the medium, of phase boundaries,
and/or of the initial conditions of the problem. We can
explain the essence of the problem with the following
simple example.

Let us treat a plane wave, which corresponds to a
parallel beam of rays [Fig. 4a]. If we subject the
plane initial wavefront to a weak, small-scale periodic
perturbation, then the structure of the rays is cardinal-
ly distorted [Fig. 4b]. The field as calculated by geo-
metric optics is also substantially distorted. At the
same time, evidently, when δ « λ, the true wave field
is practically unchanged (only perturbations of the field
of the order of δ/λ will appear). This example shows
that the geometric-optical approximation is unstable (or
more exactly, is very sensitive) with respect to small
perturbations of the initial conditions. Instability of
the same type also arises under analogous perturba-
tions of the parameters of the medium and of the phase
boundaries.

The resolution of the problem of the stability of geo-
metric-optical solutions consists simply in the fact that
the conditions for applicability of geometric optics
break down under weak, small-scale perturbations. In
particular, both the old and the new rays that have ap-
peared in Fig. 4b, as a result of the perturbation of the
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FIG. 4.

plane phase front become fictive and nonphysical. In
fact, when the point of observation is set at the distance
I from the screen, the Fresnel volumes surrounding
the rays contain many inhomogeneities when -f\T»X.
In this case, geometric optics is inapplicable.

d) Analysis of the wave pattern as a whole

This problem offers considerable interest under con-
ditions in which one must obtain an estimate of the field
in order of magnitude, or when one must compose a
rough picture of the structure of the field before start-
ing analytical or numerical calculations. The geomet-
tric-optical calculations and estimates in such a "rapid
analysis" play a pilot role, since they enable one to
estimate by simple means the value of the field over a
considerable fraction of space, both in the region of
applicability of the method and outside it [see Sec. 4b].

Thus the stated ideas allow not only a qualitative, but
also a quantitative analysis of the structure of various
high-frequency fields as a whole, based on geometric-
optical notions alone. While somewhat exaggerating,
we can say that this is equivalent to solving the wave
problem while bypassing the solution of the wave equa-
tion. Such an analysis is especially valuable in engin-
eering applications. In the overwhelming majority of
such cases, it is important to know orders of magni-
tudes, rather than the exact values of the amplitudes of
the wave field.

5. DIFFRACTION OF WAVES IN FREE SPACE

a) The form of the penumbra region in diffraction
by a half-plane

As the first example of using the heuristic criteria,
let us examine the very simple problem of the width of
the penumbra region in the diffraction of a spherical
(or cylindrical) wave by a half-plane (Fig. 5). The
point of observation Ρ lies on the boundary of the pe-
numbra region (in Fig. 5 the umbra and penumbra re-
gions are indicated by cross-hatching) if the Fresnel
volume of the ray touches the edge of the half-plane.
The radius of the first Fresnel zone af=at(z) near the
half-plane can be determined by Eq. (2.7) by setting
Lx = z0 and L2=z therein:

FIG. 5.

5):

= /(*)· (5.2)

a,- (5.1)

The distance of the point Ρ from the axis is (see Fig.

Thus the function χ =/U) amounts to the equation of the
boundary of the penumbra.

This boundary has the shape of a hyperbola having the
rectilinear asymptote xa=1 (ζ + (ζο/2)]/λο/ζο. For all
rays having a slope greater than the asymptote, geo-
metric optics is valid at infinitely large distances. For
these rays, the error of the method of geometric optics
does not accumulate, in contrast to the rays that lie in
the penumbra region. For a plane wave (so"*"00)) the
boundary of the penumbra region of (5.2) acquires the
form of the parabola χ = JXQZ. In this case all rays
sooner or later fall into the penumbra region.

We note that we can apply Eq. (5.1) to a wave having
an arbitrary phase front if we take ZQ to be the local
radius of curvature of the phase front in the plane con-
taining the normal to edge.

b) Formation of the ray field in the near and far
zones of an antenna

This example explains why one can employ geometric
optics in both the near and far zones of an antenna of
large dimensions.

Near a cophased antenna with an aperture diameter
26, the geometric-optical approximation describes a
beam of parallel rays (projector ray) with the same
amplitude distribution as at the aperture itself. This
approximation is applicable, in line with criterion I, as
long as the radius of the first Fresnel zone af = (λο)

1/2ζ
is small in comparison with b, i. e., as long as ζ « δ 2/
λ0.

In the far zone of the aperture, the field amounts to
a directional spherical wave having a width of its di-
rectional diagram of the order of λο/δ. Thus the char-
acteristic scale of the variation of the amplitude of the
field at the distance r from the antenna amounts to h
~Xor/6. According to (2.7), when the observation point
lies at infinity, the dimension of the Fresnel zone on a
sphere of radius r is af = (A0r) i/2. Hence the condition
for applicability of geometric optics acquires the form

r » -

Naturally, the condition derived here coincides with
the ordinary criterion for the far zone of an aperture.

Thus, the geometric-optical description is applicable
in both the far and near zones of the antenna. How-
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ever, we should stress the difference between the ini-
tial conditions. In describing the field in the near zone,
we assign the initial data at the aperture, whereas in
the far zone we take as the initial data the field of a
directional spherical wave, i .e . , the far field of the
antenna already formed. In the intermediate zone
where r~& 2/\, neither of the described approaches is
applicable.

c) The field in the neighborhood of the focus of a lens

Let us study an ideal lens with an aperture of dia-
meter 26 and a focal length F. Such a lens converts a
plane wave into a convergent spherical wave with the
radius of curvature F. Simple constructions yield the
following expression for the radius of the first Fresnel
zone in the plane of the lens:

(5.3)

As we approach the focus (z—F), the geometric-opti-
cal approximation loses force, since the radius a, ap-
proaches infinity. Let ζ—F-z be the distance from
the observation point ζ to the focus. Upon requiring
that at« b, we obtain the following inequality for the
quantity £ = F - ζ:

( V \ 2 /β- Λ\

τ ) ? ? « · r '
We can easily recognize the longitudinal dimension of
the focal spot in the expression I» = λο(.Ρ/δ)2. The ray
AF proceeding from the edge of the lens to the focus
(Fig. 6) intersects the plane ζ = F - h, at the point Β at
the following distance from the axis of the lens:

l±=bh- = K-T- ' (5.5)

This quantity characterizes the transverse dimension
of the focal spot.

Further, let us extimate the field |Mtoc | at the focus
of the lens by starting with the ideas expressed in Sec.
4. Here we equate the energy flux n° = (A°)2ir62 through
the lens to the energy flux Ια^,^ιτΖι through the focal
spot (we are assuming that the energy flux at the focus
of the lens is uniformly blurred over a circle of radius
h). Then we obtain the following result for the three-
dimensional problem:

(5.6a)

At the same time, at a two-dimensional focus we have:

I «foe (5.6b)

These estimates of the focal field agree rather well
with the exact maximal values of the field at the focus:

(5.7)

FIG. 6.
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If we average the exact values over the focal spot, the
agreement in (5.6) will be even better.

6. REFLECTION AND REFRACTION OF WAVES AT
CURVILINEAR PHASE BOUNDARIES OF TWO
HOMOGENEOUS MEDIA

a) Conditions of applicability of the reflection formulas

When a wave is incident on the curvilinear phase
boundary of two homogeneous media, both reflected and
refracted waves arise. In the geometric-optical ap-
proximation, the amplitudes -Ar(!inec and A refrac of these
waves at the phase boundary S are associated with the
amplitude Ainc of the incident wave by the local relation-
ships

^reftec IS «ic IS· ΛβίΓΚ IS -OA^c I s . (6.1)

Here Γ and D are respectively the coefficients of re-
flection and of transmission. Owing to the geometric
principle of locality, they are defined by the formulas
for a plane wave incident on the tangent plane (Fig. 7).
Upon treating the amplitudes in (6.1) as the initial val-
ues in the formulas of geometric optics, we can cal-
culate the field far from the phase boundary.

The conditions (3.1) for applicability require smooth
variation of Ain<1, Γ, and D within the limits of the
cross-section bf of the Fresnel volume at the phase
boundary. Here we have bf = af/cos9, where θ is the
angle of reflection or refraction of the ray. Moreover,
Eq. (3.2) implies that the radii of curvature of the sur-
face α ί 1 ι 2 must be large in comparison with bf. αΑΛ

» bf. The value of af is calculated by Eq. (2.7) for a
spherical wave, wherein L\ is the radius of curvature
Rm of the phase front of the reflected (or refracted)
wave immediately after reflection (refraction), and L2

is the distance from the point of reflection (refraction).
At the same time, the value of R& is calculated from
the given values of the angle of incidence and the radii
of curvature of the surface and of the phase front of the
incident wave.'β,12

Let us examine some effects that arise when the
smoothness of variation of Γ and D breaks down inside
the limits of the Fresnel volume.

b) The region of breakdown of the reflection formulas
near a light-shadow boundary created by a convex object

The reflection formulas lose force at the angle of
reflection θ = 0m U at which the Fresnel volume of the
reflected ray touches the light-shadow boundary at the
surface of the convex object (Fig. 8), since the ampli-

FIG. 7.
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FIG. 8.

tude of the incident wave suffers a discontinuity at this
boundary. An elementary calculation gives the follow-
ing value for cos0m U:

cosemln= (ĵ yjj]) · (6.2)

Here as is the local radius of curvature of the surface
at the light-shadow boundary.1'8'9 This value agrees
very well with the values c o s ^ ^ = (2/fco| as | ) 1 / 3 , which
Fok derived by using the method of the parabolic equa-
tion.12

c) The region of inapplicability of the reflection formulas
in the neighborhood of the angle of total reflection

The inapplicability of geometric optics near the criti-
cal angle of incidence 0 = 0CT that corresponds to total
reflection involves the fact that the phase of the coeffi-
cient of reflection a = argT varies rapidly here. Con-
sequently | V r | becomes infinite at θ = θα.

We can easily find the region of inapplicability from
the condition that the Fresnel volume of the reflected
ray should not include the point of reflection of the cri-
tical ray. The instant of contact is shown in Fig. 9 for
the case of a plane surface, for which one can employ
the mirror image of the source. The zone of inappli-
cability (cross-hatched in Fig. 9) obtained from these
considerations agrees well with the asymptotics of the
exact solution derived by L.M. Brekhovskikh (cf. Refs.
1,13).

From the physical standpoint, the inapplicability of
the method of geometric optics in this region involves
the fact that a new type of ray arises here: diffraction
rays, which describe the field of the lateral wave.13

The neighborhood of the c r i t i c a l r a y i s a s o r t of penum-
bra region for the lateral wave, i. e., for the diffrac-
tive rays, which must be taken into account for 9 > θα

together with the ordinary reflected rays.

Similar restrictions pertain to the neighborhood of
the angle of total refraction (Brewster angle) and also
to the neighborhood of a ray that bears a zero f ield (i.e.,
a ray corresponding to a zero of the emission diagram
of the source).1

d) Multiple reflection of rays from a concave mirror

If a source r 0 lies on a concave phase boundary, then
rays arrive at a point of observation r on the same sur-
face that have undergone multiple reflection from the
surface.

The multiplicity of reflection at which the rays lose
their individuality has been determined5: if ipm is the
optical path of the wave for m -fold reflection of the
ray, then geometric optics loses force when φη*\- 4>m

s λο/2. From the standpoint of the conditions that we
have proposed for inapplicability of the ray method,
this inequality implies the breakdown of criterion Π:
the (m + l)-fold reflected ray lies inside the Fresnel
volume of the w-fold reflected ray.

7. PERICAUSTIC REGIONS OF INAPPLICABILITY OF
GEOMETRIC OPTICS

a) An estimate of the width of the pericaustic zone in the
case of a simple caustic. Indistinguishability of rays in
the pericaustic zone

We can estimate the width of the caustic zone by con-
siderations that rest on criterion Π: we can naturally
consider a point r to lie inside the caustic zone if each
of the rays lies inside the Fresnel volume of an adja-
cent ray (Fig. 10). This directly implies the physical
indistinguishability of the rays in the caustic zone;
when the Fresnel volumes overlap substantially, one
cannot distinguish the rays (i.e., determine their
parameters separately) by using an opaque screen with
an aperture. The reason is that one cannot obscure the
path of one ray without touching the Fresnel volume of
the adjacent ray.

Overlap of the Fresnel volumes corresponds to the
condition

Simple calculat ions by per turbat ion theory show
that, n e a r a s imple (nonsingular) caust ic, we have

1 4 ' 1 5

- 2 « 2 » w

FIG. 9.
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Here lN is the distance along the normal to the caustic,
wc is the refractive index at the caustic, vTil = \vmm,
- vTay cos61 is a quantity that determines the relative
curvature of the ray and of the caustic, vaust is the
curvature of the normal cross-section of the caustic
in the direction of the ray, v r w is the curvature of the
ray at its point of contact with the caustic, and δ is the
angle between the normal to the caustic and the princi-
pal normal to the ray (the normal to the caustic is as-
sumed to be directed into the light region). Upon sub-
stituting (7.2) into (7.1), we obtain the following esti-
mate for the width of the caustic zone | lH \ < lt:

'*-1.77A. (7.3)

This estimate differs only by the numerical coefficient
from the distance between the caustic and the first max-
imum of the Airy function describing the field near a
simple caustic1*'11:

Ζ, = 1.02Λ, Λ (7.4)

Equation (7.4) is a generalization of the corresponding
expression given in Ref. 8, Sec. 59, for a homogene-
ous medium having n = l, when h = (p/2k\Y'3, where
P = wolu»t i s t h e radius of the curvature of the caustic.

b) An estimate of the field near a caustic in the two-
dimensional problem

Κ ΔΖ° is the initial width of the ray tube, while Zc ~ Λ
is the width of the caustic zone (see Fig. 10), then,
upon replacing AS0 by ΔΖ0 and Δδ,. by Λ in Eq. (4.5), we
get the following expression for the field near the caus-
tic:

I «foe \~\A*\
η°Δ1°
η«Λ (7.5)

The formulas of the Airy caustic asymptotes for the
wave field14'17 predict the same order of magnitude. A
detailed analysis1 has shown that the maximal value of
the field (at the distance Ζι = 1.02Λ from the caustic)
exceeds the estimate of (7.5) by a factor of only 1.34.

Let us consider the uniform asymptotic representa-
tions of the field near caustics, in particular, the Airy

e16asymptote1

u (r) = «·».·-«

Here α(ξ) is the Airy function, and we have

u (r) = «·».·-«*/*> [(-ξ)"" 4 (U, + iW)" (D + ί (-ξ)"'" «Αι-Αύ V (I))·

We note that these representations employ the geo-
metric-optical values of the eikonals φι,ζ and the amp-
litudes -All2. However, the rays that one uses to cal-
culate the quantities ψι>2 and AXA have lost any direct
physical meaning. This means that near caustics the
rays retain, in B.E. Kinber's graphic expression, the func-
tion of a geometric skeleton that bears the flesh of the
waves.19·20

c) Estimates of the field at a focus in the presence of
spherical aberration

Let the field in the initial plane ζ = 0 have the quad-
ratic phase: M° = exp(-ifeopV2F). Then, when ζ =F, a

caustic cusp is formed instead of a point focus. An
elementary calculation by the formulas of Sec. 3 gives
the following value of the Fresnel radius in the plane

ο, «. (4ί»λ)·/*. (7.7)

We can estimate the transverse dimension L· of the spot
by Eq. (5.5) by substituting therein the effective radius
6 r t "Of for the radius b of the lens. This yields L
~(XSF/4)1/4. Upon assuming in (4.5) that AS° = TT4 and
Δδ,00 = πΖί, we get the following estimate for the field
averaged over the spot:

I' (7.8)

This approximate value is smaller than the exact value
of the field at the center of the spot by a factor of only
ir/vT=2.2.

d) Focusing indices of the field at caustics

As we see from the estimates given above, the field
at caustics and at foci shows a power-function depen-
dence on the wavelength. If we employ the small pa-
rameter μ = l/fe0Lw, then the field at a common-type
caustic is estimated to be

I «foe 1 ~ I A' I μ*. (7.9)

Here σ, is the so-called focusing index.

Evidently af depends on the character of the focusing.
Thus, for a simple caustic we have σ, = 1/6, for a two-
dimensional caustic cusp σ, = 1/4, for a two-dimen-
sional focus and for spherical aberration o> = 1/4, and
for a caustic loop that constricts to a point af =3/10.
The largest value af = 1 is attained at an ideal focus,
while the smallest value {af = 0) corresponds to the ab-
sence of focusing. Values of σ, calculated by diffrac-
tion theory for a number of typical caustics are given,
e.g., in Refs. 1, 21, 22, and 35. These values are
very convenient for especially rough estimates of the
fields in focal zones, especially in nonlinear problems.

8. DIFFRACTION OF WAVES IN INHOMOGENEOUS
MEDIA

a) The form of the Fresnel volume for a plane wave in a
plane-layered medium

By employing the ray equations in a plane-layered
medium having the refractive index n = n{z), we can
easily determine the cross-section af of the Fresnel
volume in the horizontal planes z—z'\

(8.1)

Here ζ is the coordinate of the point of observation, s
= n°sine°, 0° is the initial angle of incidence of the ray,
and n° is the refractive index at the level z=z° [Fig.
l la]. With vertical incidence of the ray on the layer
(s0 = O), we have

η (ι) ·
(8.2)

According to (8.2), if n(z) diminishes along the ray, the
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Fresnel volume is somewhat narrower than in the cor-
responding homogeneous medium having M = const = w(z),
whereas, if n{z) increases, the Fresnel volume be-
comes broader: Of{z') >[λο(ζ - ζ')/η{ζ)]1Λ.

b) Form of the Fresnel volume in a layered medium in
the presence of a caustic

In this case the Fresnel volume is bounded by two
envelopes that correspond to the two rays arriving at
the observation point. With oblique incidence of the
wave, the volumes Vx and Vi are separated in space
[Fig. l i b ] , while with vertical incidence, the volume
V\ lies completely inside the volume F2 [see Fig. l ie] .
Here the volume V2 is bounded by a surface that has
the shape of a stocking partially turned inside out (for
more details, see Ref. 1).

c) Estimates of the width of the Fresnel volume in
grazing incidence of the rays on a layered medium:
limits of applicability of the ray description of the
propagation of radio waves in the ionosphere

In grazing propagation (angle of incidence θ close to
π/2), the rays have a slightly curved trajectory. Over
the entire course of the latter, the permittivity de-
viates insignificantly from unity, since even the mini-
mal value ε,,,,. = sin20, which is reached at the point of
reflection, is close to unity when 0~ττ/2. Therefore
the maximal half-width af of the Fresnel volume can be
estimated by Eq. (2.7) for a homogeneous medium hav-
ing the permittivity ε~1:α / ι Π Β 1~(λ0£)1 / 2/2 U- is the dis-
tance along the horizontal).

According to criterion I for applicability of geomet-
ric optics, the decline in the permittivity t(z) over the
diameter 2af ~(λ0ζ,)1/2 of the Fresnel volume must be
small in comparison with unity:

•g-2a,<l. (8.3)

The characteristic scale Η~z/\dz/dz\ for the iono-
sphere amounts to no less than 50-200 km, so that,
for a wavelength λο = 15 m, we obtain from (8.3) the
value L« 105-10e km. This distance is considerably
greater than the circumference of the Earth. Hence,
in the case of almost horizontal rays, we can assume
that the geometric-optical method is suitable for de-
scribing at least single-skip propagation.

The problem can be solved similarly of the applica-
bility of the geometric-optical approximation in the
neighborhood of the critical Pedersen ray traveling
along the axis of an anti-waveguide.1 The estimates
obtained here agree with the diffraction calculation per-
formed in Ref. 23.

d) The near and far fields of an antenna in an
inhomogeneous medium

As the point of observation moves away from the an-
tenna in an inhomogeneous medium, the cross-section
of the Fresnel volume af in the plane of the antenna
first rises, and then strongly decreases on approaching
a caustic. If the cross-section af becomes smaller
than the dimension b of the antenna, then we can speak
of a local coupling characteristic of the near field that
occurs between the field at the aperture and the field at
the remote point of observation. This feature of fields
in inhomogeneous media has been found and described
in Refs. 24 and 25.

9. LIMITS OF APPLICABILITY OF SPACE-TIME
GEOMETRIC OPTICS

a) Necessary conditions of applicability

In problems of propagation of nonstationary waves
(pulses, wave packets) in dispersive media, the ap-
proximation of space-time geometric optics plays the
same important role as the ordinary approximation of
geometric optics does in the propagation of monochro-
matic waves.'26-28

If the properties of the medium and of the field vary
slowly enough, then we can treat the nonstationary
wave

u (r, t) = A (r, i) (*«•• <> (9.1)

as locally plane and locally monochromatic at distances
\&r\ ~λ and intervals Δ/~τ. Here λ is some mean

wavelength in the medium, and τ is its mean period.
The conditions of slowness needed for this have the
form

μ=π,3Χ{Α, £, i } « t . (9.2)

Here τ 0 is the characteristic scale of the frequency
dispersion (the relationship between τ and τ 0 is arbi-
trary in the general case), and L and T.are respec-
tively the space and time scales of variation of the field
and of the medium.

When the conditions of (9.2) are satisfied, one can
easily calculate the amplitude A and the eikonal φ by
employing space-time rays.26-28

b) The space-time Fresnel volume

Let the initial conditions for the field of the nonsta-
tionary wave w(r, t) have the form

Let them be assigned on an arbitrary hyper surface Σ 0

whose parametric equations are r = r°(?), / = Αξ), or
R = R°(i), where RMr.i), R° = (r°', t°), and ί = {ξ1; ξ2, ξ3}·
Here the is are the curvilinear coordinates in Σ0, Let
us introduce the reference space-time ray R1 — R2 hav-
ing the phase advance φτΜ = <?°(Ri) + *(Ri, R2) and the
virtual ray R[ — R' — R2 having the phase advance </>,trt
= <p°{R'1) +*(Ri, R') +Φ(Η', R2). Here Ri = (r1 ( i j and
Ri = (ri, t{) are the points of emergence of the rays
from the hypersurface Σ0, and R2 = (r2, h) is the point
of observation in four-dimensional space. Then the
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equation of the boundary of the Fresnel volume can be
written in the form

βΑ

hr
Ι «ω Ι

Xt her
(9.9)

= | [q>° (RJ) + Φ(R;, R') + Φ (R;, R i ) ] - ^ 0 (R,) + Φ (R,, R S)1 | - π = 0.

(9.4)
Here R' = (r', f) is the running point of the boundary.
We note that one can derive an approximate equation of
the boundary from (9.4) by expansion in a Taylor series.

c) The form of the space-time Fresnel volume in a
homogeneous medium

Let us concretize Eq. (9.4) as applied to the problem
of propagation of a plane frequency-modulated pulse in
a homogeneous dispersive medium having the refrac-
tive index η(ω). Let the phase of the pulse be φ{0, t)
= <p\t) in the initial plane 2=0. That is, the initial
frequency of the pulse varies according to the law o>°
=-Z<p*/dt. We can then derive the following expression
from (9.4) for the half-width of the Fresnel zone in the
plane ζ = 0:

(9.5)

Here we have fej' = <rfeo(u>)/duf | ω = ω ο , and zc is the co-
ordinate of the point of contact of the reference ray with
the caustic:

%*=— [*e—a^~J · v9.6;

Equation (9.5) is an analog of the expression (2.7) for a
spherical monochromatic wave.

In the absence of frequency modulation, so that ω°
= const, according to (10.11) we have \ze\ —°°, and

Figure 12 shows the general form of the Fresnel vol-
ume in the zt plane. The cross-section of this volume
at the level z = z' is

Ti = V2n|*;|(«-2·). (9.8)

We note that Eq. (9.7) agrees with the estimate of the
characteristic time interval ~(|feoU)l/2 derived in Refs.
29 and 30 by the method of the space-time parabolic
equation.

d) Conditions for applicability of space-time geometric
optics

By analogy with criterion I of Sec. 3, we require
satisfaction of conditions of the type

By using these conditions, one can estimate the di-
mensions of the region of inapplicability in various situ-
ations, e.g., near a shadow boundary in space-time
(near a pulse front), in the neighborhood of space-time
caustics and foci, both in homogeneous and inhomogene-
ous dispersive media. The indicated estimates are
taken by analogy with the spatial case. We shall con-
sider only a single example here which pertains to
compression of frequency-modulated signals in disper-
sive media (other examples are given in Ref. 1).

e) Estimation of the field at a space-time focus: pulse
compression

Let us choose the frequency-modulation law ω°(ί) such
that all the space-time rays converge at a single point
(zf, tt) (Fig. 13). The dimension of the first Fresnel
zone for ζ = 0 is determined by Eq. (9.5):

(9.10)

Owing to the inequalities of (9.9), the approximation of
space-time geometric optics loses force when τ, is
comparable with the length Τ of the original pulse: τ,
~ T. We can find from this condition the spatial dimen-
sion of the focal spot (see Fig. 13):

i. (9.11)

The distance I from the focus corresponds to the time
interval

* mm = 1 ΤΓ - (9.12)

The latter amounts to the duration of the pulse at the
focus.

We can obtain the field at the focus from the condi-
tion of energy balance

\A°\*T=A}MiTmm.

This implies that the gain in amplitude of the compres-
sed signal is

, . T (9.13)
V 2JI | t ; | zf v '

The estimates that have been derived agree with the
results of Refs. 29 and 30, which were obtained by the
method of the space-time parabolic equation. They
also admit verification by using the spectral approach,
which has been described in detail by Vainshtein3

(see also Ref. 27).

-SI

FIG. 12.
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10. CONCLUSION

The treatment that we have carried out shows that or-

dinary geometric optics, when supplemented by the

concept of the Fresnel volumes of the rays, enables

one to carry out a global analysis of high-frequency

wavefields, including not only the elucidation of the

qualitative structure of the fields, but also the deriva-

tion of quantitative estimates of the field, even in zones

of inapplicability of geometric optics. Such an analy-

sis is composed of the following elements:

1. Determining the geometric-optical field, which
presupposes finding the rays, phase fronts, and diver-
gences of the ray tubes and other ray parameters.

2. Using the heuristic criteria to find the regions of

applicability and inapplicability of geometric optics and

the boundaries between them.

3. Estimating the error in the region of applicability

of geometric optics.

4. Heuristic estimates of the amplitude of the field

in regions of inapplicability of geometric optics.

When necessary, the analysis can also be supple-

mented by estimates of the exponentially small scatter-

ed fields in regions into which the rays do not pene-

trate.9)

The realization of this program depends substantially
on the solvability of the equations of geometric optics,
and primarily the ray equations. As we know, solutions
exist in analytic form only for a limited number of
special cases that fall far short of spanning the entire
spectrum of actual wave problems of electrodynamics,
acoustics, optics, and seismology. Under these con-
ditions, it seems desirable to us, and in some appli-
cations even necessary, to develop a universal numerical
program of analysis of high-frequency fields. This might
be based on calculating the rays and their corresponding
Fresnel volumes, and would envisage finding the boun-
daries of applicability of the ray method and roughly
determining the field in regions of inapplicability of
geometric optics.

The concepts that we have expressed above can also
be transferred without substantial changes to the quasi-
classical wave functions in quantum mechanics. In-
troduction of the Fresnel volume of the classical tra-
jectories enables one to formulate the limiting admis-
sible rate of change of the potential in space, to de-
termine the width of caustic zones, to estimate the
wave function in the neighborhood of caustics (e.g., in
the rainbow zone in a problem of scattering by a po-
tential), etc.

Moreover, we can generalize the criteria that we
have formulated to vector fields by requiring in addi-
tion that the variation of the polarization of the wave
over the transverse section of the Fresnel volume

9 Ά method for estimating these exponentially weak wave fields
by using convergent series with the zero-order approximation
of geometric optics as the leading term has been proposed in
Ref. 1.

should be small.1 Reference 1 also points out features

of the form of the Fresnel volumes in anisotropic media

and discusses problems of the reality of caustics and

of possibilities of localizing complex rays.

In closing, the authors express their sincere appre-

ciation to L. A. Vamshtein for valuable advice and re-
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